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Abstract

We study how regulating data usage impacts innovation in digital markets. Plat-

forms commonly use proprietary data about third-party sellers to inform their own

competing offerings, dampening incentives for innovation. We model this interaction

and characterize how data usage restrictions reshape these incentives. We apply our re-

sults to show that a ban on data usage has an ambiguous impact on innovation dictated

by the thickness of the right tail of demand for new products. We then generalize our

analysis to more flexible regulations controlling when and what data is made available,

showing how each of these additional levers should be used to improve the effectiveness

of regulation. Our results contribute to an ongoing policy discussion regarding compe-

tition in digital markets.
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1 Introduction

The internet has become an important venue for economic transactions, a large fraction

of which take place via dominant digital platforms. In many cases, such platforms act

as both market gatekeepers and participants. For instance, Amazon offers a variety of

its own products on its marketplace under brands such as “AmazonBasics and “Amazon
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Essentials”; Apple offers its own apps alongside third-party offerings via its App Store; and

Meta products compete for advertising spots on Facebook and Instagram.

This blend of vertical and horizontal relations opens the door to potentially anti-competitive

business practices. Existing research has highlighted the possibility of increased marketplace

fees and steering of buyers toward private-label products. In this paper we focus on a less-

studied practice: the use of proprietary market data to target the introduction of competing

products.

This practice has been well-documented in actual marketplaces. Media and legislative

investigations indicate that Amazon has routinely utilized its marketplace data in this

manner.1 On Apple’s digital app store, the practice is similarly commonplace and has been

termed “Sherlocking”.2 The practice has also attracted significant scrutiny from lawmakers

and regulators. The European Commission has issued a preliminary view that Amazon’s

conduct breaches EU antitrust law (European Commission 2020), and the recently-approved

Digital Markets Act explicitly bans the practice.3 A US Congressional investigation has

recommended that both Amazon and Apple’s behavior be classified as anticompetitive (U.S.

House Committee on the Judiciary 2020, p.16). Additionally, the UK’s Competition and

Markets Authority (CMA) has launched an investigation into Facebook’s use of advertiser

data to target competing ads for Facebook Marketplace and Facebook Dating.4

Is this practice harmful? On the one hand, consumers might benefit ex post through

increased product diversity or lower prices; on the other, they may be harmed ex ante if

targeted competition suppresses the development of innovative third-party products. The

potential for such harm is particularly salient in digital markets, which are distinguished

from traditional brick-and-mortar retail by low barriers to entry and the opportunity for

sellers to explore niche markets. Under these conditions, targeted competition saps the

gains from successful exploration and undermines digital markets as proving grounds for

new products.
1See Mattioli (2020), Miranda (2018), and Soper (2016) for media reports, and U.S. House Committee

on the Judiciary (2020, pp.274-282) for the findings of a US Congressional investigation.
2Sherlocking has been observed in, for instance, flashlight and search app categories. See https://

tinyurl.com/2tj3pea9.
3 See article 6(2) of the draft regulation available at https://tinyurl.com/3drtceuu.
4See https://tinyurl.com/4ubf3s49.
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To study this issue, we develop a theoretical framework general enough to accommodate

a variety of digital markets. In our model, an entrepreneur can incur a fixed cost to develop

a new product (innovate). The entrepreneur then sells their product via a platform, who

can develop a competing version of the product (imitate). Innovation is an inherently risky

activity, as demand for the product is uncertain and can be discovered only by selling it.

Once the product is introduced, the platform can observe its demand and choose if and when

to imitate. We assume that the platform can commit to a policy conditioning imitation on

realized demand prior to the entrepreneur’s innovation decision.5

Our main results explore the impact of data regulation on innovation.6 Regulation re-

stricts the platform’s access to third-party seller data, and thereby its ability to condition

imitation on demand. Our methodological contribution is a first-order condition character-

izing innovation under an arbitrary regulation (Theorem 1). This result reveals that data

regulation impacts innovation through two channels. First, it reduces the average profitabil-

ity of imitation by limiting the platform’s ability to target imitation toward products with

high demand. This average demand channel diminishes the total profit that the platform

earns from innovators and encourages it to restrict innovation. Second, regulation alters

the marginal profitability of additional imitation. The directional effect of this marginal

demand channel is ambiguous and could either reinforce, partly offset, or overturn the first

channel, depending on the details of the regulation as well as market conditions.7

We apply this general characterization to analyze specific data regulations. We first

study a total ban on data usage, which prohibits “insider imitation” entirely. This regulation

does not ban vertical integration outright, but instead erects a data firewall between the

platform’s marketplace and product divisions. It forms a natural benchmark because it is

simple to implement, similar to existing legal firewalls in other contexts such as financial

institutions, and appears in recent legislation as well as industry proposals for regulating

online marketplaces.8

5We show that the platform can achieve credibility through a simple, realistic commitment to an overall
budget for imitation. See Section 9.

6We use innovation as a proxy for consumer surplus in markets where innovation is an important source
of consumer welfare relative to competition. See Appendix E for a formal statement of this equivalence.

7Our main results assume that the platform does not adjust its fees in response to data regulation. We
discuss fee adjustment in Section 10.

8 On the legislative side, the recently-adopted Digital Markets Act governing platform competition in the
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We find that the effect of a data ban hinges on the thickness of the right tail of de-

mand for new products. When the demand distribution has a thick right tail, the marginal

demand channel is strongly stimulative and overwhelms the average demand channel, boost-

ing innovation. By contrast, when the right tail of demand is thin, the two channels work

together to stifle innovation. These tail conditions have a natural interpretation in terms of

“experimental” and “incremental” product categories, with the former featuring products

with a large chance of superstar demand while the latter generate mostly products with

middling demand.

We next extend our analysis by allowing the regulator to decide when the platform gains

access to demand data, a novel class of regulatory policies we call data patents. We show

that a sufficiently long data patent always stimulates more innovation than does a data ban.

Moreover, we identify mild regularity conditions on the demand distribution under which

a properly-calibrated data patent stimulates innovation over and above the unregulated

outcome.

Finally, we explore what can be achieved by a regulator with the ability to design

arbitrary data usage restrictions. In this setting, the regulator decides not just when the

platform gains access to data, but additionally what data it can observe. Implementing

such restrictions would entail significant practical challenges as compared to enforcing a

data ban or patent. Nonetheless, we view the unconstrained information design problem as

an important theoretical benchmark tracing the outer envelope of outcomes implementable

through data regulation. We show that an optimal regulation exhibits lower censorship,

releasing data on sufficiently successful products immediately (and without garbling) while

permanently protecting data on unsuccessful products.

Our work contributes to a recent literature modeling competition in vertically-integrated

marketplaces. Existing work has focused on how vertical integration might impact market

outcomes through changes in marketplace fees, downstream product-market competition,

or consumer steering. Papers in this vein include Anderson and Bedre-Defolie (2021), Etro

(2021, 2022), Hagiu, Teh, and Wright (2022), and Kang and Muir (2022). The main regu-

European Union prohibits all use of non-public seller data for competitive purposes (see footnote 3). On the
industry side, Amazon has proposed to settle a pending European Commission lawsuit regarding its use of
third-party seller data by pledging, among other actions, to voluntarily cease using non-public seller data
for five years (https://tinyurl.com/jc8e847z).
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latory question of interest in these papers is whether vertical integration should be allowed

at all.

Our analysis takes vertical integration as given and studies the complementary question

of whether particular data practices facilitated by vertical integration should be regulated.

Miller (2008) and Jiang, Jerath, and Srinivasan (2011) show that regulation can mitigate

hold-up when the platform lacks commitment power to avoid imitating successful products.9

Our paper abstracts from hold-up and identifies circumstances under which data regulation

may nonetheless improve market outcomes.10

Finally, an adjacent literature studies the usage and regulation of consumer data on plat-

forms. See, for instance, Fainmesser, Galeotti, and Momot (2022), Gomes and Pavan (2022),

Hidir and Vellodi (2021), Ichihashi (2019, 2022), and Kirpalani and Philippon (2021). Our

work demonstrates that usage of seller as well as consumer data has important regulatory

implications.

The remainder of the paper is structured as follows. We introduce the model in Section

2 and characterize the platform’s optimal imitation policy in the absence of regulation in

Section 3. Section 4 defines data privacy regulations, and in Section 5 we characterize how

the platform’s optimal imitation policy responds to regulation. In Section 6, study the

impact of a ban on data usage. We then extend our analysis to data patents in Section 7

and to general data privacy regulations in Section 8. We discuss the substantive content of

the commitment assumption in Section 9. In Section 10 we discuss how platform fees might

adjust in response to data regulation. We offer concluding remarks and directions for future

work in Section 11. We collect all proofs of results from the main text in the Appendix.
9As Hagiu, Teh, and Wright (2022) demonstrate, regulation may also be helpful for overcoming hold-up

even when demand is known and data usage plays no role.
10Our economic analysis is complemented by several recent studies of the legal implications of marketplace

data usage. See, e.g., Johnson (2020) and Khan (2017).
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2 Model

2.1 The Environment

Our model is comprised of two players, a platform and an entrepreneur. The platform

publicly commits to an imitation policy, which we discuss further in Section 2.3.11 The

entrepreneur observes the platform’s policy and chooses whether to innovate. If she chooses

not to, the game ends and both players make zero profits. Otherwise, the entrepreneur

pays a fixed innovation cost k > 0 to develop the product, which she then sells over an

infinite, continuous time horizon on a marketplace owned by the platform. At any time,

the platform can choose to imitate the entrepreneur’s product, paying a fixed imitation cost

kP > 0.

We model profits in a flexible, reduced-form manner. Both players share a common

discount rate r > 0. So long as the entrepreneur’s product is the only one present in the

market, she earns a flow of profits rΠM
E (α) > 0, where α is a demand state whose effect

on profits we describe in Section 2.2.1. Meanwhile the platform enjoys a flow of profits

rΠM
P (α) > 0.

Once the platform has introduced an imitating product, the entrepreneur’s flow profits

fall to rΠD
E (α) ∈ (0, rΠM

E (α)), while the platform’s flow profits rise to rΠD
P (α) > rΠD

M (α).

We will refer to ΠM
i (·) and ΠD

i (·) as the monopoly and duopoly profits of each player,

respectively.

Both players maximize the net present value of lifetime profits. If the entrepreneur

chooses to innovate and the platform chooses to imitate at time T, the entrepreneur’s

lifetime profits are

UE = −k + (1− e−rT )ΠM
E (α) + e−rTΠD

E (α),

while the platform’s lifetime profits are

UP = (1− e−rT )ΠM
P (α) + e−rT (ΠD

P (α)− kP ).

11In Section 9 we discuss the extent of commitment required to achieve the platform’s preferred outcome.
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2.2 Uncertainty

Two important forms of uncertainty arise in the model, regarding the demand for a newly

introduced product and the entrepreneur’s cost of innovating.

2.2.1 Demand

We assume that, ex ante, both players view the demand state α for a new product as

uncertain. Prior to introduction of the entrepreneur’s product, they share a common prior

that α ∼ F . We assume that F is continuous and has support on a (possibly unbounded)

interval [α, α] ⊂ R+.12 As soon as a product is introduced, all demand uncertainty is

resolved and α is observed by both players.

We interpret higher demand states as corresponding to a more profitable market for

each player. Specifically, we will assume that profits are linear in demand:

Πs
i (α) = αµs

i

for each player i = P,E and market structure s = M,D, where µs
i > 0 are constants.

Under linear profits, a demand distribution with mean E[α] = A yields average profits Aµs
i

to each firm i in each market structure s. Without loss, we normalize average demand so

that E[α] = 1 and µs
i represent average profits for a given player and market structure. This

normalization in particular implies α > 1 > α.

We let ∆µi ≡ µD
i −µM

i denote the change in a player’s average profits following imitation.

Given our assumptions above, these profit changes satisfy ∆µP > 0 > ∆µE . We further

assume that the platform finds imitation profitable on average:

Assumption 1. ∆µP > kP .

2.2.2 Innovation costs

We assume that, while the entrepreneur observes her innovation cost k prior to deciding

whether to innovate, from the platform’s perspective k is unobserved and uncertain. At the
12We maintain these assumptions to streamline exposition, but they are not essential for our main results.
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time it formulates an imitation policy, the platform believes that k ∼ G, where the distri-

bution function G has support [µD
E , µ

M
E ] and is continuously differentiable on its support.13

We impose the following regularity conditions on G:

Assumption 2. The cost hazard rate G′(k)/G(k) is nonincreasing on [µD
E , µ

M
E ], and

G′(µM
E ) = 0.

The first part of the assumption is a monotone hazard rate condition ensuring that the

platform’s profit function is single-peaked. It is equivalent to log-concavity of G, a property

satisfied by a wide class of standard distributions. The second part of the assumption rules

out the possibility of a corner solution in which the platform prefers not to imitate the

entrepreneur’s product at all.

2.3 Imitation policies

Prior to the entrepreneur’s innovation decision, the platform publicly commits to an imita-

tion policy specifying the time at which it will introduce an imitation product. This policy

cannot condition on the entrepreneur’s innovation cost, which is private information. How-

ever, absent regulation it can condition on the market demand state α, which is observed

by the platform as soon as the entrepreneur’s product is introduced.14 In Section 4, we

formally define how data regulations shape the set of allowed imitation policies.

2.4 Regulator’s Objective

We evaluate data usage regulations through the lens of a regulator concerned with maximiz-

ing consumer surplus, in markets where the welfare generated by entry of new products is

much larger than the additional welfare from platform competition.15 It can be shown that
13The upper bound κ = µD

E on the support of G is without loss, since entrepreneurs with costs above
µM
E do not innovate regardless of the platform’s behavior. The lower bound κ = µD

E on the support
is maintained to avoid corner solutions when characterizing optimal imitation. It could be relaxed to
accommodate entrepreneurs with costs below µD

E without qualitatively changing our results.
14Because the cost of innovation does not impact the entrepreneur’s willingness to be imitated, the platform

does not benefit from offering a menu of imitation policies. It also does not benefit from more general policies
which dynamically adjust when an imitation product is offered, for instance by promising to eventually
withdraw the product depending on demand conditions. See Appendix A for a proof.

15Remarks by scholars and regulators suggest that many digital marketplaces may satisfy this condition.
“Report by the Committee for the Study of Digital Platforms Market Structure and Antitrust Subcommittee”
(2019, pp. 12–13) stresses that innovation is among the most important determinants of consumer surplus.
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in such markets, data regulations which induce more innovation generate greater consumer

surplus. (See Appendix E for a proof.) We will therefore summarize the welfare impact of

a regulation by its effect on the entrepreneur’s rate of innovation, and we will suppose that

the regulator’s objective is to maximize innovation.

2.5 Model Discussion

Our reduced-form approach to modeling profits allows us to capture a range of settings,

while abstracting from the details of parametric models of competition. For instance,

µM
P > 0 might reflect commissions the platform collects from the entrepreneur’s sales, while

∆µP > 0 might capture additional profits the platform collects from its own sales. The

magnitude of the ratio µD
P /(µ

D
E + µD

P ) could reflect consumer willingness to substitute be-

tween the two products, the extent to which the platform can direct demand to its own

product (for instance by biasing search results), and other factors determining the outcome

of competition between the two players. And while we refer to the markets with and without

platform entry as duopoly and monopoly, respectively, total profits under each structure

could embed competition from other third-party products on the platform. Finally, the

platform’s payoffs may reflect not just short-run profits from the current market, but more

general gains from increasing the set of products available on its marketplace, for instance

by attracting a larger customer base.

