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Abstract. In many organizations, members need to be assigned to certain positions,

whether these are legislators to committees, executives to roles, or workers to teams. In

such settings, the design of the assignment procedure becomes an institutional choice that

is influenced and agreed upon by the very members being assigned. Will these agents seek

to reform the assignment procedures by voting in favor of some alternative allocation over

their current allocation? I explore this question of institutional stability by bringing together

matching theory and social choice. I introduce majority stability—i.e., institutional stability

under majority rule—and juxtapose it with other voting rules an organization might use to

resolve internal conflict. Institutional stability is undermined by correlation across agents’

preferences over positions as this generates envy which, in turn, enables a coalition to form

endogenously that is decisive in changing the institution. For extremely correlated prefer-

ences, I establish a Chaos Theorem wherein there exists a majority-approved agenda from

any matching allocation to any other allocation. Nevertheless, I show that institutions are

robust to intermediate correlation across preferences under majority rule, in sharp contrast

to plurality rule (i.e., popular matching, studied in computer science). Given the prevalence

of (super-)majority rules in practice, this suggests why we observe institutional stability.
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1. Introduction.

Institutions are important and enduring, yet they are not unchanging. As North (1990)

emphasizes, “institutions are created by human beings. They evolve and are altered by

human beings.”

Much attention has been given to institutional change driven by external actors who upend

fundamental principles through revolution and overthrow. However, institutions can also be

changed internally, by the very members of the organization that the institution governs.

Adherence to the rules and processes that make up an institution often relies on the

support of the organization’s members. This gives scope for different coalitions to mobilize

internally and lobby for institutional change. Successful institutional designs are those that

endure and prove robust to such endogenous pressure for reform.

In many organizations, how members are assigned to positions is itself an institutional

choice, that is chosen, agreed upon, and influenced by the very members being assigned.

For example, political parties must decide how to assign their politicians to legislative com-

mittees, the bureaucracy must structure internal labor markets for the assignment of civil

servants to various postings, and personnel must be organized across various capacities within

a firm.

This paper is about the stability of this institutional choice that determines who gets what

position and crucially affects the performance of an organization, the efficacy of its opera-

tions, the synergies and conflicts generated, and the resulting satisfaction and aspirations of

its members. Which coalitions arise endogenously to change the assignments procedures in

their favor? Are certain procedural designs more robust to being reformed? What environ-

ments result in pervasive instability of institutional choices?

Examining such questions requires a merging of two fields: matching theory and social

choice. The assignment procedure is formally a matching mechanism. Social choice is the

study of how groups collectively make choices. While typically applied to the choice of a

single outcome, I apply it to the choice of a matching allocation, a vector of assignments

where each agent gets a different position within the organization over which they might

have varied preferences. Studying this social allocation choice problem delivers insights as

to when an organization’s internal matching procedures persist versus succumb to mounting

coalitional pressure for reform.

In this paper, I apply and extend the tools of matching theory and social choice to study

the stability of institutional choice. Institutional stability considers the stability of the

matching mechanism—the institutional structure—itself. Namely, in what environments

do we get a matching allocation such that no decisive coalition can change the mechanism

in favor of an alternative allocation it prefers, potentially at the loss of those not in the
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coalition. Each voting rule used by the self-governing organization—be it plurality, major-

ity, or unanimity—represents a different version of institutional stability. Thus my analysis

subsumes the canonical notion of stability in one-sided matching: pareto efficiency, which

corresponds to unanimity rule in my framework. Importantly, I also consider other vot-

ing rules where the alternative allocation could endogenously generate both winners and

losers. This is a fundamental feature of institutional change in real organizations. I show

how the stability of the institution varies in the voting rule and in the domain of admissible

preferences.

An insight that emerges from my analysis is that the existence of institutional stability

depends on how correlated individuals’ preferences are over positions. Correlated preferences

increase competition and generate envy over each others’ assignments. The more correlated

are preferences, the easier it is to mobilize larger coalitions that can benefit from change

to the institutional design. However, I show that the robustness to correlated preferences

starkly depends on the organization’s underlying voting rule, that defines which coalitions

are decisive and can undermine institutional stability.

I compare various notions of institutional stability: popular matching, majority stability,

and pareto efficiency that respectively correspond to institutional stability under plurality,

majority, and unanimity voting rules. I introduce the novel property of majority stability,

whereby an allocation is majority stable if there exists no alternative allocation that makes

a majority of agents strictly better off. Not only are majority and super-majority rules

commonly used, both formally and informally, within organizations, but I also highlight

their striking robustness to correlation across individuals’ preferences and explain why.

While pareto efficient allocations under unanimity always exist and are easily attained by

commonly-used mechanisms like a Serial Dictatorship, they are somewhat of a low bar for in-

stitutional stability as they do not insulate the institution against reforms that result in both

winners and losers. A computer science literature originating from Abraham et al. (2007),

has developed the notion of popular matching that corresponds to institutional stability un-

der plurality rule in my framework. However, I show that complete popular matching, though

cleanly characterizable, is extremely fragile and not robust to even the slightest correlation

in preferences across agents. I show that its lack of existence empirically, and moreover, the

stringent requirements it imposes on mechanism details—e.g., restrictions on the seniority

ordering of a Serial Dictatorship— when it does exist, makes popular matching practically

incapable of generating institutional stability.

In stark contrast, I show that majority stability under majority (or super-majority) rule

exhibits a striking robustness to correlated preferences across agents, making its existence

robust across many environments and a wide parameter space. The key feature restricting

majority overrules is a packing problem: the inability to reassign a majority of people into a
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minority of new seats. Thus, majority overrules requires a majority to be moved into a new

set of seats using some chains of envy : i’s seat given to j, j’s seat given to k, etc. Although

the more correlated preferences are, the harder it is generally to attain institutional stability,

correlation of preferences does not perfectly pick up such deep correlation that is needed to

undermine majority stability. To undermine majority stability, you need not only enough

envy, but also envy in the ‘right’ places to give rise to such chains of envy.

Relaxing the assumption that agents only care about their own assignment from the vector

of assignments, to allowing selfish but interdependent preferences, whereby an agent can have

any preferences over allocations in which he gets the same assignment, only leads to weakly

less majority stability. Such a unidirectional effect does not hold for popular matching.

Characterizing preferences where majority stable allocations exist is a computationally

challenging problem, as changing the status quo allocation, changes the strategic environment

altogether as the entire mapping of who is envious of what completely changes. However,

I provide an integer linear program—which I show is computationally tractable—to check

whether a given allocation is majority stable for a given a set of preferences.

Well-behaved environments from social choice such as weakly single-peaked preferences

and order restricted preferences, I show have no bite in social allocation choice problems.

However, I provide computationally simple algorithms that are extremely successful at de-

tecting existence of majority stable allocations; though these algorithms can, albeit very

rarely, fail to detect the existence of majority stable allocations given a set of preferences.

Using simulations, I compare the success of attaining majority stable and popular match-

ings with a Serial Dictatorship and a Boston mechanism. The favoring higher ranks property

of the Boston mechanism produces less envy and renders the Boston mechanism more insti-

tutionally stable than Serial Dictatorship, albeit assuming truthful preferences.

I show how increasing correlation in preferences has opposing effects on stability in so-

cial choice versus social allocation choice. Increasing correlation across agents’ preferences

leads to fewer cycles in preference aggregation rule thereby bolstering stability in standard

social choice problems; but it leads to more chains of envy which undermine institutional

stability in social allocation choice. For perfectly and near-perfectly correlated preferences, I

establish a Chaos Theorem, akin to McKelvey (1976), where a majority-approved sequence

of reassignments can be generated from any allocation to any other allocation.

2. Related Literature.

Addressing these new questions of institutional stability, brings together two large but,

until now, mostly distinct literatures of social choice and matching theory,1 extending each

and unifying them in a particularly important context.

1See Pycia and Unver (2020) for a very different focus and approach in combining these two literatures,
characterizing properties of matching mechanisms satisfying Arrovian efficiency and auditability.
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In social choice, a single outcome is chosen for a group of agents, each of whom might

have varied individual preferences on what they prefer. When the outcome of choice is a

vector of assignments, as in our problem, an intricate structure of preference restrictions is

placed on the social choice problem. This paper analyzes this important sub-case of social

choice: social allocation choice over a vectors of assignments, where each agent receives their

own assignment. Agents might have varied preferences over their own assignment in this

vector, leading to intricate preference restrictions within the broader social choice problem.

Agents collectively vote to decide upon whether to continue with the allocation delivered

by the matching mechanism at hand or change the institution, i.e., vote in favor of/against

an alternative mechanism/allocation. Distinguishing between the institutional stability of

certain allocations, and the matching mechanisms that lead to these allocations, is the goal

of this paper.

Depending on the voting rule that determines which coalitions are decisive in deciding be-

tween allocations, institutional stability subsumes the canonical notion of stability in match-

ing theory. In one-sided markets, stability considers whether the allocation produced by the

mechanism admits a coalition that can reallocate their own assignments within the coalition

and all be weakly better off while at least one is strictly better off. Such coalitional devia-

tions are local in that they do not affect non-coalition members’ assignments. In addition

to considering pareto efficiency, I also analyze other notions of institutional stability using

different voting rules—popular matching and majority stability—under which a coalition

can push for global deviations in assignments that strictly benefit themselves, potentially

at the expense of those not in the coalition. This conflict between coalitions seeking to

reorganize and to lobby to change the assignment procedures and allocations in their favor,

creating both winners and losers in the process, is at the heart of institutional change within

real organizations. I address endogenous coalition formation that is a key feature of the

political economy of institutional change, characterizing the environments that make these

self-governing bodies susceptible to endogenous reorganization and how the organization’s

choice of internal conflict resolution rules (e.g., the voting hurdles) affects the stability and

evolution of institutions.

