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Abstract

We present a theory of endogenous policy preferences and electoral competition

with boundedly rational voters who find it costly to recall detailed information. Voters

are otherwise fully rational, and they strategically choose how much memory to devote

to processing political information. We find that even if all voters start with a common

prior such that given this prior they all prefer a moderate policy over either a left or a

right alternative, and even if they only observe common signals that in the limit would

make a perfectly rational observer certain that the moderate policy is indeed best for

everyone, voters with costly memory capacity will eventually prefer extreme policies,

and the electorate polarizes: some voters support the left policy, and some support the

right policy. Two fully rational political parties polarize as well, one pandering to the

voters on the left, and the other pandering to the voters on the right.
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1 Introduction

We study how the cost of processing political information for an individual voter relates

to the polarization of the electorate. We find conditions under which voters would

embrace a policy consensus if they were fully informed or fully uninformed, but their

constrained optimal processing of the available information leads them to polarize into

two opposed extreme camps. To explain this phenomenon, we microfound voters’

behavior with explicit formulations of voters’ motives to vote and of the costs they

bear to process political information.

Consider an electorate facing a set of different policies, and a list of candidates

running for office. Voters are endowed with preferences over certain economic and social

outcomes (their individual wealth, society’s wealth and inequality, pollution, etc.) as a

primitive. A voter’s preferences over policies or over her voting options (i.e. over each

candidate on the ballot, and abstention) are not a primitive. Voters face uncertainty

about how their vote affects the election and the implemented policy, and uncertainty

about how this policy affects the downstream socio-economic outcomes. Each voter’s

preferences over policies are endogenously derived from the voter’s primitive preferences

over outcomes, and from her information about how the implemented policy will affect

the outcomes over which her primitive preferences are defined.

Given their endogenous preferences over policies, voters derive their preferences over

their voting options by combining an outcome-oriented motivation with an “expressive”

motivation. The outcome-oriented motivation depends on the effect of their vote on

the chosen policy; in a large election, this motivation vanishes as the probability that

an individual vote has any effect becomes negligible (Ledyard 1984). The expressive

motivation to vote for a given candidate is that voters enjoy supporting good causes:

by supporting a cause or a party, a voter becomes a supporter of this party or cause

(Schuessler 2000), and voters enjoy identifying as members of a group that champions

good policies.1

Voters who vote for a candidate because they enjoy the act of supporting a good

policy need to know (or at least they need to believe) that the policy their chosen

1“Prosperity has many parents; adversity only one” (Tacitus 2014 [94 AD], page 53, in the original
language: “Prospera omnes sibi vindicant; adversa uni imputatur.”).
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candidate would implement is good.2 In an uncertain environment, these voters need to

process information to determine which are the best policies, and thus which candidates

(if any) are worth supporting by voting for them.

In the information age, voters are flooded with political information, freely available

across multiple media platforms. If processing information were costless, a rational

voter would use all this freely available information and Bayes rule to update and

formulate a precise posterior belief about the mapping from policies to the outcomes of

interest, and would vote to maximize her expected utility according to that posterior

belief. Alas, processing information is costly. Voters need to weigh this cost against

the benefit of being better informed (Downs 1957; Davis, Hinich and Ordeshook 1970).

Strategic voters exposed to an over-abundance of political news, and with limited

memory capacity to correctly process and store all this information need a simpler,

(constrained) optimal rule to determine how to process information, which important

pieces of information to keep in mind, and which ones to discard and to forget about.

We construct a theory of political participation under the following two premises.

First, voters enjoy supporting a policy in direct proportion to their expected utility if

this policy were implemented. Further, each voter enjoys voting for candidates who

support the policy the voter thinks is best, while she dislikes voting for candidates who

support policies that are very different from the one she thinks best. These expressive

preferences over voters’ own actions may be weighed arbitrarily little relative to the

weight on standard preferences over outcomes, but as long as their importance is not

zero, they will influence voters’ behavior. Second, voters decide how much cost to

incur assimilating and processing political information by weighing how much this

information helps them determine which policy is best, against the costs of processing

this information.

We formalize the cost of processing information by relaxing the assumption of

free perfect recall: it is costly for voters to keep track of all the information they

have observed, and to remember precise details to obtain a precise posterior. Instead,

2This motivation to vote contingent on “getting it right” is unlike, say, an intrinsic motivation to
vote regardless of who or what one votes for (Riker and Ordershook 1968) or the motivation to vote
for a candidate whose identity is exogenously given as part of the voter’s type (Coate and Conlin
2004; Feddersen and Sandroni 2005).
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we postulate that voters have a limited set of “memory states” that aggregate past

information. A fully rational agent with perfect recall would be one with unlimited

memory states, who can record any minutely different history of informative signals (or

any sufficient statistic such as a posterior belief recorded to any degree of precision) into

its own memory state. A more realistic voter has only a limited memory capacity to

deal with all the information, so she must lump sufficiently similar information histories

into the same memory state with a blurred belief about the state of affairs. Since it

is costly to increase that memory capacity, voters trade-off this cost of processing

information, with the benefit of a more precise understanding about how alternative

policies would affect outcomes of interest, and thus deriving more satisfaction from

supporting the alternative they think would have the best effect.

We use finite-automata to model this endogenously imperfect information process-

ing as in Wilson (2014). An automaton consists of a collection of finitely many memory

states, and a transition rule taking the process from a given memory state to another

depending on the information received in that period. Limited memory capacity implies

that agents’ beliefs are categorized discretely instead of being represented by precise

posteriors. This then departs from the rational inattention literature (Maćkowiak,

Matějka and Wiederholt 2021), because, under rational inattention, agents strategi-

cally choose which information to attend to, and then update in a fully rational way

with a precise posterior belief. In contrast, under our formulation agents strategically

choose both their memory capacity and, given this capacity, how best to process all

the information they observe.

Given the number of memory states an agent chooses, each memory state represents

the agent’s state of mind or her set of thoughts about the uncertain state of the world

relevant for her voting behavior. Each memory state corresponds to a category of

partial histories and a qualitative “belief”. This categorization is analogous to the one

made by an agent who evaluates sovereign default risk solely based on credit ratings

“A”, “B” , “C”, etc., and who then forgets all the detailed information that fed into

the rating, including all information that make some countries rated “B” less likely to

default than others with the same rating. A distinct feature of this updating process is

the discreteness in information processing; there is no “feather that breaks the camel’s

back” because feathers (small bits of information) do not induce a sufficient update to
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change from one memory state to another, and are thereafter forgotten; rather, it takes

quite a substantial bit of information to trigger a transition across memory states.3

Agents who use different updating processes may process the same news very dif-

ferently. To avoid infinite costs, each agent will choose only a finite number of distinct

memory states, accommodating only finitely many different views of the world. The

optimal number of memory states and the optimal rule to transition across memory

states are determined endogenously by the preferences over outcomes, and by the cost

structure. We assume homogeneous costs of memory across voters but we allow het-

erogeneity in preferences, and this heterogeneity generates endogenously the difference

in the constrained optimal updating processes.

Consider the following environment. There is a set of three policies: a moderate

policy and two extreme ones, one on each side (left and right) of the ideological divide.

Each policy matches one state of the world, and is Pareto superior to the other two in

this state: every voter strictly prefers the socioeconomic outcome if the state-matching

policy is implemented than the outcome if any other policy is implemented. Signals

that the state is “moderate” (which we take it to be the normal, expected state)

are abundant in every state and hence are commonplace (say a day of below average

street violence), while the signals that shift preferences toward extreme policies (say

a shocking case of either coordinated police violence against peaceful demonstrators,

or coordinated violence by armed rioters against peaceful bystanders and police) will

make big news as they are rare but very informative.

Our main result is that in this environment, voters with costly memory capacity

polarize once a signal about the extreme state realizes. Even if all voters start with a

common prior about the state of the world and under this prior all voters prefer the

moderate policy, even if voters only observe common signals, and even if these common

signals are such that any voter with perfect recall would formulate a posterior that the

moderate policy is indeed best for everyone, given their limited memory, all voters

end up favoring extreme policy alternatives, and diverging in their preferences: some

3Rationally inattentive agents may also optimally ignore small signals, updating only after highly
informative ones (Kominers, Mu and Peyshakovich 2018), and may optimally choose discrete actions,
even if under full attention their optimal action as a function of beliefs would span a continuum.
Under our model it is the belief that is categorized, which has implications for dynamic learning.
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prefer the left policy, while others prefer the right policy, both away from moderation.

Chasing their voters, two office-motivated parties polarize as well, and the implemented

policy becomes extreme.

The underlying mechanism that drives our result is that, under the constrained

optimal rule, voters ignore the commonplace signals for moderation after seeing the

big news indicating an extreme state of the world. These updating process will eventu-

ally drive voters away from moderation, and toward the political extremes. However,

even under the common signals, voters with a common prior still polarize at opposite

extremes. Why? Say the common prior is a belief that the state is likely “normal”,

and under such a normal state, all agents prefer a “moderate” policy. Once the news of

the day reveal a commonly-observed signal that the state of the world is extraordinary

(which is rare but will eventually happen), all voters agree that the state is indeed

more likely to be an extraordinary one that calls for an extreme policy solution. But

having concluded that the state is not normal and that a moderate policy would be

unsuitable, voters may disagree about which extreme policy may be appropriate: some

may support left policies, while others support right policies. The policy disagreement

stems from the heterogeneity in the relative distaste over policy mistakes in one or the

other direction. Nobody supports moderation, and society polarizes.

In this theory, polarization is micro-founded by the individual decisions of each voter

to simplify her information environment, by coarsening the partition of possible beliefs

under consideration. Polarization is, at heart, an aggregate phenomenon that can be

decomposed as a large number of independent (and disparate) decisions to become

extreme made by each individual voter in isolation. Polarization, in this account, is

not elite driven, and it is not driven by the electorate’s network interactions, nor by

biased media that reinforces the beliefs of like-minded voters in their own informational

bubble. Rather, we show that a large society of Robinson Crusoes, each isolated in

their own island, all endowed with a common prior at the time of arrival to their own

island, and observing common signals in the night sky each night, would also polarize.

In what follows, we first discuss the related literature. Thereafter, in Section 2 we

present a model on information processing and preference formation for voters who

face memory costs; in Section 3 we show how an electorate composed of such voters

polarizes; and in Section 4 we show that party platforms and implemented policies
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will polarize as well in any equilibrium of a stylized electoral competition theory. We

discuss our theoretical results in light of new empirical evidence on polarization in

Section 5. All proofs are relegated to an Appendix.

Related Literature

Our modeling of how voters process information relates in its motivation and sub-

stance to theories of rationally inattentive voters (Prato and Wolton 2016; Matějka and

Tabellini 2021). In these models of rational inattention, typically voters can choose

from a menu of costly signal-generating processes such that more informative processes

are costlier. In contrast, in our model all signals are commonly observed, and the dif-

ferences arise in what voters do with the signals; technically, our model draws from

decision-theoretic work on finite memory (Cover and Hellman 1970 and Wilson 2014)4

and on updating of diffuse beliefs defined by a set of priors (Chambers and Hayashi

2010).

Our theoretical finding that voters’ costly recall leads to extreme beliefs and to pol-

icy divergence contributes to a literature documenting political polarization (Abramowitz

and Saunders 2008; McCarty, Poole and Rosenthal 2016; Gentzkow 2016), studying its

consequences (Gordon and Landa 2017; Buisseret and van Weelden 2021), suggesting

ways to mitigate it (Axelrod, Daymude and Forrest 2021), or explaining some of its

causes. Among the latter, Glaeser, Ponzetto and Shapiro (2005), Serra (2010), Bol,

Matakos, Troumpounis and Xefteris (2018), Tolvanen, Tremewan and Wagner (2021),

and McMurray (2021) focus on candidates’ polarization. With regard to voter polariza-

tion, it can arise if voters choose to follow different sources of information (Nimark and

Sundaresan 2019; Che and Mierendorff 2019; Perego and Yuksel 2022); or if they pay

disproportionate attention to the issues they care more about (Yuksel, forthcoming) or

to the issues in which the candidates’ proposals differ most (Nunnari and Zapal 2020);

if they share news with their connections (Bowen, Dmitriev and Galperti, 2021); or,

even under commonly-observed signals, if voters face ambiguity and are averse to it

(Baliga, Hanany and Klibanoff 2013).

Perhaps closest to our work in their linking of voters’ memory constraints to polar-

4The automata approach to model imperfect recall has been recently evaluated by Oprea (2020),
and is supported by experimental evidence in Banovetz and Oprea (2020).
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ization are two theories in which voters observe common information, but they process

it in a boundedly rational way that leads to polarization. Fryer, Harms and Jackson

(2019), assume that voters coarsen the space of signals about the state of the world.

In their model, voters reinterpret each uninformative signal as an informative one that

conforms with their prior. Voters then update this prior as if the signal had been

truly informative; this self-confirming miss-processing of signals, together with hetero-

geneous priors, leads to polarization. In fact, if some signals are equivocal rather than

uninformative, upon observing equivocal signals, fully rational agents with different

priors about the meaning of equivocal signals also polarize toward their priors (Benoit

and Dubra 2019). In either case, if agents shared a common prior, they would not

polarize.

Levy and Razin (2021), like us, present a dynamic theory of electoral competition

and polarization with two parties and three possible policies (a moderate one, and

an extreme one to each side), in which the driver of polarization is voters’ limited

temporal memory: voters remember all information for a fixed time, and after this

lapse of time they forget.5 Polarization is candidate-driven, and arises because parties

are policy motivated and the median’s preference uncertain (as in Wittman 1983, or

Calvert 1985). However, as parties polarize, the extreme policies they implement reveal

more information about the state of the world, allowing voters to infer which is the

right policy, and forcing candidates to converge to it; once voters forget their history,

they are indeed bound to repeat it, and parties are able to polarize again. Policy

polarization is thus cyclical, while voters’ beliefs never polarize, as all voters share a

common update of the environment. We complement their account with a theory of

voter polarization.

2 The Model

Consider a large democratic society, represented by a set I of voters, with unit mass.

Each voter i ∈ I is faced with a choice over three policy alternatives in each of infinitely

many periods. Let A ≡ {aL, aM , aR} denote the set of alternatives, where aL denotes

5In contrast, our voters’ memory constraint is one of capacity, like computers’ memory: our voters
can only carry limited information in their memory from period to period.
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a “left” alternative, aM a “moderate alternative”, and aR a “right” alternative. Let

Θ ≡ {L,M,R} denote the set of possible states of the world (where L, M, and R again

respectively denote Left, Moderate, and Right), and let θ ∈ Θ denote a state of the

world. All voters share a common prior probability distribution P0 over Θ about the

state of the world. We envision an environment in which the moderate state M is the

most likely, and states L or R represent an extraordinary event or shock. Formally, we

assume that the common prior among the agents is such that

P0(L) = P0(R) = p0 <
1

4
. (1)

In each period t ∈ {1, 2, ...,∞} each voter i chooses which policy alternative to

support. Let ait ∈ A denote the alternative that voter i supports in period t (more

generally we denote individual agent labels as superscripts, and period labels as sub-

scripts). Let aIt denote the policy alternative collectively chosen by society in period t;

in Section 4 we model how this collective choice is made through party competition in

democratic elections.