Our linear payoff structure allows us to study the role of demand uncertainty on in-

novation while holding fixed the average profitability of the market. Much of our analysis

could be generalized straightforwardly to accommodate nonlinear profit functions. However,

comparative statics involving the distribution of demand would become more complex. A

linear structure is also consistent with a microfoundation in which α represents uncertainty

about the size of the market, variable production costs exhibit constant returns to scale,

and the platform charges a proportional fee on sales. (See Appendix B for details.)

The imitation cost bound imposed in Assumption 1 focuses attention on markets in

Similarly, the recently-adopted Digital Markets Act governing platform competition in the European Union
emphasizes “preserving and fostering innovation” on digital platforms as a key regulatory objective (See
paragraphs 4, 25, 32, 57, 59, and 107 of the whereas statement in the draft available at https://tinyurl.
com/3drtceuu).
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which data regulation issues are nontrivial. If it were violated, the platform would refrain

from imitating entirely in the absence of demand data. In particular, a ban on data usage

would maximize innovation. Our analysis can be understood as applying to product cate-

gories in which public data (for instance, sales rank and reviews) has made the platform

optimistic about the average profitability of imitation.

3 Laissez-Faire Outcome

We begin our analysis by studying the platform’s imitation decision absent regulation. In

an unregulated environment, the platform can condition its imitation time T on the de-

mand state α arbitrarily.16 Since an entrepreneur’s profit from innovating decreases in her

innovation cost, every imitation policy induces entrepreneurs with innovation costs below

some innovation threshold κ(T ) to enter.

The platform’s design problem can therefore be analyzed in two steps. First, given a

target innovation threshold κ ∈ [µD
E , µ

M
E ], the platform maximizes profits among all policies

achieving the target. Second, the platform optimizes over the innovation threshold using

the family of optimal imitation policies determined in the first step.

The following lemma solves the first step by characterizing the optimal imitation policy

implementing a given innovation threshold κ.

Lemma 1. For each κ ∈ [µD
E , µ

M
E ], there exists a unique17 optimal imitation policy T ∗(κ)

implementing κ. It satisfies

T ∗(κ) =


0, α ≥ α∗(κ),

∞, α < α∗(κ),

where α∗(κ) is the unique solution on [α, α] to

µM
E +∆µEE[α1{α∗(κ) ≥ α}] = κ

16If the imitation time T is a deterministic function of the demand state, it can be considered a function
from [α, α] to [0,∞]. To allow for policies which additionally condition on the realization of a randomization
device, we will generally leave the dependence of T on α implicit rather than writing T (α).

17Uniqueness is up to zero-probability sets of demand states.
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and is continuous and increasing in κ.

The lemma shows that the optimal imitation policy implementing a given innovation

threshold takes a simple form: The platform imitates immediately in demand states above

a marginal state α∗(κ), and avoids imitating entirely in all other states. This structure is

optimal because the conversion rate of profits

Λ(α) ≡ α∆µP − kP
α|∆µE |

,

which measures how efficiently the platform can convert the entrepreneur’s profits into

its own, is higher when demand is larger. Effectively, the platform can spread its fixed

cost of imitation over a larger profit gain when demand is high, boosting the net return

to expropriating the entrepreneur’s profits through imitation. As a result, the platform

optimally concentrates all imitation in the largest demand states, generating a threshold

imitation structure.18 The marginal demand state α∗(κ) is pinned down by the requirement

that the marginal entrepreneur (with innovation cost κ) makes zero expected profits from

innovating.

Using Lemma 1, the platform’s problem can be reduced to the choice of an optimal inno-

vation threshold. This optimal threshold satisfies a standard first-order condition balancing

the marginal gains from stimulating innovation against the marginal losses from scaling

back imitation:

Proposition 1. The optimal innovation threshold κ∗ satisfies κ∗ ∈ (µD
E , µ

M
E ) and is the

unique solution to the first-order condition

G′(κ)

G(κ)

(
µM
P + (µM

E − κ)Λ(α̂(κ))
)
= Λ(α∗(κ)),

where

α̂(κ) ≡ E[α1{α ≥ α∗(κ)}]
E[1{α ≥ α∗(κ)}]

.

In order to marginally increase innovation, the platform must slightly scale back im-
18This imitation profile is consistent with the empirical finding of Zhu and Liu (2018) that Amazon

introduces private-label products more often in product categories with high sales ranks and prices.
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itation. Lemma 1 proves that it optimally does so in the marginal demand state α∗(κ),

reducing marginal profits extracted from each innovator by the amount Λ(α∗(κ)). On the

other hand, boosting innovation yields marginal profits equal to the baseline profits µM
P gen-

erated by each additional innovator plus net profits from imitation. Since imitation occurs

precisely in states above α∗(κ), the platform’s net imitation profits are (µM
E − κ)Λ(α̂(κ)),

where µM
E − κ are the entrepreneur’s lost profits from imitation, Λ(α̂(κ)) is the conversion

rate of those losses into platform profits, and α̂(κ) = E[α | α ≥ α∗(κ)] is the average de-

mand state conditional on imitation occurring. Note that α̂(κ) ≥ α∗(κ), and so the platform

expropriates profits more efficiently on average than it does at the margin. This distinction

between the average and marginal demand state is a central theme of our analysis and will

determine the impact of a data regulation on innovation.

The first-order condition provides a necessary condition for optimality supposing that

the optimum is interior. In our setting Assumption 2 ensures that it is additionally sufficient.

Specifically, the monotone hazard rate condition on innovation costs ensures that the slope

of the platform’s profit function crosses zero at most once, while the boundary condition

on G′ ensures that the slope is negative for sufficiently large κ. Since profits are zero at

κ = µD
E (in which case no entrepreneurs innovate), profits cannot be optimized at the lower

boundary, ensuring a single solution to the first-order condition which characterizes the

optimal innovation threshold.

4 Data Regulations

We now formally define the class of data regulations we study.

4.1 Data Privacy Policies

We allow the regulator to influence the platform’s imitation decision by restricting its ac-

cess to information about demand for the entrepreneur’s product. Formally, the platform

may enforce a data privacy policy D (or “data policy” for short) specifying a filtration

F(D) = (F(D)t)t≥0 of the probability space (R+,L (R+), F ) supporting the random vari-

able α. Under the data policy D, the platform may condition its imitation decisions only
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on information about α available under F(D). Informally, a data policy specifies the flow

of information made available to the platform over time.

Our notion of data privacy policies embeds two key assumptions. First, the platform

cannot be forced to forget any information it has earlier been given. And second, it cannot be

blocked from imitating entirely. Data privacy policies are therefore not arbitrary restrictions

on the space of implementable imitation policies. Rather, they constrain only the platform’s

ability to condition its imitation time on α.19

Under a given data policy D, any deterministic imitation policy chosen by the platform

must be an F(D)-stopping time. We additionally allow the platform to commit to random-

ized policies which condition on a randomization device independent of α. The full set of

imitation policies permitted under D is therefore the set of stopping times with respect to

the information about α permitted under D along with the realization of the randomization

device. We will denote the set of permissible policies T (D).

Examples of possible data privacy policies include:

• The laissez-faire policy DLF , defined by F(DLF )t = L (R+) for all t. Under this policy,

which is equivalent to the unregulated environment studied in Section 3, the platform

observes the exact value of α at all times.

• A data ban DDB, defined by F(DDB)t = {R+, ∅} for all t. Under this policy, the

platform learns nothing about α.

• A data patent DP (TP ) of length TP , defined by F(DP (TP ))t = {R+, ∅} for all t < TP

and F(DP (TP ))t = L (R+) for all t ≥ TP . Under a data patent, the platform learns

the value of α only at the patent expiration time TP , and receives no information

about demand prior to this time.

4.2 Why Regulate Data?

Data privacy policies constitute a broad, flexible category of regulations. However, as noted

above, they are not all-encompassing. In particular, data policies do not nest traditional
19In particular, data policies cannot implement blanket patents which block imitation entirely. See Section

4.2 for a further discussion of the relationship between data regulation and patent law.
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intellectual property patents, which directly restraint the platform’s ability to imitate novel

designs. Nonetheless, we see several compelling reasons to study data regulations.

First, as previously discussed, restrictions on platform usage of seller data have been

proposed by practitioners and have recently been adopted by the European Union (see

footnote 8). Since data regulations are being implemented in practice, it is important to

understand their implications for market outcomes, regardless of the available alternatives.

Second, they represent an attractive alternative to strengthening traditional intellectual

property protections. One reason is that data regulations are by nature targeted to reach

the digital markets at issue. Conversely, extending patent protections would simultaneously

impact a variety of unrelated markets. Another reason is that competition on many digital

markets is inherently asymmetric: A dominant platform can bias outcomes toward even

imperfect substitutes through, for instance, self-preferencing in search results and product

recommendations. As a result, patent protections restraining introduction of closely related

products may not effectively protect innovators in digital markets. Data regulations address

this novel problem by restricting the platform’s ability to target particular products for

competition.

5 Regulated Outcome

We now generalize the analysis of Section 3 to account for restrictions on the platform’s

freedom to pursue “insider imitation”. Theorem 1, the main methodological development of

the paper, derives a first-order condition characterizing optimal innovation under any given

data privacy policy. In later sections, we will deploy it as a tool for analyzing specific data

regulations.

5.1 Cost Minimization

Unlike in the laissez-faire benchmark, the optimal imitation policy implementing a given

κ cannot be explicitly derived in general.20 Nonetheless, the total cost to the platform of

implementing a given innovation threshold κ, measured by its expenditure of fixed imitation
20Regardless of the data privacy policy, any κ in the range [µD

E , µM
E ] is implementable, since the set of

imitation policies which do not condition on demand spans this range.
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costs, can be partly characterized. This cost turns out to be the sole feature of an optimal

imitation policy needed to characterize the platform’s optimal innovation threshold.

Given a data privacy policy D and imitation policy T ∈ T (D), the platform’s expected

profits are

UP (T ) = G(κ)
(
µM
P +∆µPE

[
αe−rT

]
− kPE

[
e−rT

])
.

Any policy which implements innovation threshold κ must additionally satisfy the marginal

entrepreneur’s participation constraint

µM
E +∆µEE

[
αe−rT

]
= κ,

making her indifferent between innovating or not. This constraint pins down the quantity

E
[
αe−rT

]
, and so maximizing UP subject to an innovation target is equivalent to minimizing

E
[
e−rT

]
. An optimal imitation policy therefore solves the cost-minimization problem

inf
T∈T (D)

E
[
e−rT

]
s.t. E

[
αe−rT

]
=

µM
E − κ

|∆µE |
.

Letting T ∗(κ;D) be any optimal innovation policy, we will define

C(κ;D) ≡ E
[
e−rT ∗(κ;D)

]
to be the platform’s cost function.21 The cost function captures the minimal frequency of

imitation E[e−rT ] required for the platform to extract a given revenue through imitation. As

data regulations tighten, the platform’s costs increase due to its diminished ability to target

imitation toward products with strong demand (which yield a higher profit conversion rate,

as discussed in Section 3).

The following lemma establishes that C is a monotone, convex function of the innova-

tion threshold lying between certain bounds. Since C is convex, its left- and right-hand

derivatives exist everywhere, which we will denote by C ′
− and C ′

+.

Lemma 2. Given any data privacy policy D, the cost function C(·;D) is decreasing, convex,
21In case no optimizer exists, we will define C(κ;D) more generally to be the minimized value of the

objective.
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and continuous. It additionally satisfies C(µD
E ;D) = 1, C(µM

E ;D) = 0, and

C(κ;DLF ) ≤ C(κ;D) ≤
µM
E − κ

|∆µE |

for all κ.

Monotonicity of the cost function reflects the fact that higher innovation thresholds

require less imitation to implement, while convexity reflects the platform’s ability to use

randomized imitation policies to implement intermediate thresholds. Both the lower and

upper bounds on the cost function are tight: The lower bound is achieved under the laissez-

faire regime, while (as we will show in Section 6) the upper bound is achieved under a

complete ban on data usage.

5.2 Optimal Innovation

Using the cost function, we can generalize the analysis of Section 3 to accommodate the

restrictions imposed by a data privacy policy. The platform’s optimal profits from imple-

menting a given innovation threshold are

UP (κ;D) = G(κ)

(
µM
P +∆µP

µM
E − κ

|∆µE |
− kPC(κ;D)

)
.

The following theorem establishes that the unique maximizer of this function satisfies a

first-order condition analogous to the one reported in Proposition 1, under an appropriate

generalization of the concepts of average and marginal imitated demand. It is the main

methodological development of our analysis.

Theorem 1. Given a data privacy policy D, the platform’s optimal innovation threshold

κ∗(D) satisfies κ∗(D) ∈ (µD
E , µ

M
E ) and is the unique solution to the first-order condition

Λ(α∗
+(κ;D)) ≥ G′(κ)

G(κ)

(
µM
E + (µM

E − κ)Λ(α̂(κ;D))
)
≥ Λ(α∗

−(κ;D)),

where

α̂(κ;D) ≡
µM
E − κ

|∆µE |C(κ;D)
, α∗

±(κ;D) ≡ 1

∆µEC ′
±(κ;D)
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are each positive and nondecreasing, and α̂(κ;D) ≥ max{α∗
±(κ;D), 1} for all κ ∈ (µD

E , µ
M
E ).

As in the laissez-faire benchmark, the optimal innovation threshold is determined by

a tradeoff between the marginal profits of additional imitation and the marginal losses of

reduced innovation by the entrepreneur. (Also as in that benchmark, Assumption 2 en-

sures that the first-order condition has a unique solution which characterizes the optimum.)

Both of these quantities are controlled by the platform’s ability to extract profits through

imitation, as dictated by the cost function and its slope.

The quantity α̂(κ;D) functions as the effective average (imitated) demand, while α∗(κ;D)

functions as the effective marginal (imitated) demand.22 It can be shown straightforwardly

that α̂(κ;DLF ) = α̂(κ) and α∗(κ;DLF ) = α∗(κ), where α̂(κ) and α∗(κ) are as defined in

Section 3. Thus the effective average and marginal demands are a generalization of the

average and marginal demands defined in the laissez-faire benchmark, and the first-order

condition in Theorem 1 is a generalization of its unregulated analog in Proposition 1.

The effective average demand can be more directly connected to its unregulated analog

by using the marginal entrepreneur’s participation constraint to rewrite it as

α̂(κ;D) =
E[α exp (−rT ∗(κ;D))]

E[exp (−rT ∗(κ;D))]
.

Therefore, as in the laissez-faire setting, the effective average demand is the proportion of

demand appropriated by imitation, conditional on imitation occurring. However, unlike in

the laissez-faire case, the effective marginal demand cannot be interpreted as the threshold

demand state used to compute average imitated demand. Under a general data policy, the

effective marginal demand instead captures the demand state in which imitation is reduced

in order to implement a slightly higher innovation threshold.

5.3 Marginal versus Average Demand

Theorem 1 identifies two general channels shaping innovation under a data regulation. The

first channel reflects the regulation’s impact on the effective average demand. Recall that
22Since C may exhibit kinks, the marginal imitated demand may differ depending on whether the platform

is contemplating increasing or decreasing imitation. At a kink, α∗
+(κ;D) > α∗

−(κ;D). Otherwise, the two
quantities coincide. Whenever C is differentiable, we will write α∗(κ;D) for this common value.
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Lemma 2 established the lower bound C(κ;D) ≥ C(κ;DLF ) for the regulated cost function.

