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Abstract

This paper analyzes firm-level employment along the extensive margin (the
number of establishments in a firm) and the intensive margin (the number
of workers per establishment in a firm). Utilizing administrative datasets, we
document that the firm-size distribution, and both extensive and intensive mar-
gins, exhibit fat tails; and the growth in average firm size between 1990-2014
was primarily driven by an expansion along the extensive margin, particularly
in very large firms. We develop a tractable general equilibrium growth model
with external innovation that leads to extensive-margin firm growth, and in-
ternal innovation that leads to intensive-margin growth. The model generates
fat-tailed distributions of firm size, establishment size, and the number of es-
tablishments per firm. We estimate the model to uncover the fundamental
forces that caused the distributional changes from 1995-2014 and highlight the
importance of declining external innovation costs, establishment exit rates, and
aggregate productivity growth rate.

Keywords: firm growth, firm-size distribution, establishment, innovation
JEL Classifications: E24, J21, L11, O31

*First version: February 2017. We are grateful to Ufuk Akcigit, Sina Ates, Andy Atkeson, Robert
Axtell, Nick Bloom, Stephane Bonhomme, John Earle, Jeremy Greenwood, Hubert Janicki, Sam Ko-
rtum, Makoto Nirei, David Ratner, Margit Reischer, Immo Schott, John Shea, and Mike Siemer for
helpful comments and suggestions. We also thank seminar participants at Alberta, ASU, Bank of
Portugal, FRB Atlanta, George Mason, Hitotsubashi, IMF, Loughborough, NC State, Pontificia
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1 Introduction

Understanding the process of firm growth is essential in the analysis of macroeconomic

performance. Firms that innovate and expand are the driving force of output and

productivity growth. Recent studies of macroeconomic productivity emphasize the

role of innovation and reallocation at the firm level, from both the theoretical and

empirical standpoint.

In this paper, we focus on a particular aspect of firm growth: growth through

adding new establishments. A firm can increase its size along two margins; it can add

more workers to its existing establishments or it can build new establishments. We

call the former the intensive margin of firm growth and the latter the extensive margin

of firm growth. This distinction is important because these margins typically imply

different reasons for expansion. A new manufacturing plant is often built to produce

a new product. In the service sector, building a new store or a new restaurant implies

venturing into a new geographical market. Creating a new establishment is also

different in that it typically requires a significant amount of investment in equipment

and structures. In the following, we characterize the firm size distribution through

these extensive and intensive margins, both empirically and theoretically.

Empirically, we find that the two margins (the extensive margin and the intensive

margin) of the firm-size distribution, in addition to the entire firm size, exhibit Pareto

tails in the U.S. economy. Along the time series, we find that the average firm size

has grown in recent years, as is consistent with the findings of recent studies.1 These

studies suggest that this increase in size has had important implications on other

changes in macroeconomic variables. We find that this expansion is driven by the

extensive margin growth: firms are growing by adding new establishments.

To investigate what changes in the economic environment have contributed to

this phenomenon, we build a macroeconomic model of endogenous firm growth. Our

model extends previous work by Klette and Kortum (2004) and Luttmer (2011). In

these papers, each individual firm grows by adding production units (“product lines”

1Autor et al. (2020) document a series of empirical patterns on the emergence of superstar firms,
while De Loecker et al. (2020) document increasing market power (measured as markups) of large
publicly-listed firms, and Gutiérrez and Philippon (2017) note the recent increase in concentration
in the US corporate sector.
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in Klette and Kortum (2004) and “blueprints” in Luttmer (2011)). In our model, we

call this margin of firm growth external innovation. These production units can be

naturally interpreted as establishments. The major departure of our model, compared

to these two papers, is the recognition that each establishment can grow in size. We

introduce this technological improvement at the establishment level, which we call

internal innovation, and explicitly compare our model outcomes with the data on

establishments. We find that the model can replicate the three Pareto tails (the firm

size distribution, the extensive margin, and the intensive margin), and we are able to

characterize the thickness of the tails both analytically and quantitatively.

Utilizing our model, we investigate the cause of the U.S. firm-size distribution

over the recent years. We estimate model parameters to match U.S. firm-size dis-

tributions in 1995 and 2014. The difference in estimated parameter values uncovers

the fundamental forces that have caused the changes in the firm size distribution and

its components over this time period. We find that the largest contributors to the

increase in the number of establishments per firm are the decline in innovation cost

for adding new products (establishments), the decline in the establishment exit rates,

and the slowdown of the aggregate productivity growth.

In the recent theoretical literature, our work shares the most similarities with Ak-

cigit and Kerr (2018). The two papers differ in how the model is mapped to the data

(we focus on establishment-level employment whereas Akcigit and Kerr (2018) look

at patent data). More importantly, Akcigit and Kerr’s (2018) model does not allow

for Pareto tails, which is an important feature in our data. On this point, our paper is

also related to the theoretical literature studying the firm-size distribution and its fat

right tail. Luttmer (2011) and Acemoglu and Cao (2015) build endogenous growth

models with fat-tailed distributions arising from only extensive- or intensive-margin

growth. Our model features heterogeneity in two dimensions: the extensive margin

and the intensive margin. Moreover, we analytically characterize the Pareto tail of

firm size distribution in the presence of the (endogenous) two-dimensional heterogene-

ity, despite the challenge that these two dimensions are potentially correlated.2 This

2The characterization is technically challenging and we are able to obtain analytical results on
the Pareto-tail index of the distribution by employing recent advances in the literature on regular
variations and their applications (see, for example, Bingham et al. (1987), Mimica (2016), and Gabaix
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novel characterizations can open up various applications beyond the firm-dynamics

literature.3

Our paper is also related to the emerging (and concurrent) literature on differ-

entiating firms and establishments (or plants) in which firms are collections of es-

tablishments, along with Aghion et al. (2019) and Hsieh and Rossi-Hansberg (2019),

as well as Fattal Jaef (2018), Atalay et al. (2019), Gumpert et al. (2019), Kehrig

and Vincent (2019), Oberfield et al. (2020), and Moreira et al. (2021). While com-

monly emphasizing the distinction between firms and establishments, these papers

focus on different substantive issues from ours (such as labor share, firm organiza-

tion, and misallocation) and thus do not put emphasis on the quantitative features of

the extensive-margin distribution as in our paper. For example, Kehrig and Vincent

(2019) and Gumpert et al. (2019) only allow for up to two establishments per firm.

Our paper is unique in that we empirically document the fat (Pareto) tail of the es-

tablishment number distribution and our model allows us to match this distribution

almost exactly including its Pareto tail.

The paper is organized as follows. Section 2 describes the empirical patterns

of firm growth in our dataset. Section 3 sets up the model. Section 4 provides a

characterization of the model’s stationary firm-size distributions, including extensive-

and intensive-margin distributions. Section 5 estimates model parameters and uses

the model to perform a quantitative decomposition of 1995-2014 U.S. firm growth.

Section 6 concludes.

2 Empirical facts

In this section, we first describe our data and empirical framework to decompose firm

size into intensive and extensive margins. We then use the decomposition to docu-

et al. (2016)). Perhaps due to this challenge, firm size distributions have not been characterized
analytically in the literature using models with both dimensions of heterogeneity such as Akcigit
and Kerr (2018). One exception is Peters (2019), however his model’s firm size distribution in sales
is exactly the same as the distribution of establishment numbers due to log utility.

3Pareto tails are also important in the empirical and theoretical analyses of income and wealth
inequality as surveyed in Atkinson et al. (2011) and more recently, Gabaix et al. (2016), Cao and
Luo (2017), and Jones and Kim (2018).
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ment cross-section and time series facts. Additional empirical results are provided in

Appendix B.

2.1 Data

This paper utilizes two restricted access datasets, the Quarterly Census of Em-

ployment and Wages (QCEW) and the Longitudinal Employer-Household Dynamics

(LEHD), that use common source data that contains a near census of establishments

in the U.S. The source data are collected for the QCEW by U.S. states in partner-

ship with the Bureau of Labor Statistics (BLS) for the official administration of state

unemployment insurance programs. States also provide establishment-level QCEW

microdata to the U.S. Census Bureau’s LEHD program as part of the Local Employ-

ment Dynamics federal-state partnership.4 Appendix A details further information

of the datasets.

We use the employer identification number (EIN) as the definition of the firm.

Song et al. (2018) discuss issues surrounding the use of EIN at length in their study of

inequality. One potential concern with using EINs as a firm identifier is the possibility

that firms could switch EINs for either accounting reasons or merger activity. Where

available, we augment the EIN with auxiliary information provided by the BLS and

Census Bureau that control for inconsistencies over time. Changing identifiers does

not affect our measurement of distributions, however, as cross sectional statistics do

not require repeated use of any EIN over time.

2.2 Conceptual framework for the firm-size decomposition

We define firm size as the total number of workers employed by a firm. In what

follows, we decompose average firm size into the extensive margin and the intensive

margin. The extensive margin is the total number of establishments owned by a firm,

and the intensive margin is the average size of establishments owned by a firm (e.g.,

the number of workers per establishment in a firm).

4Data from the BLS contains information on 38 states, and data from the U.S. Census Bureau
contains information on 28 states. For each figure and table, we explicitly indicate the data source
that is used.
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For the sake of exposition, suppose Ft firms exist at time t, indexed by j. Let

Njt be the total number of workers employed by firm j and let Ejt be the total

number of establishments owned and operated by firm j at time t. We define average

establishment size within firm j as Njt/Ejt so that we decompose size at the firm-level

as

Njt =

(
Njt

Ejt

)
× Ejt.

Accordingly, our measures of average firm size, the average intensive margin and the

average extensive margin are(
1

Ft

Ft∑
j=1

Njt,
1

Ft

Ft∑
j=1

Njt

Ejt
,

1

Ft

Ft∑
j=1

Ejt

)
,

respectively.

Publicly-available datasets such as Business Dynamics Statistics of the U.S. Cen-

sus Bureau contain the size distributions of establishments and firms separately. Com-

pared to studies that utilize these publicly-available datasets, our study has several

advantages. First, the use of microdata enables us to characterize the entire size

distribution of firms, particularly at the right tail. Second, one cannot decompose

firm growth into intensive and extensive margins without the information contained

in the microdata that we utilize.

2.3 Cross-sectional properties

We first describe the cross-sectional distributions of firm size, the intensive margin,

and the extensive margin. For this analysis, we use LEHD microdata and focus on

2005.

Figure 1 plots the complementary cumulative distribution function in log-log scale,

a type of figure commonly used in the literature (Axtell, 2001; Gabaix, 2009) to

demonstrate whether the data are consistent with Pareto’s Law.5 All three series

5There are, by construction, very few firms at the upper tail of the firm rank distributions we
consider. To limit the disclosure risk associated with the release of these data, we rely on polynomial
approximation of the underlying distributions to construct Figure 1, see Online Appendix C for
details. For the set of polynomial estimates, see Online Appendix Table A.2.
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Figure 1: Size-rank relationships, ranked separately by size measure
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Notes: Author’s calculations of LEHD microdata. Percentile ranks for the y-axis can be recov-
ered by multiplying the size rank by 100, and note that the lowest ranked firm is assigned the
value 100 = 1. To limit the disclosure risk, each series shows the predicted value of employment
from a regression of the log size measure on a fifth order polynomial of the log percentile rank
of the size measure in March of 2005, rounded to the nearest integer. See Appendix C.2 for
additional details.

have a right tail that can be approximated by a straight line. This fact implies all

three distributions have Pareto tails.6 To our knowledge, out paper is the first in

the literature to document that both the extensive margin and intensive margin have

Pareto tails.

6While Kondo et al. (2019) show that a log normal distribution can obtain a good fit in the
upper tail of the distribution over total number of workers within a firm, their results do not reject
the fit of a Pareto in the far upper tail. In fact, they find that distributions that feature asymptotic
Pareto tails (e.g., convolutions of Pareto and log-normal distributions) best fit the entire firm size
distribution, and such distributions arise endogenously in our model. In addition, Kondo et al.
(2019) do not look at the intensive and extensive margin distributions that we consider here.
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2.4 Time-series properties

Now we turn to the time-series changes in these distributions. We find notable changes

in these distributions over our sample period. As depicted in Figure 2(a), average

firm size increased from about 23 employees to over 25 employees since 1990. This

fact is consistent with the rise in concentration in the U.S. economy documented by

Autor et al. (2020).7

Figures 2(b) and 2(c) present the novel facts that we focus on in this paper.

Figure 2(b) plots the average of the intensive margin and shows the intensive margin

remained stationary (or somewhat declining) despite the increase in firm size over

our sample period.8 Therefore, our decomposition of firm size implies the average

extensive margin must exhibit a strong upward trend, as is confirmed in Figure 2(c).

The extensive margin grew from 1.2 in 1990 to over 1.5 in 2014. Accordingly, average

firm size over 1990-2014 can be accounted for by the extensive-margin growth in the

number of establishments.9

This contrasting behavior between the intensive and extensive margins implies

different forces are at work for these different components of firm growth.10 To inves-

7Choi and Spletzer (2012) and Hathaway and Litan (2014) also document trends in firm size
and establishment size using publicly available data, but do not analyze the intensive and extensive
margins which require restricted access microdata to construct. In particular, average establishment
size,

∑Ft
j=1

Njt
Ejt
· Ejt/

∑Ft
j=1Ejt, can be calculated as the raio of total employment to the total

number of establishments using publicly available data. In contrast, the average intensive margin
across firms, 1

Ft

∑Ft
j=1

Njt
Ejt

, requires restricted access microdata to calculate each firm’s number of

workers per establishment.
8Recent papers by Rinz (2018), Rossi-Hansberg et al. (2021), and Hershbein et al. (2019) doc-

ument the diverging trends in national concentration and local concentration, which is analogous
to the diverging trends in the average firm size and the intensive margin. Note, once again, that
the average intensive margin is conceptually different from the average establishment size in the
economy. One can compute the average establishment size from publicly-available data, but one
needs to access the micro-level data to compute the average intensive margin.

9We have cross-checked the trends in the firm size and the number of establishments per firm in
an alternative administrative (and publicly-available) dataset, Business Dynamics Statistics (BDS)
at the Census Bureau. The underlying data for BDS comes from different sources from QCEW. We
find that similar trends exist in BDS, but the magnitudes of the changes are smaller than in QCEW.
Investigating the source of the quantitative discrepancy is an important future research topic.

10A recent paper by Argente et al. (2019) document that the sales of the individual products de-
cline over time, and emphasize the introduction of new products as a source of the firm sales growth.
The expansion of firms by adding establishments are also analyzed in the industrial organization
literature, such as Holmes (2011), and international trade literature, such as Garetto et al. (2019).
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Figure 2: Time-series changes in average firm size, intensive and extensive margins
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(b) Average intensive margin
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(c) Average extensive margin
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Source: Author’s calculations of Quarterly Census of Employment and Wages microdata.

tigate what drives the increase in firm size, in particular along the extensive margin,

we consider disaggregations by sector and size bins in Appendix B. Overall, the pre-

ceding empirical documentation of firm growth shows the growth in average firm size

between 1990 and 2014 is the result of high growth in creating new establishments,

particularly by very large firms and firms in the service sector. Appendix B contains
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the estimation of the Pareto tail index. At the right tail, we observe increasing con-

centration in the firm-size distribution and the extensive-margin distribution between

1995 and 2014.11

3 Model

Motivated by the facts in the previous section, we construct a model of firm growth

that matches the empirical patterns in Figure 1. In Section 5, we use this model to

quantitatively analyze the fundamental causes of the growth in firm size along the

extensive margin and the increasing concentration of the firm-size distribution.

3.1 Model setting

Time is continuous. The representative consumer provides labor and consumes a final

good. The final good is produced by combining differentiated intermediate goods.