Each voter i cares about the policy outcome aIt and about the policy ait that she

supports, in each period. Let λ ∈ (0, 1) denote the relative weight assigned to the

policy outcome, and 1 − λ the weight assigned to the expressive component of her

political preferences, so that in each period t, each voter i derives instantaneous utility

λu(aIt , θ, b
i) + (1− λ)u(ait, θ, b

i), (2)

where bi is voter i’s type as described below.6 We assume that voters’ intertemporal

patience is captured by a discount factor δ ∈ (0, 1) across periods, so that the total

utility for voter i for an infinite sequence of individual and collective choices is

λ
∞∑
t=1

(δ)tu(aIt , θ, b
i) + (1− λ)

∞∑
t=1

(δ)tu(ait, θ, b
i), (3)

where the first term is the utility from the sequence of policy outcomes, and the second

6For an overview of citizen’s motivations for voting, see Brennan and Lomasky (1993) or a survey
by Hamlin and Jennings (2018); and Glazer (1987) for an early theory of elections under expressive
voting.
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term is the expressive utility from the sequence of individual choices to express support

for an alternative.

We assume that in each state θ ∈ Θ, every voter derives highest period utility from

the policy alternative aθ that matches the state, so we refer to alternative aθ as the

“correct” alternative in state θ. Each cell in the left matrix in Table 1 shows the utility

function u(a, θ, bi) as a function of the action a in each column, and of the state of the

world θ in each row, with c ∈ [0, 1], and type bi ∈ (−b̄, b̄) for each voter i, for some

b̄ ∈ (−1, 1). The correct policies are on the diagonal of the matrix. Notice as well

that in each state, utilities are single-peaked with respect to the standard left-to-right

order, and that, given Assumption 1 on the prior, states Left and Right are ex-ante

much less likely than the Moderate state. We thus refer to policy alternatives aL and

aR, and to states L and R as “extreme.”

We assume that the distribution over voter types has a full support over (−b̄, b̄).

Type bi captures a mild asymmetry, bias or lean on voter i’s preferences over pol-

icy alternatives, as follows: Subject to a Moderate state of the world, voters have a

common-value symmetric preferences over policies, with ideal alternative aM . Voters

also have a common preference order over alternatives in either of the two extreme

states of the world, and they all agree that alternative aM is ex-ante the best given

their common prior P0 over the state of the world. Voters only vary on how much they

gain from the correct extreme alternative in each extreme state.

We say that a voter “leans left” if she has a stronger preference for the left action

in the Left state, than for the right action in the Right state; and that she “leans

right” if she has a stronger preference for the right action in the Right state, than for

the left action in the Left state. Type bi is then a measure of this lean, with bi < 0

implying that voter i leans left, and bi > 0 that she leans right. But such leanings are

mild, in that they only arise if the state is extreme; under the Moderate state, voters

have common values, and their sole concern in this state is to choose the moderate

alternative.

The state of the world, however, is not observable. Instead, in each period t ∈ N,
voters observe a common signal st drawn from the set S ≡ {ℓ,m, r} independently in

each period. Conditional on the state of the world θ ∈ {L,M,R}, signal s ∈ {ℓ,m, r}
is drawn with probability µθ

s. Each cell of the right matrix in Table 1 denotes this
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θ\a aL aM aR

L 1− bi 0 −c
M 0 1 0
R −c 0 1 + bi

θ\s ℓ m r
L µ− ϵ 1− µ ϵ
M ϵ 1− 2ϵ ϵ
R ϵ 1− µ µ− ϵ

Table 1: Left: payoff matrix; right: signal structure

probability µθ
s, as a function of the state θ in each row and the signal s in each column,

with µ < 1 and ϵ ∈ (0, µ/2).

In each period t ∈ N, voters observe the common signal st and their own actions ait.

Later on when we introduce the election game, voters will also observe the platforms

chosen by political parties. In each period t, each voter i must choose an alternative, a

choice that can in principle depend on all relevant past information, which we denote

by hi
t ≡ (((sτ , a

i
τ ))

t−1
τ=1, st). We refer to hi

t as a “partial history for voter i”. A partial

history hi
t for voter i includes the history of signals (s1, ..., st) up to period t, and the

sequence (ai1, ..., a
i
t−1) of voter i’s own actions up to period t − 1. Let Ht denote the

set of all possible pairs of ((sτ )
t
τ=1, (aτ )

t−1
τ=1), the first sequence representing a history

of signals up to period t, and the second one representing a sequence of actions by an

arbitrary agent up to period t− 1.

A decision rule for agent i is a function Di :
⋃∞

t=1 Ht → A. The decision rule maps

each possible partial history for agent i to the set of alternatives. However, since all

agents (voters and political parties) share the same sequence of signals and that is

the only relevant source of information for the state of the world, under perfect recall

all agents share the same posterior belief about Θ and that is the only relevant state

variable, updated only according to the current common signal realization.

As a result, the unconstrained optimal rule can be fully characterized by the pos-

terior, p over Θ: for each voter i, the optimal decision rule is to choose alternative

a that maximizes
∑

θ∈Θ p(θ)u(a, θ, bi). The posterior is computed according to Bayes

rule. We use ∆(Θ) to denote the set of posteriors, and we use ∆θ(bi) to denote the set

of posteriors under which aθ is an optimal action for agent i with type bi.
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Finite automata and implementation

Storing and remembering precise, detailed information is costly for voters. Boundedly

rational voters that optimize their choices must take into account this cost in mak-

ing their decisions. The unconstrained optimal rule described above requires costless

processing of an arbitrarily long sequence of signals and actions to compute a precise

posterior belief, in order to remain optimal. Rational agents for which such memory

capacity and information processing is costly—and these include any voter in any real-

world application—will seek to find a constrained optimal rule that is less costly to

use. We assume that our agents summarize their past memory using finitely many

“memory states,” and update their memory only using the most relevant information,

namely, the commonly observed signal. More precisely, we formulate this process as a

finite automaton, as described below.

We use finite automata to model this cost of processing infinite sequences of informa-

tion. A stochastic finite-state automaton (SFSA) consists of a list ⟨Q, q0, τ, d, ⟩,
where Q is a finite set of memory states, q0 ∈ Q is the initial memory state, τ : Q×S →
∆(Q) is the transition rule, and d : Q → ∆(A) is the decision rule. We use τ(q, s; q′)

to denote the transition probability from memory state q to memory state q′ when

receiving signal s. Using results from Kalai and Solan (2004), with no loss of gener-

ality we can restrict attention to deterministic action rules. Then the decision rule is

d : Q → A and d(q) denotes the action taken when current memory state is q.7 If

the transition rule is also deterministic, we say the finite automaton is deterministic

(abbreviated as DFSA), and we use τ(q, s) = q′ to denote the transition rule.

Let Q denote the set of all such stochastic finite-state automata.

A voter using one of these finite automata no longer needs to keep track of an arbi-

trarily long sequence of signals and actions. Rather, the voter only needs to remember

her transition rule τ and her decision rule d, to keep track of the memory state q ∈ Q,

and to observe the latest signal s. With just that, she can transition to a new memory

7We could conceive of an automaton with a transition rule from Q × A × S to Q, according to
which a voter’s choice of an alternative together with the observed signal jointly drive the transition
to a new memory state. However, since a voter’s own choice does not convey any information to the
voter about the state of the world, we simplify the class of automata under consideration to be ones
that only transition to a new memory state based on the signals observed by the voter, and not based
on the choices she makes.
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state according to her transition function, the memory state she is at and the signal

she observes; and she can take a decision over alternatives according to her decision

rule. If the set of memory states Q is small, this is a simple enough exercise. More

complex automata, with more memory states, require more memory. We assume that

using a finite automaton with |Q| memory states, costs κ · |Q|, for some κ ∈ R++.

Each voter i chooses her automaton to maximize her discounted, total expected

utility, by solving the optimization problem

max
⟨Q,q0,τ,d⟩∈Q

(
E

[
λ

∞∑
t=1

(δ)tu(aIt , θ, b
i) + (1− λ)

∞∑
t=1

(δ)tu(d(qt), θ, b
i)

]
− κ · |Q|

)
. (4)

In a large society, the probability that an individual agent’s choice affects the col-

lective choice is negligible —with a unit mass of agents, each agent is infinitesimal, and

this probability is exactly zero—and therefore the first summation in the expectation

drops out of each voter’s optimization problem (Brennan and Hamlin 1998), which

simplifies to finding the automaton that maximizes ex-ante expected expressive utility,

net of costs of running the automaton. Formally, the optimal automaton for voter i is

one that solves

max
⟨Q,τ,d,qo⟩∈Q

(
E

[
(1− λ)

∞∑
t=1

(δ)tu(d(qt), θ, b
i)

]
− κ · |Q|

)
. (5)

In Section 3 we find the optimal automaton and we describe the resulting voters’

individual decisions. In Section 4 we study how the democratic process shapes the

collective choice aIt and total welfare, in light of these voters’ decisions.

3 Voter Polarization

We say that a voter i “becomes extreme” in period t if ait−1 = aM , and for any sequence

of signals (sτ )
∞
τ=t and any future period τ > t, aiτ ̸= aM . That is, we use the term only

in a strong, irreversible sense that the voter has abandoned moderation once and for

all, never to return regardless of any further information revealed to her.

We define “voter polarization” as the phenomenon by which a positive mass of
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voters supports aL and a positive mass support aR. Given that ex-ante —before the

first signal is revealed—all voters support aM ; that they all agree on the best alternative

for any state of the world; and that they share the same prior and observe a common

sequence of signals that (asymptotically) reveals the true state of the world, it might

seem that optimizing agents could not polarize for long.

Indeed, rational agents with unlimited memory and perfect capacity of information

processing, a common prior and a common set of observed signals will agree on their

posterior over the state of the world, and once this posterior becomes sufficiently close to

degenerate, given their near common-value preferences, they will also agree on which

alternative to support. Whereas, we shall show that agents with limited memory

capacity have divergent posteriors and become extreme and polarized, despite their

common priors and common signals.

We start by considering an environment in which voters with limited memory do

not polarize: the special case in which extreme signals (ℓ or r) reveal the state of the

world (formally, extreme signals are fully informative if ϵ in Table 1 is zero). In this

case, the unconstrained optimal rule is straightforward: the posterior on M increases

as long as all signals are m, and hence alternative aM continues to seem optimal as

long as sτ = m for any τ ∈ {1, ..., t}. In contrast, a single ℓ-signal, if ϵ = 0, drives

the posterior of L to one and reveals that aL is the correct alternative. Symmetric

argument holds for signal r and action aR as well.

Such a simple rule is accessible for a voter with very little memory, using any SFSA

in the following class.

Definition 3.1. A SFSA is a “no-return 3-state automaton” if it has three mem-

ory states {qL, qM , qR}, initial state qM , decision rule d(qθ) = aθ and transition rule

probabilities given by Table 2, where each cell (qt, st) lists the probability of transition-

ing, respectively, to qL, to qM , and to qR, and with free parameters α and β in [0, 1].

Let FA3 denote the class of no-return 3-state automata, and for any α and β in [0, 1],

let FA3(α, β)∈FA3 denote the specific no-return 3-state automaton with transition

parameters α and β, as depicted in Figure 1.

Any no-return 3-state automaton starts out in the moderate memory state qM and

stays there, choosing the moderate alternative aM , as long as all signals it observes are
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qt\st ℓ m r
qL (1, 0, 0) (1, 0, 0) (β, 0, 1− β)
qM (1, 0, 0) (0, 1, 0) (0, 0, 1)
qR (1− α, 0, α) (0, 0, 1) (0, 0, 1)

Table 2: Transition probabilities under automata in FA3

m, ℓ

r (w. pr. β)

ℓ r

qL

qM

m

qR

r, m

ℓ (w. pr. α)

ℓ, 1− α

r, 1− β

Figure 1: No return 3-state automaton FA3(α, β)

moderate (m). But as soon as it observes an extreme (ℓ or r) signal, it transition to

the corresponding extreme memory state (qL or qR), and it chooses the corresponding

extreme alternative (aL or aR). Once it arrives at an extreme memory state, a no-

return 3-state automaton never returns to moderation; neither in its memory state,

nor in the alternative it chooses (hence its name). In the special case in which extreme

signals are perfectly informative (ϵ = 0), once an extreme signal reveals the state,

any no-return 3-state automaton FA3(α, β) stays at the correct extreme memory state

choosing the correct alternative in every future period. Thus, if (ϵ = 0), any no-return

3-state automaton executes the unconstrained optimal decision rule (Lemma 6.1 in the

Appendix).

Of course, the case with fully revealing extreme signals is a knife-edge case; if ϵ

is positive, a perfectly rational agent with unlimited memory continues to update her

belief, even after a very informative signal ℓ or r. Indeed, under state of the world

M , although the agent would occasionally receive the strong signals ℓ or r indicating

L or R, she would also receive many more m-signals and, in the long run, she would

conclude the state of the world is M . Similarly, under a extreme state of the world,
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say, θ = L, extreme ℓ-signals would be frequent enough that voters would eventually

conclude that state of the world is in all likelihood L.

We reach our case of interest: ϵ > 0 but small, so that extreme signals are rare and

hence very (but not perfectly) informative when they arise. In this environment, any

no-return 3-state automaton FA3(α, β) in class FA3 features some attractive qualities

for voters who find memory capacity costly (κ > 0). First, any 3-state automata

(including those in class FA3) is cheap, as the voter only needs to keep tract of which

of the three states she is in. Second, FA3(α, β) follows the optimal decision rule (namely,

to choose the moderate action) as long as all signals are moderate (which is likely to be

for a long while if ϵ is small). Third, if the first extreme signal happens soon enough,

FA3(α, β) again follows the unconstrained optimal rule in following the signal to the

corresponding extreme memory state and choice of alternative. So far, so good.

The no return 3-state automata only make two kinds of mistakes, relative to the

unlimited-memory unconstrained optimum. First, they disregard the small evidence

provided by moderate signals. Moderate signals are quite likely in every state, so

one such signal does not shift a perfectly-computed posterior much. The no return

3-state automata regard the very little information contained in a moderate signal as

negligible, and do not budge in any way upon observing it. But even if one moderate

signal does not mean much, an abundance of them does. So no return 3-state automata

err in not returning to the moderate memory state after observing a sufficiently long

history of signals in which moderate signals are overwhelmingly preponderant. The

key to the appeal of no return 3-state automata is that it ϵ is small, it takes a long

time to accumulate the large number of moderate signals necessary to compensate for a

single extreme signal even if we were to compute the posterior with unlimited memory.

So by not returning to moderation when they should, the no return 3-state automata

depart from the unconstrained optimal decision rule only far into the future; and an

impatient voter finds choices consigned to a distant future to be of little relevance, and

not worth incurring a higher cost of memory capacity.