A small yet growing literature on popular matching (i.e., institutional stability under

plurality rule) and its many variants has been developed in the computer science literature

(see review articles by Manlove (2013) and Cseh (2017)). This literature considers the

existence, characterization, and complexity of finding a Condorcet winner under plurality

rule given one-sided voting (Abraham et al., 2007; Sng and Manlove, 2010; Manlove, 2013;

McDermid and Irving, 2011; Kavitha and Nasre, 2009; McCutchen, 2008; Kavitha et al.,

2011) and two-sided voting in bipartite graphs (Huang and Kavitha, 2013; Kavitha, 2014;

Cseh et al., 2017; Cseh and Kavita, 2016) and non-bipartite graphs (Chung, 2000; Biro
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et al., 2010; Huang and Kavitha, 2017). The focus on algorithmic complexity has often

rendered it as a normatively appealing, yet abstract theoretical solution concept, that hasn’t

received much attention from the economics and applied market design literature. In this

paper I show that existence of complete popular matching (i.e., plurality rule) imposes

very stringent requirements on the preferences of individuals and the design details of the

matching mechanisms. Even slight correlation across agents’ preferences renders popular

matching non-existent and any matching mechanism institutionally unstable. In practice,

many organizations are majoritarian: using majority or super-majority rules to agree upon or

overturn certain group choices. And in fact, I find that when it comes to majority stability—

a new institutional stability notion I introduce in this paper—many common mechanisms

used in practice, like Serial Dictatorship, are often institutionally stable and strikingly robust

in spite of significant correlation across agents’ preferences.

Institutional stability, in considering the stability of the institutional choice itself, shares

the underlying spirit of the self-stable voting rules and constitutional choice literature (Bar-

bera and Jackson, 2004; Messner and Polborn, 2004; Maggi and Morelli, 2006; Koray, 2000).

However, I differ in that rather than choosing a voting rule, agents in my model are choosing

the matching mechanism/allocation. In doing so, I also show the importance of correlation

across agents’ preferences for the stability of institutional choice.

3. Voting rules and their corresponding notions of institutional stability.

The underlying criteria defining different notions of institutional stability is the voting rule

used to compare the allocations/mechanisms. In this section I introduce three different voting

rules (plurality rule, majority rule and unanimity rule) and their corresponding institutional

stability counterparts (popular matching, majority stability, and pareto efficiency).

3.1. The Set-Up.

Let us consider a set of agents I and a set of seats C, indexed by i and c and of size N and

C respectively. Assume N and C odd for ease of notation. Agents i ∈ I have complete and

transitive preferences relations �i over seats C to which they are assigned, referred to as i’s

assignment . Seats do not have any preference over agents, hence the market is one-sided.

If an agent i is not indifferent between two assignments (∼i denotes indifference), then we

say he has a strict preference (�i). If agent i prefers to remain unmatched rather than be

matched to j, i.e., if i �i c, then c is said to be unacceptable to i.

An allocation, or matching, is defined as M : I ∪ C→ I ∪ C such that i = M(c) if and

only if M(i) = c and for all i and c either M(i) is in C or M(i) = i, and either M(c) is in I
or M(c) = c. In other words, an agent is matched to a seat only if the seat is matched to

him, and everyone is either matched to a counterpart from the other side of the market or is

left unmatched (i.e., matched to one’s self). Let M denote the set of all possible matchings.
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Agent i’s preference over two allocations M,M ′ ∈ M is denoted by M �i M
′. Let RN

denote the set of all agents’ reflexive and complete binary preference relations over the set

of possible allocations M and let R be the set of all reflexive and complete binary relations

over the set of possible allocations M.

Definition 1. A social allocation choice defines a social preference relation �S∈ R
between any two allocations M,M ′ ∈ M by aggregating the individual preferences of all

agents given some preference aggregation rule f : RN → R.

Unless otherwise stated, I will maintain the following assumptions throughout this paper

for ease of exposition:

Assumption 1. All possible allocations are feasible and each agent’s preferences are com-

plete (i.e., no truncation deeming certain assignments unacceptable).

Any restriction on the feasibility or acceptability of alternative allocations can only lead to

more institutional stability, unless an institutionally stable allocation itself is made infeasible.

Assumption 2. All preferences are strict.

Allowing for weak preferences—including many-to-one matching which can be modeled

using weak preferences over cloned versions of the same seat—only leads to more institutional

stability.

Assumption 3. Market is balanced with N = C.

Asymmetrically increasing agents leads to weakly less institutional stability since you have

increased envy. Asymmetrically increasing seats can lead to either more or less institutional

stability depending on whether envy is decreased or increased.

Given Assumptions 1-3, unless otherwise stated, I restrict attention to the set of possible

allocations being the set of complete, one-to-one matchings, whereby every agent is assigned

to a distinct seat and no agent/seat is left unassigned.

Assumption 4. Agent i only cares about his own assignment. Namely, M ∼i M
′ if M(i) ∼i

M ′(i) and M �i M
′ if M(i) �i M

′(i).

Hence I assume that an agent’s preference over two allocations is solely determined by his

preference over his own assignment in each of the two allocations. Namely, agent i is indif-

ferent across all allocations M which give him the same assignment ai. This simplification

is in line with the canonical matching theory set up where the preference of an agent i is

independent of assignments for all −i.
In Section 7, I relax this assumption and show that adding any interdependent preferences—

as long as an agent does not vote against his own preference ranking over his own seat
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assignment—leads to weakly more institutional instability under majority stability. How-

ever, this unidirectional result does not hold for pareto efficiency.

3.2. Stability Concepts & Corresponding Voting Rules.

Let us denote by |M ′ �i M |, the number of agents who strictly prefer matching M ′ over

matching M . I define three different notions of institutional stability:

Definition 2. A matching M is popular if @M ′ s.t. |M ′ �i M | > |M �i M
′|.

Definition 3. A matching M is majority stable if @M ′ s.t. |M ′ �i M | ≥ N+1
2

.

Definition 4. A matching M is pareto efficient if @M ′ s.t. |M �i M
′| = 0 and |M ′ �i

M | > 0.

Assuming that all agents who are indifferent between two allocations abstain from voting,

popular matching corresponds to the voting rule f being a plurality rule. A matching is pop-

ular if it is a Condorcet winner with regards to any alternative matching. Majority stability

corresponds to the voting rule f being a majority rule2 and pareto efficiency corresponds to

the voting rule f being an unanimity rule. I also define a matching M to be weak pareto

efficient if @M ′ s.t. |M ′ �i M | = N .

Figure 1. Set inclusions for matchings across various institutional
stability notions.

As shown in Figure 1, the set of popular matchings are a subset of both the set of majority

stable matchings and the set of pareto efficient matchings. However, the sets of majority

stable and pareto efficient matchings are not fully contained in each other. Appendix C

provides examples and details.

2More generally, we can characterize any Q-rule by replacing N+1
2 by Q in Definition 3
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3.3. The Relation to Social Choice.

I highlight how social allocation choice is situated in the general framework of social choice.

Let X be the set of outcomes. Agent i’s preference over two outcomes x, x′ ∈ X is denoted

by x �i x
′. Let RN be the set of all agents’ reflexive and complete binary preference relations

over the set of outcomes X and let R be the set of all reflexive and complete binary relations

over X.

Definition 5. A social choice defines a social preference relation �S∈ R between any

two outcomes x, x′ ∈ X by aggregating the individual preferences of all agents given some

preference aggregation rule g : RN → R.

Thus social allocation choice is a sub-case of social choice where the outcome, x, itself is

a vector of assignments, M , assigning each agent a potentially different assignment.3 This

imposes intricate restrictions on agents’ preferences over the matchings: both when an agent’s

preference depends on which seat he himself is assigned to from this vector of assignments

(Assumption 4), and even when I relax these restrictions and allow agents to have complex,

interdependent preferences between allocations where they are assigned the same seat (see

Section 7). Social allocation choice is an important sub-case of social choice to analyze, as

it highlights the endogenous envy of each others’ positions within organizations caused by

the assignment procedures and explains which coalitions endogenously mobilize to reform

the institution. These forces shape the evolution and longevity of the institutional design.

3.4. The Relation to Stability.

Institutional stability subsumes the standard notion of stability in matching theory.

Definition 6. A matching M is stable if there is no group of agents who can reallocate

their assigned seats amongst themselves such that all are weakly better off and at least one

is strictly better off.

Stability—which is captured by pareto efficiency in our one-sided matching setting—

involves preventing more ‘local’ deviations. Namely, unstable allocations admit a coalition

whose members benefit from locally reallocating their own assigned seats amongst them-

selves, leading to an alternative ‘near-by’ allocation. Importantly, the assignments of all

non-coalition agents remain unchanged.

In contrast, the other forms of institutional stability I consider, such as popular matching

and majority stability, involve more ‘global’ deviations, whereby the coalitional deviation

can suggest an alternative allocation/mechanism that makes every coalition member strictly

better off, potentially at the expense of agents not in the coalition.

3In the case of many-to-1 (e.g., civil servant assignment to states in India (Thakur, 2018a) or many-to-many
matching (e.g., as committee assignments in US Senate (Thakur, 2018b) multiple agents can be assigned the
same assignment.
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3.5. New Questions for Institutional Stability.

There are three natural questions to ask in our model of institutional stability, which I

address in each of the three sections that follow.

Firstly, in Section 4 we ask, in which preference environments do institutionally stable al-

locations exist? The existence question highlights the importance of how correlated agents’

preferences are, which in turn defines who is envious of whose seats (i.e., competition over

seats) and whether large enough coalitions can form endogenously to overturn the pro-

posed allocation in favor of an alternative allocation. My analysis also comments on which

mechanisms can reach such institutionally stable allocations when they exist and what the

constraints are on such mechanisms?

Secondly, in Section 5 we ask, for a given set of preferences, is a given allocation insti-

tutionally stable? Verification is a computationally hard problem because for the proposed

allocation, we must search over the space of all alternative allocations to check whether suf-

ficiently large coalitions can deviate and strictly improve. However, I show how to efficiently

tackle this problem using an integer linear program, which I show can be simplified to solving

a relaxed linear program that guarantees integer solutions.

Lastly, in Section 6 we ask, which mechanisms are more robust to institutional stability?

What properties and design features of the mechanisms explain their difference in attaining

institutional stability? This is explored using simulations.

4. In which preference environments do institutionally stable allocations exist?

4.1. Unanimity Rule and Pareto Efficiency.

Pareto efficiency is guaranteed with commonly used, simple mechanisms like Serial Dic-

tatorship. With strict preferences, Serial Dictatorship is pareto efficient as the mechanism

cannot make the nth senior person in the seniority ordering better off without making some

j ∈ {1, ..., n−1} seniorities worse off, otherwise j would have chosen this alternative himself.

Moreover, depending on the seniority order chosen, Serial Dictatorship spans the entire set

of pareto efficient matchings. Of course, if there are weak preferences, then tie-breaking can

matter. For example, consider two agents {1, 2} and two seats {A,B}. Suppose A ∼1 B and

A �2 B and suppose 1 is more senior to 2. Then Serial Dictatorship yields the allocation

(1− A, 2−B) which is pareto dominated by the allocation (1−B, 2− A).