3.2 Representative consumer

The utility function of the representative households is

U =

∫ ∞
0

e−ρ̃tL(t)u(C(t)/L(t))dt,

where u(C(t)/L(t)) = (C(t)/L(t))1−σ/(1− σ) for σ > 0 and σ 6= 1 or u(C(t)/L(t)) =

log(C(t)/L(t)), corresponding to σ = 1. The consumer consumes, owns firms, and

supplies labor inelastically. The labor supply is given exogenously and grows at the

rate γ ≥ 0. Denoting the real interest rate as r, the consumer’s Euler equation is

Ċ(t)

C(t)
=
r − ρ
σ

, (1)

11The comparison in Table A.1, as well as the model estimation in Section 5, is between 1995
and 2014, instead of between 1990 and 2014, is due to the availability of the LEHD data.
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where ρ ≡ ρ̃− γ. Final-good output Y (t) is used for consumption, firm investments

in innovative activities R(t), and firm fixed entry costs E(t), such that Y (t) = C(t) +

R(t) + E(t).

3.3 Final-good producers

The final-good sector is perfectly competitive. The final good is produced from dif-

ferentiated intermediate goods. Intermediate goods have different qualities, and a

high-quality intermediate good contributes more to the final-good production. The

production function for the final good is

Y (t) =

(∫
N (t)

qi(t)
βxi(t)

1−βdi

) 1
1−β

, (2)

where xi(t) is the quantity of intermediate good i, and qi(t) is its quality. N (t) is the

set of actively-produced intermediate goods and N(t) = |N (t)| denotes the number

of actively-produced intermediate goods. We assume β ∈ (0, 1) so that the elasticity

of substitution between differentiated goods (1/β) is greater than one.

With the maximization problem

max
xi(t)

(∫
N (t)

qi(t)
βxi(t)

1−βdi

) 1
1−β

−
∫
N (t)

pi(t)xi(t)di,

the inverse demand function for the intermediate good i is

pi(t) = Y (t)β
(
qi(t)

xi(t)

)β
. (3)

3.4 Intermediate-good producers

Production: The intermediate-good sector is monopolistically competitive. Each

intermediate good is produced by one firm. A firm can potentially produce many

intermediate goods. Below, especially when we compare the model to the data, we

interpret one good as one establishment. In the existing literature, Luttmer (2011)

and Acemoglu and Cao (2015) explicitly discuss this interpretation. This interpreta-
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tion is particularly relevant for service sector firms, as a service establishment (such as

a retail store) in one location and another establishment in another location provide

different products (services) from the perspective of an Arrow-Debreu commodity

space.12

A firm can add a new intermediate good (establishment) to its portfolio by invest-

ing in R&D that generates an external innovation. It can also increase the quality

of the intermediate goods that it already produces by investing in R&D that gener-

ates an internal innovation. A new firm can enter the market by innovating its first

product.13

We assume the intermediate goods are produced only by labor. This production

process is the only place in the entire economy that uses labor as an input, thus

allowing us to map the employment dynamics of the intermediate-good sector to our

data analysis in Section 2.14 The production function for intermediate good i is

xi(t) = A(t)`i(t), (4)

where A(t) is exogenous labor productivity that grows at rate θ.

Given the final-good producer’s demand for its output (3), the intermediate goods

producer’s profit maximization results in standard optimal pricing with a markup over

marginal cost:

pi(t) =
1

1− β
w(t)

A(t)
.

The optimal price, together with (3) and (4), implies that labor demand conditional

12In manufacturing, it is still an open question how products and establishments corresponds
with each other. Bernard et al. (2010) find that 85% of product switching occurs within a plant,
but this evidence does not necessarily contradict with our assumption as they consider a relatively
narrow product category (SIC 5 digits). Also note that the existence of product switching itself
does not affect our estimation directly, as long as the number of products within a plant is stable,
because our estimation relies on the cross-sectional information.

13We refer to the two margins of firm growth as types of innovations, however this language is
borrowed from the endogenous growth literature and is not necessary in our model environment.
As we show below, the firm faces a convex adjustment cost of “innovation” along either margin
of growth, which is isomorphic to a standard model of investment. We will discipline these model
parameters using employment data instead of data on R&D (see section 5).

14A similar idea of mapping the employment process to the productivity process is employed by
Hopenhayn and Rogerson (1993), Garca-Macia et al. (2019), and Mukoyama and Osotimehin (2019).
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on aggregate variables is proportional to qi(t)

`i(t) =
(1− β)

1
β w̄(t)−

1
β

A(t)Y (t)
β

1−β
qi(t), (5)

and is decreasing in the normalized wage defined by w̄(t) ≡ w(t)/(A(t)Y (t)
β

1−β ).

Because firms (and establishments) differ only in their level of quality qi(t), em-

ployment per establishment varies proportionally to qi(t) in the cross section. Simi-

larly, profit is also proportional to qi(t):

πi(t) =
(
β(1− β)

1−β
β w̄(t)

β−1
β

)
︸ ︷︷ ︸

≡π̄(t)

qi(t). (6)

Innovation: Innovations are carried out through R&D activity. Final goods are

used as an input for R&D. For an existing intermediate-good firm, two kinds of

innovations are possible: internal innovation and external innovation. We first note

that the assumptions we make on innovations imply that all goods (establishments)

within a firm has the same quality q. Therefore we will index the quality of each good

with the firm index j.

Internal innovation raises the quality of the goods that a firm already produces.

The firm-level total intensity of internal innovation is denoted by ZI,j(t) for firm

j. The innovation intensity per good is zI,j(t) ≡ ZI,j(t)/nj(t), where nj(t) is the

(discrete) number of goods firm j produces. We assume that the quality of each good

in firm j improves according to the law of motion:

dqj(t)

dt
= zI,j(t)qj(t). (7)

An implicit assumption here is that the total intensity ZI,j(t) contributes equally to

the improvement of each good (and thus we divide by nj in constructing the intensity

for each good zI,j(t)). As a consequence, the growth rate of the quality of each good

is equal within a firm.

We assume different firms can have different costs for innovation. In particular, we
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partition firms into different (finite) types, and assume different types have different

costs for innovation. We will detail later how types evolve over time. We denote the

number of types by T and index the types by τ . The R&D cost for internal innovation

is assumed to be Rτ
I (ZI,j(t), nj(t), qj(t)). As in Klette and Kortum (2004), we assume

the R&D cost function Rτ
I (ZI,j(t), nj(t), qj(t)) exhibits constant returns to scale with

respect to ZI,j(t) and nj(t). Then, the R&D cost per good can be denoted as

Rτ
I (zI,j(t), qj(t)) ≡ Rτ

I (zI,j(t), 1, qj(t)) =
Rτ
I (ZI,j(t), nj(t), qj(t))

nj(t)
.

We further assume that,

Rτ
I (zI,j(t), qj(t)) = hτI (zI,j(t))qj(t)

for a strictly convex function hτI (·). Assuming that RI is proportional to q is essential

in allowing the model to generate constant (although type-dependence) growth rate

in the intensive margin and, hence, an establishment size distribution with Pareto

tail, which is consistent with our data.

External innovation adds brand-new intermediate goods to the production portfo-

lio of the firm. We assume the new good has the same quality as the average quality

of the goods produced by that firm. As we noted above, assumption (7) implies that

the growth rate of the quality is common within a firm. Given that any firm starts

from one good, combined with the assumption on new goods here, the consequence

of (7) is that at each point in time, all products that firm j produces always have the

same quality. This property justifies our use of the firm index j on the quality of each

good. The total intensity of external innovation is denoted by ZX,j(t). The innova-

tion intensity per good (establishment) is zX,j(t) ≡ ZX,j(t)/nj(t). The Superposition

Theorem of a Poisson process (Grimmett and Stirzaker (2001), p.283) implies that

considering (i) the arrival rate of new goods to firm j with intensity ZX,j(t) and (ii)

the sum of the (independent) arrival rates of new goods to each establishment in

firm j with intensity zX,j(t) are equivalent. The R&D cost for external innovation

is assumed to be Rτ
X(ZX,j(t), nj(t), qj(t)), which is assumed to be constant returns

to scale with respect to ZX,j(t) and nj(t). Once again, we can denote the cost per
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establishment as

Rτ
X(zX,j(t), qj(t)) ≡ Rτ

X(zX,j(t), 1, qj(t)) =
Rτ
X(ZX,j(t), nj(t), qj(t))

nj(t)
,

and we assume

Rτ
X(zX,j(t), qj(t)) = hτX(zX,j(t))qj(t)

for a strictly convex function hτX(·).15 Similarly to the intensive margin innovation,

we assume that RX is proportional to q to guarantee a constant (type-dependent)

growth rate in the extensive margin and a distribution of establishment number with

a Pareto tail as observed in our data.

Dynamic programming problem: We assume firms transition between different

types from τ to τ ′ with Poisson transition rates λττ ′ . Each establishment depreciates

(is forced to exit) with the Poisson rate δτ . We also impose an exogenous exit shock

at the firm level. Let dτ be the Poisson rate of the firm exit shock for a type-τ firm.

We omit time notation here, because all variables and functions are constant over

time along the balanced-growth path (BGP) that we construct.

Each firm is a collection of n goods (establishments) that are each characterized by

a quality level, q. (Here, we omit the firm index j when there is no risk of confusion.)

Note that, as we described above, our setting implies that all goods in one firm have

the same quality at each point in time. Let Vτ (q, n) denote the value function of the

firm, such that the Hamilton-Jacobi-Bellman (HJB) equation for the firm is

rVτ (q, n) = max
zI ,zX

nΠτ (q, n, zI , zX) + zI
∂Vτ (q, n)

∂q
q

− dτVτ (q, n) +
∑
τ ′

λττ ′(Vτ ′(q, n)−Vτ (q, n)),

15A major departure from Luttmer (2011) is that we allow for internal innovation. Internal
innovation enables us to capture the characteristics of intensive-margin growth. In an earlier working
paper version of this paper (Cao et al., 2020), we have shown that (i) a larger firm tends to have a
larger intensive margin (Figure B.1) and (ii) the average establishment size is larger for older firms
(Figure B.6). These facts indicate that intensive margin growth is an essential component of firm
growth over time.
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where the return function is

Πτ (q, n, zI , zX) ≡ π̄q −Rτ
I (zI , q)−Rτ

X(zX , q)

+ zX(Vτ (q, n+ 1)−Vτ (q, n))− δτ (Vτ (q, n)−Vτ (q, n− 1)).

In this expression, π̄q is the total profit from a good, and Rτ
I (·), Rτ

X(·) are the previ-

ously discussed functions governing investment in internal and external innovations,

that yield the intensive and extensive innovation rates, (zI , zX), respectively.16

Because of separability, the value function for the firm is the sum of the value

functions across establishments,

Vτ (q, n) = nVτ (q),

and the establishment-level HJB equation of a type-τ establishment is

rVτ (q) = max
zI ,zX

 π̄q −Rτ
I (zI , q)−Rτ

X(zX , q) + zI
∂Vτ (q)
∂q

q

+zXVτ (q)− (δτ + dτ )Vτ (q) +
∑

τ ′ λττ ′(Vτ ′(q)− Vτ (q))

 ,
where Vτ (q) is the value of type-τ establishment with quality q.

As in Mukoyama and Osotimehin (2019), Vτ (q) can be shown to be linearly ho-

mogeneous in q along the BGP. That is, Vτ (q) = vτq for a constant vτ . The HJB

16From (3) and (4), the firm-level revenue can be written as (given a firm has n identical establish-

ments with identical product quality q(t) and total labor `(t)) Y (t)β (q(t))
β

(A(t)`(t))
1−β

nβ . For a
given n, the revenue function exhibits decreasing returns to `. For firms with small values of n, such
as n = 1 or n = 2, we expect the firm to behave as a decreasing-returns producer, given that n tend
to remain fixed. When n is large, however, a large firm has both large ` and n, because q and n tend
to grow together. For these firms, with ` and n both interpreted as production factors, the revenue
function can be viewed to have higher returns to scale. Consistent with this intuition, Dinlersoz
et al. (2018) find privately-owned firms reduce their debt over time, whereas listed firms carry large
amounts of debt indefinitely. They interpret this financing behavior as consistent with privately
owned firms operating under a decreasing-returns-to-scale production functions, and publicly-listed
firms under constant returns to scale. Since listed firms typically have more establishments, our
characterization of multi-establishment firms is consistent with this empirical evidence.
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equation above can be normalized to

rvτ = max
zI ,zX

[
π̄ − hτI (zI)− hτX(zX) + (zI + zX − δτ − dτ )vτ +

∑
τ ′

λττ ′(vτ ′ − vτ )

]
, (8)

where π̄ is given by (6). Accordingly, the HJB equation (8) implies that the choice

of innovation intensities (zI , zX) is a function of the firm type only. We denote the

decision rules as (zτI , z
τ
X).17

Entry: An intermediate firm can enter the market by creating a new good (estab-

lishment). A new firm draws its type from an exogenous distribution, where mτ is

the probability that an entrant draws the type τ . Given a type τ , the entrant draws

its initial relative quality q̂ from a distribution Φτ (q̂). We assume this relative quality

q̂ is equal to q(t)/Q(t), where

Q(t) ≡ 1

N(t)

∫
N (t)

qi(t)di

is the average quality of intermediate goods. The firm’s value of entry V e(t) is thus

V e(t) =
∑
τ

mτ

∫
Vτ (q̂Q(t))dΦτ (q̂).

We assume that any potential entrant can pay a cost φQ(t), denominated in final

goods, to begin production. Therefore, the free-entry condition is: V e(t) = φQ(t).

By defining the value of entry relative to average product quality, ve ≡ V e(t)/Q(t),

we can rewrite the value of entry as

ve =
∑
τ

mτvτ

∫
q̂dΦτ (q̂) (9)

and we can rewrite the free-entry condition as, ve = φ.18 Let the number of entrants

at time t be µeN(t), where µe is a constant along the balanced-growth path.

17Recall that, from (6), π̄ is a function of w̄ only. Thus, given r and w̄, equation (8) and the
first-order conditions can solve for vτ , zτI , and zτX .

18Note that once r is given, we can find a value of w̄ that satisfies the free entry condition.
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3.5 Balanced-growth equilibrium

A competitive equilibrium of this economy is a wage w(t), a consumer allocation

(C(t), R(t), E(t)), a final-good-producer allocation (Y (t), {xi(t)}i∈N (t)), an alloca-

tion for intermediate-good producers {`j(t), qj(t), pj(t), zI,j(t), zX,j(t), nj(t)} for all

active producers j, and a value of entry Ve(t) such that at each instant, (i) con-

sumers optimize, (ii) the final-good producers’ allocation solves its profit maximiza-

tion problem, (iii) the intermediate-good producers’ allocations solve their profit-

maximization problem, (iv) the free-entry condition holds, (v) the final-good market

clears: Y (t) = C(t)+R(t)+E(t), and (vi) the labor market clears: L(t) =
∫
Nt `i(t)di.

We now construct a balanced-growth equilibrium of this economy. Assume the

population L(t) grows at an exogenous rate γ. Furthermore, let aggregate quality Q(t)

grow at a constant rate ζ and the number of establishments N(t) (and the number

of firms) grow at a constant rate η. Denote the growth rate of final output Y (t) by

g. Along a balanced-growth path (BGP), the growth rates of Y (t), C(t), R(t), and

E(t) must all be equal. Thus, the Euler equation (1) requires Ċ(t)/C(t) = g because

C(t) grows at the same rate as Y (t). This fact implies r = ρ+ σg along the BGP.

The quality-invariant component of profit π̄(t) in (6) is constant along the BGP.

Therefore, w(t) must grow at the same rate as A(t)Y (t)
β

1−β . Given that Y (t) grows

at rate g and A(t) grows at rate θ, w(t) must grow at the rate βg/(1 − β) + θ.