The second problem for a no return 3-state automaton is that, since it does not keep

track of how many ℓ or r signals it has observed, it finds itself at a bit of a quandary

when it is at an extreme memory state (say qR) and it observes the opposite extreme

signal (say ℓ). Should it ignore the signal, or should it switch memory states? It turns
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out that randomization in such situation may be useful, and the values of α and β are

relevant to pin down the optimal automaton, which is FA3(α, β) for some α,β in [0, 1].

Proposition 3.1. (Voter extremism) For any cost κ sufficiently small, there exists

ϵ̄ > 0 such that for all ϵ ∈ (0, ϵ̄), each voter optimally follows a no return 3-state

automaton, and thus with probability converging to one, she becomes extreme.

The proof of Proposition 3.1 can be found in the Appendix. Proposition 3.1 tells us

that eventually, all voters become extreme. It does not tell us whether they polarize.

For that, we turn to the next proposition: even though all voters start with the same

prior, that they all observe the same signals, that all automata they each follow are all

in the class FA3, and that they all become extreme, it turns out that they polarize, with

different voters arriving at different extremes, each according to their ex-ante lean.

Proposition 3.2. (Voter polarization) For any b̄ sufficiently close to one and c

sufficiently small, there exist a threshold lean b∗, a range of memory costs (κ) and

probabilities of an incorrect extreme signal (ϵ), such that under all states of the world,

any optimal behavior by voters is such that with probability converging to one, voters

polarize as follows:

1. a positive mass of agents with a sufficiently left lean (namely, {i ∈ I : bi ∈
(b̄,−b∗)}) support aL;

2. agents with a small lean ({i ∈ I : bi ∈ (−b∗, b∗)}) can swing between supporting

aL and aR over time, but if the state is moderate, then those who lean left (bi < 0)

are more likely to support aL and those who lean right (bi > 0) are more likely to

support aR; and

3. a positive mass of agents with sufficiently right lean (namely, {i ∈ I : bi ∈ (b∗, b̄)})
support aR.

We provide the proof, and the exact expression for the threshold b∗ in the Appendix.

Proposition 3.2 shows that preference heterogeneity affects how agents with limited

memory capacity process information. Voters who, in any state of the world, agree on

a commonly preferred alternative, who all have a common prior, and who all observe
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the same signals, nevertheless end up polarized, supporting opposite extremes in the

policy spectrum even if the state of the world is moderate.

The constrained optimal processing of the common signals under limited memory

pulls voters’ posterior beliefs and policy choices toward the alternative aligned with

their political lean. Put differently: voters with a large enough lean act as if they

believed the state of the world they prefer among the two extreme ones had come

to pass. They polarize in this manner not due to wishful thinking, but rather, as

the result of optimizing their choices given the cost of processing infinite sequences of

information, with limited memory capacity.

The intuition for this polarizing behavior is as follows: voters start out with the

common prior that the correct policy is the moderate one, and they all support the

moderate policy as long as they do not see any signal that goes against this prior. If

extreme signals are sufficiently rare under the moderate state of the world, when voters

see one, they all perceive it as very informative, and they all agree to treat it as if it

were correct, and to support the extreme policy that corresponds to this extreme signal

(Proposition 3.1). As long as subsequent signals are either additional realizations of

the same extreme signal, or hardly informative moderate signals that all voters ignore,

all voters continue to agree and to support the extreme alternative congruent with the

extreme signals they’ve seen.

Disagreement, and polarization, arises when voters first receive a contradictory

extreme signal; that is, either the first extreme signal was ℓ and now they see an r,

or the first extreme signal was r and now they see an ℓ. This is a surprise, and it

generates greater uncertainty as to whether the state is L or R (voters all know that

the state could also be M , but observing an additional extreme signal does not make

this event seem more likely).

Voters who follow an automaton optimally behave as if they follow beliefs that

are categorized: each memory state represents such a category, and only big news

would trigger a transition from one to another.8 In the context of our model, the

moderate signal does not trigger nay transition but only extreme signal do. However,

upon receiving an extreme signal opposite to the memory state they are at, voters who

8These results are formalized in the Appendix, Lemmas 6.2 and 6.3, which generalize similar
findings in Wilson (2014) to three states of the world.
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follow a no return 3-state automaton, behave as if they reached a category of beliefs

according to which the Moderate state is excluded, but with high uncertainty as to

which extreme it is.

Agents with such a category of beliefs would part ways according to their lean:

given uncertainty as to which extreme policy is correct, those who lean left will choose

the left alternative, and those who lean right will choose the right alternative. Those

whose lean is close to zero will mix, with the exact mix compensating their lean just

so as to make them indifferent between the two alternatives.9

Note that we assumed common signals and common prior as that makes our polar-

ization result strongest. Polarization, of course, does not hinge on such commonality

of priors and signals; polarization arises as well if we introduce heterogeneity in prior

beliefs and if we allow agent to observe private signals.

4 Candidate Polarization and Policy Extremism

We now close our theory of polarization and extremism by introducing a stylized model

of political competition and policy implementation, in which in each period, two parties

P 1 and P 2 announce policy platforms, voters vote, and the party that obtains most

votes wins and implements its announced platform.

Players. We consider an electoral competition game played by the continuum of voters

introduced in Section 2, and by two political parties P 1 and P 2.

Let Fb denote the cumulative distribution function of voter types over (−b̄, b̄). We

had assumed that this distribution of types has full support; we now also assume that

it has a density function fb that is continuous and symmetric around zero.

We treat each party P 1 and P 2 as a fully rational unitary actor that follows Bayes

rule with perfect recall to update beliefs. Parties’ sole strategic decisions are to choose

policy platforms in each period, as a function of the observed game history. For each

j ∈ {1, 2}, let ajt ∈ A denote the platform chosen by Party P j in period t, where for

9The higher the probability that a voter sticks to the right memory state qR after she observes
signal ℓ, the less that being in the right state qR implies to the voter that there were more r than ℓ
signals in the now forgotten past (and thus, that the state is R). For a voter who leans toward the
right, indifference is thus attained by staying in qR with higher probability. We compute the optimal
transition probabilities α(bi) and β(bi) in the proof in the Appendix.
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any a ∈ A, committing to policy platform ajt = a implies that if P j wins the period t

election, then action a is the alternative aIt collectively chosen by society through the

political process in period t.

Party differentiation. We assume that parties are endogenously differentiated in

their policy-specific quality, as in Hirsch and Shotts (2015) or Eguia and Giovannoni

(2017).

If both parties propose the same platform, i.e. if a1t = a2t = a ∈ A, then one of

the two parties is perceived by all voters to be the “leader” on this policy alternative,

while the other party is perceived to be the “follower.” We may say that the leader

“owns the issue” (Petrocik 1996) in the sense that voters perceive that on this policy

alternative, the leader has greater policy-specific competence (or “valence”) than the

follower.

We assume that leader status on a given policy is acquired through experience, and

that once acquired, it is sticky, as long as the party continues to choose the same policy.

For each policy a ∈ A, and for each period t ∈ N , the party that has proposed

platform a for the longest number of consecutive periods up to and including t is the

leader on a (so if parties propose different platforms, then each of them is a leader

on its chosen platform). If a common platform a1t = a2t = a represents a change of

policy from the the previous period’s platform for both parties, i.e., if a1t−1 ̸= a ̸= a2t−1,

we assume that “leader” status is randomly determined at the moment platforms are

announced, and this status carries thereafter in future periods for as long as the party

that is a leader on a given policy continues to propose this same policy.

Timing and information. The timing in each period t is as follows:

-First, the parties simultaneously commit to their individual platforms, ait ∈ A, i = 1, 2.

-Second, if both parties announce the same platform, and if leader status is undeter-

mined by the past history of play, Nature randomly chooses one of the two parties to

be a leader on this common platform (otherwise Nature plays no role at this step).

Either way, voters observe the pair of platforms (a1t , a
2
t ), and if a1t = a2t = a they also

observe which of the two parties is the leader on a.

-Third, the common signal st ∈ S about the state of the world is commonly observed.

-Fourth, each voter i chooses which policy alternative ait ∈ A to support.
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-Fifth, each voter i chooses one of three voting alternatives: vote for P 1, vote for P 2,

or abstain.

-Sixth, the party that obtains a greater share of votes implements its platform awt
t ,

with ties broken randomly.

We assume that parties observe the pair of platforms, each party’s leader status on

its chosen policy, the common signal about the state of the world, the total mass of

votes for each party, and the winning party in each period.

In contrast, in each period, each voter observes only the pair of platforms, each

party’s leader status on its chosen policy, the common signal about the state of the

world, and her own private choices of which policy alternative to support and how to

vote.

”We model the voters’ cost of increasing their memory capacity to process informa-

tion as a choice of an automaton with costly memory states (as described in sections

2 and 3). Thus, the observed partial history up to period t enters voter i’s decision-

making in period t only partially and indirectly through its effect on the memory state

qit of the finite automaton ⟨Qi, qi0, τ
i, di⟩ that voter i uses to guide her decisions. In

particular, the finite automaton employed by voter i enters period t at a given memory

state qit−1; it observes the public signal st released at the third step; and between the

third and the fourth step in the timing of the strategic environment above, it transitions

to a new memory state qit according to τ i (which can be stochastic), and it produces a

recommended alternative to support, di(qit) ∈ A.

Parties’ motivations. Parties are office motivated, obtaining a period payoff of 1 if

they win, 0 otherwise. We assume that lexicographically, and as long as it does not

reduce their probability of winning, parties strictly prefer to obtain a greater vote. We

assume that parties are fully impatient, with discount factor δP = 0 across periods.10

Thus, each party’s decision problem in each period is to choose the policy platform

that maximizes the probability of winning the current election, and, if there are multiple

10We have in mind that while “parties” are infinitely lived, in each election the “party” is run by a
candidate who only runs once, and thus optimizes solely for the one-shot period game. Unlike infinitely
lived voters, who can be interpreted as families who care about their future generations, we argue that
party candidates are best understood as individuals interested in their own office prospects, rather
than on their party’s future generations. As we discuss below, the equilibria with party polarization
is robust if parties are patient.
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solutions, then to choose among them the policy platform that maximizes vote share.

Voters’ motivations. We assume that in each period, each individual voter solves

two individual choice problems sequentially.

In each period t ∈ N, each voter i first chooses which alternative ait ∈ A to sup-

port. The voter makes this choice following the optimal automaton that solves the

optimization problem (5) in Section 2.11 The solution is as detailed in Proposition 3.1

in Section 3, trading off the desire to choose to support the right alternative, with the

cost of recalling information.

Agent i following optimal automaton ⟨Qi, qi0, τ
i, di, ⟩ chooses to support action ait =

di(qit) ∈ A, where qit is the memory state i’s automaton reaches in period t, and di is

the automaton’s decision rule.

Once voter i has identified which alternative in ait ∈ A she supports, voter i faces

a second choice problem; namely, whether to vote for Party 1, to vote for Party 2, or

to abstain. Let vit ∈ {P 1, P 2, ∅} denote the voting decision of agent i in period t, with

vit = ∅ representing abstention.

We assume that voters obtain an expressive payoff from voting, additive in each

period to the utility expression (3), so that the expression of agent i’s overall utility in

the democratic environment with an election in each period is

λ
∞∑
t=1

(δ)tu(aIt , θ, b
i)︸ ︷︷ ︸

Instrumental utility

+(1− λ)
∞∑
t=1

(δ)tu(ait, θ, b
i)︸ ︷︷ ︸

Support expressive utility

+
∞∑
t=1

(δ)tuv(v
i
t)︸ ︷︷ ︸

Vote expressive u.

, (6)

where uv is the period expressive utility derived from voting.

Since a voter’s individual vote cannot have any influence over the election outcome,

nor over future play (it cannot even be individually observed by other agents), the

instrumental utility component drops out of the summation, and each voter’s behavior

is driven exclusively by the expressive payoffs.

11Notice that there is a restriction here. Namely, voters’ automata only process information about
the state of the world directly obtained through the sequence of signals (st)

∞
t=1, but they do not

recognize the potentially informative indirect signaling content of the parties’ announced equilibrium
platforms. This restriction is supported by evidence that agents overweigh their own experience and
their own private signals, over the information that can be inferred from the behavior of other agents
(Kogan 2008; Kaustia and Knüpfer 2008)
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Expression (6) decouples the act of supporting a policy alternative, from the act of

voting. A citizen can support any policy alternative by advocating for it in conversa-

tion, in writing, or in civic activism, deriving an expressive payoff from any of these

activities. A citizen can only vote by casting a ballot for one of the two competing par-

ties, and it is this specific act that delivers the additional expressive utility term uv(v
i
t).

The expressive utility from the choice of alternative to support is the one maximized,

net of the cost of memory, by the optimal automaton in the optimization problem (5).

The expressive utility from voting is determined by the voter by her voting choice in

each period.

We normalize the expressive utility from abstaining to zero, so uv(∅) = 0 for any

agent i, for any period t. We assume that the expressive utility from voting depends on

whether the vote aligns or not with the policy alternative that the voter has determined

is best, according to her optimal automaton. Namely, if voter i votes sincerely for a

party that commits to the alternative chosen by voter i’s optimal automaton, then voter

i obtains a positive expressive payoff; whereas, if voter i votes for a party committed

to an alternative that is not the one chosen by voter i’s optimal automaton, then voter

i incurs a disutility from such vote.

Formally, there exists a parameter ūv > 0 such that, for each j ∈ {1, 2}, for each
voter i and for each period t, if di(qit) is the alternative chosen in period t by the optimal

automaton chosen by voter i to solve her optimization problem (5), then

uv(v
i
t) =



ūv if vit = P j, ajt = di(qit) and P j is the leader at ajt ;

ūv/2 if vit = P j, ajt = di(qit) and P j is not the leader at ajt ;

< 0 if vit = P j and ajt ̸= di(qit); and

0 if vit = ∅.

(7)

We can think of di(qit) as the optimal automaton’s recommendation, so that voter

i has agency over the choice of alternative ait ∈ A given this recommendation. If

voters follow their optimal automaton, they support the alternative chosen by their

automaton (that is, if ait = di(qit) for every voter i and period t). If so, agents derive

expressive utility from voting for the alternative they support.
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Whereas, if voter i deviates and chooses to support an alternative a ̸= di(qit) that

is not the one recommended by the voter’s optimal automaton, then the voter enjoys a

positive expressive payoff of voting if she votes for a party that commits to alternative

di(qit), not for voting for a party that commits to a.12

An agent’s vote has no effect over the agent’s current period instrumental payoff,

no effect over the current period expressive payoff from the choice of an alternative to

support, and no effect on future play. Therefore, the agent’s voting problem in each

period t reduces to the static optimization problem

max
vit∈{P 1,P 2,∅}

uv(v
i
t). (8)

Equilibrium concept. In our model, an equilibrium is a profile in which each voter

chooses an optimal automaton and takes actions aligned with her automaton’s rec-

ommendations, and in which parties’ actions are sequentially rational given voters’

behavior and given beliefs updated by Bayes rule. We next formally define this con-

cept.