It follows immediately that α̂(κ;D) ≤ α̂(κ). That is, the effective average demand must fall

under the regulation. Intuitively, regulation reduces the efficiency of imitation and make it

more costly (in the form of increased expenditure on fixed imitation costs) to appropriate a

given amount of profit from each entrepreneur. This channel makes admission of additional

entrepreneurs less profitable and pushes toward a lower optimal innovation threshold.

In addition to diminishing effective average demand, regulating data usage also changes

the effective marginal demand. Unlike the average demand channel, this marginal demand

channel has an ambiguous impact on innovation. Indeed, as the following lemma establishes,

under any nontrivial data regulation the directional impact of the marginal demand channel

varies with κ. To identify the net effect of a data regulation, we must therefore identify its

sign near κ = κ∗(D).

Lemma 3. Fix a data regulation D and a κ for which C(κ;D) > C(κ;DLF ). Then

there exist κ′ < κ and κ′′ > κ at which C is differentiable and α∗(κ′;D) < α∗(κ′) while

α∗(κ′′;D) > α∗(κ′′).

6 Should Data Be Available?

We now apply our general characterization of how data regulation impacts innovation to

assess concrete interventions. In this section we consider the simplest possible regulation:

a complete ban on the use of marketplace data. (This regulation is also of applied interest,

as discussed above.) In Section 6.1 we characterize the platform’s optimal imitation policy

under a data ban, and in Section 6.2 we compare this outcome to the unregulated one.

Our main result is a set of sufficient conditions on the right tail weights of the demand

distribution under which a data ban increases or decreases innovation.

6.1 Innovation Under a Ban

Under a data ban, the platform is completely barred from insider imitation. Formally, this

restriction amounts to the requirement that the platform’s imitation policy be independent

of α. We will denote this regulatory regime by DDB.
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In this setting, the cost function C(κ;DDB) (as defined in Section 5) can be calculated

in closed form. Indeed, when T and α are independent, the normalization E[α] = 1 allows

the marginal entrepreneur’s participation constraint to be written

E[e−rT ] =
µM
E − κ

|∆µE |
,

which pins down the cost of any imitation policy satisfying the participation constraint. It

can be satisfied by, for instance, a deterministic imitation time or randomization over T = 0

and T = ∞. Therefore

C(κ;DDB) =
µM
E − κ

|∆µE |
.

This result implies in particular that a data ban generates a cost function saturating the

upper bound derived in Lemma 2.

Under this cost function, the average and marginal imitated demands can be calculated

straightforwardly as α̂(κ;DDB) = α∗(κ;DDB) = 1. Simply put, when imitation cannot

condition on demand, profits are extracted evenly across all demand states both on average

and at the margin. Theorem 1 therefore implies that the optimal innovation threshold

κ∗(DDB) is the unique solution to the first-order condition

G′(κ)

G(κ)

(
µM
P + (µM

E − κ)Λ(1)
)
= Λ(1).

Applying the insights developed in Section 5, the effect of a data ban can be decomposed

into two channels. By lowering the average imitated demand, a ban tends to suppress

innovation. Meanwhile by changing the marginal imitated demand, it may either suppress or

stimulate innovation. Recall from Lemma 1 that in the absence of regulation, the marginal

demand state α∗(κ) is increasing in κ and satisfies α∗(µD
E ) = 0 and α∗(µM

E ) = ∞. Hence

for sufficiently small κ, the marginal demand channel suppresses imitation, while for large

κ the channel is stimulative.23

23A data ban is therefore an example of a policy where the direction of the marginal demand channel
changes exactly once with κ. The lower bound on the possible number of switches derived in Lemma 3 is
therefore tight.

19



6.2 When Does a Ban Stimulate Innovation?

To determine whether a data ban stimulates or suppresses innovation, we must identify

whether the marginal demand channel is sufficiently stimulative to overcome the suppressive

effect of the average demand channel. We now link the direction and magnitude of the

marginal demand channel to the weight of the right tail of the demand distribution, following

which we provide sufficient conditions on tail weights under which a data ban raises or lowers

innovation.

We first formally classify demand distributions according to the direction and (if the

effect is stimulative) magnitude of the marginal demand channel under a data ban.

Definition 1. Given α† > 1, a demand distribution F is α†-experimental if α∗(κ∗(DDB)) ≥

α†. It is incremental if α∗(κ∗(DDB)) ≤ 1.

These definitions identify whether the (unregulated) marginal demand state inducing a

particular level of innovation lies to the left or right of average demand (which recall we

normalize to 1). The level of innovation used as a reference point is that arising under a

data ban, which as we will show shortly is the right one for assessing the impact of a ban.

Under an incremental demand distribution, the marginal demand state is below the

mean, corresponding to product categories in which innovation is sensitive to returns when

demand is mediocre. For such distributions, the marginal demand channel works to sup-

press innovation. By contrast, under an α†-experimental demand distribution, the marginal

demand state lies above α†, corresponding to product categories in which innovation is sen-

sitive to returns when demand is strong. For such distributions, the marginal demand

channel works to boost innovation, with the magnitude of the effect scaling with α†.

The terms “experimental” and “incremental” are meant to be deliberately evocative

of relevant real-world market conditions. Product categories in which innovation is sen-

sitive to returns at demand states below the mean are naturally “incremental”, in that

entrepreneurs are focused mostly on their profits when their product performs passably.

By contrast, categories in which innovation is sensitive to returns at demand states above

the mean (potentially far above if α† is large) are naturally “experimental” in the sense that

entrepreneurs are focused on the potential for their products to generate superstar returns.
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To provide a practical method for determining whether a product category is experi-

mental or incremental, we next establish that these properties hold whenever a sufficient

portion of the total mass of demand lies in the right or left tail, respectively.

Lemma 4. Fix all model parameters except the demand distribution F . There exists an

M ∈ (0, 1) (independent of F ) such that:

• F is incremental if and only if

∫ 1

α
αdF (α) ≥ 1−M.

• F is α†-experimental for α† > 1 if and only if

∫ α

α†
αdF (α) ≥ M.

We are now ready to state our main result regarding the impact of a data ban. We

establish that a data ban reduces innovation for any incremental product category, and it

conversely boosts innovation for any sufficiently experimental product category.

Proposition 2. Fix all model parameters except the demand distribution F.

1. If F is incremental, then κ∗ > κ∗(DDB).

2. There exists a demand state α† > 1 (independent of F ) such that if F is α†-experimental,

then κ∗ < κ∗(DDB).

This result echos the general observation in Section 5 that data regulation impacts in-

novation through a combination of marginal and average demand channels. If marginal

demand at κ∗(DDB) in the absence of regulation is less than 1, then marginal demand

rises under a ban (recall that α∗(κ;DDB) = 1) and both channels work to suppress innova-

tion. Hence all incremental product categories experience less innovation under a ban. By

contrast, if marginal demand is sufficiently large absent regulation, the marginal demand

channel overwhelms the average demand channel and innovation rises under a ban.
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Note that this result is not a full characterization of when a data ban increases or

decreases innovation. In particular, it is silent on the impact of a data ban for demand dis-

tributions which are only marginally experimental. This is because for such distributions,

the impact of a data ban is sensitive to the dispersion of demand, for instance as measured

by second-order stochastic dominance. When demand is concentrated around the mean, a

data ban can be shown to have an ambiguous impact on innovation even for experimental

product categories. (See Appendix C for a demonstration.) The hypothesis that the de-

mand distribution is sufficiently experimental can be informally understood as imposing a

combination of enough mass in the right tail and sufficient dispersion.

Finally, while right tail weight and the traditional second-order stochastic dominance

dispersion measure are not entirely independent conditions, these two measures of spread

are not in general equivalent. In Appendix D we demonstrate by a series of examples that

increased dispersion can either increase or decrease particular right tail weights, and vice

versa. Our analysis therefore uncovers a novel summary statistic of uncertainty which is

useful for predicting market outcomes.

7 When Should Data Be Available?

We next analyze a more flexible class of data regulations allowing the regulator to control

not just whether the platform can access marketplace data, but additionally when this data

becomes available. We will refer to this class of regulations as data patents.

In Section 7.1 we characterize the impact of a data patent on innovation, and we demon-

strate that sufficiently stringent (but still limited) data patents are guaranteed to outper-

form a permanent data ban. In Section 7.2 we additionally show that under mild regularity

conditions, a properly calibrated data patent boosts innovation over the laissez-faire level.

7.1 Innovation Under A Data Patent

A data patent DP (TP ) prohibits the platform from accessing data on new products for a

specified patent length TP . Note that the class of data patents nests a data ban as a special

case, since a data ban corresponds to a data patent with patent length TP = ∞.
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We first characterize how the platform optimally implements a target innovation thresh-

old under DP (TP ). A distinctive aspect of optimal imitation in this environment is that,

for small κ, the platform optimally commits to a randomized imitation time.

Lemma 5. Suppose the regulator imposes a data patent of length TP ∈ [0,∞). There exists

an innovation cost threshold κ̄(TP ) ∈ [µD
E , µ

M
E ) such that:

• If κ ≥ κ̄(TP ), the platform’s unique optimal imitation policy is

T ∗(κ;DP (TP )) =


TP , α ≥ α∗(κ;DP (TP ))

∞, α < α∗(κ;DP (TP ))

where α∗(κ;DP (TP )) is the unique solution on [α, α] to

µM
E + e−rTP

∆µE

∫ α

α
α′ dF (α′) = κ

• If κ < κ̄(TP ), the platform’s unique optimal imitation policy is

T ∗(κ;DP (TP )) =


0 w.p. ρ(κ;TP )

T ∗(κ̄(TP );DP (TP )) w.p. 1− ρ(κ;TP )

where ρ(κ;TP ) ∈ (0, 1] is the unique solution to

ρµD
E + (1− ρ)κ̄(TP ) = κ.

κ̄ is continuous, increasing, and satisfies κ̄(0) = µD
E and limTP→∞ κ̄(TP ) = µM

E .

Randomization arises because the cost of an optimal deterministic imitation policy is

non-convex in κ. For large κ, the platform can implement the target innovation threshold

by deferring all imitation until the data patent expires and then selectively imitating in high

demand states. For small κ, however, even unconditional imitation upon patent expiration

induces too much innovation. In that case, the only feasible deterministic policy achieving

κ involves unconditional imitation at a time prior to TP .
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This qualitative change in imitation behavior generates a concave kink in the cost of

the optimal deterministic imitation policy. Lower costs can therefore be achieved for small

values of κ by using randomization to convexify the cost function, as demonstrated in

Figure 1. One important property of the randomization threshold κ̄ is that it increases

with the patent length, indicating that randomization is used for a wider range of innovation

thresholds as the patent length grows.

κ

Cost

κ̄
ρ > 0 ρ = 0

Figure 1: Constructing the cost function under a data patent. The solid black line denotes
costs under the best deterministic policy, while the red line denotes the cost function.

Using the form of the platform’s cost function plus the first-order condition of Theorem

1, we can partly characterize how the platform’s optimal innovation threshold varies with

the patent length. This characterization allows us to compare the performance of data

patents and a data ban.

Proposition 3. κ∗(DP (TP )) is decreasing in TP for sufficiently large TP , and additionally
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limTP→∞ κ∗(DP (TP )) = κ∗(DDB).

This result is a consequence of the fact that the randomization regime of the platform’s

cost function expands to include the optimal innovation threshold when the patent is suffi-

ciently long. For this portion of the cost function, increases in TP lead to lower effect average

demands and higher effective marginal demands, encouraging lower innovation thresholds.

As a result, κ∗(DP (TP )) is decreasing in TP for long patents.

In the limit as TP → ∞, the cost function converges to the one arising under a data

ban, implying as a consequence that κ∗(DP (TP )) approaches κ∗(DDB). It can be shown

that the associated optimal imitation policy, meanwhile, converges to a randomized policy

which imitates immediately with probability ρ = (µM
E −κ∗(DDB))/|∆µE | and refrains from

imitating at all otherwise. (See Proposition F.1 in the Appendix.) This limiting policy

represents one extreme of the spectrum of optimal policies under a data ban discussed in

Section 5.

7.2 When Does a Data Patent Stimulate Innovation?

One important implication of Proposition 3 is that a sufficiently long data patent always

improves on an outright data ban. However, it doesn’t guarantee that data patents can

improve on the unregulated outcome in settings where a data ban reduces innovation. We

now show that under mild regularity conditions, sufficiently short data patents stimulate

innovation.

Let Â(α′) ≡ E[α | α ≥ α′] be average demand conditional on exceeding a threshold

state α′. The quantity Â(α) is closely analogous to the (unregulated) average demand state

α̂(κ) characterized in Proposition 1, but taken as a function of the marginal demand state

rather than the induced demand threshold. The two notions are linked via the identity

Â(α∗(κ)) = α̂(κ).

Proposition 4. Suppose that Λ(α)/Λ(Â(α)) is non-decreasing in α. Then κ∗(DP (TP )) is

single-peaked and is increasing in TP for sufficiently small TP .

Under the regularity condition imposed in the proposition, sufficiently short data patents

improve on the unregulated outcome. Further, single-peakedness of κ∗(DP (TP )) plus the
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result of Proposition 3 imply that if κ∗(DDB) ≥ κ∗, then any data patent improves innova-

tion relative to the unregulated benchmark. Otherwise, sufficiently short data patents are

stimulative, while long data patents harm innovation.

To understand this result, recall from Section 5 that, all else equal, raising the effective

marginal demand induces more imitation by the platform. Increasing the length of the data

patent turns out to decrease the effective marginal demand at a given innovation threshold,

since delaying imitation increases the entrepreneur’s profits and so imitation must occur in

more demand states to compensate. This force tends to reduce imitation as the patent length

increases. However, increasing the patent length also reduces effective average demand for

the same reason, making exclusion of marginal entrepreneurs less costly and opposing the

first force. The bound derived in Proposition 4 ensures that the first force dominates the

second.

The requirement Λ(α)/Λ(Â(α)) is non-decreasing amounts to a growth rate bound on

Â(α), which must not grow too much faster than α. We conclude our analysis by show-

ing that this bound is satisfied by a number of common distributional families under any

parameterization consistent with E[α] = 1.

Lemma 6. Λ(α)/Λ(Â(α)) is non-decreasing in α if F follows a uniform, lognormal, Pareto,

or gamma distribution.

8 What Data Should Be Available?

We now give the regulator complete freedom to design a data policy and explore what can

be achieved by tailoring what data is made available to the platform. We find that an

optimal policy does not delay access to information, in contrast to the data patents studied

in Section 7, but does selectively censor data on small markets.

More precisely, we show that there exists an optimal data regulation in the class of

lower censorship policies DC(αC), which immediately disclose the demand state provided it

exceeds some censorship threshold αC and otherwise provide no information about demand

at any time. Formally, a lower censorship policy with censorship threshold αC corresponds

to the filtration F(DC(αC))t = σ(L ([αC ,∞)) ∪ {[0, αC)}) for all t.
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The following result establishes that every data privacy policy D can be weakly improved

through lower censorship.

Lemma 7. Fix any data privacy policy D. Then there exists an αC ∈ [α, α] such that

κ∗(DC(αC)) ≥ κ∗(D).