Because labor income of the representative consumer must grow at the same rate as

consumption, and because population growth is γ, the following relationship must

hold:

g = γ + θ +
β

1− β
g, (10)

which implies output growth of g = (1 − β/(1 − β))−1(γ + θ). Similarly to Luttmer

(2011), the output growth rate is dictated by the population growth rate γ and

the intermediate-good productivity growth rate θ.19 Lastly, we can also decompose

aggregate growth into extensive and intensive margins: g = η + ζ.20

19In the terminology of Jones (1995), our model exhibits “semi-endogenous” growth. It is straight-
forward to extend the model to exhibit fully endogenous growth.

20The derivation is contained in Online Appendix E.
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4 Distributions of firm sizes and establishment sizes

The properties of our model allow us to characterize firm-size distributions from both

margins of firm growth. In the next section, we will estimate model parameters

by mapping the theoretical intensive and extensive margin size distributions to the

analogous empirical distributions that we documented in Section 2.

Before characterizing distributions, note several relevant features of our model.

First, a general property of our model is that establishments are homogeneous within

a firm. This property implies that all establishments within a firm share a common

level of quality, because (i) a firm enters with one establishment and each of the firm’s

new establishments inherit the same quality as its existing ones, and (ii) the intensity

of internal innovation zτI that determines the evolution of quality is common across

all establishments within a firm (although it may change over time). This property

also implies that establishment sizes are also common within a firm. Although in

reality establishment sizes are not the same within a firm, we view this assumption

as a useful simplification that affords us sharp analytical characterizations.

Second, note that the distribution over the number of establishments per firm

evolves through external innovation and exit shocks, and thus corresponds to the

extensive margin in Section 2. In contrast, the size of each establishment evolves

through internal innovation but does not directly correspond to the intensive margin

in Section 2 (because economy-wide establishment size distribution, across establish-

ments, is not the same as economy-wide intensive margin distribution, across firms),

but is closely related.21

Finally, we assume that the economy is on a stationary BGP. In a balanced-

growth equilibrium, the number of firms grows at the same rate as the number of

establishments N(t). The distribution of the number of establishments per firm,

n(t), is stationary (in shares), and the distribution of establishment’s relative quality,

q(t)/Q(t), or size, is also stationary, despite the fact that Q(t) grows exponentially

over time.

21Note the existence of these two margins is the major departure from Klette and Kortum (2004)
and Luttmer (2011). In these papers, establishments are homogeneous and each establishment does
not grow, so the only relevant innovation is external innovation.
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In the remaining analyses, we use the following formal definition of Pareto tail.

A random variable X defined over R∗ has a Pareto tail with tail index ξ > 0 if

limx→∞ x
ξ Pr(X > x) = a for some a > 0. The distribution has a thin tail if

limx→∞ x
ξ Pr(X > x) = 0 for any ξ > 0. For notational convenience, we assign

tail index ∞ to distributions with a thin tail.

4.1 General characterizations

Our approach is to look at two separate margins: the distribution of the number

of establishments per firm, summarized by M̄τ (n), which is the measure of type-τ

firms with n establishments divided by N(t) (i.e., N(t)-normalized measure), and the

distribution of establishment quality relative to average quality, q(t)/Q(t), a mea-

sure of establishment size.22 We denote the fraction of type-τ establishments with

q(t)/Q(t) ≥ q̂ as H̄τ (q̂).

The distribution of the number of establishment per firm, {M̄τ (n)}∞n=1, can be

characterized by the following difference equations:

0 =− (n(zτX + δτ ) + dτ + η)M̄τ (n) + (n+ 1)δτM̄τ (n+ 1) + (n− 1)zτXM̄τ (n− 1)

−
∑
τ ′ 6=τ

λττ ′M̄τ (n) +
∑
τ ′ 6=τ

λτ ′τM̄τ ′(n) + µemτ1{n=1} (11)

for each τ and n ≥ 1 (with the convention that M̄τ (0) = 0).

The distribution of establishment-level relative quality, which is proportional to

establishment size, H̄τ (q̂), is governed by the following Kolmogorov forward equation:

(zτI − ζ)q̂
dH̄τ (q̂)

dq̂
=− (δτ + dτ + η − zτX)H̄τ (q̂) + µe

mτ

Mτ

(1− Φ(q̂))

−
∑
τ ′ 6=τ

λττ ′H̄τ (q̂) +
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ

H̄τ ′(q̂). (12)

Lastly, for the distribution of firm size, recall all establishments in a firm grow

at the same rate and hence have the same size. Therefore, we just need to keep

22On a BGP, these normalized measures are constant and
∑
τ,n nM̄τ (n) = 1.
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track of the joint distribution of establishment number and establishment size in

order to study the firm-size distribution. That is, the distribution of firm size is some

“convolution” of the distribution of the number of establishments per firm and the

distribution of establishment size and can be derived as follows. LetMτ (n, q̂) be the

normalized measure of type-τ firms with n establishments and q(t) ≥ q̂Q(t). Then

(zτI − ζ)q̂
dMτ (n, q̂)

dq̂
=− (n(zτX + δτ ) + dτ + η)Mτ (n, q̂) (13)

+ (n+ 1)δτMτ (n+ 1, q̂; t) + (n− 1)zτXMτ (n− 1, q̂)

+
∑
τ ′ 6=τ

λτ ′τMτ ′ (n, q̂)−
∑
τ ′ 6=τ

λττ ′Mτ (n, q̂) + µemτ (1− Φτ (q̂)) 1{n=1}

for each τ and n ≥ 1 (with the convention that Mτ (0, q̂) = 0). The detailed deriva-

tions of these equations are presented in Online Appendix D.1.

4.2 Distributions for one-type economy

When only one firm type exists, firm growth is governed by three endogenous vari-

ables: zI , zX , and µe. Denoting p ≡ log(q̂) and H̃(p) ≡ H̄(exp(p)), Online Appendix

D.2 shows that

H̃(p) =

∫ p

−∞
e
δ+d+η−zX

zI−ζ
(p̃−p) δ + d+ η − zX

zI − ζ
(1− Φ(exp(p̃)))dp̃ (14)

holds, and this equation characterizes the distribution of establishment sizes. This

expression implies H̃(log y) is the complementary cumulative distribution function of

a random variable Ye defined by a convolution between a Pareto distribution with

scale parameter 1 and tail index (δ + d + η − zX)/(zI − ζ) and a distribution with

cumulative distribution function (CDF) Φ. That is, Ye is expressed as Ye = Ye
1Y

e
2,

where Ye
1 ∼ Pareto (1, (δ + d+ η − zX)/(zI − ζ)) and Ye

2 ∼ Φ.

Notice also that, when Φ is a log-normal distribution, H̃ is a convolution of a

Pareto distribution and a log-normal distribution analyzed in Reed (2001), and more

recently, Cao and Luo (2017) and Sager and Timoshenko (2019). Therefore, we offer

an alternative micro-foundation of this convolution distribution with an endogenous
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establishment growth rate, relative to the micro-foundation in Reed (2001) with an

exogenous growth rate. Our micro-foundation is also more general because it allows

for any distribution of Φ, whereas Reed (2001) only allows Φ to be a log-normal

distribution.

Using this explicit solution, we can easily show that if zI > ζ and Φ has a thin right

tail (for example, when Φ is a log-normal or left-truncated log-normal distribution),

then H̄(p) has a Pareto tail with the index given by

λe ≡ d+ η − zX + δ

zI − ζ
. (15)

When zI < ζ, the distribution has a thin tail.

For the distribution of the number of establishments per firm, we show (see Online

Appendix D.2) that when zX > δ, it has a Pareto tail with the tail index given by

λne ≡ η + d

zX − δ
. (16)

The following proposition summarizes the last two results. The proof of this proposi-

tion is given in Online Appendix D.3 using a Karamata Tauberian theorem from the

literature on regular varying sequences and functions (Bingham et al., 1987, Corollary

1.7.3).23

Proposition 1 On a stationary BGP with zI > ζ and zX > δ and the distribution

of entrant sizes Φ has a thin tail, the stationary distribution of establishment sizes

(across establishments) and the stationary distribution of the number of establishments

per firm (across firms) have Pareto right tails and the tail indexes are given by (15)

and (16), respectively.

23Notice this result on the distribution of establishment number is stronger than the one in
Luttmer (2011). In particular, he shows that for any ξ > η+d

zX−δ , limn→∞ nξ Pr{X > n} =∞ and for

any ξ < η+d
zX−δ , limn→∞ nξ Pr{X > n} = 0, whereas we show

lim
n→∞

n
η+d
zX−δ Pr(X > n) = a

for some a > 0. The latter limit implies the previous two limits but not vice versa.
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Now, we analyze the distribution of firm size, which is the combination of above

two. In the special case where the initial draw satisfies
∫
q̂dΦ(q̂) = 1 zI = ζ holds. In

this case, the random variable for firm size Z can be written as Z = XY, where X

is the number of establishments and Y is establishment size in a firm. In the cross

section, X and Y are independent and the cdf of Y is given by Φ. The pdf for X

is given by (23). We show that, utilizing the Tauberian theorem in Mimica (2016,

Corollary 1.3), the following proposition holds (see Appendix D.2 and the proof in

Appendix D.3).

Proposition 2 On a stationary BGP with zI = ζ and zX > δ, and when the distri-

bution of entry sizes Φ has a thin tail, the firm-size distribution has a Pareto tail with

the tail index equal to the tail index of the distribution of the number of establishments

per firm given by (16).

When the distribution of entry sizes Φ has a Pareto tail, we can show the tail index

of the firm size distribution is the minimum of the tail index of Φ and the tail index

given by (16).

In the empirically more relevant the case in which zI 6= ζ, i.e.
∫
q̂dΦ(q̂) 6= 1. This

case is more challenging because the dynamics of firm size are driven both by the

dynamics of the establishment number and of the dynamics of relative establishment

size. This fact implies that when we write firm size as a product of the number of

establishments and average establishment size, Z = XY, in the cross section, X and

Y are correlated, instead of being independent when zI = ζ. For example, when

zX > δ and zI > ζ, over time surviving firms, on average, have both a higher number

of establishments and larger establishments.

To tackle this case, we use the system of difference-differential equations (13).

This system involves an infinite number of functional equations on {Mτ (n, q̂)}. We

use the Laplace transformations of {Mτ (n, q̂)} to transform (13) into a system of

only difference equations. Then we use the Karamata Tauberian theorem (Bingham

et al., 1987, Corollary 1.7.3) to characterize the asymptotic behavior of its solution.

This characterization enables us to utilize the Tauberian theorem in Mimica (2016,

Corollary 1.3) and show that, if zX > δ and zX − δ + zI − ζ > 0, the firm-size
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distribution has a Pareto tail with the tail index

λf ≡ η + d

zX − δ + zI − ζ
. (17)

(see Appendix D.2). The following proposition, which also describes the relationship

among λe, λne, and λf > 1, summarizes the result. The detailed proof is given in

Online Appendix D.3.

Proposition 3 On a stationary BGP with zX > δ and zX − δ+ zI − ζ > 0, the firm-

size distribution has a Pareto tail with the tail index given by (17). If, in addition,

zI > ζ, all three distributions for establishment size, the number of establishments per

firm, and firm size have a Pareto tail and

1

λf
=

1

λne
+

1

λe
− 1

λneλe
(18)

where λe, λne, and λf > 1 are respectively the Pareto tail indexes for the distributions

for establishment size, the number of establishments per firm, and firm size.

Because λe, λne > 1, equation (18) shows λf > λe or λf > λne; that is, the tail of

the firm-size distribution is strictly fatter than the tails of either the establishment-

size distribution or the number-of-establishments distribution. The formula can also

be used to calculate the tail index of the firm-size distribution from the tail indexes

for the establishment size and the number-of-establishments distributions.24

5 Quantitative analysis

In this section, we estimate our model using the cross-sectional information to quan-

titatively analyze the pattern of firm growth over the 1995-2014 period. We first

24Equation (18) approximates the relationships of the estimated tail indexes in the data very
well. For example, for 1995, with the tail index of the number-of-establishments distribution of 1.25
in Table A.1 and the tail index of the establishment size distribution of 1.55 from the estimation in
Online Appendix F.1 (which is conceptually different from the tail index for the intensive margin in
Table A.1), equation (18) implies a tail index of 1.07 for firm-size distribution, which lies between
the estimates 0.99 and 1.10 for firm size distribution in Table A.1. Similarly, for 2015, with the
tails parameters of 1.21 and 1.75, equation (18) implies a tail index of 1.08 for firm size distribution,
which also lies between the estimates of 0.99 and 1.17 in Table A.1.
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confirm the model is able to match the firm-size, the number-of-establishments, and

establishment-size distributions well. We estimate the model for both 1995 and 2014

data and show how the model informs us about fundamental economic forces that

changed with average firm-size growth over these years.

5.1 Model estimation

Firm Types: We find that at least two types are needed to match both the extensive-

and intensive-margin distributions. The main reason is there are many single-unit

firms that do not expand in extensive margin whereas there are also many firms that

end up being at the right-tail of the extensive-margin distribution. This difference

cannot be justified by the same innovation cost functions. We estimate a simple ver-

sion of the model with two types, denoted τ ∈ {L,H}. H-type firms are characterized

by a high intensity of external innovation while L-type firms exhibit a low intensity

of external innovation. When we calibrate the model to data, H-type firms turn out

to have a lower cost of external investment, and expand their number of establish-

ments faster than L-type firms. We assume H-type firms transition to L-type firms

at the rate λHL > 0, whereas L-type firms do not transition to H-type firms, that is,

λLH = 0. Thus, the L-type is the absorbing state.25

These assumptions on types allow us to easily obtain closed-form solutions for

the tail indexes of the distributions of establishment number and establishment size,

which we use to estimate the model. Using the results for two types in Luttmer

(2011) and the derivations in Subsection 4.2, we can show that, under some parameter

restrictions, the stationary distribution of the number of establishments per firm has

a Pareto tail with the tail index given by:

min

{
η + λHL + dH

[zHX − δH ]+
,

η + dL
[zLX − δL]+

}
, (19)

where [x]+ ≡ max(x, 0). The formula corresponds to (16) in the case of a single type.

25These assumptions are similar to those in Luttmer (2011). Under these assumptions, Luttmer
(2011) also provides analytical solutions for the distribution of establishment numbers, which can
be used to verify the accuracy of numerical solutions.
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Similarly, using the procedure from Gabaix et al. (2016) and Cao and Luo (2017),

the Pareto-tail index of the distribution of establishment size is given by

min

{
η + δH + λHL + dH − zHX

[zHI − ζ]+
,
η + δL + dL − zLX

[zLI − ζ]+

}
. (20)

Estimation: We estimate the model in two steps. In the first step, we estimate

(zHX , z
L
X , λHL, µe,mH ,mL) using moments related to the number of establishments

per firm, and then we estimate (zHI , z
L
I ,ΦH(·),ΦL(·)) using moments related to the

number of employees per establishment. This step is an intermediate step, as many

of the estimated variables are endogenous variables. In the second step, we map

these estimates to the fundamental parameters. In particular, as is common in the

literature, we assume quadratic innovation costs of the form,

hτX(zτX) ≡ χτX (zτX)2 , hτI (z
τ
I ) ≡ χτI (zτI )2 for τ ∈ {L,H}.

We assume log-normal distribution for initial relative quality: Φτ (·) ∼ exp(N (%τ , ςτ )).

We then estimate the additional parameters using the estimated values recovered from

the first step.26

A set of parameters are assigned in advance of estimation, whereas the remaining

parameters are estimated to match empirical moments of the establishment number

and establishment size distributions. Table 1 summarizes parameter estimates and

targets.