At the beginning of the game, each voter i chooses a stochastic finite state automa-

ton ⟨Qi, qi0, τ
i, di⟩ ∈ Q, which in period t would transit to memory state qit and produce

a recommendation di(qit) for which alternative to support, letting agent i make the

final choices. A voter i has observed the following at the time she chooses an action

in period t: the party platforms and leader status, the public signals, her automaton’s

memory states and recommended action, and her own chosen action and voting deci-

sion in every period up to t− 1, plus the party platforms and leader status, the public

signals and her automaton’s memory states and recommended action in period t. Let

voter i “support function” refer to a mapping from the set of all these observables for

any period t, to the set of actions A. Similarly, the set of all observables at the time

voter i chooses her vote in period t includes all of the above, plus her own choice of

an action to support in the current period. Let voter i’s “voting function” refer to

a mapping from the set of all such observables for any period t, to the set of voting

12We interpret alternative di(qit) as the one voter i thinks is best, while alternative ait is the one
voter i claims to support in public. Vote vit is cast in a secret ballot, where the positive expressive
utility from voting comes from voting one’s conscience sincerely for what one thinks best.
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options {P 1, P 2, ∅}.
For each party, a pure strategy is a standard object: a mapping from information

sets to the set of actions A, and a mixed strategy is a probability distribution over

pure strategies.

Definition 4.1. An equilibrium is a support function and a voting function for each

voter, and a mixed strategy profile for candidates that satisfy the following.

1. (Voters optimize) There exists a continuous mapping ϕ : (−b̄, b̄) → Q such

that for each voter i, ϕ(bi) ≡ ⟨Qi, qi0, τ
i, di, ⟩ ∈ Q solves optimization problem (5)

and is such that for any period t,

(a) (Sincere support) The action ait that i chooses in period t is di(qit) for

any realization of all the observables observed by i up to her choice of which

action to support in period t.

(b) (Sincere voting) The vote vit is a solution to

max
vit∈{P 1,P 2,∅}

uv(v
i
t).

for any realization of observables observed by i up to her period t vote.

2. (Parties optimize) The parties’ strategy profile is a sequentially rational pro-

file given the voters’ action function and voting function, and given that parties

update beliefs according to Bayes rule.

The intuition behind this formal notion of equilibrium is as follows. Voters want

to learn which alternative is best, but it is costly for them to keep track of all the

informative signals in detail, so they resort to a cost-efficient automata. An opti-

mal automaton makes the best possible recommendation to maximize the expressive

utility from supporting an action, based on the available signals and on the memory

constraints induced by the cost of memory capacity. Equilibrium condition 1(a) re-

quires voters to follow this recommendation: each voter supports the alternative that

is recommended by an automaton that is optimal for her, given her type.

Equilibrium condition 1(b) requires each voter to vote optimally, given what she

thinks best. Equilibrium condition 2 is that parties best respond at every information
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set, given standard Bayesian-updating beliefs. Equivalently, taking voters’ optimal

behavior as given, parties play a Weak Perfect Bayes Nash equilibrium (Mas Colell,

Whinston and Green 1995) of the 2-player electoral competition game induced by

voters’ behavior.

Condition 1(a) includes a technical requirement: the optimal automata followed by

the agents must vary continuously in agents’ types. We require this to guarantee that

the share of agents of a given type that vote for a given party as a function of type is

integrable over the range of possible types. This integrability over the range of types

allows us to compute the share of the total population that supports each party.13

Results.

We show existence of an equilibrium in Lemma 6.5 in the Appendix. The intuition is

as follows. First, each voter’s problem has a solution and the solution set is continuous

in the voter’s type, so there exists a solution that is continuous across types. Second,

parties are fully impatient, so they play the election game each period as if it were an

independent game; and taking the voters’ behavior as given, such a two-player period

game played by the two parties is a finite game.

Once voter i has determined which is the best alternative to support according to

her optimal automaton, her optimal voting behavior is determined by her expressive

payoff of voting: voter i votes for the party that is a leader on the policy that i’s

optimal automaton recommends; and if neither party chooses this policy alternative,

then voter i abstains.

Policy divergence among the two parties follows from our assumption of candidate

differentiation between leader and follower: once identified as a “follower”, no party

will continue to mimic the leader’s platform.14

What also follows from voter behavior, but perhaps less transparently, is that parties

polarize at the extremes in all states of the world; this is the main result in this section.

Proposition 4.1. (Platform Polarization) For any preference parameters b̄ suffi-

ciently close to one and c sufficiently small, there exist a range of memory costs (κ)

13It would suffice to require instead that ϕ feature at most finitely many discontinuities.

14For more sophisticated and richer theories of elections with differentiated candidates, see Krasa
and Polborn (2010, 2012, 2014).
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and probabilities of an incorrect extreme signal (ϵ), such that under all states of the

world, in all equilibria, with probability converging to one in t, in every period t′ ≥ t

parties polarize: one party chooses platform aL and the other chooses aR.

Voters’ polarization to the extremes (Proposition 3.2) drives candidates’ polariza-

tion to the same extremes. Expressive voters are uncompromising in the sense that

they only vote for a candidate who embraces a policy position that they sincerely

support. Candidates, thus, must react as in the quote attributed to French Minister

Ledru-Rollin “there go the people, and I must follow them, for I am their leader.”

In the Moderate state of the world (M), this candidate behavior constitutes pander-

ing. In the state of the world θ = M , over time parties accumulate sufficient moderate

signals to be arbitrarily close to certain that the moderate policy aM is best for every

citizen, as it is in fact the case. If voters were fully rational with no memory capacity

constraints (i.e. κ = 0), they too would learn that moderate policies are best, and at

least one party would offer moderation and would get elected. However, voters with

limited memory capacity are swayed more by a few strong extreme signals than by the

very many forgettable –and indeed forgotten– moderate ones, so they remain poorly

informed. Even though parties know a moderate policy would be best, they cater to

voters by choosing extreme policy platforms.15 Implemented policies are extreme, and

they are volatile, switching back and forth between stretches of periods of extreme

right and stretches of extreme left policy, their duration until the next switch in public

sentiment determined by the noise in the publicly observed signals. Aggregate welfare

thus suffers.

On the other hand, if the state of the world θ is extreme –and if the distribution of

types over (−b̄, b̄) is sufficiently close to symmetric around zero– then in most periods

the majority of voters supports the correct extreme policy, and votes for the party that

leads on this extreme policy.

Summarizing our results, in an environment in which extreme signals are rare, and

moderate signals are abundant, each individual moderate signal conveys very little

information. With costly memory capacity, such weak signals are best ignored, and thus

15The rationale for such pandering was perhaps best articulated by then Prime Minister of Luxem-
bourg, Jean-Paul Juncker: “We all know what to do, but we don’t know how to get re-elected once we
have done it” , quoted in The Economist in “The quest for prosperity”, March 15, 2007.
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an extreme signal cannot be overcome by any number of moderate signals. Voters who

follow constrained optimal decision rules with limited memory capacity then become

extreme regardless of the state of the world. Given conflicting extreme signals, voters

polarize over the two extremes according to their relative gains and losses from each

extreme alternative in each extreme state. Candidates know better, but chasing votes,

they too locate at the extremes, where the voters are found. Each party consolidates

a reputation on one particular extreme policy. Party positions thus become stable,

at opposite extremes. Electoral majorities and implemented policies become volatile,

switching back and forth between the two extremes.

Party polarization at opposite extremes also holds in equilibrium if we relax the

assumption that parties are fully impatient, and we assume instead that parties are

forward looking with some patience. Suppose parties P 1 and P 2 were patient, with

respective discount factors δ1 ∈ (0, 1) and δ2 ∈ (0, 1). Suppose that party P 1 is a leader

on platform aL at some period t, where t is a period after the first extreme signal, and

that party P 1 chooses policy aL in every subsequent period. Regardless of parties’

patience, after the first extreme signal, the center of the ideological distribution of

voters hollows out irreversibly (Proposition 3.2). Voters (who are sincere in the sense

of Definition 4.1) thereafter never vote for a moderate party. Given our modeling

of differentiated candidates with of the endogenous policy-specific advantages, a party

that is a late adopter of a policy position cannot successfully challenge a party that is an

established leader on this position. Combining these two factors, Party P 2 would obtain

no votes in any period in which it offered policy aL or aM . Therefore, regardless of

its patience, Party P 2 best responds to an invariant sequence of left-extreme platforms

by choosing its own extreme sequence of platforms p2τ = aR for any subsequent period

τ > t, for any continuation history.

The party polarization result is not driven by parties’ impatience; rather, it is driven

by voters’ polarization, and by the parties’ desire to pander to the polarized voters.

5 Discussion

Processing and recalling information is costly. Rational voters with costly recall who

observe a sequence of signals about the state of the world must optimally trade-off
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L M R
2004 28% 57% 15%
2017 42% 37% 21%

Table 3: Polarization of the US electorate, 2004-2017.

the benefits of becoming better informed, with the costs of processing these signals.

In an environment in which extreme signals are rare and very informative when they

do occur, and moderate signals are very abundant and thus not very informative, it

is optimal for an impatient voter with costly recall to pay attention only to extreme

signals. This constrained optimal behavior introduces a bias, in that eventually, all

voters become extreme in all states of the world.

We show that even if all agents share a common prior, all signals are publicly

observed, and all voters share a common preference order over alternatives in any state

of the world, voters still polarize at opposite extremes in the presence of conflicting

signals. Voters polarize according to their relative gains and losses from choosing the

wrong alternative in each extreme state (Proposition 3.2).

Fully rational office-motivated parties with perfect recall pander to the electorate

and polarize as well: policy platforms diverge and become stable, with one party at

each extreme (Proposition 4.1).

This theory of voter-driven polarization, in which both the electorate and the two

main parties become polarized, with one party and a mass of voters at each of two

opposite extremes, is consistent with the following stylized empirical evidence on the

joint polarization of the US electorate and of the perceived positions of the two main

political parties in the US, in the past two decades.

First, longitudinal survey data collected by the Pew Center shows that the US elec-

torate polarized from 2004 to 2017.16 The Pew surveys asked ten ideological questions,

and placed respondents on a left/right scale from −10 to +10 based on their answers.

To fit our simpler model, we partition the scale into three equal length intervals: L

for values from −10 to −4 or below, M for intermediate values from −3 to +3, and

R for values from +4 to +10. Table 3 shows the sharp change in the distribution of

16We use the dataset from the following Pew Center Political Typology surveys of 2004 (December
1-16, 2004, n=2,000) and 2017 Phase A (June 8-18, 2017, n=2,504).
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voters in each of these three categories from 2004 to 2017. While respondents in the

intermediate category constitute a large majority of the 2004 electorate, the size of this

group shrinks sharply in little more than a decade, while at the same time the masses of

voters on the left and on the right both enlarge substantially. Put differently, while in

2004 for every four voters located in the middle, there were only three at the extremes,

by 2017 there were seven voters at the extremes, for every four in the middle.17

Figure 2 illustrates this polarization graphically. In the background, and with faded

colors, it shows the electorate’s distribution over L (“Left”), M , and R (“right”) in

2004. At the front, in bright colors, the analogous distribution in 2017. We report

additional descriptive evidence using the latest five Pew Center longitudinal surveys

on this common set of questions in Table 5 in the Appendix. That expanded table

shows a monotonic pattern of polarization from 2004 to 2011 to 2014 and then to 2017,

which stabilizes from 2017 to 2019.

The American electorate’s polarization was accompanied by the (perceived) polar-

ization of its two main parties. Longitudinal data from the American National Election

Studies (ANES) surveys shows the evolution of the position of the Democratic and Re-

publican parties on a 0 to 10 ideological scale, at each Presidential election year since

2004, as perceived by respondents. As shown by Figure 3, the gap between the two

parties has steadily widened since 2008, more than doubling by 2020, and if from 2004

to 2012 both parties were perceived to locate within the middle third of the scale, in

2020 the parties are perceived to be located one at each of the two extreme thirds of

the scale.

The simultaneous voters’ polarization and party polarization is qualitatively con-

sistent with our theory. We say that our theory “is consistent” with these empirical

findings, rather than saying that these findings “are as predicted” by our theory, be-

cause our awareness of voters’ and parties’ polarization (albeit not of its exact quan-

titative values), precedes and motivates our development of the theory. We provide a

micro-founded explanation for the observed polarization that inspired our study.

17Slightly stronger evidence of polarization arises if we follow instead Pew’s partition of respondents
into five categories, with the middle category corresponding only to values from −2 to +2 (Pew
Research Center, 2017, page 11), or if we consider the Pew Center’s subsample of citizens who coded
by Pew as “politically engaged”, i.e. citizens who are registered to vote, follow government and public
affairs most of the time and say they vote “always” or “nearly always’.”
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Figure 2: Polarization of the US electorate, 2004-2017.

Figure 3: Party polarization in the US, 2004-2020.
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What our theory does predict is that, absent a shock outside our model, polariza-

tion is irreversible: If society starts from initial conditions with a consensus around a

moderate policy, in an environment with frequent (and thus weak) moderate signals

and ex-ante rare (and thus strong when they do arise) extreme signals, we show that –

otherwise rational– agents with costly recall eventually favor extreme policies, polarize,

and never return to moderation. Further, in such a polarized society, party platforms

polarize as well, and remain polarized.

Whether polarization is “permanent” depends on the time scale under considera-

tion. In the United States, polarization was permanently high for a few decades during

the Gilded Age and the Progressive area (1880s-1910s) (Putnam 2020), and it is once

again high a little over a century later... but in between these two crests, during World

War II and the post-war period there was a period of a broad national consensus and

low polarization that lasted through the Eisenhower Presidency in the 1950s (Trilling

1950, Hofstadter 1964). It thus seems that over long historical time-spans, polariza-

tion ebbs and flows in waves. While our theory is dynamic with an infinite horizon,

we interpret it as applicable to explain only part of this historical evolution: the rise

of polarization over a relatively short period of time. The return to a national consen-

sus from a polarized state responds to factors outside our model. Chief among such

potential factors are external security threats (Desch 1995) that trigger a “rally round

the flag” unifying effect (Baker and O’Neal 2001, Groeling and Baum 2008).

One could, if desired, embed our theory into a more general account of the rise

and fall of polarization over the history of a democratic nation: suppose that at the

conclusion of each period, with some small probability, the entire political environment

suffers a common-knowledge shock that resets the state of the world, drawing it anew

from its common prior distribution. Formally, this is but a small departure from our

model: it suffices to interpret the shock as “ending” the game and starting a new

one,18 and to reinterpret the discount factor λ as including both the time discount and

the probability that the game ends after each period. Agents then play a new game

after each shock. If we observe their behavior over the infinite sequence of such games,

we find it cyclical: agents abruptly return to moderation and consensus to start each

18Just like the Algiers crisis of 1958 triggered the end of the Fourth Republic and the advent of the
Fifth Republic in France.
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new game, and then in this new game they eventually polarize at the extremes, before

returning to moderation at the next game-ending shock.