We prove this result by calibrating the lower censorship threshold αC so that, by imi-

tating in all demand states above αC , the platform induces the innovation threshold κ∗(D).

For this choice of αC , the platform incurs the same cost of implementing κ∗(D) as under

the laissez-faire policy. Since this cost is the lowest achievable under any data policy (recall

Lemma 2), the effective average demand at κ∗(D) must be weakly higher under DC(αC)

than under the original data policy. Simultaneously, this choice of αC makes the cost func-

tion as steep as possible to the left of κ∗(D), reducing the effective marginal demand at

κ∗(D) relative to the original policy. Figure 2 demonstrates this result graphically. As

discussed in Section 4, raising effective average demand and lowering effective marginal de-

mand both stimulate innovation. The optimal innovation threshold under this censorship

threshold must therefore weakly exceed κ∗(D).

Lemma 7 dramatically simplifies the search for an optimal data privacy policy by confin-

ing attention to the one-dimensional space of lower censorship policies. The following result

characterizes the optimal censorship threshold and the corresponding maximum achievable

quantity of innovation.

Proposition 5. There exists a unique solution κ̄∗ ∈ (κ∗, µM
E ) to the equation

G′(κ)

G(κ)

(
µM
E + (µM

E − κ)Λ(α̂(κ))
)
= Λ(α∗(κ)),

where

α∗(κ) ≡
(
∆µE

C(κ;DLF )− 1

κ− µD
E

)−1

.

This solution satisfies κ̄∗ ≥ κ∗(D) for every data privacy policy D, and the censorship

threshold αC∗ ≡ α∗(κ̄∗) satisfies κ̄∗ = κ∗(DC(αC∗)). Under the data privacy policy DC(αC∗),

the platform optimally imitates immediately when α ≥ αC∗ and never imitates otherwise.

The proof of this proposition leverages a key property of the censorship threshold char-
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κ

Cost

κ∗(D)

Figure 2: Constructing an improving lower censorship policy. C(·;D) is solid black,
C(·;DLF ) is dashed black, and C(·;DC(αC)) is red. αC is calibrated so that C(·;DC(αC))
is kinked at κ = κ∗(D).

acterized in the proof of Lemma 7: It is calibrated so that the platform optimally imitates

only in states at or above the threshold. As a result, attention can be restricted not just

to lower censorship policies, but to those which persuade the platform not to imitate in

censored demand states. This requirement implies an incentive-compatibility constraint

which becomes more demanding as the censorship threshold rises and the average censored

state improves. The optimal censorship threshold αC∗ makes the platform just indifferent

between imitating in censored states or not. It maximizes the amount of innovation which

can be generated by any incentive-compatible lower censorship policy, and hence by any

data privacy policy.

An important implication of Proposition 5 is that an optimal lower censorship policy

strictly improves on the laissez-faire outcome. This result follows from the fact that, as
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illustrated in Figure 2, a lower censorship cost function with kink at any κ0 is steeper to

the left of κ0 than is the unregulated cost function at κ0. By construction, α∗(κ0) is the

corresponding marginal demand under such a lower censorship policy. Thus α∗(κ0) < α∗(κ0)

for all κ0, and in particular α∗(κ̄∗) < α∗(κ̄∗). Comparing the first-order conditions in

Propositions 1 and 5 therefore implies that κ̄∗ > κ∗. Similar reasoning can be used to

conclude that κ̄∗ additionally exceeds the maximum innovation possible under a data ban

or any data patent.

While our results indicate that innovation can always be maximized through lower cen-

sorship, there exist other optimal policies as well. For instance, the regulator could further

coarsen demand data so that the platform is informed only whether the demand state is

above or below αC∗, without changing the resulting innovation threshold. Such a policy is

effectively an imitation recommendation and is outcome-equivalent to lower censorship. We

have focused on lower censorship policies in order to highlight that the binding incentive

constraint involves downward deviations by the platform. Coarsening information about

high demand states is not necessary for achieving the optimum, and the obedience constraint

when the regulator recommends imitation is non-binding.

9 How Much Commitment Is Necessary?

Throughout our analysis, we have assumed that the platform has complete freedom to

commit to an imitation policy. This assumption is consistent with the fact that dominant

platforms often pursue long-term objectives that supersede short-term profit maximization.

Nonetheless, our characterization of an optimal imitation policy in Theorem 1 shows that

this policy leaves some money on the table ex post. Holding fixed the entrepreneur’s inno-

vation decision, the platform could generate additional profits Λ(α∗(κ∗(D);D)) > 0 from

each innovator by increasing imitation slightly in order to reduce the entrepreneur’s profits

by a dollar.

To implement the platform’s optimal outcome, it must be able to credibly promise not

to pursue any additional imitation. This promise need not entail commitment to all details

of its imitation policy. Rather, it is sufficient that it commit to a budget for imitation, with
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the actual imitation policy chosen freely within that budget following the entrepreneur’s

innovation decision. The budget constraint ensures that the platform does not have the

resources to imitate more than was initially promised.

This point can be made formally by interpreting the entrepreneur in our model as

a continuum of potential innovators with heterogeneous innovation costs. In this context,

consider a limited-commitment version of our model in which the platform publicly commits

to an imitation budget; observes the innovation decisions of all entrepreneurs; and then

chooses when and whether to imitate each innovator. If the platform commits to the budget

B = G(κ∗(D))C(κ∗(D))kP , then there exists an equilibrium of the resulting game in which

entrepreneurs with costs below κ∗(D) enter and the platform chooses an imitation policy

which extracts revenues κ∗(D) per entrepreneur on average.

To see why this outcome is an equilibrium, suppose that a mass G(κ∗(D)) of en-

trepreneurs enter. The platform wishes to extract as much revenue from these entrepreneurs

as possible subject to spending no more than B/G(κ∗(D)) = C(κ∗(D))kP per entrepreneur

on average.24 This problem is the dual of the cost-minimization problem studied in Section

5, and so the platform can extract revenues of at most κ∗(D) per entrepreneur on aver-

age. Hence, because the platform can apply the same imitation policy to all entrepreneurs

(randomizing uniformly across the population in case the optimal policy involves random-

ization), there exists an optimal imitation decision which supports an equilibrium.

In practice, budgetary commitments are likely much easier for a platform to communi-

cate and enforce than detailed commitments to particular imitation policies. Indeed, to the

extent that actual capital budgeting in large organizations couples public commitments to

divisional or project budgets with operational flexibility, the imitation policies we charac-

terize require no novel commitment power. We therefore view our commitment assumption

as likely to be satisfied in a broad range of applications.
24Formally, the platform should be constrained to spend no more than their budget in net present value.

This formulation ensures that if the platform chooses to delay imitation, they can bank their budget and
grow it at the risk-free rate in order to fund additional imitation in the future.
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10 Flexible Fees

Our analysis so far has assumed that the platform’s sole decision is how aggressively to

imitate third-party products. In particular, we suppose that it cannot adjust the fees that it

charges to third-party sellers in response to a data regulation. We now discuss the empirical

validity of this assumption and generalize our analysis to accommodate fee flexibility.

Two pieces of empirical evidence suggest that, in practice, fees are unresponsive to

changes in the market conditions. Thus data regulation in particular may not lead to

substantial fee adjustment. First, prominent online platforms have rarely adjusted fees

over time. For instance, the Apple app store has charged a uniform 30% fee on revenue

throughout most of its existence.25 Similarly, Amazon marketplace fees have varied little

over time, even as it has increased private-label entry (Etro 2022). To the extent that

market conditions have changed over time, this evidence suggests that platforms do not

tend to adjust fees in response.

Second, platforms fees exhibit little variation across product categories. Apple essen-

tially does not vary fees across categories at all,26 while Amazon tailors fees across only

a handful of expansive product categories (Etro 2022). To the extent that market condi-

tions vary across product categories, this evidence further suggests that platforms do not

calibrate fees in response. Additionally, this evidence suggests that even if fees can be ad-

justed, platforms may be constrained in practice to set a common fee level platform-wide.

Since the extent of imitation is likely to vary significantly across product categories, fee

adjustment in response to data regulation may be muted by the impact of such adjustment

on categories involving little imitation.

Nonetheless, it is theoretically interesting to evaluate how fee-setting might respond to

data regulation when such frictions do not completely rule out fee adjustment. Our model

can be augmented to accommodate flexible fees by indexing the profit variables µs
i (f) with

a fee parameter f ∈ R.27 We assume that µs
E(f) is differentiable and that dµs

E/df < 0

25See https://tinyurl.com/2p84u2ac. One recent innovation is a small business program, instituted in
2021, which has reduced fees to 15% for small sellers.

26One exception is video rentals, which are exempted from fees.
27For simplicity, and in line with fee-setting in practice, we assume that fees do not vary with market

structure. Our results would not change if such flexibility were allowed.
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for all f under each market structure, reflecting the fact that fees are a transfer from the

entrepreneur to the platform. Profits need not vary linearly with f if utility is imperfectly

transferable. For instance, if the platform assesses fees as a flat percentage of revenue, then

the entrepreneur’s profits will typically vary nonlinearly with f. This framework therefore

flexibly embeds a number of alternative fee-setting constraints.

Given an target innovation rate κ and fee f, let UP (κ, f) denote the platform’s optimal

profits under laissez-faire, with UP (κ, f ;D) defined similarly under a data privacy policy D.

Not all (κ, f) pairs are feasible: For each κ in the support of G, there exists an imitation

policy implementing κ under fee level f if and only if (µM
E (f) − κ)/|∆µE(f)| ∈ [0, 1]. We

will say that κ is feasible if some such f exists. (Note that feasibility is independent of the

ambient data regulation.) We will say that the fee level f is κ-interior for some feasible κ

if (µM
E (f)− κ)/|∆µE(f)| ∈ (0, 1).

In this augmented setting, data regulation leads to countervailing effects on fees and

marginal demand. Intuitively, if imitation becomes more profitable on the margin, then the

platform substitutes away from fees and toward imitation, and vice versa. The following

proposition formalizes this result:

Proposition 6. Fix a data privacy policy D and feasible innovation threshold κ. Suppose

that UP (κ, f) and UP (κ, f ;D) are quasiconcave in f and possess unique maximizers f∗(κ)

and f∗(κ;D). Then:

• If α∗
+(κ, f

∗(κ)) ≤ α∗
+(κ, f

∗(κ);D), then f∗(κ) ≥ f∗(κ;D).

• If α∗
−(κ, f

∗(κ)) ≥ α∗
−(κ, f

∗(κ);D), then f∗(κ) ≤ f∗(κ;D).

If additionally C ′(κ, f∗(κ)) and C ′(κ, f∗(κ);D) exist and f∗(κ) is κ-interior, then

sign(f∗(κ;D)− f∗(κ)) = sign(α∗(κ, f∗(κ))− α∗(κ, f∗(κ);D)).

The effect of fee adjustment on innovation is less straightforward, but it can be orga-

nized conceptually in a manner similar to our baseline analysis. One effect of fee flexibility

is that the platform incurs lower losses from data regulation—trivially, since an expanded

set of instruments can only raise profits. This average profitability channel makes innova-

tion more valuable to the platform and stimulates more of it relative to the fixed-fee case.
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Simultaneously, a change in fees induces a change in the marginal demand state whose

direction can be pinned down with the aid of the following lemma:

Lemma 8. Given any data privacy policy D and innovation threshold κ, the marginal

demand states α∗
±(κ;D, f) are nondecreasing in f .

The direction of this marginal profitability channel depends on whether the regulation

raises or lowers marginal demand at κ∗, holding fees fixed. If a regulation raises marginal

demand, then fees drop (per Proposition 6), inducing a compensating drop in marginal de-

mand. In this case the marginal profitability channel reduces the profitability of incremental

imitation, reinforcing the average profitability channel and suggesting a rise in innovation

as compared to the inflexible-fee benchmark.28 On the other hand, if a regulation lowers

marginal demand, then fees rise, generating a compensating rise in marginal demand. In

this case the marginal and average profitability channels oppose one another, and the net

effect of fee flexibility is ambiguous.

A full comparison of the interaction of these two effects is beyond the scope of the

current paper. However, this analysis highlights how the basic forces identified in our main

results remain central to understanding the effect of regulation in more general contexts.

11 Concluding Remarks

In this paper we study the welfare and regulatory implications of data usage for competition

in digital markets. Our results indicate that severe restrictions on a platform’s ability to

access seller data (such as have been recently approved by the European Union under the

Digital Markets Act) may backfire—in markets for incremental products, they may actually

make the platform more aggressive and reduce innovative entry by third-party sellers. We

show how to solve this problem through more tailored data-usage restrictions.

One simple, practical modification entails placing an expiration date on data protec-

tions. This tweak boosts innovation quite generally, and data patents can improve on the
28One subtlety is that the profit conversion rate Λ(α, f) changes with f for fixed α. Under suitable

conditions, one can ensure that this effect does not offset changes in the marginal demand state. In particular,
Λ(α, f) is increasing in f whenever it is positive so long as ∆µP (f) and ∆µE(f) are both increasing in f.
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unregulated outcome in a wide variety of markets. A more ambitious change involves se-

lectively protecting the data of products with low demand. Such protections can maximize

the innovation stimulated by data regulation, although they require fine-grained analysis

and control of seller data to implement.

While we have assumed that the demand for a new product is learned immediately in

the absence of regulation, our framework can be readily adapted to accommodate gradual

learning about demand. Formally, gradual learning can be embedded in our model by

specifying a baseline filtration available to the platform in the absence of regulation, which

can be further coarsened by the regulator. Analyzing the interaction of gradual learning

about demand and optimal data regulation constitutes an interesting avenue for future

work.
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A General Imitation Policies

In this appendix we show that it is without loss to restrict attention to imitation policies which do

not withdraw an imitation product once it has been developed.

Define a generalized imitation policy (Xt)t≥0 to be a {0, 1}-valued stochastic process tracking

whether the platform lists its own product at each time t. We require that X be a càdlàg process

adapted to the filtration F∗(D) generated by the data privacy policy D and a randomization device.

We call any such policy D-feasible. We assume that flow profits for each player i ∈ {P,E} are rµM
i

when Xt = 0 and rµD
i when Xt = 1.29

Define T (X) ≡ inf{t : Xt = 1} to be the time at which the platform first develops an imitation

product. We assume that the platform must pay the entire fixed cost kP at time T (X), following

which it may freely withdraw and relist its product at no cost. Note that T (X) is a stopping time

with respect to F∗(D) under any D-feasible policy X.

The following result shows that the platform can weakly improve on any feasible generalized

imitation policy through a policy which never withdraws an imitation product.30 Let UP (X) be the

platform’s expected profits given any data policy D and D-feasible generalized imitation policy X.

Since X is càdlàg, these profits are well-defined.

Proposition A.1. Fix any data privacy policy D and D-feasible generalized imitation policy X. Then

there exists another D-feasible policy X ′ such that X ′
t = 1{t ≥ T (X ′)} for all t and UP (X

′) ≥ UP (X).

Proof. Let

κ = µM
E + r∆µE · E

[∫ ∞

0

e−rtαXt dt

]
be the threshold innovation cost induced by the policy X. Given that Xt = 0 for t < T (X) and

Xt ∈ {0, 1} thereafter, there exists a unique p ∈ (0, 1] such that

κ = µM
E + r∆µE · p · E

[∫ ∞

T (X)

e−rtαdt

]
.