The unit of time is set as a year. For preferences, we assume log utility and

an effective discount rate of ρ = 0.01. We choose the elasticity of demand for the

final-good producer to β = 0.091, which is consistent with a markup of 10% (Basu

and Fernald (1995)). With respect to exogenous firm and establishment exit rates,

we set dH = 0% and dL = 0.4% at the firm level and δH = δL = 12% in 1995 and

δH = δL = 10% in 2015. These values amount to around a 3% quarterly exit rate for

establishments and a 0.1% quarterly exogenous exit rate for firms, roughly consistent

26The targeted moments include several percentiles of the distributions and the slopes of the right
tail of the distributions. More details can be found in Appendix F.2.
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Table 1: Parameter Values and Targets

Concept Parameter Value Target/Source

Parameters Set in Advance
Elasticity of Demand β 1− 1

1.10 10% Markup
Intertemporal Elasticity σ 1 Log utility
Discount Rate ρ 0.01 Standard value
Population Growth Rate γ 0.01 Census Bureau
Firm Exit Rates (Exogenous Component) dL, dH 0.4%, 0% BLS
Establishment Exit Rates (1995) δL, δH 12%, 12% BLS
Establishment Exit Rates (2014) δL, δH 10%, 10% BLS

Estimated Parameter Targets
Entry Cost φ Normalized wage, w̄ = 1
Growth Types λHL,mH Establishment number distribution
Extensive Margin Costs χHX , χ

L
X Establishment number distribution

Intensive Margin Costs χHX , χ
L
X Establishment size distribution

Entrant Size %H , ςH , %L, ςL Establishment size distribution

with the establishment exit rate and the exit rate of very large firms in our data.27

We set the population growth rate to the post-1960 average of γ = 0.01.

All other parameters are estimated to match empirical moments. We target η =

0.01 and ζ = 0.021 to imply a growth rate of final output of 3.1% for 1995 and

η = 0.01 and ζ = 0.013, implying a final output growth rate of 2.3% for 2014. Given

the log-utility specification and the value ρ = 0.01, the Euler equation in (1) implies

an interest rate of r = 0.04 for 1995 and r = 0.03 for 2014, which are within the range

of values that are standard in the literature.

Finally, we estimate the remaining parameters twice—once for 1995 moments of

the establishment size and number distributions, and once for 2014 empirical mo-

ments. Hence, the resulting differences in parameter estimates between 1995 and

27Notice that overall quarterly firm exit rate in our model should be larger than 0.1% because
firms also exit endogenously when they lose all establishments. This rate depends on other model
ingredients such as the endogenous establishment creation rates zτX . From model simulations, we
find that our estimation implies an average quarterly firm exit rate of 2.75% in 1995 and 2.32% in
2014.
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Figure 3: Distribution of number of establishments per firm, Data and Model

2014 are due to changes in the empirical distributions. For example, the distribution

of establishment number changes shifts significantly from 1995 to 2014: the fraction

of single establishment firms is 96% in 1995 and 95% in 2014; at the 99th percentile

of the establishment number distribution, firms have only 5 establishment in 1995,

while in 2014, they have 7 establishments; and the Pareto tail index decreases from

1.25 in 1995 to 1.21 in 2014 (Table A.1 in Appendix).

Figure 3 shows the model distributions of the number of establishments per firm

match the empirical distributions from the 1995 and 2014 data very well. Figure 4

shows the model distributions of establishment size closely match the parametrized

empirical distributions for 1995 and 2014 data described in Online Appendix F.1 (blue

solid line), as well as publicly available BLS tabulations of establishment sizes (red

circles).
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Figure 4: Distribution of number of employees per establishment, Data and Model

5.2 Quantitative changes in parameter values from 1995 to

2014

We compare the results of model estimation for 1995 with that in 2014. Differences in

model outcomes over time inform us about the underlying economic mechanisms that

generate the observed changes in the distributions over the number of establishments

and average establishment size.

Table 2 shows the H-type firm’s extensive-margin investment rate increased from

32.81% to 51.20% as its investment-cost coefficients decreased about 21% (from 0.6149

to 0.4797). In contrast, the L-type firms invest significantly less in 2014 than in 1995.

As for entrants, in 2014, a larger fraction of entrants are H-type firms (5.23% in

1995 and 8.78% in 2014), yet the average duration of being a H-type shortened from

around four years (= 1/0.2523) in 1995 to around two years (= 1/0.4900) in 2014.

The estimation provides estimates of µe, which is the entry rate of firms relative to

the total number of establishments. To recover the firm entry rate (relative to the
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Table 2: Parameter Estimates and Model Outcomes, 1995 versus 2014

Parameter Description Value (1995) Value (2014)

Innovation Investments
zHX H-type external innovation 0.3281 0.5120
zLX L-type external innovation 0.0019 0.0002
zHI H-type internal innovation 0.0559 0.0637
zLI L-type internal innovation 0.0000 0.0087

Innovation Costs
χHX H-type external innovation cost 0.6149 0.4797
χLX L-type external innovation cost 57.400 610.12
χHI H-type internal innovation cost 3.6056 3.8547
χLI L-type internal innovation cost ∞ 15.134

Firm Entry
µe Entry rate 0.0981 0.0740
φ Entry fixed cost 0.2009 0.1671∫

q̂dΦH(q̂) H-entrant size relative to mean 0.6016 0.7595
%H Mean of ΦH(·) −2.4909 −1.1511
ςH Standard deviation of ΦH(·) 1.9914 1.3236∫

q̂dΦL(q̂) L-entrant size relative to mean 0.9271 0.5567
%L Mean of ΦL(·) −1.472 −3.4660
ςL Standard deviation of ΦL(·) 1.6711 2.4002

Firm Types
λHL H to L transition rate 0.2524 0.4901
mH Fraction of H-type at entry 0.0523 0.0878
mL Fraction of L-type at entry 0.9477 0.9122

Notes: Estimates using Least-Square Minimization

number of firms), we need to divide µe by the average number of establishments per

firm. The model recovers a declining firm entry rate of 7.55% in 1995 to 5.08% in

2014.28 Notice that this decline is accompanied by a decrease in the estimated entry

28The level of the entry rates in the model are lower than the ones in the data but the magnitude
of the decline is similar. We can bring the model entry rates closer to the data if we allow for
type-dependent exit rates.
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cost (from 0.2009 to 0.1617), in contrast to the recent literature that emphasizes

increases in entry cost or entry barriers such as Decker et al. (2014). As we discuss

below, while a decrease in entry cost would lead to an increase in entry in our model,

the declines in external innovation cost, establishment exit rates, and growth rate

reduce the entry rate by more.

5.3 Decomposing the changes in the entry rate and extensive

margin

Using our estimated structural model, we conduct a series counterfactual experiments

that decompose the changes in the firm entry rate and the number of establishments

per firm into their constituent causes. We focus on these particular changes because

they highlight (i) the tradeoff between incumbent innovation and entry and (ii) its

implications for firm size distribution. Our decomposition procedure is as follows.

We start with all parameter values (estimated and set in advance) for the year 1995.

Then we incrementally switch each parameter, one by one, to the estimates from the

year 2014. This procedure provides counterfactuals where only a subset of parameter

values are changed to the 2014 values. Note that, while the order of switching matters

for the quantitative results, the qualitative results and general intuition are robust to

the order of switches.

Table 3 shows the result. The table, starting from the top row marked “De-

composition,” begins from the 1995 estimated parameters and “turns on” the 2014

parameters as we go down each row. At the end of the final row, all parameters are

switched to the ones in 2014, and therefore the sum of all rows is equal to the total

change.

The first column conducts this exercise for the entry rate. In the estimated model,

the entry rate decreases by 2.47 percentage points in total. Observing the parameters

that generate a decline in the entry rate, this total turns out to be primarily driven by

(i) the changes in the external innovation costs, (ii) the decline in the establishment

exit rate, and (iii) the decline in the aggregate growth rate (as γ remains unchanged

from 1995 to 2014, (10) implies that labor productivity growth rate θ declines). The

second column is the decomposition for the number of establishments per firm (the
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Table 3: Total Changes (1995-2014) and Decomposition

Change in Percent Change in
Firm Entry Rate #Establishments/Firm

Decomposition:

type fraction and persistence (mH , λHL) 8.14 −20.04

entrant quality distribution (%H , ςH , %L, ςL) 0.19 9.24

fixed entry cost (φ) 5.59 −6.50

external innovation cost (χHX , χ
L
X) −8.53 12.79

internal innovation cost (χHI , χ
L
I ) 0.61 −1.60

establishment exit rates (δH , δL) −5.43 10.37

growth rate (g) −3.06 12.09

Total Change (1995-2014): −2.47 12.15

extensive margin), which is the main focus of this paper. In the model, the average

number of establishments per firm have increased by 12.14% between 1995 and 2014.

Observing the parameters that increase the average number of establishments per

firm, our decomposition reveals that the increase is primarily driven by the same

three factors that reduce the entry rate.

This second decomposition provides an important insight in looking at the empiri-

cal facts in Section 2 through the lens of the model. When we think of the dominance

of large firms in the recent years, our model indicates that the mechanism is asso-

ciated with (i) the reduction of the cost for expanding through new establishments,

(ii) the decline in the establishment exit rate, and (iii) the decline in the aggregate

productivity growth rate.

To highlight the mechanisms underlying the model decomposition, we consider

a version of the model with one type (omitting the τ subscript) that delivers es-

sentially the same qualitative relationships yet provides a sharp characterization of

firm-level outcomes (see Section 4.2) and general equilibrium outcomes. The one-type
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environment can be characterized by the firm’s value function,

(ρ+ σg)v = π̄ − χIz2
I − χXz2

X + (zI + zX − δ − d)v,

whose first-order conditions imply innovation intensities zI = v/(2χI) and zX =

v/(2χX); the firm’s value v which is pinned down by the free entry condition (9)

v = φ/
∫
q̂dΦ(q̂); the value of π̄ which is pinned down by the value function after

obtaining values for (v, zI , zX); and the equilibrium entry rate,

µe =
1∫

q̂dΦ(q̂)

(
γ + θ

1− (β/(1− β))
−
(
zI + zX − δ − d

))
,

where output growth is given by equation (10), and we assume β < 1/2 to ensure

positive entry in equilibrium (µe > 0).29 Given this characterization, the following

comparative static results are immediate.

Proposition 4 Consider a BGP of the one-type economy. The following compara-

tive statics hold:

(a) Entry costs: An increase in the entry cost, φ, generates an increase in innova-

tion intensities (zI , zX) and a decrease in the entry rate (µe).

(b) Innovation costs: A decrease in χI increases zI but does not directly affect zX .

A decrease in χX increases zX but does not directly affect zI . The entry rate (µe)

decreases when either cost χI or χX decreases.

(c) Growth and exit rates: An increase in population growth γ, productivity growth

θ, or exit rates (δ, d) does not directly affect innovation intensities (zI , zX) but does

generate higher output growth g and entry rate µe.

From Proposition 4, one key prediction of the model is a trade-off between firm

entry and incumbents’ innovative activity (e.g., that leads to growth in the number

of establishments per firm). From part (a) of the proposition, if the entry cost φ is

higher, the free-entry condition implies that a firm needs to receive higher lifetime

29It is straightforward to show that g = zI +zX− (δ+d)+µe
∫
q̂dΦ(q̂) along the balanced growth

path. Rearranging and substituting equation (10) yields the expression for µe.
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compensation for incurring the increased initial cost of creating a new product for the

market. Therefore, an entering firm innovates at a higher rate and grows to a larger

size along both the intensive and extensive margins, compared to an economy with a

lower entry cost. Hence a higher entry cost is associated with both less entry and a

greater number of establishments per firm, on average.30

However, our estimation infers that entry costs in fact declined over recent decades

(see Table 2) and, therefore, the mechanisms associated with parts (b) and (c) of

the proposition dominate the mechanism associated with a change in entry costs.

First, declining innovation costs lead to higher innovation rates and less firm entry,

as in part (b) of the proposition, which implies that there are more establishments

through external innovation and fewer firms due to lower entry. As a result, there are

more establishments per firm in an economy with lower innovation costs. Part (b) is

important for our estimation results as Table 2 indicates that the external innovation

cost for H-type firms indeed declined. Part (c) reflects the limits to output growth due

to population and technology dynamics, as seen from the balanced-growth condition

in equation (10). With lower labor productivity growth, incumbent firms’ increased

innovative activity diminishes the incentive of new firms to enter the market due to

greater scarcity of inputs to production. Similarly, part (c) also states that a decline in

exit rates discourages firm entry, because incumbent firms employ more resources for

innovative activity and less frequently free up those resources through exit. Entrants

have less incentive to enter the market if there is a high cost of employing resources

to grow and recover their entry cost. As we see in Table 3, a decline in both aggregate

productivity growth, θ, and exit rates were indeed large contributors to the reduction

in the entry rate. Overall, parts (b) and (c) imply reduced entry rates and increased

growth in the number of establishments per firm in recent decades, and the associated

mechanisms quantitatively dominate the opposing force of the effect in part (a).

30Notice that the entry rate µe is defined as the ratio of the flow of new firms over the stock of
establishments. The effective firm entry rate is the ratio of the flow of new firms over the stock of
firms, i.e., µe divided by the average number of establishments per firm, as in Subsection 5.2. As
a higher entry cost leads to a greater number of establishment per firms, firm entry rate decreases
more than µe does. Similar to Hopenhayn et al. (2018), because population growth is held constant,
the decrease in firm entry rate is equal to the sum of the decrease in firm exit rate, which results
from the increase in extensive margin growth, and the increase in average firm size.
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For the number of establishments per firm, recall that, in Part (b), a decline in

external innovation cost increases zX and reduces µe. In Part (c), declines in estab-

lishment exit rates and the aggregate growth rate reduce µe without directly affecting

zX . From our characterization of the tail of the extensive margin distribution,

λne = 1 +
µe

zX − δ

holds. This equation can be derived from (16) and the fact that η = zX − d− δ + µe

(from the law of motion for the aggregate number of establishments). The changes

in zX and µe lead to a fatter tail of the extensive margin distribution (a smaller λne),

because λne is smaller when µe/(zX−δ) is smaller. This mechanism is consistent with

our estimated outcome. Moreover, because the establishment number distribution has

a lower Pareto tail index in 2014 compared to 1995, and a lower tail index is associated

with a higher average (for example, when the tail index approaches 1, the average

tends to ∞), the decline in λne during this period implies that the average number

of establishments per firm is higher in 2014. This overall intuition is consistent with

the decomposition documented in Table 3.

6 Conclusion

In this paper, we decomposed firm growth into two margins: an extensive margin of

building new establishments and an intensive margin of adding workers to existing

establishments. We documented the patterns of extensive- and intensive-margin firm

growth in the U.S. from 1990-2014 and found that U.S. growth is predominantly

generated by the addition of new establishments in very large firms. We developed a

model of firm growth that incorporates both the extensive and intensive margins as

separate types of firm innovation and showed the model can generate a fat tail of large

firms, both in terms of the number of establishments and the number of workers. We

analytically characterized the Pareto tails of the firm-size distribution and derive a

formula that characterizes how they are linked to the forces that determine innovation,

firm entry, and aggregate growth.

We estimated the model parameters for 1995 and 2014 and interpreted the increase
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in firm size along both the intensive and extensive margins in the data as reflecting

fundamental economic changes. We found that the cost for external innovation de-

clined for firms that are actively expanding with new establishments. Moreover, the

model infers that the cost of entry has also declined. We decomposed the effect of

model parameters on model outcomes to reveal that the largest contributors to the

recent dominance of large firms with many establishments are the decline in the ex-

ternal innovation cost, decline in the establishment exit rate, and the slowdown of

the aggregate productivity growth for production.