If we are correct in our prediction that —until the next unifying national crisis,

threat or shock— polarization is permanent, social interventions that seek to nudge

the electorate back to moderation (such as regulating online content, deplatforming

extreme speakers, or seeking to break information bubbles by exposing audiences to

both sides of an argument) are unlikely to succeed. Rather, social interventions such as

fostering norms of pluralism, support for view-point diversity and tolerance of dissent,

and enshrining civil discourse and the democratic process as the means to channel

ideological disagreement, may be necessary to manage ongoing political polarization.
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6 Appendix: Proofs

In this Appendix we provide all the proofs for the results we stated in sections 3 and

4. We start by formally stating and proving the claim that if extreme signals are fully

informative, then any no return 3-state automaton is optimal.

Lemma 6.1. Under the preferences and the information structure given by Table 1

with ϵ = 0 and Assumption (1), for any α, β ∈ [0, 1], the unconstrained optimal rule

can be implemented by FA3(α, β). Moreover, any optimal SFSA with three memory

states is in FA3.

Proof. The optimal decision rule, denoted by D∗, is such that for any t ∈ N, and for

any sequence (aτ )t−1
τ=1,

D∗(s1, ..., st; a1, ..., at−1) = aM if sν = m for all ν = 1, ..., t;

D∗(s1, ..., st; a1, ..., at−1) = aL if sν = ℓ for some ν such that sν′ = m for all ν ′ < ν;

D∗(s1, ..., st; a1, ..., at−1) = aR if sν = r for some ν such that sν′ = m for all ν ′ < ν.

(9)

Under the information structure given by Table 1 with ϵ = 0, it is impossible to have an

r-signal followed by an ℓ-signal or vice versa. Thus, the transition probabilities α and

β do not matter under ϵ = 0, and FAp
3(α, β) implements D∗ for any α, β ∈ [0, 1].

To establish Proposition 3.1, we first generalize results on multi-self consistency for

two states of nature (Wilson 2014), to a general setting with multiple states of nature.

We present these results in the general setting with signals from a finite set S; the
environment with only only three states and three signals that we use in our theory

is a special case. Given a state of nature θ and a memory state q ∈ Q, for an agent i

with type bi, the expected payoff accumulated from q conditional on θ is then

1q=q0u[d(q0), θ, b
i] + δ

∑
s1∈S

τ(q0, s1; q)µ
θ
s1
u[d(q), θ]

+(δ)2
∑

q1∈Q,s1,s2∈S

τ(qo, s1; q1)µ
θ
s1
τ(q1, s2; q)µ

θ
s2
u[d(q), θ, bi] + .....

=
1

1− δ
f(q|θ)u[d(q), θ, bi],

(10)
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where

f(q|θ) =
∞∑

T=1

(1− δ)(δ)T−1

 ∑
(q1,....qT−1),(s1,...,sT−1),qT=q

1q1=q0

T−1∏
t=1

µθ
stτ(qt, st; qt+1)

 . (11)

As noted in Wilson (2014), f(q|θ) is the stationary distribution under the transition

probability from q′ to q given by

T θ(q′; q) =
∑
s∈S

[(1− δ)1q=q0 + δµθ
sτ(q

′, s; q)]. (12)

Extending Piccione and Rubinstein (1997), we can define the “belief” at q ∈ Q as

p(q)(θ) =
P0(θ)f(q|θ)∑
θ′ P0f(q|θ′)

and p(q, s)(θ) =
P0(θ)f(q|θ)µθ

s∑
θ′ P0(θ)f(q|θ)µθ′

s

. (13)

To characterize an optimal SFSA, we use Vq(θ, b
i) to denote the continuation value

for agent i with type bi at memory state q conditional on the state of nature being θ.

With this notation, we can now state the first the two lemmas, which extends a

modified multi-self consistency result by Wilson (2014) to our environment.

Lemma 6.2. Let K ∈ N and assume ⟨Q, q0, τ, d⟩ is an optimal SFSA under prior P0

among those with |Q| ≤ K. Then, for any type bi ∈ (−b̄, b̄),

1. (Multi-self consistency—transition) For each memory state q ∈ Q with∑
θ P0(θ)f(q|θ) > 0, each signal s, and any q′ such that τ(q, s; q′) > 0,

q′ ∈ argmax
q′′∈Q

∑
θ

p(q, s)(θ)Vq′′(θ, b
i); (14)

2. (Multi-self consistency—action) for each memory state q ∈ Q with∑
θ P0(θ)f(q|θ) > 0,

d(q) ∈ argmax
a∈A

∑
θ

p(q)(θ)u(a, θ, bi); and (15)
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3. (Revelation Principle) for any q ∈ Q,

q ∈ argmax
q′∈Q

∑
θ

p(q)(θ)Vq′(θ, b
i). (16)

Proof. For any memory states q and q′, define the set

Wq,q′ =
∞⋃
n=1

W n
q,q′ ,

where for each n = 1, 2, ....,

W n
q,q′ = {w = (q, s1; q1, s2; ....; qn−1, sn; q

′) : si ∈ S, qi ∈ Q},

that is, the set of possible state transitions from q to q′. Given a state of nature θ and

w ∈ W n
q,q′ , define

Pθ(w) = (1− δ)δn−1 ×
n∏

i=1

µθ
si
τ(qi−1, si; qi),

where q0 = q and qn = q′. The expected payoff from the SFSA is then

V =
1

1− δ

∑
q∈Q

∑
θ

P0(θ)
∑

w∈Wqo,q

Pθ(w)

u[d(q), θ, bi]. (17)

We now prove (14) and (15).

First, consider (15). Suppose, by contradiction, that for some memory state q̂

with
∑

θ P0(θ)f(q̂|θ) > 0 such that (15) does not hold, and hence there is an action

a′ ̸= d(q) = a that solves the problem in (15) with a strict preference. By (11),

f(q̂|θ) =
∑

w∈Wqo,q̂
Pθ(w), this then implies that

∑
θ

P0(θ)
∑

w∈Wqo,q̂

Pθ(w)u(a, θ, bi) <
∑
θ

P0(θ)
∑

w∈Wqo,q̂

Pθ(w)u(a′, θ, bi). (18)

Now, consider the alternative SFSA, which differs from the given one only in that

d′(q̂) = a′. From (17) and (18) it follows that this alternative SFSA gives a strictly

higher expected payoff than the given one, a contradiction to the optimality of the

given SFSA.

Now consider (14). Suppose, by contradiction, that τ(q, s; q′) > 0 and that for some
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q′′ ̸= q′, ∑
θ

p(q, s)(θ)Vq′(θ, b
i) <

∑
θ

p(q, s)(θ)Vq′′(θ, b
i). (19)

We denote p′ = τ(q, s; q′) and p′′ = τ(q, s; q′′). Now, fix all other transition probabilities

other than p′ and p′′, each term Pθ(w) in V given by (17) is a polynomial of (p′, p′′)

and, since η ∈ (0, 1), V is differentiable w.r.t. (p′, p′′). Since the given SFSA is optimal

and p′ = τ(q, s; q′) > 0, the FOCs require that ∂
∂p′

V ≥ ∂
∂p′′

V . However, we show below

that (19) implies that
∂

∂p′′
V >

∂

∂p′
V, (20)

a contradiction to the optimality of M .

To prove (20), it is straightforward to verify that

∂

∂p′
V =

1

1− δ

∑
q̂∈Q

∑
θ

P0(θ)
∑

w∈Wqo,q̂(q,s;q′)

φ(q,s;q′)(w)
Pθ(w)

p′

u[d(q̂), θ, bi], (21)

where

Wqo,q̂(q, s; q
′) = {w ∈ Wqo,q̂ : (q, s, q

′) occurs in w}

and φ(q,s;q′)(w) is the number of repetitions of (q, s; q′) within w.

Now, we show that ∂
∂p′

V is proportional to
∑

θ p(q, s)(θ)Vq′(θ, b
i):

[∑
θ

P0(θ)f(q|θ)µθ
s

][∑
θ

p(q, s)(θ)Vq′(θ, b
i)

]
=
∑
θ

P0(θ)f(q|θ)µθ
sVq′(θ, b

i)

=
1

1− δ

∑
θ

P0(θ)
∑
q̂∈Q


 ∑

wq∈Wqo,q

Pθ(wq)

µθ
s

 ∑
wq′∈Wq′,q̂

Pθ(wq′)

u[d(q̂), θ, bi]

=
1

1− δ

∑
θ

P0(θ)
∑
q̂∈Q

 ∑
wq∈Wqo,q ,wq′∈Wq′,q̂

Pθ[(wq, s;w
′
q)]

τ(q, s; q′)

u[d(q̂), θ, bi]

=
1

1− δ

∑
θ

P0(θ)
∑

q̂∈Q,a∈A

 ∑
w∈Wqo,q̂

φ(q,s;q′)(w)
Pθ(w)

p′

 d(a, q̂)u(a, θ, bi) =
∂

∂p′
V,

where the last equality follows from (21) and the second last equality follows from

p′ = τ(q, s; q′) and the fact that for any wq ∈ Wqo,q and any wq′ ∈ Wq′,q̂, (wq, s;wq′) ∈
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Wqo,q̂(q, s; q
′) and that each w ∈ Wqo,q̂(q, s; q

′) is counted φ(q,s;q′)(w) times in that list.

We have analogous expression for ∂
∂p′′

V , and hence (19) implies that (20).

Now we prove (16). By modified multi-self consistency, for any s ∈ S and any q1, q2

with τ(q, s; q1) > 0 and τ(q, s; q2) > 0 and any q3 ∈ Q,∑
θ

p(q, s)(θ)Vq1(θ, b
i) =

∑
θ

p(q, s)(θ)Vq2(θ, b
i) ≥

∑
θ

p(q, s)(θ)Vq3(θ, b
i),

By (13), this implies that

∑
θ

P0(θ)f(q|θ)µθ
sVq1(θ, b

i) =
∑
θ

P0(θ)f(q|θ)µθ
sVq2(θ, b

i) ≥
∑
θ

P0(θ)f(q|θ)µθ
sVq3(θ, b

i).

(22)

Thus,

∑
θ

p(q)(θ)Vq(θ, b
i)

=
∑
θ

p(q)(θ)

{
u[d(q), θ, bi] + δ

[ ∑
s∈S,q′′∈Q

µθ
sτ(q, s; q

′′)Vq′′(θ, b
i)

]}

=
∑
θ

{p(q)(θ)u[d(q), θ, bi]}+ δ
∑
s∈S

{∑
q′′∈Q

∑
θ P0(θ)f(q|θ)µθ

sVq′′(θ, b
i)∑

θ′ P0(θ′)f(q|θ′)
τ(q, s; q′′)

}

≥
∑
θ

{p(q)(θ)u[d(q′), θ, bi]}+ δ
∑
s∈S

{∑
q′′∈Q

∑
θ P0(θ)f(q|θ)µθ

sVq′′(θ, b
i)∑

θ′ P0(θ′)f(q|θ′)
τ(q′, s; q′′)

}
=

∑
θ

p(q)(θ)Vq′(θ, b
i),

where the first equality follows from the recursive equation for Vq(θ, b
i) for each θ, the

second follows from (13), the inequality follows term by term, first the terms without

δ follow from (15), the terms starting with δ follows from (22), again term by term for

each s: any term with q′′ with τ(q, s; q′′) > 0 has the same value in the inequality above,

and that value is no less than that for the corresponding term with τ(q′, s; q′′) > 0, and

the last equality follows from the recursive equation for Vq′(θ, b
i).

We say that two memory states are called equivalent if they share the same tran-

sition rules to any other states or their equivalents, and have the same decision rule.
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With this definition, and reformulating the necessary conditions for an optimal SFSA

in Lemma 6.2, we obtain the following, more convenient, necessary conditions for op-

timality.

Lemma 6.3. Let K ∈ N and assume ⟨Q, q0, τ, d⟩ is a SFSA without equivalent states

that is optimal among those of size |Q| = K. For each q ∈ Q, and for each type

bi ∈ (−b̄, b̄), define

Πq(b
i) =

{
p ∈ ∆(Θ) :

∑
θ∈Θ

p(θ)Vq(θ, b
i) ≥

∑
θ∈Θ

p(θ)Vq′(θ, b
i) for all q′ ∈ Q

}
. (23)

Then, for each q ∈ Q with p(q) and p(q, s) defined by the pair of expressions (13),

τ(q, s; q′) > 0 ⇒ p(q, s) ∈ Πq′(b
i), (24)

d(q) = aθ ⇒ p(q) ∈ ∆θ(bi). (25)

Proof. Consider first (24). Suppose that τ(q, s; q′) > 0 in the optimal SFSA. Then,

(14) implies that p(q, s) ∈ Πq′(b
i). Similarly, (25) follows immediately from (15).

Lemma 6.3 gives necessary conditions for optimality based on conditions for the

optimal transition probabilities, and we use these conditions below to show that for

agent i with lean bi, and for a particular pair of values α(bi) and β(bi) that depend

on bi, FA3(α(b
i), β(bi)) is the optimal SFSA among those with at most three memory

states, for a range of ϵ’s above zero.

First we show that for a range of parameters, the optimal stochastic finite state

automaton has three states.

Lemma 6.4. There exist κ̄ ∈ R++ and a function ϵ̄ : (0, κ̄) → R++ such that for any

bi ∈ (−b̄, b̄), for any κ ∈ (0, κ̄) and for any ϵ ∈ (0, ϵ̄(κ)), the optimal automaton for

agent i has three memory states.

Proof. For any K ∈ N, let V̄K(ϵ, b
i) be the optimal payoff from K-memory-state finite

automata under ϵ ≥ 0 for agent i with type bi ∈ (−b̄, b̄). Note that for any bi ∈ (−b̄, b̄),

V̄2(0, b
i) > V̄1(0, b

i), V̄K(0, b
i) > V̄2(0, b

i) for all K ≥ 3, and V̄K(0, b
i) = V̄K′(0, bi) for

all K ≥ 3 and all K ′ ≥ K.
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Define κ1(b
i) ≡ V̄3(0,bi)−V̄1(0,bi))

2
, κ2(b

i) ≡ V̄3(0, b
i)−V̄2(0, b

i), κ(bi) ≡ min{κ1(b
i), κ2(b

i)},
and κ̄ ≡ infbi∈(−b̄,b̄) κ(b

i), and notice that k(bi) > 0 for any bi ∈ (−b̄, b̄), with values

bounded away from zero over (−b̄, b̄), so κ̄ > 0. Assume κ ∈ (0, κ̄); then every agent

prefers the optimal three-state automaton over any automata with fewer states.

Given κ, by continuity of V̄k(ϵ, b
i) with respect to ϵ, there exists ϵ̄(κ) ∈ R++ suffi-

ciently small that

V̄k(ϵ̄(κ), b
i)− V̄3(ϵ̄(κ), b

i) < kκ

for all k ≤ V̄3(0, b
i)/κ and for any bi ∈ (−b̄, b̄). Then for any ϵ ∈ (0, ϵ̄(κ)), the optimal

automaton for any agent i has three memory states.