Define a policy X ′ by setting X ′
t = 0 for all time with probability 1− p, independent of α, and

X ′
t = 1{t ≥ T (X)} for all t with the complementary probability. This policy is D-feasible given that

X is, and by construction X ′
t = 1{t ≥ T (X ′)} for all t. Also by construction, X ′ induces innovation

threshold κ. Further, X ′ imposes weakly lower imitation costs than X, since X incurs the same total
29Nothing would change if we allowed for more complex relationships between past competition and current

payoffs, so long as the platform’s flow profit gains and the entrepreneur’s flow losses from imitation are weakly
increasing in the total time the platform’s product has been on the market.

30The proof can be strengthened to show that if the imitation product is not on the market “almost always”
following its initial introduction, this improvement is strict.
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costs as X with probability p and zero imitation costs with the complementary probability. Finally,

expected imitation revenue is identical under X and X ′, given that

r∆µP · E
[∫ ∞

0

e−rtαXt dt

]
= r∆µP · p · E

[∫ ∞

T (X)

e−rtαdt

]
= r∆µP · E

[∫ ∞

0

e−rtαX ′
t dt

]
.

It follows that UP (X
′) ≥ UP (X).

B Microfounding Linear Profit and Surplus

In this appendix we present a simple model which microfounds the linear profit and surplus spec-

ification used throughout the paper. In the microfounded model, the entrepreneur and platform

compete in prices31, and marketplace buyers view the seller’s products as differentiated goods, with

total demand for each product given by Di(pE , pP , α) = αD̄i(pE , pP ) for i = P,E. Each seller has a

constant marginal cost ci for producing the product, and the platform’s fees are a fixed percentage

t of the entrepreneur’s revenues. In this model, the demand state α captures uncertainty about the

number of buyers in the market, while all price elasticities are known.

We assume that conditional on the market structure, both sellers choose stage-game Nash equi-

librium prices at each moment in time. We further assume that these prices are unique. If the

entrepreneur is a monopolist, her stage-game profit function is

πM
E (pE , α) = αD̄E(pE ,∞)((1− t)pE − cE).

Since this profit function is multiplicative in α, its maximum is independent of the demand state.

Letting pME denote the (unique, by assumption) price maximizing this profit function, flow profits

under monopoly for each seller are

ΠM
E (α) = αD̄E(p

M
E ,∞)((1− t)pME − cE), ΠM

P (α) = αtD̄E(p
M
E ,∞)pME .

On the other hand, if the platform has entered, each seller’s stage-game profit function is

πD
E (pE , pP , α) = αD̄E(pE , pP )((1− t)pE − cE),

πD
P (pE , pP , α) = α

[
D̄P (pE , pP )(pP − cP ) + tD̄E(pE , pP )pE

]
Since these profit functions are each multiplicative in α, the set of Nash equilibria is independent of

31The model could alternatively be microfounded through quantity competition.
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α. Letting (pDE , pDP ) denote the (unique, by assumption) Nash equilibrium price vector, each seller’s

flow profits under duopoly are

ΠD
E (α) = αD̄E(p

D
E , pDP )((1− t)pDE − cE), ΠD

P (α) = α
[
D̄P (p

D
E , pDP )(pDP − cP ) + tD̄E(p

D
E , pDP )pDE

]
This model therefore exhibits a linear profit structure.

Buyer demand can in turn be microfounded so that consumer surplus is also linear in the demand

state. Assume that the market is made up of a continuum of atomistic consumers of measure α,

each of whom has the quasilinear utility function u(qE , qP ,m) = v(qE , qP ) + m. Then the flow of

consumer surplus in each state is

CSM (α) = α
[
v(D̄E(p

M
E ,∞), 0)− D̄E(p

M
E ,∞)pME

]
,

CSD(α) = α
[
v(D̄E(p

D
E , pDP ), D̄P (p

D
E , pDP ))− D̄E(p

D
E , pDP )pDE − D̄P (p

D
E , pDP )pDP

]
which is linear in α. Alternatively, the same result could be obtained from a random utility model

in which each consumer purchases only one good and consumers experience iid random taste shocks

to their utility for each good.

C Data Bans Under Concentrated Demand

In this appendix we show that data bans have an ambiguous impact on innovation under (marginally)

experimental demand distributions when demand becomes concentrated around the mean.

We first construct a class of models featuring experimental demand in which a data ban increases

innovation when demand becomes concentrated. Let F∆ be the 2-point demand distribution with all

demand concentrated at either 0 or α = 1+∆.32 To ensure unit demand on average, the probability

of high demand must satisfy ρ(∆) = 1/(1 + ∆).

Proposition C.1. If F = F∆ for any ∆ > 0, then κ∗ < κ∗(DDB) and F is α†-experimental for

some α† > 1.

Proof. By construction, F∆ is (1 + ∆)-experimental for all ∆. Thus it remains at least marginally

experimental no matter how small ∆ is taken. Further, for small ∆ implementing κ∗(DDB) (which

is interior and independent of ∆) must involve imitation only in the high demand state. Hence
32Formally, this class of demand distributions does not satisfy our requirements that F be continuous and

supported on an interval. It could be approximated by one which does satisfy these assumptions without
changing our results.
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α̂(κ∗(DDB)) = α∗(κ∗(DDB)) = α, since for small ∆. Then since κ∗(DDB) satisfies the FOC

G′(κ∗(DDB))

G(κ∗(DDB))
(µM

P + (µM
E − κ∗(DDB))Λ(1)) = Λ(1),

we must have
G′(κ∗(DDB))

G(κ∗(DDB))
(µM

E − κ∗(DDB)) < Λ(1)

and therefore

∆ŪP (κ
∗(DDB)) =

G′(κ∗(DDB))

G(κ∗(DDB))
(µM

P + (µM
E − κ∗(DDB))Λ(α))− Λ(α)

<
G′(κ∗(DDB))

G(κ∗(DDB))
(µM

P + (µM
E − κ∗(DDB))Λ(1)− Λ(1) = 0.

Hence κ∗ < κ∗(DDB) for all ∆ > 0.

We next construct a class of models featuring experimental demand in which a data ban reduces

innovation when demand becomes concentrated. Define κ0 ∈ (µD
E , µM

E ) to be the unique solution to

G′(κ)

G(κ)
(µM

E − κ) = 1.

Note that κ0 is independent of both µM
P and F. Let F̄∆ be the uniform demand distribution with

support [1 − ∆/2, 1 + ∆/2] for ∆ ∈ (0, 2]. The following proposition establishes that when κ0 is

sufficiently close to µM
E and µM

P is sufficiently small, F̄∆ is at least marginally experimental for all

∆ > 0 and simultaneously κ∗ > κ∗(DDB) when ∆ is small. Note that κ0 may be taken close to

µM
E by placing most of the mass of G near µM

E , so model parameterizations exist which satisfy these

conditions.

Proposition C.2. Fix all model parameters except for F and µM
P . Suppose that

µM
E − κ0

|∆µE |
< 1/2.

Then for µM
P > 0 sufficiently small, there exists a ∆̄ > 0 such that if F = F̄∆ for ∆ < ∆̄, then

κ∗ > κ∗(DDB) and F is α†-experimental for some α† > 1.

Proof. Recall that κ∗ > κ∗(DDB) if

∆ŪP (κ
∗(DDB)) > 0,
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where

∆ŪP (κ) =
G′(κ)

G(κ)
(µM

P + (µM
E − κ)Λ(α̂(κ)))− Λ(α∗(κ)).

Meanwhile, κ∗(DDB) satisfies the FOC

G′(κ∗(DDB))

G(κ∗(DDB))
(µM

P + (µM
E − κ∗(DDB))Λ(1)) = Λ(1),

which may be equivalently written

G′(κ∗(DDB))

G(κ∗(DDB))
(µM

E − κ∗(DDB)) = 1− G′(κ∗(DDB))

G(κ∗(DDB))
Λ(1)−1µM

P .

Inserting this expression into ∆UP (κ
∗(DDB)) yields

∆ŪP (κ
∗(DDB)) = (Λ(α̂(κ∗(DDB)))− Λ(1))

×
(
Λ(α̂(κ∗(DDB)))− Λ(α∗(κ∗(DDB)))

Λ(α̂(κ∗(DDB)))− Λ(1)
− G′(κ∗(DDB))

G(κ∗(DDB))
Λ(1)−1µM

P

)
.

Since α̂(κ) > 1 for all κ > µD
E and Λ is an increasing function, this representation implies that

∆ŪP (κ
∗(DDB)) > 0 if

Λ(α̂(κ∗(DDB)))− Λ(α∗(κ∗(DDB)))

Λ(α̂(κ∗(DDB)))− Λ(1)
>

G′(κ∗(DDB))

G(κ∗(DDB))
Λ(1)−1µM

P .

Now, note that
Λ(α̂(κ))− Λ(α∗(κ))

Λ(α̂(κ))− Λ(1)
=

1

α∗(κ)

α̂(κ)− α∗(κ)

α̂(κ)− 1
.

Let

M =
µM
E − κ∗(DDB)

|∆µE |

be as defined in Lemma 4. Then when F = F̄∆, we may explicitly compute

α∗(κ∗(DDB)) =
√
(1 + ∆/2)2 − 2∆M, α̂(κ∗(DDB)) =

1 +∆/2 + α∗(κ∗(DDB))

2
.

Hence
α̂(κ∗(DDB))− α∗(κ∗(DDB))

α̂(κ∗(DDB))− 1
=

1 +∆/2−
√
(1 + ∆/2)2 − 2∆M

∆/2 +
√
(1 + ∆/2)2 − 2∆M − 1

.

L’Hopital’s rule can be used to compute

lim
∆↓0

α̂(κ∗(DDB))− α∗(κ∗(DDB))

α̂(κ∗(DDB))− 1
=

M

1−M
.

41



Since trivially α∗(κ∗(DDB)) → 1 in this limit, we therefore have

lim
∆↓0

Λ(α̂(κ∗(DDB)))− Λ(α∗(κ∗(DDB)))

Λ(α̂(κ∗(DDB)))− Λ(1)
=

M

1−M
.

This work implies that κ∗ > κ∗(DDB) for ∆ sufficiently small if

M

1−M
>

G′(κ∗(DDB))

G(κ∗(DDB))
Λ(1)−1µM

P .

Next, observe that as µM
P tends toward 0, κ∗(DDB) tends to κ0. Hence the condition just derived

is satisfied for small µM
P so long as M0/(1−M0) > 0, where

M0 ≡ µM
E − κ0

|∆µE |
.

Since κ0 < µM
E , this condition is trivially satisfied. It follows that for µM

P sufficiently small, a data

ban reduces innovation when F = F̄∆ and ∆ is sufficiently small.

Finally, F̄∆ is incremental if and only if

∫ 1

1−∆/2

αdF̄∆(α) ≥ 1−M,

i.e., if
1

2
+

∆

8
≤ M.

When this inequality is violated, F̄∆ must be experimental for some α† > 1. Clearly it is violated

for all ∆ > 0 whenever M ≤ 1/2. Since M tends to M0 as µM
P tends to 0, if M0 < 1/2 then for

sufficiently small µM
P we have M < 1/2, meaning F̄∆ is at least marginally experimental for all

∆ > 0.

D Right Tail Weight versus SOSD

In this appendix we develop a series of simple examples to contrast the notion of right tail weight

developed in Section 6 with the more familiar dispersion notion of second-order stochastic dominance,

i.e., mean-preserving spreads. Given any demand distribution F and demand state α ≥ 0, define

the α-tail weight Φ(α;F ) by

Φ(α;F ) ≡
∫
{α′≥α}

α′ dF (α′).
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Figure 3: Increased upside demand potential doesn’t imply a mean-preserving spread.

Lemma 4 says that a given demand distribution is α†-experimental if and only if its α†-tail weight

is sufficiently large; and it is incremental if and only if its 1-tail weight is sufficiently small.

Our examples utilize the family of 2-point demand distributions, which have support on a pair

of demand states {α, α}, where α > 1 > α ≥ 0. Because we normalize average demand to 1, the

locations of the high and low demand realizations fully characterize such a distribution. In particular,

the probability ρ that α = α is uniquely pinned down by the condition E[α] = 1, yielding

ρ =
1− α

α− α
.

We first show that a higher right-tail weight does not necessarily imply increased dispersion in the

FOSD sense. Consider a pair of 2-point demand distributions F1 and F2 with demand realizations

{α1, α1} and {α2, α2}, where α2 > α1 > α2 > α1. This ordering of demand realizations implies that

F1 and F2 cannot be ranked by second-order stochastic dominance, since the mass placed at α1 by

F1 cannot be split to produce F2, while the mass placed at α2 by F2 cannot be split to produce

F1. But since both F1 and F2 have mean 1, the ordering of demand realizations also implies that

α2ρ2 < α1ρ1, where ρi is the probability that Fi places on the good demand realization. Therefore

F1 has a higher α1-tail weight than F2. Figure 3 graphically depicts this scenario.

We now show that increased dispersion in the second-order stochastic dominance sense need not
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Figure 4: A mean-preserving spread doesn’t imply greater upside demand potential.

imply an increased right-tail weight. Consider a 2-point demand distribution F1 with demand real-

izations {α1, α}, and define a 3-point distribution F2 with demand realizations {α2, α̃2, α} satisfying

α2 > α1 > 1 > α̃2, where F1 and F2 place the same probability on demand realization α, while the

probabilities of α̃2 and α2 under F2 are chosen so that F2 is a mean-preserving spread of F1. The

mean-preserving spread relationship implies that α2ρ2 < α1ρ1, where ρi is the probability that Fi

places on α = αi. Hence F1 has a higher α1-tail weight than F2, and in fact there is no α > 1 for

which F2 exhibits higher α-tail weight than F1. Figure 4 graphically depicts this scenario.

E Innovation and Consumer Surplus

In this appendix, we establish conditions under which maximizing innovation can be formally viewed

as the objective of a regulator concerned with maximizing consumer surplus, in the limit when

innovation generates much more surplus than competition.

We model consumer surplus by assuming that consumers enjoy a flow surplus rCSs(α) when the

market structure is s ∈ {M,D} and the demand state is α, where CSs(α) = ανs and νD > νM > 0.

If innovation does not occur, consumers receive a surplus normalized to zero. (See Appendix B for

a microfoundation of this surplus structure.)
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Let UR(D) be expected consumer surplus given a data policy D, under the platform’s correspond-

ing optimal imitation policy. The following result establishes that, when νD is sufficiently close to

νM , the directional impact on surplus of moving from one data policy to another to another tracks

the impact of that change on innovation. Therefore, in the limit of small gains from competition,

the regulator prefers to maximize innovation. Note that the bound on νD is independent of the pair

of data policies being compared, and so this conclusion applies for any set of policies available to

the regulator.

Proposition E.1. Fix all model parameters except for νD. There exists ν̄ > νM such that if νD < ν̄,

then given any data privacy policies D and D′,

sign (UR(D)− UR(D′)) = sign (κ∗(D)− κ∗(D′)) .

Proof. We first derive an explicit expression for UR(D) given an arbitrary data policy D. If an

optimal imitation policy T ∗(κ∗(D),D) exists under D, then UR(D) may be written

UR(D) = G(κ∗(D))
(
νM +∆ν · E

[
e−rT∗(κ∗(D),D)α

])
,

where ∆ν ≡ νD − νM > 0. Additionally, κ∗(D) must satisfy

µM
E − κ∗(D)

|∆µE |
= E

[
e−rT∗(κ∗(D),D)α

]
.