An important future research agenda is to explain why these changes occurred dur-

ing this time period. Numerous anecdotes indicate finding new locations for stores

and restaurants became easier due to increasing availability of ICT and various “big

data.”31 This change in technology may have contributed to the lower cost of exter-

nal innovation. Faster information flows better enables a new business to succeed

early, but also allows business models to be imitated more easily, creating a faster

obsolescence and hampering the ability to grow quickly through the extensive mar-

gin. Our empirical and theoretical results can serve as a starting point for further

investigations into these recent changes in the economic environment.

31Brynjolfsson and McElheran (2016) show that, in the U.S. manufacturing sector, larger plants
and plants that belong to multi-unit firms have higher tendencies to adopt data-driven decision
making. Ganapati (2018) highlights the surge of IT investment in the wholesale industry, which also
experienced the increase in the market share of the largest 1% firms. Begenau et al. (2018) argue
that the use of big data in financial markets has lowered the cost of capital for large firms relative
to small firms. The dominance of large firms with big data raises a new set of normative and policy
questions. Jones and Tonetti (2020) discusses various issues that arises in the “data economy” using
a macroeconomic model that explicitly considers information flow within and across firms.
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Appendix

A Data and empirical documentation

A.1 Quarterly Census of Employment and Wages

This data appendix describes the Quarterly Census of Employment and Wages (QCEW)

and draws heavily from the BLS Handbook of Methods.32

A.1.1 Definitions

The Quarterly Census of Employment and Wages (QCEW) is a count of employment

and wages obtained from quarterly reports filed by almost every employer in the U.S.,

Puerto Rico and the U.S. Virgin Islands, for the purpose of administering state un-

employment insurance programs. These reports are compiled by the Bureau of Labor

Statistics (BLS) and supplemented with the Annual Refiling Survey and the Multiple

Worksite Report for the purpose of validation and accuracy. The reports include

an establishment’s monthly employment level upon the twelfth of each month and

counts any employed worker, whether their position is full time, part time, permanent

or temporary. Counted employees include most corporate officials, all executives, all

supervisory personnel, all professionals, all clerical workers, many farmworkers, all

wage earners and all piece workers. Employees are counted if on paid sick leave,

paid holiday or paid vacation. Employees are not counted if they did not earn wages

during the pay period covering the 12th of the month, because of work stoppages,

temporary layoffs, illness, or unpaid vacations. The QCEW does not count propri-

etors, the unincorporated self-employed, unpaid family members, certain farm and

domestic workers that are exempt from reporting employment data, railroad workers

covered by the railroad unemployment insurance system, all members of the Armed

Forces, and most student workers at schools. If a worker holds multiple jobs across

multiple firms, then that worker may be counted more than once in the QCEW.

32See https://www.bls.gov/opub/hom/cew/home.htm for the complete BLS Handbook of Meth-
ods.
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A.1.2 BLS Sample

A sample we used as part of the BLS visiting researcher program provided data from

1990 to 2016 and covers thirty-eight states: Alaska, Alabama, Arkansas, Arizona,

California, Colorado, Connecticut, Delaware, Georgia, Hawaii, Iowa, Idaho, Indiana,

Kansas, Louisiana, Maryland, Maine, Minnesota, Montana, North Dakota, New Jer-

sey, New Mexico, Nevada, Ohio, Oklahoma, Rhode Island, South Carolina, South

Dakota, Tennessee, Texas, Utah, Virginia, Vermont, Washington, West Virginia, as

well as the District of Columbia, Puerto Rico and the U.S. Virgin Islands.

A.1.3 LEHD Sample

The Employer Characteristics File maintained by the Longitudinal Employer-Household

Dynamics program provided data for twenty-eight states: Alaska, Arizona, Califor-

nia, Colarado, Florida, Georgia, Iowa, Idaho, Illinois, Indiana, Kansas, Louisiana,

Maryland, Missouri, Montana, North Carolina, New Mexico, New York, Pennsyl-

vania, Oregon, Rhode Island, South Dakota, Texas, Utah, Washington, Wisconsin,

West Virginia, and Wyoming.

A.1.4 Data cleaning and variable construction

To conform to official statistics, we clean the data in accordance with BLS procedure.

First, while the QCEW contains monthly data as of the 12th of each month, we

follow BLS convention by only using data from the final month within a quarter. As

a result, our sample does not capture establishments that enter and exit within the

same quarter. We additionally exclude firms from calculations in a given quarter if

the absolute change in employment from the previous quarter exceeds 10 times the

average employment between the two quarters. Statistics within this paper are not

sensitive to the choice of multiple being 10.

We construct firms as collections of establishment with the same employment

identification numbers (EINs). Firm-level employment is the sum of all employment

in establishments associated with the same EIN and the number of establishments

within a firm as the number of establishments that report using a common EIN.
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To classify a firm’s industry, we assign to a firm the average self-reported, 6-digit

NAICS code of its establishments so that the firm is classified in the same way as its

establishments are on average.

A firm’s entry date is measured as the date at which the QCEW records a non-zero

number of workers associated with a particular EIN after four consecutive quarters

of recording zero workers. A firm’s exit date is measured as the last date at which

the QCEW records a non-zero number of workers associated with a particular EIN

prior to four consecutive quarters of recording zero workers. A firm’s age is measured

by tracking firms after entering. Upon entry, the firm is assigned an age of 1 quarter

and the firm’s age is incremented by 1 quarter for each period that it does not exit.

B Further decomposition of time-series of margins

First, we examine the firm-size decomposition in the manufacturing, service, and agri-

cultural sectors, and find that a significant increase in the number of service-sector

establishments per firm is the driving force for the economy-wide increase in aver-

age firm size. Figure A.1(a) plots the evolution of average firm size in each sector,

compared to the average firm size in 1990. We observe that all sectors excluding

agriculture experienced an increase in average firm size over the sample period (1990-

2014), but the service sector experienced the largest size increase. This observation is

notable, because the service sector employs the majority of U.S. workers over this pe-

riod. To account for sectoral firm size growth, we turn to the intensive and extensive

margins plotted in Figures A.1(c) and A.1(e), respectively. Each sector’s intensive

margin exhibits a flat or slight downward trend similar to that in the overall econ-

omy. By strong contrast, the extensive margin for different sectors delivers the same

message as the extensive margin in the overall economy, namely, that the growth in

the number of establishments per firm accounts for the overall increase in average

firm size across sectors and, by extension, the overall economy.

Next, we examine the firm-size decomposition conditional on firm size and find

the establishment-driven growth in average firm size is concentrated in the economy’s

largest firms. Figure A.1(b) calculates the average size within size bins. We see a
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Table A.1: Slope of the Size-Rank Relationship

Firm size Extensive Intensive

95th percentile and above

1995 −1.10 −1.20 −1.35
2014 −0.99 −1.17 −1.32

99th percentile and above

1995 −1.17 −1.25 −1.39
2014 −0.99 −1.21 −1.24

Notes: Authors’ calculations of of LEHD microdata. Linear regression of
log outcome on log rank for fitted values at or above the 95th percentile from
a polynomial approximation of microdata. Slopes correspond to March of
the respective year.

pattern of spreading out: very small firms with one to four employees have tended to

become smaller, whereas the average size of larger firms with 100 employees increased

over time. If we examine the very right tail of firms with 5,000 workers or more, firm

size has been increasing over time since 1997, with a similar increase in firms that have

100 employees or more. The intensive margin does not exhibit an obvious relationship

with firm size, as seen in Figure A.1(d). None of the series have an increasing trend,

and in fact, the overall time-series pattern looks similar between very small firms (1

to 4 employees) and very large firms (5,000 or more employees) except for a spike for

very large firms in the early 2000s. By contrast, growth in the average number of

establishments per firm exhibits very different trends between small and large firms,

as shown in Figure A.1(f). Very small firms are predominantly single-establishment

firms over the entire sample period. Medium-size firms with 5 to 99 employees have

had a modest increase in the number of establishments. Larger firms have had a

startling increase in the number of establishments. On average, the firms with 5,000

or more employees had about four times more establishments in 2014 than in 1990.

Thus, we conclude that a key mechanism that has generated the increase in firm size

in recent years is expansion through the number of establishments in very large firms.

To see the behavior of the distribution at the right tail, we measure the slope

of the upper percentiles of the firm-size distribution in Table A.1. Here, we include
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Figure A.1: Average Firm Size, Intensive and Extensive Margins by Sector and Size
Bins
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(b) Average firm size by size bin (number
of workers)
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(c) Average intensive margin by sector
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(d) Average intensive margin by size bin

1990 1995 2000 2005 2010 2015

year

0.8

0.85

0.9

0.95

1

1.05

1.1

a
v
e

ra
g

in
te

n
s
iv

e
 m

a
rg

in
 r

e
la

ti
v
e

 t
o

 1
9

9
0

100 or larger

5 to 99

5000 or larger

1 to 4

(e) Average extensive margin by sector
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(f) Average extensive margin by size bin
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Source: Author’s calculations of Quarterly Census of Employment and Wages microdata.
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predicted values that are at or above the 95th percentile. The firm size distribution

in 2014 has a slope that is close to (negative) 1, which indicates it has a very fat

tail. Both the extensive margin and the intensive margin have steeper slopes than

the employment distribution, which implies thinner tails. For the overall firm size,

the right tail became thicker—looking at the 99 percentile and above, the tail index

changed from −1.17 to −0.99 between 1995 and 2014. Table A.1 indicates both the

extensive and intensive margins contributed to this thickening of the slope over time.
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Online Appendix

C LEHD measures of size-rank relationships

C.1 Confidentiality protection for size-rank statistics in LEHD

Characterizing the employment distribution by firm rank, we used the Employer

Characteristics File maintained by the U.S. Census Bureau’s Longitudinal Employer-

Household Dynamics Program. A number of steps were taken to minimize the dis-

closure risk associated with the release of statistics on the upper ranks of the firm

size distribution. First, instead of a direct size-rank regression, we coarsened the

underlying distribution, employing finer categories the closer we are at the firm size

distribution. Coarsening ensures that there are a large number of observations in

each cell, even at the upper range of the distribution in which we use the finest cat-

egories. To limit disclosure risk further, we estimated a fifth-order polynomial (plus

a constant) on the (average) percentile rank associated with each rank category. To

conform to U.S. Census Bureau disclosure requirements, all point estimates and stan-

dard errors were rounded to four significant digits.
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Table A.2: Fifth-order polynomial approximations of size-rank relationships

Employment Establishments Establishment Size
1995 2005 2014 1995 2005 2014 1995 2005 2014

Intercept 16.33 9.586 4.932 11.55 14.11 17.37 13.87 7.406 2.725
(0.04863) (0.04889) (0.04988) (0.06931) (0.06404) (0.06247) (0.04857) (0.04882) (0.04979)

ln(rank) -6.478 0.4619 5.243 -6.302 -8.406 -11.36 -5.143 1.333 6.056
(0.04041) (0.4060) (0.04145) (0.05760) (0.5319) (0.05191) (0.04036) (0.04055) (0.04137)

ln(rank)2 2.224 -0.2067 -1.888 2.274 2.961 3.919 1.723 -0.5921 -2.268
(0.01241) (0.1247) (0.01273) (0.01769) (0.01633) (0.01594) (0.01239) (0.01245) (0.01270)

ln(rank)3 × 10 -3.936 -0.09348 2.583 -4.121 -5.157 -6.550 -3.055 0.6863 3.381
(0.01785) (0.01793) (0.0183) (0.02544) (0.02348) (0.02292) (0.01782) (0.01790) (0.01827)

ln(rank)4 × 102 3.206 0.3817 -1.605 3.354 4.078 5.012 2.528 0.2700 -2.283
(0.01219) (0.01225) (0.01250) (0.0174) (0.01604) (0.0157) (0.01218) (0.01223) (0.01248)

ln(rank)5 × 103 -9.863 -0.2010 0.3571 -0.9933 -1.184 -1.419 0.7974 0.009459 0.5591
(0.003199) (0.003213) (0.003280) (0.00456) (0.004209) (0.004108) (0.003195) (0.003208) (0.003274)

Notes: Authors’ calculations of LEHD microdata. Standard errors are in parentheses. Estimates characterize March of each respective year.
All point estimates and standard errors were rounded to four significant digits to conform to U.S. Census Bureau discloure requirements.
The dependent variables employment, establishments, and average establishment size are in logs.
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C.2 Polynomial estimation procedure and results

We now describe the polynomial approximations that allow us to characterize the

distributions of three measures of firm size: total employment, the number of estab-

lishments, and average establishment size. We first ranked firm-level data by each of

these different size measures. Using these ranks, we started with the smallest rank-

ings, and assigned categories based an observation being within percentile ranges.

The ranges are defined as follows.

1. Starting with the lowest, group observations into 1% bins until the 95th per-

centile is reached, for a total of 95 categories.

2. Group observations into 0.5% bins until the 99th percentile is reached, for a

total of 8 categories.

3. Group observations into 0.1% bins until the 99.9th percentile is reached, for a

total of 9 categories.

4. Group the remaining observations into 0.01% bins, for a total of 10 categories.

Using this method creates a total of 122 categories. This method of grouping the

data was meant to provide a balance between generating information that can be

informative about the tails of the distributions that we are interested in, which pro-

tecting the confidentiality of the underlying microdata: even the finest cells have

a relatively large number of observations (e.g., 0.01% × 5 million = 500 observa-

tions). Each bin was assigned its average percentile rank (e.g., the lowest bin has

an average percentile rank of 0.5, the next has an average percentile rank of 1.5,

etc.). Polynomial approximations of our size measures use a transformation of this:

log((100− average percentile)× 1000). The transformation times 1000 was done for

computational reasons, but conceptually is just a simple shift of the intercept because

log((100 − average percentile) × 1000) = log(100 − average percentile) + log(1000).

Fifth-order polynomials of this transformation of the average percentile rank (plus a

constant) serve as regressors for each size measure.

Our dependent variables consist of the lograrithm of each size measure for size in

March of 1995, 2005, and 2014. To avoid approximating the discrete jumps in the
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distribution between small values (1, 2, 3, etc.) a random draw form the interval

[−0.5 0.5] is applied to each observation. Results of these regressions are shown in

Appendix Table A.2.

C.3 Recovering the size distribution from the polynomial ap-

proximations

While our polynomial approximations capture much of the rich features of the under-

lying microdata, they are difficult to immediately interpret. We therefore transform

these polynomial estimates to create tables and figures that highlight important fea-

tures of the underlying microdata. One feature of the data that we wish to highlight

is that our estimation was done on coarsened (discritized) data. There are maximum

and minimum values, and the are discrete values that the independent variable takes.

Another feature of the underlying microdata for our size distribution is that total

employment and the number of establishments are discrete, while our polynomials

are of course continuous. While in practice average establishment size takes values

other than integers, at most points in the distribution there are almost no multi-

establishment firms and so the average establishment size is approximately a step

function, especially for low values. To highlight these features of the data, we round

each size measure after an exponential transformation.

We consider the relationships between employment rank and the number of estab-

lishments and establishment size. In this case, the size measure is not related to its

rank, but to the rank of total employment. This is useful because when the data are so

ranked, log(employment) = log(establishments) + log(establishment size). However,

in this case, rounding no longer captures the salient features of moderate levels of em-

ployment (around employment of 10) where the number of establishments becomes

distinct from zero. To capture these relationships, we fix total employment as the

rounded value of total employment, and we estimate the number of establishments

and average establishment size using Kuhn-Tucker optimization.

Let the log of the unrounded predicted value of total employment be e, the log

number of establishments be p (plants) and the log average size be w (workers per

establishment), both of which will be estimated based on unrounded predicted values
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p̂ and ŵ, respectively. Specifically, we minimize the squared distance between the

estimated value and the polynomial approximation subject to three constraints. First,

total log employment is the sum of the logs of the number of establishments and

workers per establishment, and so e = p + w, and the value of this constraint is µ.