However, unanimity rule can be overly non-discriminating when it comes to understanding

institutional stability in practice, as a single agent or small group of agents can block massive

improvements for very large coalitions. In Example 1, two senior agents 1 and 2 occupy seats

A and B and prevent a long chain of improvements amongst all N − 2 other agents.

Example 1. Consider N agents allocated by Serial Dictatorship (in bold) with order of

seniority 1 more senior than 2, ..., more senior than N − 1, more senior than N , to seats
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{A,B, ...}. Notice how agents 1 and 2 block an entire sequence of potential improvements

for all N − 2 others.

1 2 3 4 5 ...

A B A A D ...

B A B C B ...

... ... C B A ...

... ... ... D C ...

... ... ... ... E ...

... ... ... ... ... ...

In economics, we often seek pareto efficiency, because we do not want economic systems

to inefficiently leave surplus on the table. However, proofing against unanimously-approved,

unambiguous improvements is a somewhat low standard when modeling institutional stabil-

ity, as in practice, institutional change often creates both winners and losers. Considering

endogenous coalitions trying to lobby to change the institutional rules in their own favor,

potentially at the expense of others, is what I analyze next in Section 4.2 under plurality

rule and Section 4.3 under majority rule.

4.2. Plurality Rule and Popular Matching.

Building on Abraham et al. (2007)’s characterization of popular matching, I show in this

section that the existence of institutionally stable allocations under plurality rule—i.e., com-

plete popular matchings—imposes extremely stringent conditions on both preferences and

mechanisms.

Lemma 1. (Abraham et al. (2007) Lemma 2.4)

A matching M is popular if and only if

(1) every seat which is somebody’s first choice (called a “f-post”) is matched in M and

(2) each agent i is assigned to either his first choice (i.e, f(i)) or his most preferred

alternative that is not ranked first by any other agent (i.e., s(i)) called a “s-post”

This characterization also allows for popular matchings that are not complete (i.e., some

agents or seats are left unmatched) by introducing a “last resort option” l(i) which is added

to the end of each i’s preference rank order after all their acceptable assignments as their

least preferred option. This ensures that the s-post for any agent, s(i), is not empty, and i

being assigned l(i) represents remaining unmatched.

Consider Example 2 (from Abraham et al. (2007)) which illustrates all the concepts in

Lemma 1, highlighting how popular matchings can have different sizes.
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Example 2. Agents {1, 2, 3, 4, 5} rank seats {A,B,C,D,E}. The highlighted seats are the

f- and s-posts for each agent. The set of f-posts are {A,B,C} and the set of s-posts are

{D, l(3), E}. Hence there are two complete popular matchings (1-A, 2-D, 3-B, 4-E, 5-C)

and (1-D, 2-A, 3-B, 4-E, 5-C) and eight not complete popular matchings (1-A, 2-D, 3-l(3),

4-B, 5-C), (1-D, 2-A, 3-l(3), 4-B, 5-C), (1-A, 2-D, 3-l(3), 4-E, 5-C), (1-D, 2-A, 3-l(3), 4-

E, 5-C), (1-A, 2-D, 3-l(3), 4-B, 5-C), (1-D, 2-A, 3-l(3), 4-B, 5-C), (1-A, 2-D, 3-l(3), 4-B,

5-E), (1-D, 2-A, 3-l(3), 4-B, 5-E).

1 2 3 4 5

A A B B C

C D A C E

D B C E A

l(1) l(2) l(3) l(4) l(5)

However, let us hereby restrict our attention to the existence of complete popular matchings

in a balanced market (i.e., no agent or seat is left unassigned/vacant and assigned to their

last resort l(i)) and assume all agents have complete strict preferences over all seats in C.

Using Hall’s Marriage Theorem,4 I provide the following corollaries illustrating the strin-

gent restrictions the Lemma 1 characterization imposes on the preference environment and

matching mechanism for a complete popular matching to exist and be reached by the match-

ing mechanism.

Corollary 1.1. A necessary but not sufficient condition for a complete popular matching to

exist is that
⋃
i∈I
{f(i), s(i)} = C, where C is the set of distinct seats to be assigned.

Example 3. Agents {1, 2, 3, 4, 5, 6} rank seats {A,B,C,D,E, F}. Notice that seat F is no

one’s f- or s-post (in bold). Hence, no complete popular match exists.

4The graph theoretic formulation of Hall’s Marriage Theorem (Hall, 1935) states that for any finite bipartite
graph G with bipartite sets P and C (G := (P + C,E)). An P -saturating matching is a matching which
covers every vertex in P . For a subset W of P , let NG(W ) denote the set of all vertices in C adjacent to
some element of W . Hall’s Marriage Theorem states that there is an P -saturating matching if and only if for
every subset W of P , |W | ≤ |NG(W )|. In other words, every subset W of P has sufficiently many adjacent
vertices in C. Proofs of the corollaries use the graph G of f- and s-posts imposed by Lemma 1 condition 2),
along with Hall’s Marriage Theorem.
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1 2 3 4 5 6

A A B B C B

C D A C E C

D B C E A E

F F D F F A

B C E A D F

E E F D B D

Next I define preferences to have n blocks Bn for n = 1, 2, ... as the finest partition of seats

such that all seats in the nth block Bn are ranked below all seats in the jth block Bj for all

j < n by all i ∈ I, and are ranked above all seats in the kth block Bk for all k > n by all

i ∈ I.

Corollary 1.2. No complete popular matching exists if preferences have 3 or more blocks as

f(i) ∈ B1, s(i) ∈ {B1, B2} ∀i ∈ I, and seats c ∈ B3, B4, ... are never s(i) for any agent.

Example 4. Consider agents {1, 2, 3, 4, 5, 6} ranking seats {A,B,C,D,E, F}. Notice, that

there are three blocks B1 = {A,B}, B2 = {C,D}, and B3 = {E,F}. The f- and s-posts (in

bold) only consist of seats in B1 and B2, but not those in B3. Hence no complete popular

match exists.

1 2 3 4 5 6

A A B B B A

B B A A A B

C D D C D C

D C C D C D

F E F F E E

E F E E F F

Corollary 1.3. If have 2 blocks in preference, then for a complete popular matching to exist,

every seat c ∈ B1 must be the first choice of some agent and every seat c ∈ B2 must be the

first choice of someone amongst all the seats in B2, else
⋃
i∈I
{f(i), s(i)} 6= C

Example 5. Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E}. There are two

blocks B1 = {A,B} and B2 = {C,D,E}, however, seat E is no one’s third choice, and

hence no one’s f- or s-post (in bold). Hence, there is no complete popular match.
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1 2 3 4 5

A A B B B

B B A A A

C D D C D

E C C E C

D E E D E

Our corollaries thus far, imply strong restrictions on agents’ preferences that are necessary

to guarantee the existence of a complete popular match given any matching mechanism.

Now, I restrict to a particular matching mechanism, the Serial Dictatorship, and illustrate a

further restriction complete popular matching imposes on the matching mechanism’s design

details.

Corollary 1.4. A complete popular matching is implemented by a Serial Dictatorship if and

only if the seniority ordering is such that the set of agents to be assigned to their f-posts in

the popular match are more senior to the set of agents to be assigned to their s-posts in the

popular match.

Example 6. Consider agents {1, 2, 3} ranking seats {A,B,C}. If the seniority is 1 > 2 > 3,

the resulting matching (1−A, 2−B, 3−C) is not one of two popular matchings—which are

(1−A, 2−C, 3−B) or (1−C, 2−A, 3−B)—because agent 3 who must be assigned to his

f-post in any complete popular matching was junior to both agents 1 and 2 (one of whom

must be assigned to his s-post C). Hence, only seniority orderings where 3 is more senior to

agent(s) 1 and/or 2 result in a Serial Dictatorship yielding a popular match.

1 2 3

A A B

B B A

C C C

Collectively, these four Corollaries (also see simulations in Appendix A) establish that ex-

istence of complete popular matching is rare, particularly given that some correlation across

agents’ preferences is empirically quite common. Correlation across agents’ preferences can

originate from a general agreement over the most sought-after assignments (e.g., the most

powerful, lucrative, and, highly sought after legislative committees in Congressional commit-

tee assignment (Thakur, 2018b)), or from a shared distaste of bad placements (e.g., the least

attractive, distressed, and unequivocally avoided states in civil servant assignments (Thakur,

2018a)). Such shared blocks in agents’ preferences render complete popular matching hard

to attain. Moreover, a perfect lining up of seniority of agents by those getting their f-posts
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followed by those getting their s-posts under Serial Dictatorship is also hard to get in prac-

tice (e.g., is not the case in Republican committee assignment procedures that use Serial

Dictatorship-based procedures (Thakur, 2018b)). Existence of institutional stability under

plurality rule is thus incredibly fragile and empirically rare.

4.3. Majority Rule and Majority Stability.

In sharp contrast to complete popular matching however, majority stability is strikingly

robust to correlated preferences and given the prevalent use of (super-)majority rules in

practice, might explain the institutional stability we see in many applications.

I illustrate the subtleties behind majority stability existence using two examples. In Ex-

ample 7 no complete popular matching exists, however a majority stable matching exists and

can even be implemented by a Serial Dictatorship. Example 8 slightly tweaks the agents’

preferences, such that correlation across preferences is close but less than in Example 7, yet

there exist no majority stable allocations. The correlation coefficient is a generalization of

Spearman rank coefficient to N rank order preference lists from Thakur (2018a).5

Example 7. Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E} given a seniority

ordering 1 � 2 � 3 � 4 � 5. Since preferences have three blocks B1 = A, B2 = B and

B3 = {C,D,E}, no complete popular matching exists. However, Serial Dictatorship in

order of seniority produces the underlined allocation (1−A, 2−B, 3−C, 4−D, 5−E) which

is majority stable. Note: these preferences have a correlation coefficient of 0.84.

1 2 3 4 5

A A A A A

B B B B B

C C C D E

D D D C C

E E E E D

The important question is why is this allocation majority stable in Example 7? All agents’

first and second choices are seats A and B respectively, so preferences are quite correlated.