We next proceed within the range of parameters for which the optimal automaton

has three memory states. We seek to establish that the optimal automaton is a no

return three state automaton. Our proof strategy is the following.

We divide the set of SFSA into two groups. The automata in the first group have

transition probabilities close to those in FA3(α, β), while the second group consist of all

others. We then show that FA3(α, β) with optimal α and β is the unique optimal SFSA

within the first group, and outperforms those in the second group. The first claim is

proved using Lemma 6.3, while the second follows from the uniqueness in Lemma 6.1

and continuity of the optimal value for ϵ close to zero.

To proceed with this argument, we need to define a distance between SFSA. For

any two SFSA ⟨Q, q0, τ, d⟩ and ⟨Q, q0, τ
′, d⟩, define the distance between them as

maxq∈Q ∥τ(q, s)− τ ′(q, s)∥, where ∥ · ∥ is the Euclidean distance over ∆(Q).

Now, let τ(α,β)(q, s) and d3 denote the transition probabilities given (q, s) ∈ Q× S
and the decision rule of automaton FA3(α, β), and define

FA(ρ) ≡
{
⟨(qL, qM , qR), qM , τ, d3⟩ : ∥τ(q, s)− τ(α,β)(q, s)∥ < ρ for all (q, s) ̸= (qR, ℓ), (qL, r)

}
.

(26)

That is, FA(ρ) consists of SFSA within distance of ρ to some SFSA in class FA3. Let

FAc(ρ) denote the set of all SFSA with |Q| = 3 not in FA(ρ).

We are now ready to prove Proposition 3.1.
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Proof of Proposition 3.1.

Proof. We proceed in two steps. We first show that — for a range of parameter—

some no return three state automata outperform any three state automata in FAc(ρ),

so if there exists an optimal three state automaton among those in FA(ρ), then this

automation is optimal among all those with three states, and thus, by Lemma 6.4, it

is the optimal automaton among all automata. The second step is to establish that

there exists a no-return three-state automaton that is optimal among those in FA(ρ).

Step 1. For any ρ, ϵ ∈ R++, and any bi ∈ (−b̄, b̄), define

W (ρ, ϵ, bi) ≡ max
FA∈FAc(ρ)

V (FA, ϵ, bi),

where V (FA, ϵ, bi) is the expected ex ante payoff for agent i with type bi ∈ (−b̄, b̄) from

an arbitrary SFSA FA under ϵ. Notice that since FAc(ρ) is compact, and V (FA, ϵ, bi)

is continuous in FA, the maximum exists and W (ρ, ϵ, bi) is well defined.

For any bi ∈ (−b̄, b̄) and for any α, β ∈ [0, 1], W (ρ, 0, bi) < V [FA3(α, β), 0, b
i].

By continuity and the Theorem of the Maximum, for any bi ∈ (−b̄, b̄), there exists

ϵ̃(bi) ∈ (0, ϵ̄(κ)] (where ϵ̄(κ) is as defined in Lemma 6.4), such that W (ρ, ϵ, bi)) <

V [FA3(α, β), ϵ, b
i] for all ϵ ≤ ϵ̃(bi). Further, infbi∈(−b̄,b̄) ϵ̃(b

i) > 0, so there also exists

a common ϵ̃ such that W (ϵ, bi)) < V [FA3(α, β), ϵ, b
i] for all ϵ ≤ ϵ̃. Therefore, for

sufficiently small ϵ, the optimal automaton in FA(ρ) (if there is one) is also strictly

better than any automaton in FAc(ρ), and thus if it exists, it is the optimal 3 state

automaton.

Step 2. To show that there exists a no-return three-state automation that is optimal

among those in FA(ρ), first we first compute the continuation values, Vq(θ, b
i), and

the corresponding beliefs, f(q|θ), in an arbitrary no-return, three-state automaton

FA3(α, β). Here we only list the results and the detailed derivation can be found in

Online Appendix. We use uR to denote 1 + b and uL to denote 1 − b, solving for an
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arbitrary b ∈ (−(̄b), (̄b)).

VqR(R, b) =
[(1− δ) + δ(1− β)(µ− ϵ)]uR − δϵ(1− α)c

(1− δ){1− δ[1− µ+ β(µ− ϵ) + ϵα]}
,

VqL(R, b) =
δ(µ− ϵ)(1− β)uR − [(1− δ) + δ(1− α)ϵ]c

(1− δ){1− δ[1− µ+ β(µ− ϵ) + ϵα]}
,

VqR(M, b) = 0 = VqL(M, b),

VqL(L, b) =
[(1− δ) + δ(1− α)(µ− ϵ)]uL − δϵ(1− β)c

(1− δ){1− δ[1− µ+ α(µ− ϵ) + ϵβ]}
,

VqR(L, b) =
δ(µ− ϵ)(1− α)uL − [(1− δ) + δ(1− β)ϵ]c

(1− δ){1− δ[1− µ+ α(µ− ϵ) + ϵβ]}
,

VqM (R, b) =
δ

1− δ
× (µ− ϵ)[(1− δ) + δµ(1− β)]uR − ϵ[(1− δ) + δ(1− α)µ]c

[1− δ(1− µ)]{1− δ[1− µ+ β(µ− ϵ) + ϵα]}
,

VqM (L, b) =
δ

1− δ
× (µ− ϵ)[(1− δ) + δµ(1− α)]uL − ϵ[(1− δ) + δ(1− β)µ]c

[1− δ(1− µ)]{1− δ[1− µ+ α(µ− ϵ) + ϵβ]}
,

VqM (M, b) =
1

1− δ(1− 2ϵ)
,

and

f(qM |R) =
(1− δ)P0(R)

1− δ(1− µ)
, f(qM |L) = (1− δ)P0(L)

1− δ(1− µ)
,

f(qM |M) =
(1− δ)P0(M)

1− δ(1− 2ϵ)
,

f(qR|R) =
δ(µ− ϵ)[(1− δ) + δ(1− β)µ]P0(R)

{1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}[1− δ(1− µ)]
,

f(qL|R) =
δϵ[(1− δ) + δ(1− α)µ]P0(R)

{1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}[1− δ(1− µ)]
,

f(qL|L) =
δ(µ− ϵ)[(1− δ) + δ(1− α)µ]P0(L)

{1− δ[1− ϵ(1− β)− (µ− ϵ)(1− α)]}[1− δ(1− µ)]
,

f(qR|L) =
δϵ[(1− δ) + δ(1− β)µ]P0(L)

{1− δ[1− ϵ(1− β)− (µ− ϵ)(1− α)]}[1− δ(1− µ)]
,

f(qR|M) =
δϵ[(1− δ) + δ(1− β)2ϵ]P0(M)

{1− δ[1− 2ϵ+ ϵ(α + β)]}[1− δ(1− 2ϵ)]
,

f(qL|M) =
δϵ[(1− δ) + δ(1− α)2ϵ]P0(M)

{1− δ[1− 2ϵ+ ϵ(α + β)]}[1− δ(1− 2ϵ)]
.

Again, the detailed derivations of these expressions can be found in Online Appendix.

Observe that if ϵ is sufficiently small, then p(qM , r)(R), p(qR, r)(R) and p(qR,m)(R)
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are arbitrarily close to one, and similarly p(qM , l)(L), p(qL, l)(L) and p(qL,m)(L) are

arbitrarily close to one. Note as well that VqR(R) > VqM (R) > VqL(R) and VqL(L) >

VqM (L) > VqR(L). These two observations, combined together and with Assumption

(1), imply that if ϵ is sufficiently small, then under any automaton in FA3, for any

(q, s) other than (qR, ℓ) and (qL, r), if τ(α,β)(q, s) = q′, then p(q, s) ∈ INT(Πq′).

Since the continuation values and beliefs given by the pair of expressions (13) are

continuous in both ϵ and in the transition probabilities, there exist ρ0 > 0 and ϵ0 > 0

such that for any (q, s) other than (qR, ℓ) and (qL, r), if τ(α,β)(q, s) = q′, then p(q, s) ∈
INT(Πq′) as well for all ϵ ≤ ϵ0 and for all SFSA in FA(ρ0). Lemma 6.3 then implies

that for all ϵ ≤ ϵ0, among SFSA in FA(ρ0),

Lemma 6.3 then implies that for all ϵ ≤ ϵ0, among SFSA in FA(ρ0), any optimal

automaton must be FA3(α, β) with optimal α and β.

Further, since the class of automata FA3(α, β) is compact, and utilities are con-

tinuous in transition probabilities, a solution to the voter’s optimization problem (5)

exists, and thus FA3(α, β) with optimal α and β is the optimal SFSA among those in

FA(ρ0).

As a result, by Step 1, FA3(α, β) with optimal α and β is the optimal SFSA among

all 3-state SFSAs, and by Lemma 6.4, if κ is low enough, and ϵ is low enough given κ,

then it is also the optimal SFSA among all SFSAs.

We have established that each voter i optimally chooses an automaton in class

FA3. Under such an automaton, for any period t such that sτ ∈ {ℓ, r} for some τ ∈
{1, 2, ..., t−1}, qit ∈ {qL, qR} and ait ∈ {aL, aR}, thus every voter becomes extreme.

Proof of Proposition 3.2.

Proof. Given ϵ > 0, to determine the optimal α(bi) and β(bi), recall that FA3(α, β) has

q0 = qM , i.e., it starts with memory state qM , and hence the ex ante payoff from it is

given by

V (α, β) ≡ P0(L)VqM (L, bi) +P0(M)VqM (M, bi) +P0(R)VqM (R, bi).
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That is, for an agent i with type bi = b,

V (α, β; b) = P0(L)
δ

1− δ
× (µ− ϵ)[(1− δ) + δµ(1− β)]uR − ϵ[(1− δ) + δµ(1− α)]c

1− δ[1− µ+ β(µ− ϵ) + ϵα]

+ P0(R)
δ

1− δ
× (µ− ϵ)[(1− δ) + δµ(1− α)]uL − ϵ[(1− δ) + δµ(1− β)]c

1− δ[1− µ+ α(µ− ϵ) + ϵβ]

+ P0(M)
1

1− δ(1− 2ϵ)
.

Recall that we assumed that P0(R) = P0(L), and note that the last term above

does not depend on α or β. So, to maximize V (α, β; b), it is equivalent to maximize

G(α, β; b) ≡ G1(α, β; b) +G2(α, β; b), where

G1(α, β; b) ≡ (µ− ϵ)[(1− δ) + δµ(1− β)]uR

1− δ[1− µ+ β(µ− ϵ) + ϵα]
+

(µ− ϵ)[(1− δ) + δµ(1− α)]uL

1− δ[1− µ+ α(µ− ϵ) + ϵβ]
,

G2(α, β; b) ≡ −ϵ[(1− δ) + δµ(1− α)]c

1− δ[1− µ+ β(µ− ϵ) + ϵα]
+

−ϵ[(1− δ) + δµ(1− β)]c

1− δ[1− µ+ α(µ− ϵ) + ϵβ]
.

Then,

∂

∂α
G1(α, β; b)

= δ(µ− ϵ)ϵ[(1− δ) + δµ(1− β)]

×
{

uR

{1− δ[1− µ+ β(µ− ϵ) + ϵα]}2
− uL

{1− δ[1− µ+ α(µ− ϵ) + ϵβ]}2

}
,

∂

∂β
G1(α, β; b)

= δ(µ− ϵ)ϵ[(1− δ) + δµ(1− α)]

×
{

−uR

{1− δ[1− µ+ β(µ− ϵ) + ϵα]}2
+

uL

{1− δ[1− µ+ α(µ− ϵ) + ϵβ]}2

}
.

44



Similarly,

∂

∂α
G2(α, β; b)

= δ(µ− ϵ)ϵ[(1− δ) + δµ(1− β)]

×
{

c

{1− δ[1− µ+ β(µ− ϵ) + ϵα]}2
+

−c

{1− δ[1− µ+ α(µ− ϵ) + ϵβ]}2

}
,

∂

∂β
G2(α, β; b)

= δ(µ− ϵ)ϵ[(1− δ) + δµ(1− α)]

×
{

−c

{1− δ[1− µ+ β(µ− ϵ) + ϵα]}2
+

c

{1− δ[1− µ+ α(µ− ϵ) + ϵβ]}2

}
.

In an interior solution the following First Order Condition must hold:

1 + b+ c

1− b+ c
=

{1− δ[1− µ+ β(µ− ϵ) + ϵα]}2

{1− δ[1− µ+ α(µ− ϵ) + ϵβ]}2
(27)

This then implies that it is optimal to have α = 1 = 1− β if

1 + b+ c

1− b+ c
=

uR + c

uL + c
≥
[
1− δ(1− µ+ ϵ)

1− δ(1− ϵ)

]2
, (28)

or, equivalently, if

b ≥ (1 + c)

[
1−δ(1−µ+ϵ)
1−δ(1−ϵ)

]2
− 1

1 +
[
1−δ(1−µ+ϵ)
1−δ(1−ϵ)

]2 ≡ b∗; (29)

and, by symmetry, if b < −b∗, then α(b) = 0 and β(b) = 1 are optimal. Whereas, if

b ∈ (−b∗, b∗), the optimal solution is interior.

Let b̄ > b∗. Then according to threshold (29), for all b ∈ (b∗, b̄], the optimal SFSA

has the form FA3(0, 1) while for all b ∈ [−b̄,−b∗), the optimal SFSA has the form

FA3(1, 0).

We next find the optimal α(b) and β(b) for any b ∈ (−b∗, b∗) such that the optimal

automaton for voter i with bi = b is FA3(α(b), β(b)).

To solve for the optimal randomization in the interior solution explicitly, let

ν(b) ≡
√

1 + b+ c

1− b+ c
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and

ν̄ ≡ 1− δ(1− µ+ ϵ)

1− δ(1− ϵ)
, so ν(b∗) = ν̄.

By symmetry, we may consider only b ≥ 0 and thus equivalently, ν(b) ≥ 1. Further,

since b ≤ b̄, we need only consider

ν(b) ∈
[
1,
√

(1 + b̄+ c)/(1− b̄+ c)

]
,

and from inequality (29), for an interior solution we only need to consider ν(b) < ν̄.

From the FOC of the unconstrained maximization of G(α, β; b) with respect to α,

and rearranging terms, we obtain:

(1− δ) + δ[µ− β(µ− ϵ)− αϵ]

(1− δ) + δ[µ− α(µ− ϵ)− βϵ]
= ν(b),

that is,

β =
δ[ν(b)(µ− ϵ)− ϵ]α− (ν(b)− 1)[(1− δ) + δµ]

δ[µ− ϵ− ν(b)ϵ]
. (30)

Now, first note that since ν(b) ≥ 1 for any b ≥ 0, and that since (by assumption)

ϵ < µ/2, it follows that for any b ≥ 0,

ν(b)(µ− ϵ)− ϵ > 0, that is, ν(b) ≥ 1 >
ϵ

µ− ϵ
.