Second, the total log number of plants must be at least one and so p ≥ 0, which has

value λ1. Third, the total log number of workers per plant must be at least one and

so w ≥ 0, which has value λ2. The Kuhn-Tucker problem is now:

min
p,w,µ,λ1,λ2

(p− p̂)2 + (w − ŵ)2 + µ(e− p− w) + λ1p+ λ2w

subject to the inequality constraints p ≥ 0 and e ≥ 0.

At an interior solution, p > 0 and w > 0, and so λ1 = λ2 = 0. In this case,

2(p− p̂) = 2(w − ŵ) and we can substitute the constraint e = p+ w to recover

p =
e+ p̂− ŵ

2

w =
e− p̂+ ŵ

2
.

Otherwise, at least one of the inequality constraints is binding and the solution is

set to minimize the criterion function. In practice, this means that the number of

establishments is set to zero when log total employment is greater than zero and

an interior solution does not hold. The rounded employment counts e∗ are then

used to generate the final estimated number of establishments p∗ and workers per

establishment w∗ according to:

p∗ =e∗ × p

p+ w

w∗ =e∗ × w

p+ w
.
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Figure A.2: Comparison of Polynomial Approximation to Published Establishment
Number Totals for 2005
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Notes: Author’s calculations of Longitudinal Employer-Household Dynamics microdata and
Bureau of Labor Statistics published aggregates.

C.4 Comparison to BLS number of establishments distribu-

tion

Published aggregates from the Bureau of Labor Statistics (BLS) provide an opportu-

nity to benchmark the number of establishments distribution for 2005.33 Figure A.2

compare the approximated values from the LEHD estimation with the BLS published

aggregates on a log-size, log-percentile rank scale. The BLS published aggregates in-

dicate that 95.2% of firms have only one establishment. This implies that the upper

4.8% of the number of establishments distribution has two or more establishments.

The LEHD data suggest that a smaller share of firms, 3.7%, have multiple establish-

ments. The BLS published aggregates indicate that 2.5% of firms have three or more

establishments, while the LEHD data indicate a share of 2.0%. The BLS published

aggregates indicate that 1.8% of firms have four or more establishments, while the

LEHD data indicate a share of 1.4%. The BLS published aggregates indicate that

1.4% of firms have four or more establishments, while the LEHD data indicate a

33Numbers for 2005 Q1 are taken from https://www.bls.gov/bdm/sizeclassqanda.htm (last
accessed: October 4, 2019).
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share of 1.1%. The BLS aggregates also indicate that 0.6% of firms have ten or more

establishments, while the LEHD data indicate a share of 0.5%. Fitting a line to these

five data points provide somewhat different slopes for the log-size, log-rank relation-

ship. The natural explanation for these differences is that our LEHD microdata is

for a 28-state subset, while the BLS published aggregates are national. Despite a

level difference, the slopes are similar. The slope of this relationship is -1.27, while

that of the LEHD using these same five data points is -1.23. The steeper slope of

the BLS published aggregates suggests a somewhat thinner tail. Yet both of these

estimated slopes are close to the slope estimates of -1.15 and -1.21 for the 95th, and

99th percentiles and above, respectively. Results using LEHD data include many

more percentiles for the upper percentiles of the distribution, and so we naturally

prefer these when we target moments for estimation.

D Distributional analyses

D.1 Derivations of Kolmogorov equations in Section 4.1

First note that M̄τ (n) =Mτ (n, 0), therefore (11) is a special case of (13) with q̂ = 0.

To derive the latter, let M̂n,t,q denote the measure of firms with n establishments and

with each establishment having quality of at least q̂Qt. Then

M̂τ (1, q̂; t+ ∆t) = M̂τ

(
1,

q̂

exp ((zτI − ζ)∆t)
; t

)
− (zτX + δτ + dτ )∆tM̂τ

(
1,

q̂

exp ((zτI − ζ)∆t)
; t

)
+ 2δτ∆tM̂τ

(
2,

q̂

exp ((zτI − ζ)∆t)
; t

)
+ µemτ∆tNt

(
1− Φ

(
q̂

exp ((zτI − ζ)∆t)

))
+
∑
τ ′ 6=τ

λτ ′τ∆tM̂τ ′

(
1,

q̂

exp ((zτI − ζ)∆t)
; t

)
−
∑
τ ′ 6=τ

λττ ′∆tM̂τ

(
1,

q̂

exp ((zτI − ζ)∆t)
; t

)

A-7



holds. Subtracting M̂τ (n, q̂; t) from both sides, dividing by ∆t, and take the limit

∆t→ 0, we obtain

∂M̂τ (1, q̂; t)

∂t
= −q̂(zτI − ζ)

∂M̂τ (1, q̂; t)

∂q̂
− (zτX + δτ + dτ )M̂τ (1, q̂; t)

+ 2δτM̂τ

(
2,

q̂

exp ((zτI − ζ)∆t)
; t

)
+ µemτNt (1− Φ (q̂))

+
∑
τ ′ 6=τ

λτ ′τM̂τ ′ (1, q̂; t)−
∑
τ ′ 6=τ

λττ ′M̂τ (1, q̂; t) .

Now Mτ (1, q̂; t) = M̂τ (1,q̂;t+∆t)
Nt

, thus

∂Mτ (1, q̂; t)

∂t
+ ηMτ (1, q̂; t) = −q̂(zτI − ζ)

∂Mτ (1, q̂; t)

∂q̂
− (zτX + δτ + dτ )Mτ (1, q̂; t)

+ 2δτMτ

(
2,

q̂

exp ((zτI − ζ)∆t)
; t

)
+ µemτ (1− Φ (q̂))

+
∑
τ ′ 6=τ

λτ ′τMτ ′ (1, q̂; t)−
∑
τ ′ 6=τ

λττ ′Mτ (1, q̂; t) .

On a stationary BGP, ∂Mτ (1,q̂;t)
∂t

= 0, so we obtain (13) for n = 1. The steps for

deriving (13) for n > 1 is similar. Equation (12) can be derived with similar steps as

Cao and Luo (2017).

D.2 Analysis of distribution in one-type economy in Section

4.2

For the characterization of the distributions, we use the following mathematical

notations: for two strictly positive functions f, g defined over (0, x∗), where x∗ ∈
R∗ ∪ {+∞},

f(x) ∼x→x∗ g(x)

if limx→x∗
f(x)
g(x)

= 1;34 and

f(x) ∝x→x∗ g(x)

34This ∼ notation follows the regular variation literature (Bingham et al. (1987)).
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if f(x) ∼x→x∗ ag(x) for some a > 0. Using this notation, a random variable X defined

over R∗ has a Pareto tail with tail index ξ > 0 if Pr(X > x) ∝x→∞ x−ξ.

In the case with only one type, our model assumptions imply that for a given firm,

the quality (and therefore the size) of each establishment grows at a deterministic rate

zI that is common across all firms. The average quality Q(t) grows at the rate ζ.

Thus, the quality of the establishments in a firm that entered at time t0 and whose

initial draw of the normalized quality is q̂Q(t0) can be represented as (denoting it by

qt0(t))

qt0(t) = q̂Q(t0)ezI(t−t0) = q̂Q(t)e(zI−ζ)(t−t0).

From the labor demand (5) and the labor market equilibrium condition, it is straight-

forward to show that along the balanced-growth equilibrium, the relative labor de-

mand `(t)/L(t) of a particular establishment with quality qt0(t) is equal to qt0(t)/(N(t)Q(t)).

Therefore, the cross-sectional distribution of establishment size at a given time t is

the same as the distribution of q̂e(zI−ζ)(t−t0). Denoting the time-t number of estab-

lishments for a firm that starts at time t0 as nt0(t) (note that nt0(t) is stochastic as

the external innovation is random), the (relative) firm-size distribution follows the

distribution of nt0(t)q̂e
(zI−ζ)(t−t0)/N(t).

For the distribution of establishment sizes, equation (12) becomes

(zI − ζ)q̂
dH̄(q̂)

dq̂
= −(δ + d+ η − zX)H̄(q̂) + µe(1− Φ(q̂)).

Let us use the change of variables p ≡ log(q̂) and H̃(p) ≡ H̄(exp(p)) to rewrite this

equation as

(zI − ζ)
dH̃(p)

dp
= −(δ + d+ η − zX)H̃(p) + µe(1− Φ(exp(p))).

This equation is a first-order ODE that has a general solution:

H̃(p) = e
δ+d+η−zX

zI−ζ
(p−p)H̃(p) +

∫ p

p

e
δ+d+η−zX

zI−ζ
(p̃−p) µe

zI − ζ
(1− Φ(exp(p̃)))dp̃,
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for each p. Taking the limit p→ −∞, and replacing µe with δ + d+ η − zX ,

H̃(p) =

∫ p

−∞
e
δ+d+η−zX

zI−ζ
(p̃−p) δ + d+ η − zX

zI − ζ
(1− Φ(exp(p̃)))dp̃,

which is (14) in the main text.

For the distribution of the number of establishments per firm, (11) becomes

0 = −(zX + δ + d+ η)M̄(1) + 2δM̄(2) + µe (21a)

and

0 = −(n(zX + δ) + d+ η)M̄(n) + (n+ 1)δM̄(n+ 1) + (n− 1)zXM̄(n− 1) (21b)

for n > 1. Luttmer (2011) provides a closed-form solution for {M̄(n)}∞n=1:

M̄(n) =
1

n

µe
zX

∞∑
k=0

1

υn+k

(
n+k∏
m=n

υm

)
n+k∏
m=1

zXυm
δ

, (22)

where the sequence {υn}∞n=0 is defined recursively by υ0 = 0 and

1

υn+1

= 1− zXυn
δ

+
η + d+ zXn

δn
.

The distribution of establishment number is given by a discrete random variable X

with pdf

Pr(X = n) =
M̄(n)∑
n′ M̄(n′)

. (23)

Because we normalize the measure of n-establishment firms by the total number of

establishments N(t),
∑

n nM̄(n) = 1, and thus
∑

n M̄(n) < 1. In Appendix D.3, we

show that when zX > δ, it has a Pareto tail with the tail index given by η+d
zX−δ

, which

is the expression in (16).

We consider the firm size distribution in two cases. In the case where the initial

draw satisfies
∫
q̂dΦ(q̂) = 1, zI = ζ holds. In this case, the random variable for firm

size Z can be written as Z = XY, where X is the number of establishments and Y
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is establishment size in a firm. In the cross section, X and Y are independent and

the cdf of Y is given by Φ. The pdf for X is given by (23).

Therefore, the fraction of firms with size Z(t) ≥ ẑ, denoted by M(ẑ), can be

computed as35

M(ẑ) =

∑
n M̄(n)(1− Φ(ẑ/n))∑

n M̄(n)
.

To determine the tail index of M(·), we consider the Laplace transformation:36

ϕ(s) =

∫ ∞
0

ẑs (−dM(ẑ)) . (24)

Using the expression for M above, we show in Appendix D.3 that

ϕ(s) =

{∫ ∞
0

ẑsdΦ(ẑ)

}{∑
n M̄(n)ns∑
n M̄(n)

}
.

Assuming that the entry distribution Φ has a thin tail and using the characterization

in Proposition 1, we show in Appendix D.3 that

ϕ(s) ∝ 1
η+d
zX−δ

− s

as s ↑ η+d
zX−δ

. Therefore, by the Tauberian theorem in Mimica (2016, Corollary 1.3),

M has a Pareto tail with the tail index given by (16).

The case where zI 6= ζ, i.e.
∫
q̂dΦ(q̂) 6= 1, is more challenging because the dy-

namics of firm size are driven both by the dynamics of the establishment number and

of the dynamics of relative establishment size. This fact implies that when we write

firm size as a product of the number of establishments and average establishment size,

Z = XY, in the cross section, X and Y are correlated, instead of being independent

when zI = ζ. For example, when zX > δ and zI > ζ, over time surviving firms, on

average, have both a higher number of establishments and larger establishments.

To tackle this case, we use the system of differential equations (13). The system

35Another way to obtain this result is to notice that M(n, q̂) = M̄(n)(1− Φ(q̂)) solves (13).
36After a change of variable ẑ = exp(p), the transformation can be re-written in its more familiar

form:
∫∞
−∞ esp (−dM(exp(p))).
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of differential equations (13) for M(n, q̂) simplifies to

(zI − ζ)q̂
dM(1, q̂)

dq̂
= −(zX + δ + d+ η)M(1, q̂) + 2δM(2, q̂) + µe(1− Φ(q̂))

(for n = 1) and

(zI−ζ)q̂
dM(n, q̂)

dq̂
= −(n(zX+δ)+d+η)M(n, q̂)+(n+1)δM(n+1, q̂)+(n−1)zXM(n−1, q̂)

for n > 1. Multiplying both sides of these equations by q̂s−1 and integrating by parts

from 0 to ∞, ∫ ∞
0

q̂s−1M(n, q̂)dq̂ = −1

s

∫ ∞
0

q̂sdM(n, q̂),

we obtain:

−(zI − ζ)sϕ̂(1, s) = −(zX + δ + d+ η)ϕ̂(1, s)− 2δϕ̂(2, s) +

∫ ∞
0

q̂s−1µe(1− Φ(q̂))

(for n = 1) and

−(zI−ζ)sϕ̂(n, s) = −(n(zX+δ)+d+η)ϕ̂(n, s)+(n+1)δϕ̂(n+1, s)+(n−1)zXϕ̂(n−1, s)

for n > 1, where

ϕ̂(n, s) ≡
∫ ∞

0

q̂s(−dM(n, q̂)).

For each s ≥ 0, the equations form a system of difference equations and allow us to

solve for ϕ̂(n, s) for all n ≥ 1 using the closed-form solution from Luttmer (2011)

(with η being replaced by η − (zI − ζ)s). We show in Appendix D.3 that

ϕ̂(n, s) ∝n→∞ n
− d+η−(zI−ζ)s

zX−δ
−1
.

Now, with the solution for ϕ̂(n, s), we can calculate the Laplace transform (24) as

follows:

ϕ(s) =
1∑

n M̄(n)

∑
n

ns
∫ ∞

0

(ẑ/n)s(−dM(n, ẑ/n)) =

∑
n n

sϕ̂(n, s)∑
n M̄(n)

.
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Using the asymptotic property of ϕ̂(n, s) above, we show in Appendix D.3 that if

zX > δ and zX − δ + zI − ζ > 0, ϕ(s) is finite up to s∗ determined by

d+ η − (zI − ζ)s

zX − δ
= s,

or, equivalently,

s∗ = λf ≡ η + d

zX − δ + zI − ζ
.

In addition, we can show that

ϕ(s) ∝s↑s∗
1

s∗ − s
.

Therefore, by the Tauberian theorem in Mimica (2016, Corollary 1.3), M has a Pareto

tail with the tail index given by s∗. See Appendix D.3 for further details.

D.3 Proofs

Proof of Proposition 1.

First, we show that the distribution of establishment sizes has Pareto tail with

the tail index given by (15). We rewrite (14) as

e
δ+d+η−zX

zI−ζ
pH̃(p) =

∫ p

−∞
e
δ+d+η−zX

zI−ζ
p̃ δ + d+ η − zX

zI − ζ
(1− Φ(exp(p̃)))dp̃.

Because Φ has thin tail,

1− Φ(exp(p̃)) < Ae
−2

δ+d+η−zX
zI−ζ

p̃

for some A > 0 and for all p̃ > 0, which implies

a =

∫ ∞
−∞

e
δ+d+η−zX

zI−ζ
p̃ δ + d+ η − zX

zI − ζ
(1− Φ(exp(p̃)))dp̃ <∞.

Therefore

lim
p→∞

e
δ+d+η−zX

zI−ζ
pH̃(p) = a.
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That is, H has Pareto tail with tail index given by (15).

The proof for the distribution of the number of establishments per firm is sub-

stantially more complicated. Here, d+η
zX−δ

> 1 holds. In this Appendix, we provide the

proof for the case d+η
zX−δ

< 2. The proof for the case with higher d+η
zX−δ

is similar but

with much more algebra.