However, in this very observation lies the key to majority stability. Namely, four agents (2,

3, 4, and 5) are envious of agent 1’s assignment to seat A and three agents (3, 4, and 5) are

envious of agent 2’s assignment to seat B. However, there is a packing problem as a majority

5When considering the ranking of i = 1, ..., N agents over c = 1, ..., C seats, Thakur (2018a) suggests the
following correlation measure

ρ = 1−

∑C
c=1

(
1

N−1
∑N

i=1(ric − rc)2
)

C
(

(C−1+1)2−1
12

)
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of N+1
2

agents cannot be reassigned to less than a majority (< N+1
2

) of distinct new seats.

In this case, at least 3 agents cannot be assigned to just 2 seats.

Hence, to overrule an allocation by majority rule, N+1
2

distinct agents have to be envious

of N+1
2

distinct seats. And satisfying this condition requires at least one chain of envy : a

structure where i is envious of j’s seat, and j is envious of k’s seat, and so on.6

The majority stable matching in Example 7 admits three chains of envy of length two: 5-

2-1 (i.e., 5 is envious of 2, who is envious of 1), 4-2-1, and 3-2-1. However, majority stability

is ensured because there is no other envy to overcome the packing problem. As illustrated

in Example 8, changing the preferences slightly can generate enough envy and unravel the

majority stability.

Example 8. Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E} given a seniority

ordering 1 � 2 � 3 � 4 � 5. Notice, the slight difference in agent 5’s preference (D �5 E)

compared to that in Example 7 (E �5 D). There is yet another difference relative to Example

7 which had C �4 E, instead of E �4 C, that is inconsequential to the majority stability

calculations, but used to comment on the correlation difference between Examples 7 and 8

below. This example has the same Serial Dictatorship allocation as Example 7. However,

agent 5 now being envious of 4’s assigned seat D leads to institutional instability. Note:

these preferences have a correlation coefficient of 0.82.

1 2 3 4 5

A A A A A

B B B B B

C C C D D

D D D E E

E E E C C

Together, Examples 7 and 8 show that undermining majority stability requires i) ‘enough’

envy overall to be able to move a majority and make them all better off, ii) the existence

of chains of envy to overcome the packing problem, and iii) envy in the ‘right’ places, for

example, multiple chains originating from the same two seat(s) A and B were superfluous

as seen in Example 7.

Moreover, these two examples show that these features are not perfectly captured by

simple correlation across agents’ preferences. Example 7 that admits majority stability has

a preference correlation of 0.84, which is larger than preference correlation of 0.82 from

Example 8 where there are no majority stable allocations.

6The smallest possible chain of envy needed to break majority stability is of length 2, where the remaining
N−3
2 agents must be envious of distinct N−3

2 seats remaining.
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This highlights a more intricate structure of preferences, I call Deep Correlation. Every-

one being envious of the same handful of positions is often not sufficient for institutional

instability; there must be sufficient amount of envy, some in the form of chains, and this

envy and chains of envy must be in the right places to overcome the packing problem. These

intricacies are not picked up by simple measures of correlation in preferences. Our simulation

results in Appendix A further illustrate this distinction.

Nevertheless, Figure 2 shows how, on the whole, the more correlated preferences are, the

harder it is to sustain majority stability.

Figure 2. Majority Stability Existence By Correlation Across Pref-
erences (N = 5).
Exhaustively checking whether there exists a majority stable allocation for
N = 5 for 200,000 simulated set of preferences of differing correlations for 5
agents over 5 seats, shows the striking robustness of majority stability exis-
tence even when preferences across agents are considerably correlated.

Importantly however, Figure 2 also highlights the striking robustness of majority stabil-

ity existence even when preferences across agents are considerably correlated. In practice,

the prevalent use of majority and super-majority rules to change institutional rules (e.g.,

changing party or Congressional rules for committee assignment procedures the US Senate

(Thakur, 2018b)), might explain why certain assignment procedures are enduring, despite

significant correlations across members’ preferences. Even in the All-India Civil Service,

where civil servants systematically rank under-developed, distressed areas with foreign con-

flict and internal strife at the bottom of their preference lists and correlations are large
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enough to cause marked imbalances in allocations, correlation coefficients are only around

0.5 (Thakur, 2018a), where around 75% of preferences admit majority stable allocations.

The juxtaposition of robustness with regards to correlated preferences between majority

stability with popular matching is perhaps most apparent in the case where all agents are

in agreement over their most preferred seat. Such instances are not uncommon in practice;

for example, U.S. senators tend to unanimously place utmost value to being assigned to the

Appropriations committee as it controls the Senate’s purse and carries tremendous power

and prestige. Existence of a complete popular matching in this case would require that N−1

agents’ second choice seats (their s-posts) be distinct. However majority stable allocations

can exist in spite of a lot more correlation across agents’ preferences because not everyone

can be assigned to this top choice seat which they are all envious of—the crux of the packing

problem.

Now that we have an understanding of what makes majority stability more robust to

correlated preferences than popular matching, I try to tackle the question: when does a

majority stable allocation exist? This turns out to be a hard question. First, I show that

common preference restrictions and tractability conditions from social choice—weak single-

peaked preferences and order restricted preferences—have no traction in our social allocation

choice setting. Second, I show that attempts at constructing candidate majority stable

allocations by globally minimizing envy are extremely successful in testing whether there

exists a majority stable allocation, but can (very rarely) fail to detect existence.

4.3.1. Non-existence of Weakly Single-Peaked Preferences in Social Allocation Choice.

Under weakly single-peaked preferences, matchings are ordered along a left-right scale such

that any move away from an agent’s most preferred outcome is associated with a weak move

down the agent’s preference ordering (i.e., allowing flat spots of indifference at the peak of

preference order as well as to either side of the peak). I show that for the social allocation

choice problem with majority rule, the restriction that an agent’s preference over outcomes

depends only on their preference over their own individual assignment across the allocations,

puts such structure on the set of possible preferences, that there can be no weakly single-

peaked preferences for markets of size N > 3. Thus, single-peakedness has no bite in our

social allocation choice problem.

Lemma 2. There is no possible set of weakly single-peaked preferences for a market sized

N > 3.

Proof: First consider restricting to any agents {1, 2, 3} with preferences over matching

allocations, where a matching {A,B,C} implies match 1-A, 2-B, and 3-C. Let us

maintain our restriction that all agents only care about their own assignment and that

preferences are strict. Without loss of generality, consider agent 1’s preference to be
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A �1 B �1 C. It is easy to verify that restricting to a market of size 3 (any 3 seats and 3

agents), there is only one possible (ignoring relabeling of seats/agents and reverse order

of preferences) ordering of preferences which satisfies weak single-peakedness. This

ordering is {C,B,A}, {B,C,A}, {A,C,B}, {A,B,C}, {B,A,C}, {C,A,B}, illustrated

in Figure 3.

Figure 3. Weakly single-peaked preferences for N = 3.
Restricting to a market of size 3 (any 3 seats and 3 agents), there is only one
possible (ignoring relabeling of seats/agents and reverse order of preferences)
ordering of preferences which satisfies weak single-peakedness. Observe the
utility symmetry of 1’s preference relative to 2 and 3, and polar asymmetry of
2 and 3’s preferences.

Now, consider restricting to any 4 agents {1, 2, 3, 4}. Agent 1 will be indifferent

over all matchings where he gets his first choice, say D. For preferences to be single-

peaked for agents 2, 3, and 4 over all allocations where 1 gets D, we know from above,

that the ordering must be {D,C,B,A}, {D,B,C,A}, {D,A,C,B}, {D,A,B,C},
{D,B,A,C}, {D,C,A,B}. Now given that Agent 1 has strict preferences, 1 has

D �1 C. He is indifferent over all allocations where he gets C. For weak single-

peakedness to hold, allocations where 1 gets C must either be to the right, to the

left, or split across both sides of the ordering above. Either way, there will be an

allocation where 2 gets B. And regardless of where this allocation is placed, weak

single-peakedness is violated for 2’s preference.

It is the intrinsic rivalry and discreteness that the matching problem imposes that prevents

the existence of weakly single-peaked preferences, e.g., if I get A, then you are left with B,

but then I prefer all the allocations where I get A over those where I get B, and so forth.
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4.3.2. Non-existence of Order Restricted Preferences in Social Allocation Choice.

Under order-restricted preferences, agents are ordered along a left-right scale such that for

any pair of matchings, the agents who strictly prefer one matching all lie to one side of

those who strictly prefer the other, and agents in the middle are indifferent. For the social

allocation choice problem with majority rule, the restriction that an agent’s preference over

outcomes depends only on their preference over their own individual assignment across the

allocations, puts such structure on the set of possible preferences, that there can be no order

restricted preferences for markets of size N ≥ 3. Thus, order restriction has no bite in our

social allocation choice problem.

Lemma 3. There is no possible set of order restricted preferences for a market sized N ≥ 3.

Proof: It suffices to show that there is no order restriction possible for any subset of 3

seats and 3 agents (i.e., subset of the market of size 3). Consider agents {1, 2, 3} with

preferences over allocations, where a matching {A,B,C} implies match (1 − A, 2 −
B, 3 − C). Let us maintain our restriction that all agents only care about their own

assignment and that preferences are strict.

So without loss of generality, consider agent 1’s preference to be A �1 B �1 C. Hence

in comparing the two allocations {A,B,C} and {A,C,B}, agent 1 is indifferent. This

leaves four cases for the possible preference combinations that agents 2 and 3 can have

over seats B and C.

• Case 1: if B �2 C and B ≺3 C.

Then, the order restriction is 2-1-3 (or reverse) given the comparison of the two

allocations above. However, consider the comparison between {C,B,A} and

{B,C,A}. Preferences are �2, ≺1, and ∼3, which violates the order restriction.

• Case 2: if B ≺2 C and B �3 C.

Then, the order restriction is 2-1-3 (or reverse) given the comparison of the two

allocations above. However, consider the comparison between {C,A,B} and

{B,A,C}. Preferences are ∼2, ≺1, and �3, which violates the order restriction.

• Case 3: if B �2 C and B �3 C.

Then, the order restriction is either 1-3-2 (or reverse) or 1-2-3 (or reverse) given

the comparison of the two allocations above.

– Case 3a: if order restriction is 1-3-2 (or reverse).

Consider the comparison between {C,A,B} and {B,A,C}. Preferences are

≺1, �3, and ∼2, which violates the order restriction.

– Case 3b: if order restriction is 1-2-3 (or reverse).

Consider the comparison between {C,B,A} and {B,C,A}. Preferences are

≺1, �2, and ∼3, which violates the order restriction.