Similarly, notice that ν̄ < µ−ϵ
ϵ
, from which it follows that

µ− ϵ− ν(b) > 0 for any ν(b) < ν̄.

From Equation (30), we can verify that β = α for ν(b) = 1 and that β < α for any

ν(b) > 1 (or, equivalently, for any b > 0). To ensure that β ≥ 0 we also need that

the numerator of the right hand side of Equation (30) to be non-negative. That is, we

need

α ≥ (ν(b)− 1)[(1− δ) + δµ]

δ[ν(b)(µ− ϵ)− ϵ]
≡ ᾱ(ν(b)). (31)
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Notice that ᾱ(ν(b)) strictly increases with b, with

ᾱ(ν(0)) = 0 and ᾱ(ν(b∗)) = 1. (32)

Thus, the optimal α(b) and β(b) for any b ∈ (0, b∗) are determined by

α(b) ∈ [ᾱ(ν(b)), 1], β(b) =
δ[ν(b)(µ− ϵ)− ϵ]α− (ν(b)− 1)[(1− δ) + δµ]

δ[µ− ϵ− ν(b)ϵ]
. (33)

To verify an interior solution, we exclude possible corner solutions. First we compute

the values at the corners:

G(1, 0; b) =
(µ− ϵ)(1− δ + δµ)uR − ϵ(1− δ)c

1− δ + δ(µ− ϵ)
+

(µ− ϵ)(1− δ)uL − ϵ[(1− δ) + δµ]c

1− δ + δϵ
,

G(1, 1; b) = uR + uL − 2ϵc = G(0, 0; b),

G(0, 1; b) =
(µ− ϵ)(1− δ + δµ)uL − ϵ(1− δ)c

1− δ + δ(µ− ϵ)
+

(µ− ϵ)(1− δ)uR − ϵ[(1− δ) + δµ]c

1− δ + δϵ
.

First, G(1, 0; b) ≥ G(0, 1; b) if and only if b ≥ 0. Now, G(1, 0; b) > G(1, 1; b) = G(0, 0; b)

if and only if
uR + c

1− δ + δ(µ− ϵ)
>

uL + c

1− δ + δϵ
,

This is equivalent to ν(b) >
√

¯ν(b). For lower ν(b)’s, we have to verify that G(1, β; b) >

G(1, 1; b), where β is given by (33) with α = 1. Now, G(β, 1; b) > G(1, 1; b) is equivalent

to

1− β <
(1− δ)((ν(b))2 − 1)

δ(µ− ϵ− (ν(b))2ϵ)
,

which, by plugging in by β given by the solution in Expression (33) with α = 1, is

equivalent to
(1− δ)(ν(b)− 1)

δ(µ− ϵ− ν(b)ϵ)
<

(1− δ)((ν(b))2 − 1)

δ(µ− ϵ− (ν(b))2ϵ)
,

which holds for all b > 0.

Symmetric results apply to b < 0.

Finally, we consider the long-run distributions of the memory states and the corre-

sponding actions under the optimal SFSA. The transition matrix of the memory states

are given by Table 4 under FA3(α, β). Note that qM is transitory under all possible
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states of the world and hence we ignore it. Let ρθ(q) denote the stationary distribution

of the memory state q under the state of the world θ. Then, from Table 4 we can

compute that

ρM(qR) =
1− β

(1− β) + (1− α)
, (34)

ρR(q
R) =

(µ− ϵ)(1− β)

ϵ(1− α) + (µ− ϵ)(1− β)
, (35)

ρL(q
R) =

ϵ(1− β)

(µ− ϵ)(1− α) + ϵ(1− β)
. (36)

Note that ρM(qR), ρR(qR), and ρL(qR) are all increasing in (1 − β)/(1 − α). Note

also that for any given α ∈ [ᾱ(ν(b)), 1], optimal β is given by Equality (30). Since

µ > 2ϵ (by assumption), it follows that 1/ρL(q
R) ≥ 1/ρM(qR) ≥ 1/ρR(q

R) so ρL(qR) ≤
ρM(qR) ≤ ρR(qR), strictly so whenever α < 1. Hence, from Equality (30),

1− β

1− α
=

δ(µ− ϵ− ν(b)ϵ)− δ[ν(b)(µ− ϵ)− ϵ]α + (ν(b)− 1)[(1− δ) + δµ]

δ(µ− ϵ− ν(b)ϵ)(1− α)

=
δ(µ− ϵ)(1− ν(b)α)− δϵ(ν(b)− α) + (ν(b)− 1)(1− δ + δµ)

δ(µ− ϵ− ν(b)ϵ)(1− α)

=
δ[ν(b)(µ− ϵ)− ϵ]

δ(µ− ϵ− ν(b)ϵ)
+

(ν(b)− 1)(1− δ)

δ(µ− ϵ− ν(b)ϵ)(1− α)
,

which increases with α.

Thus, the range of ρθ(q
R) as a function of b is given by [ρ̄θ(q

R; b), 1], where ρ̄θ(q
R; b)

is obtained from (34)-(36) with β = 0 and α = ᾱ(ν(b)) (note that β given by Expression

(30) is equal to zero if α = ᾱ(ν(b))). Recall (from Expression 32) that ᾱ(ν(b∗)) = 1;

thus, ρ̄θ(q
R; b∗) = 1 and ρθ(q

R; b∗) = 1. Recall as well that if b > b∗, the optimal

automaton is FA3(0, 1). Therefore, if b ∈ (b∗, b̄), then ρθ(q
R; b) = 1; that is, voters with

a sufficiently high right lean perpetually prefer action aR after finitely many periods

with probability one.

Likewise, symmetric results apply for voters with a left lean: for any b ∈ (−b̄,−b∗),

ρθ(q
R; b) = 0; that is, voters with a sufficiently strong left lean perpetually prefer

action aL after finitely many periods with probability one. In other words, some voters

polarize at opposite extremes.
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M qL qR

qL 1− ϵ(1− β) ϵ(1− β)
qR ϵ(1− α) 1− ϵ(1− α)

L qL qR

qL 1− ϵ(1− β) ϵ(1− β)
qR (µ− ϵ)(1− α) 1− (µ− ϵ)(1− α)

R qL qR

qL 1− (µ− ϵ)(1− β) (µ− ϵ)(1− β)
qR ϵ(1− α) 1− ϵ(1− α)

Table 4: Transition matrix of memory states under state of the world M (top), L
(bottom left), and R (bottom right)

Hence,

ρ̄M(qR; b) =
1

2− ᾱ(ν(b))
,

ρ̄R(qR; b) =
(µ− ϵ)

ϵ[1− ᾱ(ν(b))] + (µ− ϵ)
,

ρ̄L(qR; b) =
ϵ

(µ− ϵ)[1− ᾱ(ν(b))] + ϵ
.

Since ν(0) = 1 and ᾱ(ν(0)) = 0, ρ̄M(qR; 0) = 1/2 and increases to one as b increases

to b∗. Similarly, ρ̄R(q
R; 0) = (µ − ϵ)/µ and ρ̄L(q

R; 0) = ϵ/µ and both increase to one

as b increases to b∗. This then implies that voters with b ∈ (−b∗, b∗) swing between

aR and aL, with greater likelihood to support aR in the long run if b > 0, and greater

likelihood to support aL if b < 0.

We next prove existence of an equilibrium of the electoral competition game, as

defined in Definition 4.1.

Lemma 6.5. An equilibrium exists.

Proof. From the proof of Proposition 3.2, we obtain that for each b ∈ (−b̄, b̄), a solution

to optimization problem (5) for agent i with type bi = b exists, and the optimal

automaton is FA3(α(b), β(b)) with α(b) and β(b) given by solution (33) if b ∈ [0, b∗];

with α(b) = 1 and β(b) = 0 if b ∈ (b∗, b̄]; and with optimal values mirroring these for

negative types.

Since the solution correspondence (α∗(b), β∗(b)) : (−b̄, b̄) ⇒ [0, 1]2 is continu-

ous, we can take a continuous function (α∗∗(b), β∗∗(b)) : (−b̄, b̄) → [0, 1]2 such that
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(α∗∗(b), β∗∗(b)) ∈ (α∗(b), β∗(b)) and thus ϕ : (−b̄, b̄) → Q defined by ϕ(b) ≡ FA3(α(b), β(b))

is a continuous function from the set of types to the set of optimal automata.

Given function ϕ, for any b ∈ (−b̄, b̄) and any agent i with type bi = b, given the

automaton ⟨Qi, qi0, τ
i, di, ⟩ ≡ ϕ(b), a support function for agent i such that ait = di(qt)

for each t and for any realization of all observables by i satisfies the “sincere support”

equilibrium condition.

A voting function for agent i such that the voter votes for the leader on the alterna-

tive that the voter supports, and abstains if neither party does so, in every period and

for any realization of observables, satisfies the “sincere voting” equilibrium condition.

With respect to the condition on parties’ optimization, parties are fully impatient,

so in each period, and for any history of previous play they play as if playing a one-

period game. Consider the two-player one-period game played between the two parties

while taking the optimal support and voting functions of all voters as given and common

knowledge among both parties. This one-period, two-player game is a finite game, and

thus it has a Nash equilibrium. Construct a strategy profile for parties such that in any

period, and for any previous history of the game, parties play a Nash equilibrium of

the period game induced by the history up to this period, and by Bayesian updating of

beliefs. This strategy profile is sequentially rational and satisfies the party optimization

equilibrium condition.

Thus, an equilibrium exists.

We next prove that under a range of parameters, party polarization is irreversible:

if parties choose platforms at opposite extremes once, they do so forever thereafter.

Lemma 6.6. For any preference parameters b̄ sufficiently close to one and c sufficiently

small, there exist a range of memory costs (κ) and probabilities of an incorrect extreme

signal (ϵ), such that under all states of the world, in all equilibria, if parties polarize at

a period t after an extreme signal has been observed at least once in previous periods,

then parties remain polarized in every subsequent period: ajt′ = ajt for each j ∈ {1, 2}.

Proof. As established in Proposition 3.1, if κ is small enough, there exists a range of

strictly positive values for parameter ϵ such that in any equilibrium, each voter’s choice

of an alternative to support in each period is as recommended by an optimal 3-state no
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return automaton FA3(α(b), β(b)). Each voter i with type bi ∈ (−b̄, b̄), for any period

t, and for any realization of all the observables observed by voter i, the alternative that

voter i chooses to support is ait = di(qt), where di and qt are respectively the decision

rule and the memory state at period t of automaton FA3(α(b
i), β(bi)), and α(bi) and

β(bi) are an optimal randomization for type bi as computed in Expression (33) in the

proof of Proposition 3.2.

With such an optimal no-return 3-state automaton dictating all voters’ choices

about which alternative to support, all voters initially support alternative aM . Fol-

lowing the first extreme signal, all voters support the alternative congruent with the

signal, and thereafter, voters oscilate between supporting aL and supporting aR.

Let T ∈ N denote the first period in which st ∈ {ℓ, r}. Given the voters’ support

decisions, in equilibrium each voter in each period votes for the party that is a leader

on the alternative the voter supports; if neither party chooses the alternative supported

by the voter, the voter abstains. It follows that in period T and thereafter, no voter

would ever vote for a party that chooses platform aM .

For any period t ∈ N, let ζt(b) denote the fraction of voters of type b who support

aL. Given the realization of signals (sτ )
t
τ=1, ζt(b) is continuous in α(b) and β(b). Since

in equilibrium (by definition), α(b) and β(b) are continuous in b, it follows that ζt(b) is

also continuous in b. Therefore, ζt(b)fb(b) is integrable over the range of b, Thus,

ζt ≡
∫ b̄

−b̄

fb(b)ζt(b) db

is well defined as the fraction of the population of voters who supports aL. For any

t ≥ T , the fraction of the population of voters who supports aR is then 1− ζt.

If follows that a party that is a leader on aL in period t ≥ T obtains a mass of votes

ζt, a party that is a leader on aR obtains 1− ζt, and followers or leaders on aM obtain

zero votes.

Assume parties polarize in period t ≥ T . Without loss of generality (up to relabeling

of party labels), assume a1t = aL and a2t = aR. Each party is a leader on the policy it

proposes, and would remain so in the next period, if it sticks to the same policy.

Assume b̄ is sufficiently close to one, c sufficiently small, and κ and ϵ are such that

the conditions in Proposition 3.1 and Proposition 3.2 hold, and thus the results in
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Proposition 3.2 apply, so a positive mass of voters polarize at opposite extremes after

the first extreme signal at each extreme has been observed. The probability of winning

in period t + 1 for each of the two parties, as a function of their chosen platforms, is

then

a1t+1\a2t+1 aL aM aR

aL (1, 0) (1, 0) (π, 1− π)

aM (0, 1) (1
2
, 1
2
) (0, 1)

aR (1− π, π) (1, 0) (0, 1)

,

where π ∈ [0, 1] is a parameter that depends on ζt, on the randomization parameters

in the optimal automata chosen by agents, on parties’ posterior belief about the state

of nature, and on model parameters. The probabilities of winning given platform

pairs (aL, aR) and (aR, aL) are symmetric because party labels are irrelevant to voters;

to all voters these two pair of platforms are identical up to relabeling, and under

either platform pair, the party that proposes aL (whichever one it might be) wins with

probability π.

If a2t+1 = aR, in period t+1 the expected vote share for P 1 is zero if a1t+1 ∈ {aM , aR}
(zero if a1t+1 = aM because no voter supports this policy; and zero if a1t+1 = aR because

P 1 would be a follower with no votes). Whereas, if a1t+1 = aL, the expected vote share

is strictly positive. Namely, the mass of voters ζt+1 votes for P 1 if a1t+1 = aL, and,

by Proposition 3.2 and its proof, if there exists τ ∈ {1, ..., t + 1} such that sτ = ℓ,

then ζt+1 > 0. Since the probability that st+1 = ℓ is greater than 0, it follows that the

expected value of ζt+1 is also strictly positive. Thus, the unique best response for party

P 1 to a2t+1 = aR is a1t+1 = aL (even if π = 0).

Analogously, If a1t+1 = aL, in period t+ 1 the expected vote share for P 2 is strictly

positive if a2t+1 = aR (because the mass of voters who support aR would vote for P 2),

and zero otherwise (because no voter supports aM , and party P 2 would be a follower

with no votes on aL).

Thus, regardless of the exact value of π, the only equilibrium of the two player

period t+ 1 game is (a1t+1, a
2
t+1) = (aL, aR).

Therefore, by induction, this is as well the only equilibrium in any subsequent

period.

With Lemma 6.6 in mind, to prove Proposition 4.1, it suffices to show that parties
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polarize once after one extreme signal has been observed.

We are now ready for this proof.

Proof of Proposition 4.1.

Proof. Assume b̄ is sufficiently close to one, c is sufficiently small, and κ and ϵ are such

that the conditions in Proposition 3.1 and Proposition 3.2 apply, and thus a positive

mass of voters polarize at opposite extremes with probability converging to one in t.