To prove the result, we show a slightly stronger one:

M̄(n) ∝n→∞ n
− d+η
zX−δ

−1
. (25)

To do so we use the probability generating function

P(ω) =
∞∑
n=1

M̄(n)ωn.

The Karamata Tauberian theorem for power series Bingham et al. (1987) allows us

to establish the asymptotic behavior of the cumulative sum of M̄(n) (n→∞) from

the asymptotic behavior of P(ω) (ω → 1) if the latter diverges. However, P(1) = 1

so the theorem does not directly apply. In order to apply the theorem, we need to

work with P ′′(ω). Lemma 1 below provides us with the asymptotic behavior of P ′′(ω)

(ω → 1). By the Karamata Tauberian theorem for power series (Bingham et al., 1987,

Corollary 1.7.3),

n∑
k=0

(k + 2)(k + 1)M̄(k + 2) ∝n→∞ n
2− d+η

zX−δ . (26)

Now we use this result to prove (25).

Differentiating P(ω) with respect to ω, we obtain

P ′(ω) =
∞∑
n=1

M̄(n)nωn−1 =
∞∑
n=0

M̄(n+ 1)(n+ 1)ωn.

This implies

ωP ′(ω) =
∞∑
n=1

M̄(n)nωn
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and

ω2P ′(ω) =
∞∑
n=1

M̄(n)nωn+1 =
∞∑
n=2

M̄(n− 1)(n− 1)ωn.

Therefore

zXP ′(ω)ω2 − (zX + δ)ωP ′(ω) + δP ′(ω)

=
∞∑
n=2

(
zXM̄(n− 1)(n− 1)− n(zX + δ)M̄(n)n+ δM̄(n+ 1)(n+ 1)

)
ωn

− (zX + δ)M̄(1)ω + δM̄(2)2ω + δM̄(1).

Using equalities (21b), the last equation is equivalent to

zXP ′(ω)ω2 − (zX + δ)ωP ′(ω) + δP ′(ω)

=
∞∑
n=2

(d+ η)M̄(n)ωn − (zX + δ)M̄(1)ω + δM̄(2)2ω + δM̄(1)

= (d+ η)P(ω)−
(
(d+ η + zX + δ)M̄(1)− 2δM̄(2)

)
ω + δM̄(1).

Rearranging and regrouping different terms and using (21a), we arrive at

P ′(ω)
(
δ + zXω

2 − (zX + δ)ω
)

= (d+ η)P(ω)− µeω + δM̄(1). (27)

Differentiating both sides twice and rearranging terms we obtain

P ′′′(ω)
(
δ + zXω

2 − (zX + δ)ω
)

= (d+ η + 2(zX + δ)− 4zXω)P ′′(ω)− P ′(ω)2zX − µe.
(28)

Dividing both sides by δ + zXω
2 − (zX + δ)ω and observing that

1

δ + zXω2 − (zX + δ)ω
= − 1

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
, (29)
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we rewrite (28) as

P ′′′(ω) = − (d+ η + 2(zX + δ)− 4zXω)P ′′(ω)
1

zX − δ

(
1

ω − δ/zX
+

1

1− ω

)
+ P ′(ω)2zX

1

zX − δ

(
1

ω − δ/zX
+

1

1− ω

)
+ µe

1

zX − δ

(
1

ω − δ/zX
+

1

1− ω

)
.

Equivalently,

P ′′′(ω) = {− (d+ η + 2(zX + δ)− 4zXω)P ′′(ω) + P ′(ω)2zX + µe}
1

zX − δ

(
1

ω − δ/zX
− 1

1− δ/zX

)
+ {− (d+ η + 2(zX + δ)− 4zXω)P ′′(ω) + P ′(ω)2zX + µe}

1

zX

+ P ′(ω)2zX
1

zX − δ
1

1− ω
+ µe

1

zX − δ
1

1− ω
− 4zXP ′′(ω)

1

zX − δ

+

(
2− d+ η

zX − δ

)
P ′′(ω)

1

1− ω
. (30)

Let Q be defined by

Q(ω) ≡ {− (d+ η + 2(zX + δ)− 4zXω)P ′′(ω) + P ′(ω)2zX + µe}
1

zX − δ

(
1

ω − δ/zX
− 1

1− δ/zX

)
.

It follows that Q(ω) is finite for all ω < 1. Lemma 1 and the fact that

1

ω − δ/zX
− 1

1− δ/zX
= O(1− ω)

imply

lim
ω→1
Q(ω) = 0,

when ω → 1. Therefore, by the Riemann-Lebsegue lemma, the Taylor expansion of

Q(ω)

Q(ω) =
∞∑
n=0

qnω
n
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satisfies

lim
n→∞

qn = 0.

By comparing the power series for both sides of (30), coefficient by coefficient, we

obtain

(n+ 3)(n+ 2)(n+ 1)M̄(n+ 3)

= qn + (d+ η + 2(zX + δ)) (n+ 2)(n+ 1)M̄(n+ 2)− 4zX(n+ 1)M̄(n+ 1) + 2zX(n+ 1)M̄(n+ 1)

+
2zX
zX − δ

n∑
k=0

(k + 1)M̄(k + 1) +
µe

zX − δ
− 4zX
zX − δ

(n+ 2)(n+ 1)M̄(n)

+

(
2− d+ η

zX − δ

) n∑
k=0

(k + 2)(k + 1)M̄(k + 2)

Observing that (n+ 3)(n+ 2)(n+ 1)M̄(n) is the leading term on the right hand side

of the last expression, so (26) implies

(n+ 3)(n+ 2)(n+ 1)M̄(n+ 3) ∝n→∞ n
2− d+η

zX−δ .

This limit is equivalent to (25).

Now (25) together with Lemma 2 yields

Pr(X ≥ n) =
∑
k≥n

M̄(k) ∝ n
− d+η
zX−δ ,

as n→∞.

Lemma 1 Assume d+η
zX−δ

∈ (1, 2), then the second derivative of the probability gener-

ating function satisfies

P ′′(ω) ∝ (1− ω)
d+η
zX−δ

−2

as ω → 1.

Proof. Dividing both sides of (27) and using identity (29), we arrive at

P ′(ω) + P(ω)
d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
=
µeω − δM̄(1)

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
.
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Let

ψ(ω) =

(
ω − δ

zX

1− ω

) d+η
zX−δ

which satisfies

ψ′(ω) =
d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
ψ(ω). (31)

Then the differential equation for P(ω) above can be rewritten as

d

dω
(P(ω)ψ(ω)) = P ′(ω)ψ(ω)+P(ω)ψ′(ω) = ψ(ω)

µeω − δM̄(1)

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
.

Integrating both sides from some ω > δ/zX up to any ω ∈ (ω, 1):

P(ω)ψ(ω) = P(ω)ψ(ω) +

∫ ω

ω

ψ(ω̃)
µeω̃ − δM̄(1)

zX − δ

(
1

ω̃ − δ
zX

+
1

1− ω̃

)
dω̃

= P(ω)ψ(ω) +

∫ ω

ω

ψ′(ω̃)
µeω̃ − δM̄(1)

d+ η
dω̃,

where the second equality is due to (31). Equivalently,

P(ω) =
c

ψ(ω)
+

1

ψ(ω)

∫ ω

ω

ψ′(ω̃)
µeω̃ − δM̄(1)

d+ η
dω̃,

where c = P(ω)ψ(ω) > 0. Integrating by parts, we obtain∫ ω

ω

ψ′(ω̃)
µeω̃ − δM̄(1)

d+ η
dω̃ = ψ(ω)

µeω − δM̄(1)

d+ η
−ψ(ω)

µeω − δM̄(1)

d+ η
−
∫ ω

ω

ψ(ω̃)
µe

d+ η
dω̃.

Therefore

P(ω) =
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)
+
µeω − δM̄(1)

d+ η
−
∫ ω
ω
ψ(ω̃) µe

d+η
dω̃

ψ(ω)
.
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The derivatives can be computed explicitly:

P ′(ω) = −
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)

ψ′(ω)

ψ(ω)
+

∫ ω
ω
ψ(ω̃) µe

d+η
dω̃

ψ(ω)

ψ′(ω)

ψ(ω)

= −
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)

d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
+

∫ ω
ω
ψ(ω̃) µe

d+η
dω̃

ψ(ω)

d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)

and

P ′′(ω) =
c− ψ(ω)µeω−δM̄(1)

d+η

ψ(ω)


(
d+ η

zX − δ

)2
(

1

ω − δ
zX

+
1

1− ω

)2

− d+ η

zX − δ

(
− 1

(ω − δ
zX

)2
+

1

(1− ω)2

)+R(ω)

where

R(ω) =
d+ η

zX − δ

(
− 1

(ω − δ
zX

)2
+

1

(1− ω)2

) ∫ ω
ω
ψ(ω̃) µe

d+η
dω̃

ψ(ω)

−
(
d+ η

zX − δ

)2
(

1

(ω − δ
zX

)2
+

2

(ω − δ
zX

)(1− ω)
+

1

(1− ω)2

) ∫ ω
ω
ψ(ω̃) µe

d+η
dω̃

ψ(ω)

+
d+ η

zX − δ

(
1

ω − δ
zX

+
1

1− ω

)
µe

d+ η
.

Now,

∫ ω

ω

ψ(ω̃)dω̃ =

∫ ω

ω

(
ω̃ − δ

zX

) d+η
zX−δ

(1− ω̃)
− d+η
zX−δ dω̃ =

∫ ω

ω

(
ω̃ − δ

zX

) d+η
zX−δ

d

(
(1− ω̃)

− d+η
zX−δ

+1

d+η
zX−δ

− 1

)

=

(
ω̃ − δ

zX

) d+η
zX−δ (1− ω̃)

− d+η
zX−δ

+1

d+η
zX−δ

− 1

∣∣∣∣∣∣∣∣
ω

ω

−
∫ ω

ω

d+ η

zX − δ

(
ω̃ − δ

zX

) d+η
zX−δ

−1
1

d+η
zX−δ

− 1
(1− ω̃)

− d+η
zX−δ

+1
dω̃

=

(
ω − δ

zX

) d+η
zX−δ (1− ω)

− d+η
zX−δ

+1

d+η
zX−δ

− 1
+ cψ +O(1− ω)

A-19



where

cψ = −ψ(ω)(1− ω)
d+η
zX−δ

− 1
−
∫ 1

ω

d+ η

zX − δ

(
ω̃ − δ

zX

) d+η
zX−δ

−1
1

d+η
zX−δ

− 1
(1− ω̃)

− d+η
zX−δ

+1
dω̃.

So ∫ ω
ω
ψ(ω̃)dω̃

ψ(ω)
=

1− ω
d+η
zX−δ

− 1
+

cψ
ψ(ω)

+ o(1− ω)

Therefore the factor associated with 1
1−ω in R(ω) is(

d+ η

zX − δ
−
(
d+ η

zX − δ

)2
)

1
d+η
zX−δ

− 1

µe
d+ η

+
d+ η

zX − δ
µe

d+ η
= 0.

which implies

R(ω) = O(1) +
cψ

ψ(ω)(1− ω)2

d+ η

zX − δ

(
1− d+ η

zX − δ

)
as ω → 1. So

P ′′(ω) ∼ω→1

(
c− ψ(ω)

µeω − δM̄(1)

d+ η
− cψ

)
d+ η

zX − δ

(
d+ η

zX − δ
− 1

)
1

ψ(ω)(1− ω)2

Notice that

c− ψ(ω)
µeω − δM̄(1)

d+ η
− cψ > ψ(ω)

(
P(ω)− µeω − δM̄(1)

d+ η
+

1− ω
d+η
zX−δ

− 1

)

and

P(ω)− µeω − δM̄(1)

d+ η
+

1− ω
d+η
zX−δ

− 1
=
P ′(ω) (δ + zXω

2 − (zX + δ)ω)

d+ η
+

1− ω
d+η
zX−δ

− 1

=

{
P ′(ω)(δ − zXω)

d+ η
+

1
d+η
zX−δ

− 1

}
(1− ω) > 0,
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when ω is chosen sufficiently close to δ/zX . Thus

c− ψ(ω)
µeω − δM̄(1)

d+ η
− cψ > 0.

Lemma 2 Suppose that

M̄(n) ∝n→∞ n
− d+η
zX−δ

−1
,

then

Pr(X ≥ n) =
∑
k≥n

M̄(k) ∝ n
− d+η
zX−δ .

Proof. There exists a > 0 such that

lim
n→∞

M̄(n)

n
− d+η
zX−δ

−1
.

= a.

Therefore, for any ε > 0, there exists n∗ such that, for all n ≥ n∗

a− ε < M̄(n)

n
− d+η
zX−δ

−1
.
< a+ ε

Combining these inequalities with the definition of Pr(X ≥ n), we obtain, for all

n ≥ n∗

(a− ε)
∑
k≥n

k
− d+η
zX−δ

−1
< Pr(X ≥ n) =

∑
k≥n

M̄(k) < (a+ ε)
∑
k≥n

k
− d+η
zX−δ

−1
.

Notice that ∑
k≥n

k
− d+η
zX−δ

−1
<

∫
k≥n−1

k
− d+η
zX−δ

−1
dk =

zX − δ
d+ η

(n− 1)
− d+η
zX−δ

and ∑
k≥n

k
− d+η
zX−δ

−1
>

∫
k≥n

k
− d+η
zX−δ

−1
dk =

zX − δ
d+ η

n
− d+η
zX−δ .
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Therefore

(a− ε)zX − δ
d+ η

n
− d+η
zX−δ < Pr(X ≥ n) < (a+ ε)

zX − δ
d+ η

(n− 1)
− d+η
zX−δ

As this applies for any ε > 0, we obtain

lim
n→∞

Pr(X ≥ n)

zX−δ
d+η

n
− d+η
zX−δ

= a.

Proofs for Proposition 2. First we derive the expression for ϕ(s) provide in the

main text.

ϕ(s) =

∫ ∞
0

ẑs
−d
∑

n M̄(n)(1− Φ(ẑ/n))∑
n M̄(n)

=

∫ ∞
0

ẑs
∑

n M̄(n)dΦ(ẑ/n)∑
n M̄(n)

=

∫ ∞
0

∑
n M̄(n)ns(ẑ/n)sdΦ(ẑ/n)∑

n M̄(n)

=

{∫ ∞
0

ẑsdΦ(ẑ)

}{∑
n M̄(n)ns∑
n M̄(n)

}
.

Now we prove that

ϕ(s) ∝ 1
η+d
zX−δ

− s
(32)

as s ↑ η+d
zX−δ

. To do so, we use (25) which characterizes the asymptotic behavior of

M̄(n). This result implies that, there exists a > 0 such that: for any ε > 0, there

exists n∗ so that

(a− ε)n−
d+η
zX−δ

−1
< M̄(n) < (a+ ε)n

− d+η
zX−δ

−1

for all n ≥ n∗. Therefore(
η + d

zX − δ
− s
) ∑
n≥n∗

(a−ε)ns−
d+η
zX−δ

−1
<

(
η + d

zX − δ
− s
) ∑
n≥n∗
M̄(n)ns <

(
η + d

zX − δ
− s
) ∑
n≥n∗

(a+ε)n
s− d+η

zX−δ
−1
.
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Notice that(
η + d

zX − δ
− s
) ∑
n≥n∗

n
s− d+η

zX−δ
−1
<

(
η + d

zX − δ
− s
)∫ ∞

n∗−1

x
s− d+η

zX−δ
−1
dx = (n∗ − 1)

s− d+η
zX−δ

and(
η + d

zX − δ
− s
) ∑
n≥n∗

n
s− d+η

zX−δ
−1
>

(
η + d

zX − δ
− s
)∫ ∞

n∗
x
s− d+η

zX−δ
−1
dx = (n∗)

s− d+η
zX−δ

Since(
η + d

zX − δ
− s
)∑

n

M̄(n)ns =

(
η + d

zX − δ
− s
) ∑
n<n∗

M̄(n)ns+

(
η + d

zX − δ
− s
) ∑
n≥n∗
M̄(n)ns,

using the inequalities above and take the limit s ↑ η+d
zX−δ

, we obtain

a− 2ε <

(
η + d

zX − δ
− s
)∑

n

M̄(n)ns < a+ 2ε

for all s ∈ (s∗, η+d
zX−δ

) with s∗ sufficiently close to η+d
zX−δ

. In other words,

∑
n

M̄(n)ns ∝s↑ η+d
zX−δ

1
η+d
zX−δ

− s
.