• Case 4: if B ≺2 C and B ≺3 C.
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Then, the order restriction is either 1-3-2 (or reverse) or 1-2-3 (or reverse) given

the comparison of the two allocations above.

– Case 4a: if order restriction is 1-3-2 (or reverse).

Consider the comparison between {C,B,A} and {B,C,A}. Preferences are

≺1, ∼3, and ≺2, which violates the order restriction.

– Case 4b: if order restriction is 1-2-3 (or reverse).

Consider the comparison between {C,A,B} and {B,A,C}. Preferences are

≺1, ∼2, and ≺3, which violates the order restriction.

4.3.3. Constructive Approach to Finding a Majority Stable Allocation: minimizing envy.

In characterizing whether there exists a majority stable allocation for a given set of prefer-

ences, since we want to effectively minimize realizable envy, I use Algorithm 1) minimizing

average preference rank or Algorithm 2) greedily minimizing preference ranks allotted7 in

the hopes of finding a majority stable allocation.

Lemma 4. If preferences admit a majority stable allocation, there exists a pareto efficient

and majority stable allocation.

Proof : If a majority stable allocation is not pareto efficient, then overall envy is

weakly decreased by allowing all cycles via Top Trading Cycles because all those who

are better off, have weakly less envy; whereas, those who are not any worse off, have

the same envy. Thus we reach a pareto efficient and majority stable allocation with

Top Trading Cycles.

Both Algorithm 1) and Algorithm 2) return pareto efficient allocations, which is useful in

light of Lemma 4, and both globally minimize envy in different ways. Moreover, greedily

minimizing preference ranks also picks up a complete popular matching if one exists.

Simulations show that Algorithm 1) and Algorithm 2) are extremely successful in returning

a majority stable allocation if any majority stable allocations exist. Both algorithms failed

to return a majority stable allocation in only 1% of random preference environments when

majority stable allocations in fact existed for simulations with N = 7. Example 9 illustrates

how both Algorithms can fall short in identifying majority stable allocations in scenarios

where they in fact exist.

Example 9. Consider agents {1, 2, 3, 4, 5, 6, 7} ranking seats {A,B,C,D,E, F,G}. Although

a majority stable matching exists (in bold), it is not found by either Algorithm 1) returning a

7This matching can be calculated by assigning weight Nr to seat ranked rth (where higher rank is better)
and then solving the maximal weighted matching using an integer linear program, that is easy to compute.
Since Nr > (N − 1)(Nr−1), subject to the overall maximum, the integer linear program will always greedily
favor higher ranks. In other words, this matching finds the tie-breaking rules which globally optimizes the
Boston mechanism’s favoring higher ranks property.
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minimum average preference matching (in red) or Algorithm 2) returning a greedy minimum

preference matching (underlined).

1 2 3 4 5 6 7

F G D G F D G

A F A A B A F

C A E D C E E

G C F C D F B

E D C B G B D

D E G E A G C

B B B F E C A

In Example 9, there exists a majority stable matching (1 − F, 2 − G, 3 − D, 4 − A, 5 −
B, 6−C, 7−E) however, both the minimum average preference matching (1−F, 2−C, 3−
A, 4−G, 5−B, 6−D, 7−E) and greedy minimum preference matching ( 1− F, 2−C, 3−
D, 4− A, 5− B, 6− E, 7−G) deliver non-majority stable matchings. Notice how both the

Algorithms fail to assign agent 6 to his least preferred assignment C, as this increases average

rank and doesn’t favor higher ranks. However, it turns out that this is needed so that other

agents’ assignments prevent envy in the necessary places to be able to improve a majority.

5. Is a given allocation institutionally stable?

Given a set of preferences, checking whether a matching is majority stable and finding

the size of the maximal coalition that can benefit from some alternative matching seems

like a computationally hard problem. The number of alternative matchings for a one-to-one

matching in a balanced market with N candidates and N seats grows exponentially, N !.

However, I show how to use an integer linear program to efficiently solve this problem.

The integer linear programming approach takes the graph of envy in matrix form and

finds an alternative one-to-one matching with maximal envy resolved. It turns out that

the constraint that the alternative matching should be a one-to-one matching, imposes a

structure such that the relaxed linear program is guaranteed integer solutions.

Consider the reassignment matrix X, where Xij =

1, if i is reassigned to j’s seat

0, otherwise
.

Note that Xii = 1 means that i remains in his own seat.

Consider the envy matrix A, where Aij =

1, if i is envious of j’s seat

0, otherwise
.

Note, i envious of j’s seat means that i strictly prefers j’s seat to his own assignment.

The goal is thus to find the reassignment X such that the maximal envy is realized subject

to the alternative allocation being a one-to-one matching of the balanced market:
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max
X

∑
diag A

′X(1)

s.t.
∑

iXij = 1 ∀j∑
j Xij = 1 ∀i

The first set of constraints guarantee that each seat j is assigned to only one agent, while

the second set of constraints guarantee that each agent is assigned only one seat. The sum

over the diagonal entries of A′X calculates the envy that is realized by the reassignment X

and summing over just the diagonal entries of the matrix ensure no double counting of the

envy.

I can now rewrite this problem in vector form:

I stack all the columns of X and of A to form X̃ =



X11

...

XN1

X12

...

XN2

...

...

X1N

...

XNN



and Ã =



A11

...

AN1

A12

...

AN2

...

...

A1N

...

ANN



.

Furthermore, consider the matrices 2N -by-1 matrix, b =



1

1

...

...

...

1


and the 2N -by-N2 matrix,
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C =



length N︷ ︸︸ ︷
1 1 ... 1

length N︷ ︸︸ ︷
0 0 ... 0 ... ... ... ...

length N︷ ︸︸ ︷
0 0 ... 0

0 0 ... 0 1 1 ... 1 ... ... ... ... 0 0 ... 0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

0 0 ... 0 0 0 ... 0 ... ... ... ... 1 1 ... 1

1 0 ... 0 1 0 ... 0 ... ... ... ... 1 0 ... 0

0 1 ... 0 0 1 ... 0 ... ... ... ... 0 1 ... 0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

︸ ︷︷ ︸
N-dim identity mtx

0 0 ... 1 ︸ ︷︷ ︸
N-dim identity mtx

0 0 ... 1 ... ... ... ... ︸ ︷︷ ︸
N-dim identity mtx

0 0 ... 1


Hence, our integer linear program from Equation (1) can be equivalently expressed as

max
X

Ã′X̃(2)

s.t. CX̃ = b

I can divide the matrix C into submatrices on either side of the dashed line:

C =

C
C


, where Cx = bNxN2 ensures that each seat is allotted to only one agent while Cx = bNxN2

ensures that each agent is allotted to only one seat.

Note, that matrices Ã, C, and b have all integer entries and C is totally unimodular.8

Hence, the relaxed linear program in Equation (2) will have integer solutions and is compu-

tationally easy.

6. Which mechanisms are more robust to institutional stability?

I use simulations to compare a Serial Dictatorship in a given order of seniority with a

Boston mechanism with tie-breaks in order of seniority, assuming truthful preference reve-

lation (see Appendix A). I make two observations. First, the maximal sized coalition that

can be made better off is weakly larger under Serial Dictatorship, than under the Boston

8Heller and Tompkins (1956) show that the coefficient matrix for a bipartite matching is totally unimodular.

And Ã is an unoriented incidence matrix of a bipartite graph. Equivalently, Hoffman and Gale (1956)

characterize more general sufficiency conditions which Ã satisfies.
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mechanism (see Figure 11 left) for most preference environments. Second, Boston mecha-

nism under truthful revelation is more robust for majority stability and popular matching

existence (see Figure 11 right). Out of 12,001 simulated preference environments with vary-

ing levels of correlation, there were i) 5154 instances where both were majority stable, ii)

4673 instances where both were not majority stable, iii) 2169 instances where the Boston

mechanism was majority stable but Serial Dictatorship is not, and iv) only 5 instances where

Serial Dictatorship was majority stable but Boston mechanism was not.

It is the favoring higher ranks property—that any seat c that i is envious of is assigned to

some j who ranks c at least as high as i—of the Boston mechanism that tends to produce less

envy, compared to Serial Dictatorship. Algorithm 2) from Section 4.3.3 globally optimizes

on this very property of favoring higher ranks.9

I show that there are cases where the Boston mechanism is majority stable but Serial

Dictatorship is not (Example 10), and cases where Serial Dictatorship is majority stable but

Boston mechanism is not (Example 11).

Example 10. Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E} given a seniority

ordering 1 � 3 � 4 � 5 � 2. Boston mechanism with truthful preference and same seniority

ordering for tie-breaking is majority stable (1-A, 2-B, 3-C, 4-D, 5-E), while the matching

from Serial Dictatorship (1-A, 2-C, 3-B, 4-D, 5-E) is not due to alternative matching (1-C,

2-E, 3-A, 4-D, 5-B) being preferred with a 3:1 vote.

1 2 3 4 5

A B A A A

B A B B B

C D C D E

D E D C D

E C E E C

Example 11. Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E} given a seniority

ordering 1 � 2 � 3 � 4 � 5. Serial Dictatorship matching (1-A, 2-B, 3-E, 4-C, 5-D) is

majority stable, while Boston mechanism with truthful preference and same seniority ordering

for tie-breaking (1-A, 2-C, 3-B, 4-E, 5-D) is not majority stable as alternative matching (1-E,

2-A, 3-D, 4-C, 5-B) is preferred by a 3:2 vote.

9Algorithm 2) can be viewed as finding the best tie-breaking criterion for the Boston mechanism such that
the favoring higher ranks property is optimized by greedily assigning seats by lowest preference rank.
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1 2 3 4 5

A A B A A

B B A B B

C C E C D

D D D D C

E E C E E

7. Generalizing to allow for Inter-dependent Preferences.

A major simplification I have made in the set up thus far (Assumption 4) is that agent

i’s preferences over allocations only depend on his own seat assignment, and not on others’

assignments (what I will refer to as “individual preferences”). In this section I relax this

assumption and consider the effect of “selfish but inter-dependent preferences :” i first cares

about his own assignment lexicographically, but he can have any preferences over alloca-

tions where his assignment is the same. This is a very general class of preferences which

includes caring about the well being of one’s allies, having enemies who one derives utility

from misfortune, caring about one’s coalition, caring about one’s coalition in an ordered way

(caring about the well-being of agent j the most, followed by k,...), and even very idiosyn-

cratic preferences like, as long as I get A, I want j to get C and k to get D; but if I get B, I

want j to get E and k to get F .10

Rather strikingly, I find that introducing selfish but inter-dependent preferences can only

lead to weakly more majority instability. This is established by the following two Lemmas.