As established in the first few paragraphs of the proof of Lemma 6.6, letting T

denote the first period in which an extreme signal is observed, for any period t ≥ T ,

and letting ζt denote the share of the population of voters who supports aL in period

t, a party that is a leader on aL in period t obtains a mass of votes ζt, a party that is

a leader on aR obtains 1− ζt, and followers on any policy or leaders on aM obtain zero

votes.

Given this voter behavior, equilibrium party platforms in each period must satisfy

the following along the equilibrium path.

-In period t = 1. Signal s1 is equal to m with probability

∑
θ∈Θ

P0(θ)µ
θ
s ≡ π,

and for θ ∈ {ℓ, r}, it is equal to θ with probability 1−π
2
. The 2-player one-period

election game between the two parties yields the following probabilities of winning as

a function of the platform profile:

a11\a21 aL aM aR

aL (1
2
, 1
2
) (3 (1−π)

4
, π + 1−π

4
) (1

2
, 1
2
)

aM (π + 1−π
4
, 3 (1−π)

4
) (1

2
, 1
2
) (π + 1−π

4
, 3 (1−π)

4
)

aR (1
2
, 1
2
) (3 (1−π)

4
, π + 1−π

4
) (1

2
, 1
2
)

From our assumptions on the priorP0 and on parameters µ and ϵ, it follows that π >

1/2. From π > 1/2 follows that choosing platform aM is a strictly dominant strategy

for each party in the one-period two-player game. Therefore, in any equilibrium (of

the full game), a11 = a21 = aM ; Nature randomly identifies one of the two parties as the

leader on policy aM , and the leader wins the election. Without loss of generality (up

53



to relabeling of parties), let Party 1 be the one chosen as leader by Nature.

-In any period t ∈ (2, ..., T ). Assume Party P 1 was the leader on policy aM in period

t− 1. Then it is strictly dominant in the one-period two-player game for Party P 1 to

choose a1t = aM . Given that a1t = aM , the set of best responses in the period game

for Party P 2 is {aL, aR}; choosing either best response, Party P 2 wins if st is extreme

in the same direction as the a2t , which occurs with probability ϵ > 0, while choosing

a2t = aM , Party P 2 would be a follower and would lose. Thus, by induction, in any

period t ∈ (2, ..., T ), in any equilibrium, a1t = aM and a2t ∈ {aL, aR}.
Case 1: Assume that in period T , sT = a2T . Then it is a dominant strategy for party

P 2 in the T + 1 period game to choose a2T+1 = a2T , and given that a2T+1 = a2T , the

unique best response for party P 1 in the T + 1 period game is to commit to the other

extreme alternative (i.e. a1T+1 = aL and a2T+1 = aR if a2T = aR, and a1T+1 = aR and

a2T+1 = aL if a2T = aL).

Thereafter, by Lemma 6.6, parties remain polarized: a1t = aL and a2t = aR if

a2T = aR, and a1t = aR and a2t = aL if a2T = aL, for any period t ≥ T + 1.

Ex-ante, T is a random variable. For any t ∈ N, the probability that t > T

converges to one in t. Thus, the probability that parties polarize at opposite extremes

converges to one over time.

Case 2: In period T , sT ̸= a2T . Then for any t > T , it is strictly dominated in the

one-period two player game for either party to choose platform aM , so they do not

choose aM . If each of the two parties choose a different extreme platform in a given

period, then Lemma 6.6 applies, and parties remain polarized thereafter. We are thus

left with the case in which either a1t = a2t = ℓ or a1t = a2t = r.

Consider first the subcase a1t = a2t = ℓ. If ζt > 1/2, then the only equilibrium of the

t+ 1 period game is one in which the leader on aL in period t again chooses platform

aL in period t + 1, while the follower switches to aR, and thus Lemma 6.6 applies. If

ζt = 1/2, then we have two possible equilibria of the t + 1 period two player game: a

polarized platform pair in which the leader repeats the same policy and the follower

switches extremes (so Lemma 6.6 applies), and one in which (a1t+1, a
2
t+1) = (aR, aR). If

only the follower switches extremes, parties have polarized, and Lemma 6.6 applies. If

ζt < 1/2, then only (a1t+1, a
2
t+1) = (aR, aR) holds as an equilibrium of the period t + 1

game.
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Similarly, in the subcase a1t = a2t = r, if ζt < 1/2, then the only equilibrium of

the t+ 1 period game is such that the leader on aR in period t again chooses platform

aR in period t + 1, while the follower switches to aL, and thus Lemma 6.6 applies. If

ζt = 1/2, then then we have two possible equilibria of the t+1 period two player game:

a polarized platform pair in which the leader repeats the same policy and the follower

switches extremes (so Lemma 6.6 applies), and one in which (a1t+1, a
2
t+1) = (aL, aL). If

ζt > 1/2, then only (a1t+1, a
2
t+1) = (aL, aL) holds as an equilibrium of the period t + 1

game.

Putting these results together, we have that the only sequence of period equilibria

that escapes polarization is one in which the two parties converge on the same platform,

but they alternate between converging on the left and converging on the right extreme

in odd and even periods. This sequence of alternating convergent platforms, as noted

above, requires an alternating majority of voters to support it: (a1t+1, a
2
t+1) = (aL, aL)

requires ζt ≥ 1/2, and (a1t+2, a
2
t+2) = (aR, aR) requires ζt+1 ≤ 1/2.

However, alternating majorities of support require signals congruent with this al-

ternation. Crucially, from µ > 2ϵ it follows b∗ > 0, and thus ζt ≥ 1/2 together with

st = ℓ imply ζt > 1/2, and similarly ζt ≤ 1/2 together with st = r imply ζt < 1/2.

Thus, whether (a1t+1, a
2
t+1) is equal to (aL, aL) or to (aR, aR), with probability at

least ϵ signal st would be such that in period t+ 1, a switch to a convergent platform

pair at the opposite extreme cannot be supported in equilibrium, and parties polarize,

which then triggers Lemma 6.6.

The probability that one such signal that destroys the sequence of convergence at

alternating extremes is observed at least once converges to one in t, so the probability

that parties polarize converges to one in t. And once they polarize once, Lemma 6.6

that they will always polarize.

We next report, in Table 5, an expanded version of Table 3, with longitudinal

data from the five most recent Pew Center surveys that allow us to compute the

ideological position of each respondent on an invariant ideological scale. These are:

The 2004, 2011, 2014 and 2017 Political Typology surveys (December 1-16, 2004,

n=2,000; February 22 to March 14, 2011, n=3,030; January 23 to March 16, 2014,

n=10,013; and June 8-18, 2017, n=2,504); and the 2019 Political survey (September
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L M R
2004 28% 57% 15%
2011 27% 50% 23%
2014 32% 44% 24%
2017 42% 37% 21%
2019 42% 38% 20%

Table 5: Polarization of the US electorate, 2004-2019.

5-16, 2019, n=2,004).
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A Online Appendix

A.1 Detailed Derivation of Values and Beliefs in FAp
3(α, β)

As noted, we use uR to denote 1+b and uL to denote 1−b, for an arbitrary b ∈ (−b̄, b̄).

We first compute the continuation values for FAp
3(α, β) according to the following

recursive equations:

VqR(R, b) = uR + δ{(1− ϵ+ ϵα)VqR(R) + ϵ(1− α)VqL(R, b)},

VqM (R, b) = δ{(µ− ϵ)VqR(R, b) + ϵVqL(R, b) + (1− µ)VqM (R, b)},

VqL(R, b) = −c+ δ{[(µ− ϵ)β + 1− µ+ ϵ]VqL(R, b) + (µ− ϵ)(1− β)VqR(R, b)}.

The above equations give a system of linear equations with three variables, VqL(R, b),

VqR(R, b), and VqM (R, b). Note that VqL(R, b) and VqR(R, b) do not depend on VqM (R, b)

and can be solved first as follows.

VqL(R, b) =
−c+ δ(µ− ϵ)(1− β)VqR(R, b)

1− δ[1− (µ− ϵ)(1− β)]
,

VqR(R, b) =
uR

1− δ(1− ϵ+ ϵα)
+

δϵ(1− α)

[1− δ(1− ϵ+ ϵα)]

−c+ δ(µ− ϵ)(1− β)VqR(R, b)

{1− δ[1− (µ− ϵ)(1− β)]}
,

VqR(R, b) =
{1− δ[1− µ+ β(µ− ϵ) + ϵ]}uR − δϵ(1− α)c

(1− δ){1− δ[1− µ+ β(µ− ϵ) + ϵα]}

=
[1− δ + δ(1− β)(µ− ϵ)]uR − δϵ(1− α)c

(1− δ){1− δ[1− µ+ β(µ− ϵ) + ϵα]}
,

VqL(R, b) =
δ(µ− ϵ)(1− β)uR − [(1− δ) + δ(1− α)ϵ]c

(1− δ){1− δ[1− µ+ β(µ− ϵ) + ϵα]}
.

Symmetrically, we can solve for VqL(L, b) and VqR(L, b).

VqL(L, b) =
[(1− δ) + δ(1− α)(µ− ϵ)]uL − δϵ(1− β)c

(1− δ){1− δ[1− µ+ α(µ− ϵ) + ϵβ]}
,

VqR(L, b) =
δ(µ− ϵ)(1− α)uL − [(1− δ) + δ(1− β)ϵ]c

(1− δ){1− δ[1− µ+ α(µ− ϵ) + ϵβ]}
.
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Finally, we can substitute the solutions from VqL(R, b) and VqR(R, b) and VqL(L, b) and

VqR(L, b) and obtain

VqM (R, b) =
δ[(µ− ϵ)VqR(R, b) + ϵVqL(R, b)]

1− δ(1− µ)

=
δ

1− δ
× (µ− ϵ)[(1− δ) + δµ(1− β)]uR − ϵ[(1− δ) + δ(1− α)µ]c

[1− δ(1− µ)]{1− δ[1− µ+ β(µ− ϵ) + ϵα]}
,

VqM (L, b) =
δ

1− δ
× (µ− ϵ)[(1− δ) + δµ(1− α)]uL − ϵ[(1− δ) + δ(1− β)µ]c

[1− δ(1− µ)]{1− δ[1− µ+ α(µ− ϵ) + ϵβ]}
.

Now we compute the beliefs. The following expressions follow from the recursive

equations for beliefs according to (11) and (12) in FAp
3(α, β):

f(qR|R) = δ{f(qM |R)(µ− ϵ) + f(qR|R)[1− ϵ(1− α)] + f(qL|R)(µ− ϵ)(1− β)},

f(qL|R) = δ{f(qM |R)ϵ+ f(qL|R)[(1− µ+ ϵ) + (µ− ϵ)β] + f(qR|R)ϵ(1− α)},

f(qM |R) = (1− δ)P0(R) + δf(qM |R)(1− µ),

f(qL|L) = δ{f(qM |L)(µ− ϵ) + f(qL|L)[1− ϵ(1− β)] + f(qR|L)(µ− ϵ)(1− β)},

f(qR|L) = δ{f(qM |L)ϵ+ f(qR|L)[(1− µ+ ϵ) + (µ− ϵ)α] + f(qL|L)ϵ(1− β)},

f(qM |L) = (1− δ)P0(L) + δf(qM |L)(1− µ),

f(qR|M) = δ{f(qM |M)ϵ+ f(qR|M)[1− ϵ(1− α)] + f(qL|M)ϵ(1− β)},

f(qL|M) = δ{f(qM |M)ϵ+ f(qL|M)[1− ϵ(1− β)] + f(qR|M)ϵ(1− α)},

f(qM |M) = (1− δ)P0(M) + δf(qM |M)(1− 2ϵ).

First, we can solve for f(qM |R), f(qM |L), and f(qM |M) directly:

f(qM |R) =
(1− δ)P0(R)

1− δ(1− µ)
, f(qM |L) = (1− δ)P0(L)

1− δ(1− µ)
, f(qM |M) =

(1− δ)P0(M)

1− δ(1− 2ϵ)
.

Then, we can solve for f(qR|R) and f(qL|R) simultaneously:

f(qR|R) =
δ(µ− ϵ)f(qM |R) + δ(µ− ϵ)(1− β)f(qL|R)

1− δ[1− ϵ(1− α)]
,

f(qL|R) =
δϵf(qM |R) + δϵ(1− α)f(qR|R)

1− δ[1− (µ− ϵ)(1− β)]
,
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and, by plugging in the solution for f(qM |R), we obtain

f(qR|R) =
δ(µ− ϵ)[(1− δ) + δ(1− β)µ]

(1− δ){1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}
f(qM |R)

=
δ(µ− ϵ)[(1− δ) + δ(1− β)µ]P0(R)

{1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}[1− δ(1− µ)]
,

and

f(qL|R) =
δϵ(1− δ){1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}f(qM |R)

{1− δ[1− (µ− ϵ)(1− β)]}(1− δ){1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}

+
δ2ϵ(1− α)(µ− ϵ)[(1− δ) + δ(1− β)µ]f(qM |R)

{1− δ[1− (µ− ϵ)(1− β)]}(1− δ){1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}

=
δϵ[(1− δ) + δ(1− α)µ]

(1− δ){1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}
f(qM |R)

=
δϵ[(1− δ) + δ(1− α)µ]P0(R)

{1− δ[1− ϵ(1− α)− (µ− ϵ)(1− β)]}[1− δ(1− µ)]
.

Symmetrically, we have

f(qL|L) =
δ(µ− ϵ)[(1− δ) + δ(1− α)µ]P0(L)

{1− δ[1− ϵ(1− β)− (µ− ϵ)(1− α)]}[1− δ(1− µ)]
,

f(qR|L) =
δϵ[(1− δ) + δ(1− β)µ]P0(L)

{1− δ[1− ϵ(1− β)− (µ− ϵ)(1− α)]}[1− δ(1− µ)]
.

Finally, by adding up the recursive equations for f(qR|M) and f(qL|M), we have

f(qR|M) + f(qL|M) =
δ

1− δ
2ϵf(qM |M),

and hence we can substitute f(qL|M) = δ
1−δ

2ϵf(qM |M) − f(qR|M) in the recursive

equation for f(qR|M), putting all terms involving f(qR|M) on the one side, and obtain

f(qR|M) =
δϵ[(1− δ) + δ(1− β)2ϵ]

(1− δ)[1− δ[1− 2ϵ+ ϵ(α + β)]
f(qM |M)

=
δϵ[(1− δ) + δ(1− β)2ϵ]P0(M)

{1− δ[1− 2ϵ+ ϵ(α + β)]}[1− δ(1− 2ϵ)]
,

f(qL|M) =
δϵ[(1− δ) + δ(1− α)2ϵ]P0(M)

{1− δ[1− 2ϵ+ ϵ(α + β)]}[1− δ(1− 2ϵ)]
.
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It is then straightforward to confirm that, for ϵ sufficiently small, p(qR,m)(R) is arbi-

trarily close to one, and p(qL,m)(L) is arbitrarily close to one.
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