Because Φ has thin tail
∫∞

0
ẑsdΦ(ẑ) is finite and continuous in s which implies (32).

Proof of Proposition 3. Let ϕ̂(n, s) denote the Laplace transform of M(n, q).

In Subsection 4.2, we derived the difference equations satisfied by ϕ̂(n, s) similar to

the difference equations for M̄(n). Using these difference equations and following the

steps in the proof of Proposition 1, we can show that, there exists a(s) such that

lim
n→∞

n
d+η−(zI−ζ)s

zX−δ
+1
ϕ̂(n, s) = a(s)

and the convergence is uniform in s. Recall that the Laplace transformation for firm
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size distribution can be written as

ϕ(s) =

∑
n n

sϕ̂(n, s)∑
n M̄(n)

,

Armed with this result, we can follow the steps in the proof of Proposition 2 to show

that ∑
n

ϕ̂(n, s)ns ∝ 1

s∗ − s

Using this property and applying Mimica (2016, Corollary 1.3), we obtain the tail

result stated in the proposition.

To derive (18), notice that, by (16),

d+ η = (zX − δ)λne

and by (15)

zI − ζ =
d+ η − (zX − δ)

λe
=

(zX − δ)(λne − 1)

λe
.

Plugging these expression in (17), we obtain

λf =
(zX − δ)λne

zX − δ + (zX−δ)(λne−1)
λe

=
λneλe

λne + λe − 1
.

Inverting the first and the last items, we arrive at (18).

E Derivations

E.1 Output growth

Output growth derives from firm-level investments in internal and external innova-

tions. Thus we examine a decomposition of output growth into the extensive- and

intensive-margin growth rates, η and ζ, at an aggregate level. Using the labor-market-

clearing condition L(t) =
∫
Nt `i(t)di along with firm labor demand in equation (5)
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yields the following expression:

w̄(t)L(t) = (1− β)

(
N(t)Q(t)

A(t)Y (t)
β

1−β

)β

L(t)1−β. (33)

Because the normalized wage w̄(t) does not grow along the BGP, equation (33) implies

a decomposition of output growth into the growth of the intensive and extensive

margins,37

g = η + ζ. (34)

Because final output growth can be decomposed into the extensive and intensive

margins of firm growth, it has a natural interpretation as the aggregate outcome of

disaggregated firm behavior. First, consider the extensive margin. The total number

of establishments of type τ is Nτ (t) ≡MτN(t), where Mτ ∈ [0, 1] is the share of type

τ establishments, and satisfies
∑

τ Mτ = 1. The law of motion for Nτ (t) is

Ṅτ (t) = zτXNτ (t)− (δτ + dτ )Nτ (t) + µemτN(t)−
∑
τ ′ 6=τ

λττ ′Nτ (t) +
∑
τ ′ 6=τ

λτ ′τNτ ′(t).

The first term is the increase in the number of establishments due to external innova-

tion, the second term is the loss of establishments due to exit, the third term accounts

for product entry, and the fourth and fifth terms capture the product-number evolu-

tion due to changes in firm types. On the BGP, Nτ (t) grows at rate η for all τ , and

thus this equation can be rewritten as:38

η = zτX − (δτ + dτ ) + µe
mτ

Mτ

−
∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ

, (35)

37Equation (33) implies the growth relationship γ = η+ ζ − θ− (β/(1− β))g, which is combined
with equation (10) to yield equation (34).

38The growth rate of the total number of establishments can also be written as the weighted sum
of the growth rates of the number of type-τ establishments and the entry rate,

η =
∑
τ

Mτ [zτX − (δτ + dτ )] + µe,

which is found by multiplying Mτ to both sides of (35) and summing over τ .
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Next, consider the intensive margin. Define the average quality of type τ firms as

Qτ (t) ≡
1

Nτ (t)

∫
Nτ (t)

qi(t)di,

where Nτ (t) is the set of actively produced goods by type-τ firms. Further define sτ

as the quality share of type τ firms by

sτ ≡
Nτ (t)Qτ (t)

N(t)Q(t)
, (36)

which satisfies ∑
τ

sτ = 1. (37)

On the BGP, sτ is constant, which implies Qτ (t) has to grow at the same rate as Q(t)

for all types τ .

Finally, using g = η + ζ defines aggregate output growth g as a function of firm-

level innovations and shocks,

g =
[
zτI + zτX − (δτ + dτ )

]
+ µe

mτ

sτ

∫
q̂dΦτ (q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
sτ ′

sτ
. (38)

The first term is the incumbent firms’ contribution to g, the second term characterizes

entrants’ contribution to output growth, and the final terms capture the impact of

changing firm types.39 To derive (38) take the definition of Qτ (t) and express as,

Q̇τ (t)

Qτ (t)
= −Ṅτ (t)

Nτ (t)
+
d
∫
Nτ (t)

qi(t)di/dt∫
Nτ (t)

qi(t)di
. (39)

The first term of the right-hand side is −η. To compute the second term, consider

a discrete time interval ∆t > 0, compute (
∫
Nτ (t+∆t)

qi(t + ∆t)di −
∫
Nτ (t)

qi(t)di)/∆t

39A simpler expression for g can be found by multiplying sτ on both sides of (38) and summing
across τ ,

g =
∑
τ

sτ [zτI + zτX − (δτ + dτ )] + µe

∫
q̂dΦ(q̂).
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and set ∆t → 0. Note that the denominator of the second term is equal to Q(t)N(t).

Because∫
Nτ (t+∆t)

qi(t+ ∆t)di−
∫
Nτ (t)

qi(t)di

= [zτI + zτX ]∆tQτ (t)Nτ (t)− (δτ + dτ )∆tQτ (t)Nτ (t) + µe∆tmτQ(t)N(t)

∫
q̂dΦ(q̂)

−
∑
τ ′ 6=τ

λττ ′∆tQτ (t)Nτ (t) +
∑
τ ′ 6=τ

λτ ′τ∆tQτ ′(t)Nτ ′(t) + o(∆t),

where the first term is the additional quality by internal and external innovation, the

second term is the lost quality by exit, the third term is the gain from entry, and the

fourth and the fifth terms are the loss and gain from the transitions of firm types.

(The higher-order terms are omitted as o(∆t).) Dividing by ∆t and taking ∆t→ 0,

d
∫
Nτ (t)

qi(t)di

dt
= Qτ (t)Nτ (t)

(
zτI + zτX − (δτ + dτ ) + µemτ

Q(t)N(t)
Qτ (t)Nτ (t)

∫
q̂dΦ(q̂)

−
∑

τ ′ 6=τ λττ ′ +
∑

τ ′ 6=τ λτ ′τ
Qτ ′ (t)Nτ ′ (t)
Qτ (t)Nτ (t)

)
.

Therefore, (39) can be rewritten as

ζ = −η+ zτI + zτX − (δτ + dτ ) +µe
mτ

Mτ

Q(t)

Qτ (t)

∫
q̂dΦ(q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Qτ ′(t)Mτ ′

Qτ (t)Mτ

.

Using the definition of sτ and g = η + ζ, we can obtain (38).

F Estimation procedures

F.1 Estimation of parametrized establishment size distribu-

tions

In this Appendix, we describe an estimation strategy for recovering model parameters

from establishment size distributions. We assume that the data is drawn from simple

parametric distributions that are known to fit the actual U.S. data from past studies.

We first estimate these distributions using publicly available data on establishment
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size distributions. The data moments include the Pareto tail index of the establish-

ment size distribution which cannot be inferred directly from publicly available data.

The tail index is crucial for our estimation procedure.

We assume that in year t, the distribution of establishment size in number of

employees (call it l) takes the following form:

Prt(l ≤ l) = G(log l;µet , σ
e
t , λ

e
t ),

for establishment sizes ` = 1, 2, . . . and in years t = 1995, 2014, where G is the CDF

of the convolution between a normal distribution and an exponential distribution (see

Sager and Timoshenko (2019) for more details on this type of distribution):

G(z;µ, σ, λ) ≡ Φn

(
z − µ
σ

)
− e−λ(z−µ)+σ2

2
λ2Φn

(
z − µ− λσ2

σ

)
,

where Φn is the cdf of the standard normal distribution. This distribution flexibly

nests both a normal distribution and an exponential distribution and conveniently

allows for a thick right tail.

We estimate µet , σ
e
t , and λet by targeting the establishment size table published by

the U.S. Bureau of Labor and Satistics’ Quarterly Census of Employment and Wages

(QCEW) for 1995 and 2014 using weighted least square minimization procedure in

Sager and Timoshenko (2019). The estimation yields

µe1995 = 0.3761, σe1995 = 1.5745, λe1995 = 1.5578

and

µe2014 = 0.2823, σe2014 = 1.6642, λe2014 = 1.7531.

We have checked that outcome replicates the BLS-published distribution well. Note

that the establishment size distribution has a tail index that increases over time

(λe2014 > λe1995), indicating that skewness in the establishment size distribution has

declined over time.
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F.2 Computational algorithm

We estimate the model in two steps. In Step 1, we estimate (zHX , z
L
X , λHL, µe,mH ,mL)

using moments related to the number of establishments per firm (Step 1a), and then

we estimate (zHI , z
L
I ,Φ(·)) using moments related to the number of employees per

establishment (Step 1b). In Step 2, we assume functional forms for the cost functions

hτX(·), hτI (·) and estimate the parameters of these functions using the estimates from

Step 1.

Step 1a (Number of establishments per firm): In this step, we choose

(zHX , z
L
X , λHL, µe,mH ,mL)

parameters to target (i) percentiles of the distribution over the number of establish-

ments per firm, (ii) the slope of the upper tail of the distribution, and (iii) the growth

rate of the number of establishments η ≈ 1%. The empirical moments are described

in Appendix C. With two types, (35) becomes

η = zHX − δH − dH + µe
mH

MH

− λHL

η = zLX − δL − dL + µe
mL

ML

+ λHL
MH

ML

.

Together with MH +ML = 1, we have a unique solution for MH ,ML and η.40

Having η, we can use equation (19) to calculate the Pareto-tail index of the distri-

bution of establishment number. We also use (11) to compute the whole distribution

40The solution is derived from the quadratic form,

ML =
−a1 −

√
a21 − 4a0a2

2a0
,

where
a0 = (zHX − δH − dH)− (zLX − δL − dL)

a1 = −(µe(mH +mL) + λHL) + ((zLX − δL − dL)− (zHX − δH − dH))

a2 = µemL + λHL,

and MH = 1−ML. We then obtain η from either type’s version of equation (35).
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of establishment numbers including the fraction of single-establishment firms and

several quantiles beyond the top 99%. Using these model moments, the estimation

minimizes a weighted squared sum between the model and empirical moments.

Step 1b (Establishment size): In this step, we assume type τ entry-size distri-

bution Φτ follows a log-normal distribution with mean %τ and variance ς2
τ so that

Φτ ∼ exp(N (%τ , ς
2
τ )). We choose

(zτI , %τ , ςτ )τ∈{L,H}

and target the distribution of establishment size as well as the average growth rate

of establishment size, ζ = g− η. The empirical moments from the establishment size

distribution include the Pareto tail index and several quantiles. These moments are

computed from the estimated parameterized distribution described in Appendix F.1.

The estimation of the parametrized distributions uses publicly-available BLS data.

In the model, ζ can be computed from (38). The tail index of the establishment

size distribution in the model is given by (20). The whole distribution of establishment

size can be computed by solving (12), and several quantiles are included in the list of

targeted moments. Using these model moments, the estimation minimizes a weighted-

squared-sum distance between the model and empirical moments as in Step 1a.

Step 2 (Recovering endogenous variables): In this step, we use the estimates

from Step 1a and Step 1b, including zτi , τ ∈ {H,L}, i ∈ {X, I}, to quantify the re-

maining model outcomes and allocations. To execute this step, we must parameterize

the innovation-cost functions. We assume the innovation-cost functions take the form

hτi (z) = χτi z
ψ, for τ ∈ {L,H}, i ∈ {X, I}, where ψ > 0. The first-order condition in

(8) implies ψχτi (z
τ
i )ψ−1 = vτ , and hence

−hτi (zτi ) + zτi vτ =

(
1− 1

ψ

)
zτi vτ .
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Substituting this expression in (8) and re-arranging, we arrive at:[
A11 −λHL
0 A22

]
︸ ︷︷ ︸

≡ A

[
vH

vL

]
= π̄

[
1

1

]
,

where

A11 = r −
(

1− 1

ψ

)
(zHX + zHI ) + δH + dH + λHL

and

A22 = r −
(

1− 1

ψ

)
(zLX + zLI ) + δL + dL + λHL.

From the estimates in Step 1a and Step 1b, all the elements of matrix A are known,

including r = ρ + σg and g = η + ζ. Therefore, we can then solve for vH , vL as

functions of π̄: [
vH

vL

]
= π̄A−1

[
1

1

]
.

Now, combining this result with equation (9) and the free entry condition ve = φ, we

obtain

φ = π̄

mH exp
(
−%H +

ς2H
2

)
mL exp

(
−%L +

ς2L
2

) ′A−1

[
1

1

]
.

In other words, φ is uniquely determined as a function of π̄. Given the functional form

for investment cost functions, φ cannot be jointly identified with {π̄, χτX , χτI}τ∈{H,L}
without information that can pin down the level of (appropriately normalized)N(t)Q(t),

because scaling up these parameters by the same proportion would lead to the same

equilibrium investment policies {zτX , zτI }τ∈{H,L} and µe. Due to the lack of such infor-

mation, here, as in Hopenhayn and Rogerson (1993), we choose a value of φ for which

the equilibrium normalized wage w̄ equals 1. It follows from equation (6) that the

equilibrium profit per unit of quality is given by π̄ = β(1− β)(1−β)/β. Therefore, our

identification assumption for φ is that the normalized flow profit is the same between

1995 and 2014, and thus all changes in estimated φ come from the changes in other

estimated parameters of the model, such as zI , zX , λHL, and mH ,mL.
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Table A.3: Moment Fitness

1995 2014

Moments Data Model Data Model

Step 1a: Establishment Number Distribution

Establishment growth rate (η) 0.010 0.010 0.010 0.010
Pareto tail index 1.25 1.25 1.21 1.21

Step 1b: Establishment Size Distribution

Average growth rate (ζ) 0.021 0.022 0.013 0.014
Pareto tail index 1.56 1.56 1.75 1.75

Notes: Estimates using Least-Square Minimization.

Figure 3 shows the model distributions of the number of establishments per firm

match the empirical distributions from the 1995 and 2014 data very well. Further-

more, Figure 4 shows the model distributions of establishment size closely match the

parametrized empirical distributions for 1995 and 2014 data described in Appendix

F.1 (blue solid line), as well as publicly available BLS tabulations of establishment

sizes (red circles). The success of the model along these dimensions has to do with

the existence of fat tails in the data. The model generates fat-tailed distributions en-

dogenously, and therefore the estimation procedure is selecting parameters to match

the general slopes of the Pareto tails in the data. Table A.3 shows the model distribu-

tion closely matches the remaining empirical targets including Pareto-tail estimates

computed from the establishment size and number distributions.
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