Lemma 5. If an allocation is not majority stable with individual preferences, there exist no

selfish but inter-dependent preferences that make it majority stable.

Proof : This is follows from definition of majority stability since an allocation is not

majority stable if there exists a majority that strictly prefers an alternative allocation

(based on their own selfish preferences over their own allocations). You cannot have

selfish but inter-dependent preferences which change this group’s voting behavior over

these two allocations.

Lemma 6. If there are individual preferences which generate majority stable allocations,

there could be selfish but inter-dependent preferences that lead to non-existence of majority

stable allocations.

Proof : by Example 12.

10The only constraint on selfish but inter-dependent preferences is that agent i never votes against his own
interest. For example, i being altruistic—say by preferring to make i’s own assignment worse off to benefit
a friend’s assignment—violates selfish but inter-dependent preferences.
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Example 12. Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E}.

1 2 3 4 5

A A A D E

B B B A A

C C C B B

D D D C C

E E E E D

In Example 12, with individual preferences, assigning 1,2, and 3 to seats A, B, and

C in any way and matching 4-D and 5-E, form six different majority stable allocations.

However, consider if 4 allies with 1 and 5 allies with 2. Then no majority stable

allocation exists. Not giving 4 or 5 seats D and E leads to majority instability. Fur-

thermore, matching 1-A leads to overthrow by coalition of 2, 3, and 5; matching 2-A

leads to overthrow by 1, 3, and 4; and matching 3-A leads to overthrow by 1, 2, 4, and

5.

Theorem 1. The set of majority stable allocations with selfish but inter-dependent prefer-

ences is a weak subset of the set of majority stable allocations with individual preferences.

Proof : This is implied by Lemmas 5 and 6 put together.11

Notice, that Example 12 also serves as an example of how popular matching (plurality

vote) does not have such a unidirectional effect with the introduction of selfish but inter-

dependent preferences. Namely, there is no complete popular matching with individual

preferences. However, suppose 4 allies with 1. Then, (1 − A, 2 − B, 3 − C, 4 − D, 5 − E)

is popular. This is because with individual preferences, 2 and 3 would each move up 1

preference rank at the expense of 1. However, with selfish but inter-dependent preferences

and 1 having 4 as his ally, the vote for the alternative matching is tied at 2:2. This example

thus illustrates how selfish but inter-dependent preferences can only push majority stability

towards weakly more institutional instability, while it can lead to more or less institutional

stability under popular matching with plurality rule.

For selfish but inter-dependent preferences, I assumed that an agent has strict prefer-

ences over his own assignment, but across two allocations where his own assignment is the

same, he might have preferences over what others get as well. Namely, I have assumed

11Example 12 had 6 majority stable allocations under individual preferences and 0 majority stable allocations
under the selfish but inter-dependent preferences. Consider an example with three agents {1, 2, 3} assigned
to three seats {A,B,C}. 1 and 2 have preference A � B � C, and 3 has preference C � B � A. Then 1-A,
2-B, 3-C and 1-B, 2-A, 3-C are two majority stable allocations. But now suppose 3 is in a coalition with 1.
Then only 1-A, 2-B, 3-C remains as a majority stable matching.
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preferences over one’s own assignment are independent of others’ assignments. With fully

inter-dependent preferences—where your preference over your own assignment depends on

what others are assigned12—institutional stability—even majority stability—can be both

expanded or undermined.

8. Correlated Preferences in Social Choice vs. Social Allocation Choice.

Correlation across agents’ preferences has opposing effects on stability in social choice as

compared to in social allocation choice. Cycles in the preference aggregation rule—whether

it be violations of transitivity, acyclicity, or quasi-transitivity—undermine stability in social

choice (Austen-Smith and Banks, 1999). The more correlated preferences are across agents,

the less likely the preference aggregation rule has cycles. For social allocation choice however,

institutional stability is undermined by chains of envy. And the more correlated preferences

are across agents, the more likely, preferences form chains of envy leading to institutional

instability.

This point can be illustrated by two simple examples on the two extreme ends of correlation

across agents’ preferences.

Example 13. Correlation of preference across agents is 0. The social choice majority pref-

erence relation f lacks transitivity since A �f B �f C �f A. However, the underlined

allocation is majority stable (moreover, institutionally stable by pareto efficiency and popular

matching sense as well) because all agents get their first choice and there is no envy.

1 2 3

A B C

B C A

C A B

Example 14. Correlation of preference across agents is 1. The social choice majority pref-

erence relation f is stable and A is the Condorcet winner since A �f B �f C and A �f C.

However, perfectly correlated preferences render any social allocation choice institutionally

unstable under popular matching and majority stability (though any allocation is pareto ef-

ficient), allotting C to whoever is assigned A, and then moving the other two agents to 1

higher preference gives both a plurality and majority overrule.

12For example, if agent 2 is assigned C, agent 1 prefers A to B, but if agent 3 is assigned C agent 1 prefers
B to A.
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1 2 3

A A A

B B B

C C C

Thus, on the whole (recall Examples 7 and 8), increased correlation in preferences across

agents tends to undermine institutional stability in social allocation choice while bolstering

stability in social choice, as it increases the likelihood of chains of envy while decreasing the

likelihood of cycles in the social choice rule.

To further highlight the effect of correlated preferences, I show that when agents’ prefer-

ences are perfectly correlated, there exists a majority-approved sequence of reassignments

from any allocation to any other allocation, akin to McKelvey’s Chaos Theorem (McKelvey,

1976).13 Namely, this result highlights the unrestrained power of the agenda setter.

Theorem 2. When agents’ preferences are perfectly correlated, there exists a majority-

approved sequence of reassignments from any allocation to any other allocation, for N ≥ 5.

Proof : There are N seats 1,...,N to be assigned to N agents 1, ..., N . Suppose each

agent’s preference over seats is identical, say 1 � 2 � ... � N . Fixing the order of

seats14 to be 1, ..., N . An allocation hence defines a permutation of agents over this

ordered sequence of seats. For example, an allocation denoted by 5, 2, 9,... implies that

agents 5, 2, 9,... were assigned seats 1,2,3,... respectively.

In each step, a feasible movement is defined by the preferences over seats and ma-

jority rule (only movements which are approved by a majority are allowed). Because

I fixed the order of seats and all agents’ preferences are identical, by definition, the

composition of feasible movements is also feasible. This is because it only matters

which positions are moved, rather than who is in those positions. The set S of permu-

tations defined by the feasible movements is thus closed under composition and thus

a subgroup of SN (the finite symmetric group on N objects) because for any element

s ∈ S, it is has a finite order k in SN . Thus sk and sk−1, which are the identity and

inverse of s respectively, are in S because of closure under composition. I want to show

that group S is the full group SN .

An N -cycle is the movement from 1, 2, ..., N to N, 1, 2, ..., N − 1. A 1 : 2 trans-

position is the movement from 1, 2, ..., N − 1, N to 2, 1, 3, ..., N . That the set of all

13I thank Jonathan Bendor for his engaging discussion and encouragement that lead to this result.
14This is key, if you fix order of agents and try permutations of seats on this order, it does not form a
group, as movements cannot be composed. Namely, the product of two movements which are individually
majority-approved from some initial allocation, cannot necessarily be combined to a majority-approved path
(namely, the first movement leads to a new status quo, and hence the second movement might not be
majority-approved from this new status quo).
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possible permutations, SN , is generated (i.e., a successive composition of these two

operators) using these two movements, is a theorem in abstract algebra for finite sym-

metric groups, stated usually as (1, 2)(1, 2, ..., N) generate the group SN .

Figure 4. Sequence of reassignments for 1:2 transposition for N odd
(left) and N even (right).
Fixing the sequence of seats 1, ..., N , the figures show the sequences of
majority-approved allocations A0, A1, ... that lead to a 1 : 2 transpositions
for odd N (left) and even N (right). For odd N , at each step in the sequence
from A1, ..., AN , the bottom N+1

2
agents to the top, hence approved by N+1

2
agents. For even N , at each step in the sequence from A1, ..., AN

2
, the bottom

N − 2 agents are moved to the top, hence approved by N − 2 agents.

In this setting, an N -cycle is allowed by N-1:1 vote. Moreover, 1 : 2 transposition

is shown for odd N ≥ 5 and even N ≥ 6 with a sequence of majority-approved

movements, in Figure 4.15

(While N -cycles work for N ≥ 3 by majority rule, for N = 3 and N = 4, it is not

possible to get any consecutive transposition like 1 : 2 or N : 1 by majority rule).

Corollary 2.1, which is rather the corollary of the proof method, illustrates that Theorem

2 is not just a knife-edge result at the extreme case of perfectly correlated preferences, by

exploiting the slack that is available from agendas that are approved by super-majorities

15These paths can be generated more efficiently, but for simplicity of the diagrams, I have illustrated paths
with N and N

2 steps.
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under fully correlated preferences.16 More generally, as the correlation across agents’ prefer-

ences increases, there tend to be more allocations that can be spanned by majority-approved

agendas.

Figure 5. Sequence of reassignments for 1:2 transposition for N ≥ 7
odd.
Fixing the sequence of seats 1, ..., N , the figures show the sequences of
majority-approved allocations A0, A1, ... that lead to a 1 : 2 transpositions
for N ≥ 7 odd. At each step in the sequence from A1, ..., AN+1

2
, the bottom

N − 3 agents are moved to seats 2, ..., N − 2, while agent 2 remains in seat 1.

Corollary 2.1. If
⌈
N
2

⌉
+ 3 or more agents have fully correlated preferences, there exists a

majority-approved sequence of reassignments from any allocation to any other allocation, for

N ≥ 6.

Proof : With all N agents having fully correlated preferences over seats 1 � 2 � ... �
N , for N even, Figure 4 (right) gives an path of allocations that is approved in each

step by N − 2 agents. Hence, if preferences of at most N
2
− 3 agents were arbitrarily

changed, each step of this path is still approved by at least N − 2− (N
2
− 3) = N

2
+ 1,

which is a majority. Similarly, for N odd, Figure 5 gives a path of allocations that

is approved in each step by N − 3 agents when all N agents have fully correlated

preferences. Hence, if preferences of at most N+1
2
− 3 agents were arbitrarily changed,

16Lagrange’s theorem also tells us that the number of unique allocations spanned by any initial allocation
through majority-approved paths of reassignments must be a factor of N !. Note however, that an arbitrary
set of preferences and majority rule might not form a group.
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each step of this path is still approved by at least N − 3− (N+1
2
− 3) = N+1

2
, which is

a majority.