Hence UR(D) may be equivalently written UR(D) = W (κ∗(D)), where

W (κ) ≡ G(κ)

(
νM +∆ν

µM
E − κ

|∆µE |

)
.

If no optimal imitation policy exists, a sequence of approximately optimal policies can be used to

derive the same identity, which must therefore hold for all D.

We next show that for νD sufficiently close to νM , the function W (κ) is increasing on [µD
E , κ̄∗],

where κ̄∗ is as defined in Proposition 5. The derivative of W (κ) may be bounded below as

W ′(κ) = G′(κ)

(
νM +∆ν

µM
E − κ

|∆µE |

)
−G(κ)

∆ν

|∆µE |

≥ G′(κ)νM −G(κ)
∆ν

|∆µE |

= G(κ)

(
G′(κ)

G(κ)
νM − ∆ν

|∆µE |

)
.
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The FOC satisfied by κ̄∗ implies that G′(κ̄∗)/G(κ̄∗) > 0. Then since G′(κ)/G(κ) is nonincreasing on

[µD
E , κ̄∗] and bounded below by G′(κ̄∗)/G(κ̄∗) > 0, there exists a ν̄ > νM such that

G′(κ)

G(κ)
νM − ∆ν

|∆µE |
≥ G′(κ̄∗)

G(κ̄∗)
νM − ∆ν

|∆µE |
> 0

for all κ ≤ κ̄∗ whenever νD < ν̄. For such choices of νD, we have that W ′(κ) ≥ 0 for all κ ≤ κ̄∗, with

W ′(κ) > 0 when κ > µD
E . Hence W is increasing on [µD

E , κ̄∗] for such νD. This result, along with

the fact every data policy induces an innovation threshold no higher than κ̄∗, implies the desired

result.

F Proofs

F.1 Lemma 1

We first characterize the optimal imitation policy implementing an innovation threshold κ ∈ (µD
E , µM

E ),

and return to extremal innovation thresholds afterward. When κ is interior, the platform must make

the marginal entrepreneur just indifferent between innovating or not. Enforcing this participation

constraint, the Lagrangian for the cost-minimization problem is

L = E[e−rT ] + λ
(
µM
E +∆µEE[e−rTα]− κ

)
,

with no constraints on the allowed choice of T aside from measurability. The Lagrangian may be

equivalently written

L = E
[
e−rT (1− λ|∆µE |α)

]
+ λ(µM

E − κ).

If λ ≤ 0, then the Lagrangian is uniquely minimized (up to measure-zero sets) by T = ∞. However,

this policy does not satisfy the constraint given κ < µM
E , and so at the optimum the Lagrange

multiplier must be strictly positive. In that case the Lagrangian is uniquely minimized by

T (λ) =

0, α ≥ (|∆µE |λ)−1

∞, α < (|∆µE |λ)−1

Note that this policy is measurable in α for any choice of λ, and so is admissible.

The marginal entrepreneur’s profits are continuous and nonincreasing in λ under this family of

policies, are decreasing in λ whenever profits lie in the interval (µD
E − κ, µM

E − κ), and approach

µM
E − κ > 0 as λ → 0, and approach µM

D − κ < 0 as λ → ∞. Hence there exists a unique λ∗(κ) > 0
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satisfying the participation constraint with equality. Letting α∗(κ) ≡ (|∆µE |λ∗(κ))−1, it follows

that α∗(κ) uniquely satisfies the equation reported in the lemma statement. Note additionally

that T ∗(κ) = T (λ∗(κ)). Hence (T ∗(κ), λ∗(κ)) is the unique saddle point of the Lagrangian which

satisfies the zero-profit constraint, and so is the unique solution to the cost minimization problem.

(No further constraint qualifications must be checked, since the objective and constraint are affine

functions of the transformed choice variables e−rT (α).)

We now return to the edge cases κ ∈ {µD
E , µM

E }. Since these extremal values are the boundaries

of the support of the distribution of innovation costs, the marginal entrepreneur’s participation

constraint need only hold as an inequality. In particular, when κ = µD
E the marginal entrepreneur

must make nonpositive profits, which is possible only when T = 0. And similarly, when κ = µM
E

the marginal entrepreneur must make nonnegative profits, which is possible only when T = ∞.

Letting α∗(κ) = α in the first case and α∗(κ) = α in the second, it follows that T ∗(κ) is trivially

cost-minimizing in each case. Additionally, α∗(κ) is the unique threshold demand state on the range

[α, α] which satisfies the marginal entrepreneur’s participation constraint with equality, as claimed.

It remains only to show that α∗ is continuous and increasing in κ. Note that α∗ is the inverse of

the function

Φ(α) ≡ µM
E +∆µE

∫ α

α

α′ dF (α′)

from [α, α] to [µD
E , µM

E ]. Since Φ is continuous and bijective, its inverse is also continuous. And since

it is increasing, so is its inverse.

F.2 Proposition 1

This result is a corollary of Theorem 1. Lemma 1 implies that the unregulated cost function is

C(κ;DLF ) = 1− F (α∗(κ)), so that using the participation constraint the effective average demand

may be written

α̂(κ;DLF ) =
µM
E − κ

|∆µE |(1− F (α∗(κ)))
=

∫ α

α∗(κ)
αdF (α)

1− F (α∗(κ))
= α̂(κ).

As for the effective marginal demand, use the envelope theorem to compute C ′(κ;DLF ) = −λ∗(κ),

where λ∗(κ) is the optimized Lagrange multiplier on the participation constraint in the cost-minimization

problem. The proof of Lemma 1 established that λ∗(κ) = (|∆µE |α∗(κ))−1. Hence the effective

marginal demand is α∗(κ;DLF ) = α∗(κ). Theorem 1 therefore implies that κ∗ = κ∗(DLF ) satisfies

the FOC stated in the proposition statement.
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F.3 Lemma 2

We first establish the claimed bounds on C. Fix κ ∈ [µD
E , µM

E ] and let t̄(κ) be the unique time

satisfying e−rt̄(κ) = (µM
E − κ)/|∆µE |. The imitation policy T = t̄(κ) does not condition on demand

and so is feasible under any data privacy policy. It additionally satisfies the participation constraint

at κ. Thus C(κ;D) ≤ (µM
E − κ)/|∆µE |. On the other hand, any imitation policy which is feasible

under D is also feasible under DLF . Thus C(κ;DLF ) ≤ C(κ;D).

Fix κ < µM
E and κ′ > κ. Let p ∈ [0, 1) be such that p(µM

E − κ) = µM
E − κ′. For every ε > 0 there

exists an imitation policy T which satisfies E[e−rT ] < C(κ;D)+ ε and E[αe−rT ] = (µM
E −κ)/|∆µE |.

Given the definition of p, the imitation policy T ′ which sets T ′ = T with probability p and T ′ = ∞

otherwise satisfies E[αe−rT ′
] = (µM

E − κ′)/|∆µE |. Hence

C(κ′) ≤ E[e−rT ′
] ≤ p(C(κ;D) + ε).

Since this inequality holds for every ε, it follows that C(κ′;D) ≤ pC(κ;D). Now, the characterization

of the optimal laissez-faire policy in Lemma 1 implies that C(κ;DLF ) > 0 given that κ < µM
E . Then

the bound C(κ;D) ≥ C(κ;DLF ) established above implies that C(κ;D) > 0. Combining this

bound with C(κ′;D) ≤ pC(κ;D) and p < 1 yields the relationship C(κ′;D) < C(κ;D), establishing

monotonicity.

Next, fix κ, κ′ ̸= κ, and p ∈ (0, 1). For every ε > 0, there exist imitation policies T and T ′

satisfying

E[e−rT ] < C(κ;D) + ε, E[e−rT ′
] < C(κ′;D) + ε

and

E
[
αe−rT

]
=

µM
E − κ

|∆µE |
, E

[
αe−rT ′

]
=

µM
E − κ′

|∆µE |
.

The imitation policy T ′′ which sets T ′′ = T with probability p and T ′′ = T ′ with probability 1− p

satisfies

E[e−rT ′′
] < pC(κ;D) + (1− p)C(κ′;D) + ε

and

E
[
αe−rT ′′

]
=

µM
E − (pκ+ (1− p)κ′)

|∆µE |
.

Hence

C(pκ+ (1− p)κ′;D) < pC(κ;D) + (1− p)C(κ′;D) + ε.
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Since this argument holds for arbitrary ε > 0, it follows that

C(pκ+ (1− p)κ′;D) ≤ pC(κ;D) + (1− p)C(κ′;D).

Since this argument holds for arbitrary κ, κ′, and p, it follows that C(·;D) is convex.

Given convexity, continuity of C is immediate except at the endpoints κ = µD
E , µM

E . Note that the

characterization of the optimal laissez-faire imitation policy in Lemma 1 implies that C(κ;DLF ) is

continuous everywhere and satisfies C(µD
E ;DLF ) = 1 and C(µM

E ;DLF ) = 0. The bounds on C(κ;D)

established above therefore imply that it is continuous at both endpoints and satisfies C(µD
E ;D) = 1

and C(µM
E ;D) = 0.

F.4 Theorem 1

Throughout this proof, we extend α̂ and α∗
+ to κ = µD

E using their defining expressions, taking

α∗
+(µ

D
E ;D) = 0 in case C ′

+(µ
D
E ;D) = −∞. We similarly extend α∗

− to κ = µM
E , taking α∗

−(µ
D
E ;D) = ∞

in case C ′
−(µ

M
E ;D) = 0. And given the monotonicity of α̂ established below, we will extend the

definition of that function to κ = µM
E by defining α̂(µM

E ;D) ≡ limκ↑µM
E
α̂(κ;D). When we do not

state the domain over which a property involving these functions holds, the implied domain is the

largest one over which all functions are defined.

We begin by establishing several useful auxiliary results about α̂ and α∗
±. We first note that

α∗
+ ≥ α∗

−, since C ′
− is the smallest subderivative of the convex function C at a given point while C ′

+

is the largest, and so C ′
+ ≥ C ′

−.

We next show that α̂ is continuous, α∗
+ is right-continuous, and α∗

− is left-continuous. The

continuity claim for α̂ follows from continuity of C, as established in Lemma 2. The continuity

claims for α∗
± follow if we can show that C ′

− is left-continuous and C ′
+ is right-continuous. We prove

the first result, with the second following from very similar work. Since C ′
−(κ) is a subderivative

of C, C(κ′) − C(κ) ≥ C ′
−(κ)(κ

′ − κ) for all κ and κ′. Now take κ ↑ κ0 to obtain C(κ′) − C(κ0) ≥

C ′
−(κ0−)(κ′ − κ0) for all κ0 and κ′. For κ′ < κ0, this inequality may be rearranged to read

C(κ0)− C(κ′)

κ0 − κ′ ≤ C ′
−(κ0−),

and taking κ′ ↑ κ0 implies C ′
−(κ0) ≤ C ′

−(κ0−) for all κ0 > µD
E . But since C ′

− is nondecreasing,

also C ′
−(κ

′) ≤ C ′
−(κ0) for all κ′ < κ0, and so C ′

−(κ0−) ≤ C ′
−(κ0). Combining these two inequalities

yields C ′
−(κ0) = C ′

−(κ0−) for all κ0 > µD
E , as desired.

Finally, we show that α∗
−(µ

M
E ;D) ≥ 1 ≥ α∗

+(µ
D
E ;D). These limits follow from the fact, estab-
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lished in Lemma 2, that C(κ;D) is bounded above by a line with slope 1/∆µE everywhere and

intersects that line at its endpoints. As a result, its slope at its left endpoint must be no greater

than 1/∆µE while its slope at its right endpoint must be no less than 1/∆µE . These requirements

are equivalent to the stated bounds.

We now establish the properties of α̂ and α∗
± stated in the theorem statement, extended to apply

over their respective maximal domains. Positivity follows from positivity of C and negativity of C ′
±

for interior κ. Monotonicity of α∗
± follow from the corresponding monotonicity of C ′

± given that

they are subderivatives of a convex function. Meanwhile, monotonicity of α̂ on the domain [µD
E , µM

E )

follows from the fact that
C(κ;D)

µM
E − κ

= −C(µM
E ;D)− C(κ;D)

µM
E − κ

is nonincreasing given convexity of C, as established in Lemma 2. Monotonicity over [µD
E , µM

E ]

follows from continuity of α̂ at κ = µM
E . Convexity of C implies that for all κ < µM

E ,

C ′
+(κ;D) ≤ C(µM

D ;D)− C(κ;D)

µM
E − κ

= −C(κ;D)

µM
E − κ

,

which when rearranged is equivalent to α̂(κ;D) ≥ α∗
+(κ;D). (Since α∗

+ is not defined at κ = µM
E ,

this inequality need not be established there.) Next, Lemma 2 established that C(κ;D) ≤ (µM
E −

κ)|/∆µE | for all κ. Hence α̂(κ;D) ≥ 1 for all κ < µM
E . Continuity of α̂ at κ = µM

E then implies that

α̂(µM
E ;D) ≥ 1 as well.

In the remainder of the proof, we characterize the platform’s optimal innovation threshold. The

platform’s optimal profits among all imitation policies inducing a given innovation threshold κ are

UP (κ;D) = G(κ)

(
µM
P +∆µP

µM
E − κ

|∆µE |
− kPC(κ;D)

)
.

Since G and C are continuous, a maximizer must exist. Further, UP has left- and right-hand

derivatives everywhere given by U ′
P,±(κ;D) = G(κ)Ū ′

P,±(κ;D), where

Ū ′
P,±(κ;D) ≡ G′(κ)

G(κ)

(
µM
P + (µM

E − κ)
∆µP

|∆µE |
− kPC(κ;D)

)
−
(

∆µP

|∆µE |
+ kPC

′
±(κ;D)

)
.

Regrouping terms allows this expression to be equivalently written

Ū ′
P,±(κ;D) ≡ G′(κ)

G(κ)

(
µM
P + (µM

E − κ)Λ(α̂(κ;D))
)
− Λ(α∗

±(κ;D)).

The system of inequalities in the theorem statement is therefore equivalent to the system U ′
P,−(κ;D) ≥

0 ≥ U ′
P,+(κ;D), which constitute a necessary condition for optimality of an interior κ.
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We first argue that κ = µD
E , µM

E cannot be maximizers of UP . Given the assumed support of

G, G(µD
E ) = 0 and G(µM

E ) = 1. Additionally, Lemma Lemma 2 established that C(µM
E ;D) = 0.

Therefore UP (µ
D
E ;D) = 0 while UP (µ

M
E ;D) = µM

P > 0. So κ = µD
E cannot be optimal. Mean-

while, Assumption 2 requires that G′(µM
E ) = 0, so that U ′

P,−(µ
M
E ;D) = −Λ(α∗

−(µ
M
E ;D)). Since

α∗
−(µ

M
E ;D) ≥ 1 and Assumption 1 implies that Λ(1) > 0, we have U ′

P,−(µ
M
E ;D) < 0. So κ = µM

E

cannot be optimal.

To complete the proof, we establish that the system of inequalities Ū ′
−(κ;D) ≥ 0 ≥ Ū ′

+(κ;D) has

a unique solution κ∗ on (µD
E , µM

E ). Since G(κ) > 0 on this range, this result implies that U ′
P,−(κ;D) ≥

0 ≥ U ′
P,+(κ;D) has a unique solution on (µD

E , µM
E ). We established earlier that a maximizer must

exist and every maximizer is interior, and further any interior maximizer must satisfy U ′
P,−(κ;D) ≥

0 ≥ U ′
P,+(κ;D). Hence κ∗ must uniquely maximize UP over [µD

E , µM
E ].