9. Conclusions.

In this paper, I have developed the new notion of institutional stability to analyze endoge-

nous coalition mobilization and the political economy of reorganization and institutional

change in self-governing bodies. I juxtapose three notions of institutional stability (pop-

ular matching, majority stability, and pareto efficiency) that correspond to three voting

rules (plurality, majority, and unanimity), characterize preference environments where insti-

tutionally stable allocations exist, and compare the robustness of mechanisms in attaining

institutionally stable allocations. Unlike pareto efficiency with unanimity rule which is easy

to achieve but too non-discriminating as any agent(s) can block extremely large coalitions

from improving at their expense; and unlike complete popular matching which fails to exist

with even little correlation across agents’ preferences; I show that majority rule—which is

particularly relevant in majoritarian institutions found in political economy such as the US

Senate—exhibits a striking robustness to correlation across agents’ preferences and is attain-

able using commonly used mechanisms such as Serial Dictatorship and Boston mechanism.

The key to this robustness lies in the packing problem which arises when using majority

rule in social allocation choice settings, necessitating chains of envy for a potential majority

overrule. See Appendix B for a discussion on the properties of mechanism and voting rules

that attain institutional stability.

My results indicate why despite certain systematic correlation in preferences, such as Sen-

ators consistently ranking that powerful prestige committees in the U.S. Senate at the top

of their preference lists (Thakur, 2018b), Indian civil servants consistently ranking underde-

veloped, distressed states at the bottom of their preference lists (Thakur, 2018b), or workers

preferring teams doing the most exciting, high-profile, and novel work within a firm (Cowgill

and Koning, 2018), these institutions might not necessarily undergo institutional reform by

changing their matching mechanisms. However, our results also highlight when to expect

institutional reform and reorganization. For example a financial crisis that renders new ju-

risdiction, power, and credit-claiming opportunities to Finance, Banking, and Commerce

committees can suddenly align committee preferences across agents. Or if a political party

wins a big landslide of multiple elections from a certain geographic region, the newly elected

representatives may all have very similar committee preferences of say prestige committees,

followed by agriculture, followed by veterans affairs,... In such cases, a sudden increase in

correlation across agents’ preferences and the resulting chains of envy, can lead to endogenous

formation of coalitions seeking to reform the institution.
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[26] Pycia, Marek, and M. Utku Ünver. “Arrovian efficiency and auditability in the allocation of discrete

resources.” Working Paper (2020).

[27] Sng, Colin TS, and David F. Manlove. “Popular matchings in the weighted capacitated house allocation

problem.” Journal of Discrete Algorithms 8.2 (2010): 102-116.

[28] Thakur, Ashutosh. “Matching in the Civil Service: A Market Design Approach to Public Administration

and Development.” Working Paper (2018)

[29] Thakur, Ashutosh. “Matching Politicians to Committees.” Working Paper (2018)



ENDOGENOUS INSTITUTIONAL STABILITY 35

Appendix A. Simulations: Majority Stability vs. Popular Matching.

A.1. Calibration to the U.S. Senate.

To situate the results of this paper within the context of a practical application, I base my

simulations on the application of assigning US Senators to legislative committees (Thakur,

2018b). Institutional stability of legislative committee assignment mechanisms is undermined

by i) increased correlation across agents’ preferences, which increases competition over seats

and leads to increased likelihood of envy, ii) increased impatience (e.g., close election or

retirement which imply a short time horizon or large discounting of utility from committee

assignments in the future), and iii) a large freshman class since freshmen have lowest priority

and no existing tenant assignment with property rights.

To make the simulations more tractable and aligned with the focus on this paper, I make

a few simplifications. First, instead of a many-to-many matching (where each committee is

assigned multiple agents and each agent is assigned multiple committees), I consider a many-

to-one matching where each committee is assigned many agents but each agent is assigned

only one committee. Second, I assume maximal impatience, so that all agents care about

the static one-shot matching. Lastly, I do not consider existing tenants, i.e., incumbents who

have existing committee assignments from previous Congress. Instead, I assume that there

is a strict order of seniority, fixed across the senators.

Table 1. Final list of vacancies by committee for simulation.
The first column is the type of committee which is commonly used classification
in the political science literature on committees. Second column has the name
of the committee, third column has the number of seats on the committee.

Committee Type Committee Name # Seats for Simulation

Prestige Appropriations 6
Prestige Budget 4
Prestige Rules 2

Constituency Agriculture 3
Constituency Small Business 4
Constituency Veterans Affairs 2
Constituency Armed 3
Constituency Energy 4

Policy Banking 3
Policy Commerce 3
Policy Environment 3
Policy Finance 4
Policy Foreign Relations 3
Policy Govt Affairs 3
Policy Judiciary 3
Policy Labor 3

TOTAL 53
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I calibrate the vacancies to the 97th Congress (1981-1983), which had the largest propor-

tion of 16/53 freshmen amongst the Republican Senators from the 83rd-113th Congresses.

The 97th Congress had 292 seats across the 16 Standing committees. First, I assumed that

Republican seats resembled the 53% of seats in each of these committees (in practice, similar

to this assumption, seats on a committee for each party resemble the party ratio in the Sen-

ate). Next, since the average number of seats held by senator was around 3, but I wanted

to simplify the matching to be many-to-one (i.e., consider each politician being assigned

to only one committee), I divided each of these seats in each committee by 3. Finally, I

rounded to get the total number of vacancies in each of the 16 standing committees. The

calibration to the 97th Congress with many-to-one matching gives 53 vacancies across 16

standing committees for the 53 Senators shown in Table 1).

Table 2. Generation of Correlated Preferences for Simulations.
Varying degrees of correlation of preferences were generated by considering 13
different preference block structures across the 16 committees. Fully random
preferences generated preferences in the correlation range of [-.0139, .0404],
then fixing block of 1 such that all agents agreed on the top choice and then
randomly generating the remaining 15 committees in the next block generated
preferences in the correlation range [.1625,.2109], etc. Thus, each row of this
table shows the block structure used to generate simulated preferences using
randomization within blocks in column 1, the minimum and maximum corre-
lation ρ this produced in my simulations in columns 2 and 3, and the number
of simulated preferences in column 4. The different preference block schemes
are grouped and numbered such that they correspond to close clusters on the
simulation figures on the horizontal axis.

Preference Generation Min Correl Max Correl # simulations

1) 16 (Fully Random) -.0147 .0247 1000
2) 1;15 .1633 .2035 1000
3) 2;14 .3189 .3510 1000
4) 3;13 .4496 .4783 1000
5) 4:12 .5578 .5787 1000

12:4 .5576 .5815 1000
6) 8;8 .7493 .7592 1000
7) 2;2;2;2;8 .8683 .8757 1000

8;2;2;2;2 .8682 .8788 1000
8) 4;4;4;4 .9402 .9440 1000
9) 2;2;2;2;2;2;2;2 .9880 .9888 1000

1;1;1;1;2;2;2;2;2;2 .9910 .9917 1000
10) 1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1: (Identical Pref ) 1 1 1

As described in Table 2, I generate many different sets of preferences with varying de-

grees of correlation across the 16 committees. As Thakur (2018b) finds, block structured

preferences are a good approximation to senators’ preferences in practice given the different
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types of legislative committees: “i) powerful Policy and Prestige committees like Finance

and Appropriations have large common values and relatively small idiosyncratic differences,

2) Constituency committees such as Small Business and Armed Services depend on partic-

ulars of the politician’s constituency characteristics and hence have lower common value,

and 3) Policy committees such as Environment and Labor have relatively large idiosyncratic

values, depending on the politician’s own views and beliefs and that of his/her constituency,

which dominate the common value component” while it is agreed upon that Administrative

committees like Post Office are of little value to any politician.

In these simulations, I will also compare the Republican mechanism of Serial Dictatorship

in order of seniority with the Democrat mechanism of Boston mechanism (assuming truthful

preferences and tie-breaking based on seniority).

A.2. Fragility of Popular Matching existence.

We observe that common mechanisms such as Serial Dictatorship in order of seniority and

Boston mechanism (with assumption of truthful revelation) generally fail to guarantee a

complete popular matching (see Figure 8).

To better understand why, I consider the necessary but not sufficient condition existence

of a complete popular matching, that the f- and s-posts span the 16 committees (Figure

6). The figure illustrates that even with a slight correlation (e.g., ρ ≈ 0.2), the necessary

condition begins to be violated. As preferences become increasingly correlated, fewer and

fewer of the 16 committees constitute f- and s-posts. Of course, when preferences are perfectly

correlated with ρ = 1 and everyone shares the same preference, only the first and second

choice committees are f- and s-posts.

Finally, I find that popular matchings can exist for some preference environments with

intermediate correlation with 2 blocks, however, for preference environments with low corre-

lation (e.g., fully random preferences), popular matching existence is rare and for preference

environments with higher levels of correlation (e.g., 3 or more blocks), popular matchings

do not exist (see Figure 7).

A.3. Existence of Majority Stability.

The matchings produced by Serial Dictatorship and Boston mechanisms are majority stable

for environments with low and intermediate correlations across preferences, however, for

highly correlated preferences, the matchings are not majority stable (Figures 9 left and 10

left).

The relationship between correlation across agents’ preferences and the maximal sized

coalition trying to overturn the matching is positive on the whole but not point-by-point

(Figures 9 right and 10 right).
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A.4. Majority stability under Boston Mechanism vs. Serial Dictatorship.

We observe that for most preference environments, the maximal sized coalition that can be

made better off is weakly larger under Serial Dictatorship than under the Boston mechanism

(see Figure 11 left).

Moreover, we find that the Boston mechanism under truthful revelation is more robust

for majority stability existence (see Figure 11 right). Out of 12,001 simulated preference en-

vironments with varying levels of correlation, there were i) 5154 instances where both were

majority stable, ii) 4673 instances where both were not majority stable, iii) 2169 instances

where Boston mechanism is majority stable but Serial Dictatorship is not, and iv) only 5

instances where Serial Dictatorship was majority stable but Boston mechanism was not. The

differential robustness with regards to majority stability between the two mechanisms high-

lights the Boston mechanism’s envy-minimizing advantage coming from its favoring higher

ranks property.

A.5. Summary of Simulations Takeaways.

Thus, the key takeaways from the simulation are that i) popular matchings fail to exist

with even small correlation across preferences, ii) Serial Dictatorship and Boston mechanism

very rarely produce popular matchings, ii) Majority stable matchings often exist even with a

significant amount of correlation across agents’ preferences, iii) as preferences become more

and more correlated across agents, f- and s-posts don’t span the set of seats and fewer agents

can be assigned their f- and s-posts (i.e., smaller the size of the maximal popular matching),

iv) as preferences become more and more correlated across agents, maximal coalition size

wanting to overturn is larger, and v) Boston mechanism with truthful revelation is more

robust to majority stability than Serial Dictatorship.
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Figure 6. Necessary but not sufficient condition for complete Pop-
ular Matching across different correlations in preferences.
For each simulated set of preferences with a given correlation on the horizontal
axis, we plot on the vertical axis the number of committees (out of 16 total)
which are f- and s-posts. For there to exist a popular matching, it is necessary
but not sufficient that all 16 committees be spanned by the f- and s-posts.

Figure 7. Existence of Popular Matching.
Left : Existence of popular matchings across various preference environments
with varying levels of correlation across agents’ preferences. Right : Maximal
number of candidates (out of 53) able to be assigned to their f- and s-posts.



40 ASHUTOSH THAKUR

Figure 8. Existence of Popular Matching under Serial Dictatorship
and Boston Mechanism.
Under Serial Dictatorship (Left) and Boston mechanism assuming truthful
revelation and tie-breaking in order of seniority (Right), these figures plot
whether the matching is popular or not. Observe that the matchings produced
by these mechanisms are rarely (in fact never in these simulations!) complete
popular matchings.
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Figure 9. Majority Stability Under Serial Dictatorship.
Simulating the Serial Dictatorship in order of seniority across various prefer-
ence environments with varying levels of correlation across agents’ preferences,
Left shows the fraction of times a majority overturns the matching produced
by the Serial Dictatorship, while Right shows the maximal sized coalition that
can improve from each Serial Dictatorship matching.

Figure 10. Majority Stability Under Boston Mechanism.
Simulating the Boston mechanism (assuming truthful preference revelation
and tie-breaks in order of seniority) across various preference environments
with varying levels of correlation across agents’ preferences, Left shows the
fraction of times a majority overturns the matching produced by the Boston
mechanism, while Right shows the maximal sized coalition that can improve
from each Boston mechanism matching.
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Figure 11. Comparing Majority Stability Under Serial Dictatorship
v.s. Boston Mechanism.
Simulating Serial Dictatorship in order of seniority and Boston mechanism
(assuming truthful preference revelation and tie-breaks in order of seniority)
across varying levels of correlation across agents’ preferences, these figures
compare the performance of both mechanisms with regards to majority stabil-
ity. Left : shows the difference between the sizes of the maximal sized coalitions
which can be strictly improved under an alternative matching, across Serial
Dictatorship and Boston mechanism. Right : shows that when matchings are
majority stable for both mechanisms (blue), under neither mechanism (red),
under the Boston mechanism but not Serial Dictatorship (orange), and under
Serial Dictatorship but not Boston mechanism (purple).
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Appendix B. A Discussion on Properties of Voting Rules & Mechanisms

Yielding Institutional Stability.

In this appendix I first analyze the properties of some mechanisms that can yield major-

ity stability and then analyze what is the structure on voting rules that maintain certain

normatively appealing properties of collective choice in social allocation choice problems.

First, I show that if a preference environment admits majority stable allocations, there

exists a strategyproof mechanism that delivers some majority stable allocation. Here I build

on Lemma 4:

Corollary 4.1. If there exists a majority stable allocation, there exists a Serial Dictatorship

order which achieves a majority stable allocation.

Proof : Serial Dictatorship spans all pareto efficient allocations. Hence it can also

implement a pareto efficient allocation that is also majority stable (from Lemma 4).

Corollary 4.2. If there exists a majority stable allocation, there always exists a strategyproof

mechanism to attain it.

Proof : Serial Dictatorship in given order is strategyproof.17

Corollary 4.4. If there exists a majority stable allocation, a seniority order of Serial Dic-

tatorship which attains a majority stable allocation has all those getting their first preference

seat being senior to those getting their second preference seat, ... (with any seniority order

amongst agents being assigned seats of equal preference ranks.).

Proof : if not, there exists a pareto improving cycle and this contradicts the pareto

efficient majority stable allocation.

Next, in the spirit of Arrow’s Impossibility Theorem from social choice problems, I dis-

cipline the collective choice of the social allocation choice problems to adhere to certain

properties. It is important to realize that results from social choice often cannot be im-

ported directly to social allocation choice because under Assumption 4, arbitrary individual

preferences over matchings are not feasible.

Theorem 3. Any preference aggregation rule f that is acyclic and weakly Paretian is colle-

gial.18

17Serial Dictatorship is also group-strategyproof. It is important to distinguish between institutional stability
which is a property of an allocation in a given preference environment and group-strategyproofness which is
a property of the mechanism across all preference environments.
18I follow Austen-Smith and Banks (1999) definitions: (1) A preference aggregation rule f is weakly Paretian
if, for every profile and for any matchings M1 and M2, and all i ∈ I, x �i y implies x �f y. (2) A binary
relation � is acyclic on the set of all matchings M if for all {M1,M2, ...,Mm} ∈M , M1 �M2, M2 �M3,...,
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Proof 19: Since f is weakly Paretian, there exists a decisive set and hence L(f) 6= ∅.
Now suppose by contradiction that f is non-collegial. Then for any i ∈ I, there exists

some L ∈ L(f) such that i /∈ L. Since L(f) is monotonic (Lemma 2.2 from Austen-

Smith and Banks (1999)), for every i ∈ I, I\{i} ∈ L(f). Now consider the preference

profile where all N agents have the same rank order preference over seats: A > B > ....

Take the set of matchings where i gets his top choice. The size of this set is (N − 1)!

since, in this set of matchings, the remaining N − 1 agents can be allotted the N − 1

remaining seats. For each such permutation, consider all the matchings which are

translations over agents of these permutations (e.g., for N = 3, a given permutation

1-A,2-B,3-C leads to a set of translation matchings: M1 = (1 − A, 2 − B, 3 − C),

M2 = (2 − A, 3 − B, 1 − C), and M3 = (3 − A, 1 − B, 2 − C)). Each i has a strict

preference over each of these translation matchings. Label these matchings as Mi where

i gets everyone’s top choice seat, A. Now, order each i’s individual preference: i prefers

matching where he gets A, over that where he gets B, etc. We now see that for all

j = 2, ...., N , all agents except j prefer Mj−1 to Mj, but since I{j} ∈ L(f), Mj−1 �Mj.

Also, all agents except 1 prefer MN to M1, hence MN �M1. Therefore we have a cycle

on {M1, ...,MN}: MN �M1 �M2 � ... �MN , which contradicts acyclicity.

Mm−1 � Mm implies M1 � Mm. (3) A set is decisive for M1 against M2 if for every preference profile,
M1 �i M2 for all i ∈ I implies M1 � M2. (4) For any preference aggregation rule f , let L(f) denote the
set of decisive coalitions associate with f . (5) A preference aggregation rule f is collegial if and only if
K(L(f)) = ∩L∈L(f)L is non-empty. The set K(L(f)) is called the collegium.
19This proof closely follows Theorem 2.4 from Austen-Smith and Banks (1999), but does not follow imme-
diately since social allocation choice problems with Assumption 4 restrict the domain of preferences.
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Appendix C. Set inclusions of matchings across Institutional Stability notions.

This appendix provides some examples and proofs of the set inclusion from Figure 1

replicated below:

• Remark. All popular matchings are pareto efficient.

Proof : if allocation M is not pareto efficient, then there exists an alternative

allocation M ′ s.t. |M ′ �i M | > 0 and |M �i M
′| = 0. Thus, |M ′ �i M | >

|M �i M
′| = 0, thus M is not a popular matching.

• Remark. All popular matchings are majority stable.

Proof : if allocation M is not majority stable, then there exists an alternative

allocation M ′ s.t. |M ′ �i M | ≥ N+1
2

. Thus, |M ′ �i M | < N+1
2

. Hence

|M ′ �i M | > |M �i M
′| = 0, thus M is not a popular matching.

• Remark. There can exist a pareto efficient matching that is not popular and not

majority stable.

Proof : Consider agents {1, 2, 3} ranking seats {A,B,C}. Consider 1-A, 2-B,

3-C.

1 2 3
A A B
B B A
C C C

Since Serial Dictatorship with seniority 1 > 2 > 3 implements it, it is pareto

efficient. However, 1-C, 2-A, 3-B is strictly preferred by 3 and 2, hence it is not

popular or majority stable.

• Remark. There can exist a pareto efficient matching that is majority stable, but not

popular.

Proof : Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E}. Consider

1-A, 2-B, 3-C, 4-D, 5-E.
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1 2 3 4 5
A A A A A
B B B B B
C C C D E
D D D C D
E E E E C

Since Serial Dictatorship with seniority 1 > 2 > 3 > 4 > 5 implements it, it

is pareto efficient. Since envy is only over seats A and B, it is majority stable

due to the packing problem. Since there are 3 blocks, there is no complete

popular matching.

• Remark. There can exist a majority stable matching that is not pareto efficient nor

popular.

Proof : Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E}. Consider

1-B, 2-A, 3-C, 4-D, 5-E.

1 2 3 4 5
A B C D E
B A A A A
C C B B B
D D D C C
E E E E D

The only envy is between agents 1 and 2 being envious of each others’ assign-

ments so it is majority stable, but fails pareto efficiency and popular matching

due to 1 and 2 strictly preferring 1-A, 2-B, 3-C, 4-D, 5-E.

• Remark. There can exist a matching that is majority stable, popular and pareto

efficient.

Proof : Consider agents {1, 2, 3, 4, 5} ranking seats {A,B,C,D,E} given se-

niority 1 � 2 � 3 � 4 � 5. Consider 1-A, 2-B, 3-C, 4-D, 5-E.

1 2 3 4 5
A B C D E
B A A A A
C C B B B
D D D C C
E E E E D