Let κ̄ ≡ inf{κ ∈ (µD
E , µM

E ) : Λ(α∗
+(κ;D)) > 0}. Since α∗

−(µ
M
E ;D) ≥ 1 and α∗

− is left-continuous,

it must be that Λ(α∗
−(κ;D)) > 0 for sufficiently large κ. The bound α∗

+ ≥ α∗
− established above

therefore implies κ̄ < µM
E . For all κ ∈ (µD

E , κ̄] we must have Λ(α∗
+(κ;D)) ≤ 0 and therefore

Ū ′
P,+(κ) > 0. So any solution to the system must satisfy κ > κ̄.

On the interval (κ̄, µM
E ], the expression ϕ(κ) ≡ −(µM

E − κ)Λ(α̂(κ;D)) has right-hand derivative

ϕ′
+(κ) = Λ(α∗ + (κ;D)) > 0. Since ϕ may be equivalently written

ϕ(κ) = −(µM
E − κ)

∆µP

|∆µE |
+ kPC(κ;D),

it is convex and the right-hand derivative is therefore a subderivative. It follows that ϕ is an

increasing function on (κ̄, µM
E ). Meanwhile by assumption G′/G is a nonincreasing function which is

positive for κ < µM
E given that G has support on [µD

E , µM
E ]. Then since Λ(α∗

+(κ;D)) is nondecreasing,

it follows that Ū ′
P,+ is decreasing on (κ̄, µM

E ).

Next consider the sign of Ū ′
P,+(κ̄;D). If κ̄ > µD

E , then right-continuity of α∗
+ implies that

Λ(α∗
+(κ̄;D)) = 0 and therefore Ū ′

P,+(κ̄;D) > 0. Suppose instead that κ̄ = µD
E . then α∗

+(µ
D
E ;D) ≤ 1 en-

sures that Λ(α∗
+(µ

D
E ;D)) is bounded above. Meanwhile monotonicity of G′/G along with G(µD

E ) = 0

implies that G′(µD
E )/G(µD

E ) = ∞, since otherwise

∫ κ

µD
E

G′(κ′)

G(κ′)
dκ′

would be finite for all κ, a contradiction given that the integral is equal to logG(κ) − logG(µD
E ),

which is infinite. Hence in this case Ū ′
P,+(κ̄;D) = ∞. Thus in either case Ū ′

P,+(κ̄;D) > 0.

Now consider the sign of Ū ′
P,+(µ

M
E ;D). By assumption G′(µM

E ;D) = 0, meaning that Ū ′
P,+(µ

M
E ;D) =

−Λ(α∗
+(µ

M
E ;D)). Since κ̄ < µM

E , we have Λ(α∗
+(µ

M
E ;D))) > 0 and therefore Ū ′

P,+(µ
M
E ;D) < 0.
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Now define κ∗ ≡ inf{κ ∈ [κ̄, µM
E ] : U ′

P,+(κ;D) ≤ 0}. Since U ′
P,+ is decreasing, positive at κ̄, and

negative at µM
E , it must be that κ∗ ∈ (κ̄, µM

E ) and UP,+(κ;D) > 0 for all κ < κ∗ while UP,+(κ;D) < 0

for all κ > κ∗. Further, continuous differentiability of G, continuity of α̂, and right-continuity of α∗
+

imply that U ′
P,+ is right-continuous and therefore that U ′

P,+(κ
∗;D) ≤ 0.

We finish the proof by arguing that κ∗ uniquely satisfies the system U ′
P,−(κ;D) ≥ 0 ≥ U ′

P,+(κ;D)

among all κ ∈ [κ̄, µM
E ]. The fact that UP,+(κ;D) > 0 for all κ < κ∗ rules out all κ < κ∗ as solutions

to the system. Meanwhile, the fact that C ′
± are subderivatives of a convex function implies that

C ′
−(κ

′;D) ≥ C ′
+(κ;D) for all κ′ > κ. Therefore α∗

−(κ
′;D) ≥ α∗

+(κ;D) for all κ′ > κ and hence

U ′
P,−(κ

′;D) ≤ U ′
P,+(κ;D) for all κ′ > κ. So U ′

P,−(κ;D) < κ for all κ > κ∗, ruling out all such κ

as solutions to the system. The unique candidate solution is therefore κ∗. As observed above, this

candidate satisfies U ′
P,+(κ

∗;D) ≤ 0. Meanwhile, α∗
− ≤ α∗

+ implies that U ′
−(κ;D) ≥ U ′

+(κ;D)) > 0

for all κ < κ∗. Left-continuity of α∗
− implies the same property of U ′

−, and therefore U ′
−(κ

∗;D) ≥ 0.

Thus κ∗ satisfies the system, as claimed.

F.5 Lemma 3

Since C(·;D) and C(·;DLF ) are convex, they are absolutely continuous. Write C ′ for their derivative

wherever it exists. Then since C(µD
E ;D) = C(µD

E ;DLF ) = 1 while C(µM
E ;D) = C(µM

E ;DLF ) = 0,

we must have ∫ 1

0

C ′(κ′;D) dκ′ =

∫ 1

0

C ′(κ′;DLF ) dκ′.

Now, by assumption there exists a κ such that C(κ;D) > C(κ;DLF ). Then

∫ κ

0

C ′(κ′;D) dκ′ >

∫ κ

0

C ′(κ′;DLF ) dκ′,

implying that also ∫ 1

κ

C ′(κ′;D) dκ′ <

∫ κ

0

C ′(κ′;DLF ) dκ′.

The first inequality implies existence of a positive-measure subset of [0, κ] on which C ′(·;D) is defined

and C ′(κ;D) > C ′(κ;DLF ). Meanwhile the second inequality implies existence of a positive-measure

subset of [κ, 1] on which C ′(·;D) is defined and C ′(κ;D) < C ′(κ;DLF ). These facts imply the claim

in the lemma.
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F.6 Lemma 4

Define Φ(α;F ) ≡
∫ α

α
α′ dF (α′). Lemma 1 established that α∗(κ∗(DDB)) is the unique solution on

[α, α] to Φ(α;F ) = M, where

M ≡ µM
E − κ∗(DDB)

|∆µE |
.

Let Ū ′
P,±(κ;D) be as defined in the proof of Theorem 1, and let Ū ′

P (κ;D) denote the common value

of Ū ′
P,±(κ;D) when C ′(κ;D) exists. Since α∗(·;DDB) = α̂(·;DDB) = 1 for any F, the function

Ū ′
P (·;DDB) does not depend on F. As κ∗(DDB) is the unique zero of this function, it does not

depend on F either, and hence neither does M .

The bound κ∗(DDB) ∈ (µD
E , µM

E ) established in Theorem 1 implies that M ∈ (0, 1). Since Φ(·;F )

is decreasing, it follows that α∗(κ∗(DDB)) ≤ 1 iff Φ(1;F ) ≤ M, and this latter inequality is equivalent

to the condition reported in the lemma statement. In the other direction, α∗(κ∗(DDB)) ≥ α† iff

Φ(α†;F ) ≥ M, which is the stated condition.

F.7 Proposition 2

Suppose that under some data privacy policy D, the cost function C is differentiable everywhere.

Then the proof of Theorem 1 establishes that sign(κ∗(D)−κ) = sign(Ū ′
P (κ;D)), where Ū ′

P,±(κ;D) is

as defined in that proof and where Ū ′
P (κ;D) denotes the common value of Ū ′

P,±(κ;D) when C ′(κ;D)

exists.

We first derive conditions under which a data ban reduces innovation. Recall that α̂(κ;DDB) = 1

for all κ. Meanwhile for every κ > µD
E we have α∗(κ) > α and therefore

α̂(κ) = E[α | α ≥ α∗(κ)] > E[α] = 1,

with the strict inequality following from the fact that F has full support on [α, α]. In particular,

α̂(κ∗(DDB)) > α̂(κ∗(DDB);DDB) given that κ∗(DDB) > µD
E . Then κ∗(DDB) > κ∗ if α∗(κ∗(DDB)) ≤

1, since in that case

Ū ′
P (κ

∗(DDB);DLF ) > Ū ′
P (κ

∗(DDB);DDB) = 0.

We now derive conditions under which a data ban boosts innovation. Define ∆Ū ′
P (κ) ≡

Ū ′
P (κ;DLF ) − Ū ′

P (κ;DDB). Since Ū ′
P (κ

∗(DDB);DDB) = 0, it is sufficient to sign ∆Ū ′
P (κ

∗(DDB)).

Note that

∆Ū ′
P (κ) =

G′(κ)

G(κ)
(µM

E − κ) (Λ(α̂(κ))− Λ(1))− (Λ(α∗(κ))− Λ(1)).

Since α̂(κ) < ∞ for all κ, we may bound ∆Ū ′
P from above as ∆Ū ′

P (κ) < ϕ(κ, α∗(κ)) for all κ < µM
E ,
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where

ϕ(κ, α) ≡ G′(κ)

G(κ)
(µM

E − κ) (Λ(∞)− Λ(1))− (Λ(α)− Λ(1)).

(Note that Λ(∞) = ∆µP /|∆µE | is finite, and Λ(∞) > Λ(1).)

The function ϕ has no direct dependence on F once κ and α are specified. Additionally, ϕ is

decreasing in α and

ϕ(κ,∞) =

(
G′(κ)

G(κ)
(µM

E − κ)− 1

)
(Λ(∞)− Λ(1)) .

The FOC satisfied by κ∗(DDB) implies that

G′(κ∗(DDB))

G(κ∗(DDB))
(µM

E − κ∗(DDB))− 1 = −G′(κ∗(DDB))

G(κ∗(DDB))

µM
P

Λ(1)
< 0.

Hence ϕ(κ∗(DDB),∞) < 0. Meanwhile trivially ϕ(κ∗(DDB), 1) > 0. Since ϕ does not depend on F

except through κ and α, and since (as noted in the proof of Lemma 4) κ∗(DDB) does not depend on

F , it follows that there exists an α† > 1 independent of F such that ϕ(κ∗(DDB), α) ≤ 0 iff α ≥ α†.

Given that ϕ(κ∗(DDB), α∗(κ∗(DDB))) is a strict upper bound on ∆Ū ′
P (κ

∗(DDB)), we may therefore

conclude that ∆Ū ′
P (κ

∗(DDB)) < 0 if α∗(κ∗(DDB)) ≥ α†.

F.8 Lemma 5

If TP = 0, then the unique optimal imitation policy is as characterized in Lemma 1. Since κ̄P (0) =

µD
E , the imitation policy described in the lemma statement is equivalent to the policy derived in that

lemma. Going forward, we assume TP > 0.

We first characterize the platform’s optimal deterministic imitation policy. Define

κ(TP ) ≡ µM
E + e−rTP

∆µE .

Note that κ(TP ) ∈ (µD
E , µM

E ). Any deterministic imitation policy which delays imitation until time

TP can induce an innovation threshold no lower than κ(TP ). As a result, there exists a unique

deterministic imitation policy implementing κ < κ(TP ). It involves imitating at the unique time

TD,∗(κ;TP ) < TP satisfying

µM
E + e−rT∆µE = κ.

Conversely, no deterministic imitation policy implementing κ ≥ κ(TP ) can imitate prior to time TP .

Given that an optimal imitation policy delays imitation until patent expiration, logic very similar to

the proof of Lemma 1 establishes that the unique optimal deterministic policy TD,∗(κ;TP ) imitates

at time TP in states α ≥ αD,∗(κ;TP ) and never imitates otherwise, where αD,∗(κ;TP ) is the unique
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solution to

µM
E + e−rTP

∫ α

α

α′ dF (α) = κ.

Note that αD,∗ is continuous and increasing in κ and satisfies the boundary conditions

αD,∗(κ(TP );TP ) = 0, αD,∗(µM
E ;TP ) = ∞.

It is also continuous and decreasing in TP for fixed κ. Extend the definition of αD,∗ to κ < κ by

letting αD,∗(κ;TP ) = 1.

Now let CD(κ;TP ) denote the cost of the optimal deterministic imitation policy implementing

κ. This function is continuous and decreasing everywhere, and its derivative exists for all κ ̸= κ(TP )

and satisfies

(CD)′(κ;TP ) =
1

∆µEαD,∗(κ;TP )
.

CD therefore has a concave kink at κ = κ(TP ) and is convex on [κ(TP ), µM
E ]. Define a function

ϕ(κ;TP ) by

ϕ(κ;TP ) =
1− CD(κ;TP )

κ− µD
E

+ (CD)′(κ;TP ).

Note that ϕ(κ(TP )+;TP ) = −∞ while ϕ(µM
E ;TP ) = 1/|∆µE | > 0, and ϕ(·;TP ) is continuous and

increasing on (κ(TP ), µM
E ] given that CD is continuous, decreasing, and convex on that range. Hence

there exists a unique κ̄(TP ) ∈ (κ(TP ), µM
E ) satisfying ϕ(κ;TP ) = 0.

Since αD,∗ is continuous and decreasing in TP for fixed κ > κ(TP ), it follows that (CD)′(κ;TP )

is continuous and decreasing in TP for fixed κ and therefore CD(κ;TP ) is increasing in TP for fixed

κ. Thus ϕ(κ;TP ) is continuous and decreasing in TP for fixed κ, implying that κ̄ is continuous

and increasing. Additionally, CD(·; 0) = C(·;DLF ) and so CD(·; 0) is strictly convex on [µD
E , µM

E ],

implying that ϕ(κ; 0) > 0 for all κ > µD
E and therefore κ̄(µD

E+) = µD
E . In the other extreme,

κ(∞) = µM
E and so κ̄(∞) = µM

E .

Define

C̄(κ;TP ) ≡

1 + (CD)′(κ̄(TP );TP )(κ− µD
E ), κ < κ̄(TP )

CD(κ;TP ), κ ≥ κ̄(TP )

By construction, C̄(·;TP ) is a convex function which lies below C(·;TP ) everywhere. Further, it is

the largest such function. This is trivially so for κ ≥ κ̄(TP ) and κ = µD
E , while for κ ∈ (µD

E , κ̄(TP ))

any convex function C̃ ≤ CD(·;TP ) which satisfied C̃(κ) > C̄(κ;TP ) for some κ <∈ (µD
E , κ̄(TP ))
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would have

C̃(µD
E ) ≥ C̃(κ)− C̃ ′

+(κ)(κ− µD
E )

≥ C̃(κ)− C̃(κ̄(TP ))− C̃(κ)

κ̄(TP )− κ
(κ− µD

E )

> C̄(κ;TP )− CD(κ̄(TP );TP )− C̄(κ;TP )

κ̄(TP )− κ
(κ− µD

E )

= C̄(κ;TP )− C̄(κ̄(TP );TP )− C̄(κ;TP )

κ̄(TP )− κ
(κ− µD

E )

= C̄(µD
E ;TP ) = 1,

contradicting C̃(µD
E ) ≤ CD(µD

E ;TP ) = 1. Thus C̄(·;TP ) is the convex envelope of CD(·;TP ), imply-

ing that C(·;TP ) = C̄(·;TP ).

The fact that C(κ;TP ) = CD(κ;TP ) for all κ ≥ κ̄(TP ), combined with the strict convexity of

C(·;TP ) on this range, implies that for all κ ≥ κ̄(TP ) the unique optimal deterministic imitation

policy remains uniquely optimal within the wider class of randomized policies. This result establishes

the form and uniqueness of the optimal policy claimed in the lemma statement.

Now fix a target threshold κ < κ̄(TP ). The fact that C(κ;TP ) < CD(κ;TP ) for all κ ∈

(µD
E , κ̄(TP )) implies that no randomized policy implementing κ and assigning positive probability to

deterministic policies implementing thresholds in the range (µD
E , κ̄(TP )) can be optimal. Addition-

ally, strict convexity of C(·;TP ) on [κ̄(TP ), µM
E ] implies that no randomized policy implementing

κ and assigning positive probability to deterministic policies implementing thresholds in the range

(κ̄(TP ), µM
E ] can be optimal. Hence any optimal policy implementing κ must assigning positive prob-

ability only to deterministic policies implementing thresholds in the range {µD
E , κ̄(TP )}. There exists

a unique imitation policy implementing κ and satisfying this requirement. It involves randomization

between the optimal deterministic policies implementing κ = µD
E and κ = κ̄(TP ), with probability

ρ(κ;TP ) assigned to the former policy, where ρ(κ;TP ) is as defined in the statement of the lemma.

This result establishes the form and uniqueness of the the optimal policy claimed in the lemma

statement.

F.9 Proposition 3

Extend ρ to innovation thresholds above κ̄ by letting ρ(κ;TP ) = 0. Additionally define ρ∗(TP ) ≡

ρ(κ∗(DP (TP ));TP ) to be the probability of immediate imitation under the platform’s optimal in-

novation threshold. We prove the following technical result, which nests the results of Proposition

3.
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Proposition F.1. ρ∗ is continuous, and there exists a patent length T
P ∈ (0,∞) such that:

• If TP ≤ T
P
, then ρ∗(TP ) = 0

• If TP > T
P
, then ρ∗ is positive and increasing in TP

For TP ≥ T
P , κ∗(DP (TP )) is decreasing in TP and limTP→∞ κ∗(DP (TP )) = κ∗(DDB) while

limTP→∞ ρ∗(TP ) = (µM
E − κ∗(DDB))/|∆µE |.

Proof. Note that ρ(κ;TP ) is a jointly continuous function of (κ, TP ) given that κ̄ is continuous.

Hence ρ∗ is continuous so long as κ∗(DP (TP )) is continuous in TP . Recall from Lemma 1 that

κ∗(DP (TP )) uniquely optimizes the function

UP (κ;DP (TP )) = G(κ)

(
µM
P +∆µP

µM
E − κ

|∆µE |
− kPC(κ;DP (TP ))

)
.

Continuity of κ∗(DP (TP )) is therefore ensured by the maximum theorem so long as C(κ;DP (TP ))

is continuous in TP for each κ.

First consider TP = 0. Trivially C(κ;DP (0)) = C(κ;DLF ) for all κ. Further, for any TP we have

the bounds CD(κ;TP ) ≥ C(κ;DP (TP )) ≥ C(κ;DLF ) holding for all κ and TP , where CD is the cost

function for deterministic policies characterized in the proof of Lemma 5. It is therefore sufficient

to show that limTP ↓0 C
D(κ;TP ) = C(κ;DLF ) for fixed κ. Using the characterization derived in the

proof of Lemma 5, this cost function may be written

CD(κ;TP ) = 1−
∫ κ

µD
E

1

|∆µE |αD,∗(κ′;TP )
dκ′,

where

αD,∗(κ;TP ) = Φ−1

(
erT

P µM
E − κ

|∆µE |

)
and

Φ(α) =

∫ α

α

α′ dF (α′).

Since Φ is decreasing in α, so is Φ−1, meaning that αD,∗ is decreasing in TP for every κ. Additionally,

αD,∗(κ; 0) = α∗(κ) for all κ. The monotone convergence theorem then ensures that

lim
TP ↓0

CD(κ;TP ) = 1−
∫ κ

µD
E

1

|∆µE |α∗(κ′)
dκ′ = C(κ;DLF ),

as desired.

Now consider any TP > 0. Using the characterization derived in the proof of Lemma 5, C(κ;DP (TP ))
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may be written

C(κ;DP (TP )) = 1−
∫ κ

µD
E

1

|∆µE |αD,∗(max{κ′, κ̄(TP )};TP )
dκ′.

Since κ̄ and κ are continuous and κ̄(TP ) > κ(TP ), the quantity αD,∗(max{κ′, κ̄(T ′)};T ′) is uniformly

bounded away from zero for all κ′ ∈ [µD
E , µM

E ] and T ′ on any sufficiently small neighborhood of TP .

The bounded convergence theorem and continuity of κ̄ then imply that C(κ;DP (T ′)) is continuous

in T ′ at TP if αD,∗ is jointly continuous in both arguments at (κ, TP ). This joint continuity is

ensured by the fact that αD,∗ is a composition of (jointly) continuous functions.

Now, fix any TP such that κ∗(DP (TP )) ≤ κ̄(DP (TP )). Theorem 1 established that

Ū ′
P (κ

∗(DP (TP ));DP (TP )) = 0,

where Ū ′
P (κ;D) is the common value of Ū ′

P,±(κ;D) when C ′(κ;D) exists and Ū ′
P,± are as defined

in the proof of Theorem 1. (Note that C(κ;DP (κP )) is differentiable everywhere given the smooth-

pasting condition satisfied by κ̄.) Fix T ′ > TP . We will show that

Ū ′
P (κ

∗(DP (TP ));DP (T ′)) < Ū ′
P (κ

∗(DP (TP ));DP (T ′)).

This inequality implies that Ū ′
P (κ

∗(DP (TP ));DP (T ′)) < 0 and therefore

κ∗(DP (T ′)) < κ∗(DP (TP )) ≤ κ̄(TP ) < κ̄(T ′).

In particular, ρ∗(T ′) > 0.

To establish the desired inequality, it is sufficient to show that

C(κ∗(DP (TP ));DP (T ′)) > C(κ∗(DP (TP ));DP (TP )),

C ′(κ∗(DP (TP ));DP (T ′)) > C ′(κ∗(DP (TP ));DP (TP )),

since these inequalities imply

α̂(κ∗(DP (TP ));DP (T ′)) < α̂(κ∗(DP (TP ));DP (TP )),

α∗(κ∗(DP (TP ));DP (T ′)) > α∗(κ∗(DP (TP ));DP (TP ))

and therefore Ū ′
P (κ

∗(DP (TP ));DP (T ′)) < Ū ′
P (κ

∗(DP (TP ));DP (T ′)). The first inequality is imme-

diate from the fact that the unique policy achieving costs C(κ∗(DP (TP ));DP (TP )) under a data
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patent of length TP requires imitation at time TP with positive probability (since κ∗(DP (TP )) > µD
E )

and so is not implementable under a data patent of length T ′ > TP . The first inequality, con-

vexity of C(·;DP (T ′))), linearity of C(·;DP (TP )) on [µD
E , κ̄(TP )], and the boundary condition

C(µD
E ;DP (T ′)) = C(µD

E ;DP (TP )) = 1 then imply the second inequality.

We next prove that limTP→∞ κ∗(DP (TP )) = κ∗(DDB). Note that for all κ ≤ κ̄(TP ) we have

C(κ;DP (TP )) = 1− κ− µD
E

|∆µE |α∗,D(κ̄(TP );TP )
, C ′(κ;DP (TP )) = − 1

|∆µE |α∗,D(κ̄(TP );TP )
.

Given the bounds C(κ;DLF ) ≤ C(κ;DP (TP )) ≤ (µM
E − κ)/|∆µE | and the limit κ̄(∞) = µM

E , it

follows that limTP→∞ C(κ̄(TP );DP (TP )) = 0. Evaluating the previous expression for C(κ;DP (TP ))

at κ̄(TP ) and taking a limit yields limTP→∞ α∗,D(κ̄(TP );TP ) = 1. Hence for every κ < µM
E we have

lim
TP→∞

C(κ;DP (TP )) =
µM
E − κ

|∆µE |
= C(κ;DDB), lim

TP→∞
C ′(κ;DP (TP )) =

1

∆µE
= C ′(κ;DDB).

It follows that for every κ < µM
E we have limTP→∞ Ū ′

P (κ;DP (TP )) = Ū ′
P (κ;DDB). For any

κ < κ∗(DDB) we therefore have Ū ′
P (κ;DP (TP )) > 0 for TP sufficiently large, implying that

κ∗(DP (TP )) > κ for TP large. Since this argument holds for any κ < κ∗(DDB), it follows that

lim infTP→∞ κ∗(DP (TP )) ≥ κ∗(DDB). A similar argument from the other direction, along with the

fact that κ∗(DDB) < µM
E , implies that lim supTP→∞ κ∗(DP (TP )) ≤ κ∗(DDB). Combining these

two limits yields limTP→∞ κ∗(DP (TP )) = κ∗(DDB). Given continuity of ρ∗, this limit along with

limTP→∞ κ̄(TP ) = µM
E implies the associated limiting expression for ρ∗ in the proposition statement.

Define T
P ≡ inf{TP ≥ 0 : ρ∗(TP ) > 0}. The work so far proves that if ρ(TP ) > 0 for some TP ,

then ρ(T ′) > 0 for all T ′ > TP . Thus ρ∗(TP ) = 0 for all T ≤ T
P while ρ∗(TP ) > 0 for all T > T

P
.

We next establish that T
P ∈ (0,∞). The bound T

P
> 0 follows from the facts that κ∗(DP (TP ))

is continuous in TP , κ∗(DP (0)) = κ∗ > µD
E , and κ̄ is continuous and satisfies κ̄(0) = µD

E . At the

other extreme, limTP→∞ κ̄(TP ) = µM
E and limTP→∞ κ∗(DP (TP )) = κ∗(DDB) < µM

E implies that

κ∗(DP (TP )) < κ̄(TP ) for TP sufficiently large. Hence TP < ∞.

The definition of TP and continuity of ρ∗ and κ∗(DP (TP )) imply that κ∗(DP (TP )) ≤ κ̄(TP ))

for all TP ≥ T
P
. And we established above that if κ∗(DP (TP )) ≤ κ̄(TP ) then κ∗(DP (T ′)) <

κ∗(DP (TP )) for all T ′ > TP . Hence κ∗(DP (TP )) is decreasing in TP for TP ≥ T
P
. Finally, note

that ρ is decreasing in κ and increasing in κ̄(TP ), and therefore in TP . Hence ρ∗ is increasing in TP

for all TP ≥ T
P
.
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F.10 Proposition 4

To establish the result, it is sufficient to prove that under the hypothesis of the proposition, κ∗(DP (TP ))

is increasing in TP on [0, T
P
], where T

P is as defined in Proposition F.1. Combining this fact with

the result that κ∗(DP (TP )) is decreasing on [T
P
,∞) (established in Proposition F.1) implies the

result.

Lemma 5 and Proposition 3 established that for TP ≤ T
P
, κ∗(DP (TP )) maximizes the profit

function

UD
P (κ;TP ) ≡ G(κ)

(
µM
P + (µM

E − κ)Λ(α̂D(κ;TP ))
)
,

where

α̂D(κ;TP ) ≡

∫ α

αD,∗(κ;TP )
e−rTP

αdF (α)∫ α

αD,∗(κ;TP )
e−rTP dF (α)

=

∫ α

αD,∗(κ;TP )
αdF (α)

1− F (αD,∗(κ;TP ))
= E[α | α ≥ αD,∗(κ;TP )]

and αD,∗ is as defined in the proof of Lemma 5. Using techniques very similar to those used in the

proof of Theorem 1, this profit function can be shown to be maximized by the unique solution to

the FOC (ŪD)′(κ;TP ) = 0, where

(ŪD)′(κ;TP ) ≡ G′(κ)

G(κ)

(
µM
P + (µM

E − κ)Λ
(
α̂D(κ;TP )

))
− Λ

(
αD,∗(κ;TP )

)
.

Fix TP < T
P and T ′ ∈ (TP , T

P
], and let κ = κ∗(DP (TP )). Rewrite (ŪD)′ as

(ŪD)′(κ;T ′) = Λ
(
αD,∗(κ;T ′)

)(G′(κ)

G(κ)

(
µM
P

Λ (αD,∗(κ;T ′))
+ (µM

E − κ)
Λ
(
α̂D(κ;T ′)

)
Λ (αD,∗(κ;T ′))

)
− 1

)

Given the form of α̂D, we may also write

Λ
(
α̂D(κ;T ′)

)
Λ (αD,∗(κ;T ′))

=
Λ(Â(αD,∗(κ;T ′)))

Λ(αD,∗(κ;T ′))
.

Recall that α∗,D is decreasing in the length of the data patent. The hypothesis that Λ(α)/Λ(Â(α))

is nondecreasing therefore implies the inequality

Λ
(
α̂D(κ;T ′)

)
Λ (αD,∗(κ;T ′))

≥
Λ
(
α̂D(κ;TP )

)
Λ (αD,∗(κ;TP ))

.
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Since additionally Λ
(
αD,∗(κ;T ′)

)
< Λ

(
αD,∗(κ;TP )

)
, we can bound (ŪD)′(κ;T ′) below as

(ŪD)′(κ;T ′) > Λ
(
αD,∗(κ;T ′)

)(G′(κ)

G(κ)

(
µM
P

Λ (αD,∗(κ;TP ))
+ (µM

E − κ)
Λ
(
α̂D(κ;TP )

)
Λ (αD,∗(κ;TP ))

)
− 1

)

=
Λ
(
αD,∗(κ;T ′)

)
Λ (αD,∗(κ;TP ))

(ŪD)′(κ;TP ) = 0.

Since ŪD crosses zero once from above, this inequality implies that κ∗(DP (T ′)) > κ∗(DP (TP )), as

desired.

F.11 Lemma 6

We first derive a sufficient condition for monotonicity of Λ(α)/Λ(Â(α)). Note that

Λ(α)

Λ(Â(α))
− 1 = Λ(Â(α))−1

(
Λ(α)− Λ(Â(α))

)
.

Suppose that Λ(α) − Λ(Â(α)) is nondecreasing in α. Then since this expression is negative while

Λ(Â(α)) is positive and increasing in α, it follows that Λ(α)/Λ(Â(α)) − 1 is increasing in α, hence

also Λ(α)/Λ(Â(α)) is increasing. Further,

Λ(α)− Λ(Â(α)) =
kP

|∆µE |
Â(α)−1

(
1− Â(α)

α

)
.

Since Â is increasing in α and Â(α)/α ≥ 1, it is therefore sufficient to establish that Â(α)/α

is nonincreasing in α. Note that Â(α) is independent of all model parameters except F, and so

monotonicity of Â(α)/α amounts to a condition on the demand distribution alone.

We now show that each family of distributions listed in the lemma statement satisfies the condi-

tion that Â(α)/α is nonincreasing in α. For each family, we enforce appropriate restrictions on free

parameters to ensure that demand has mean 1 and non-negative support.

Uniform: Suppose that demand is uniformly distributed on the interval [1 − ∆, 1 + ∆] for

∆ ∈ (0, 1]. Then

Â(α) =
α+ 1 +∆

2

and
Â(α)

α
=

1

2

(
1 +

1 +∆

α

)
,

which is decreasing in α.

Lognormal: Suppose that demand is lognormally distributed with log-variance σ > 0 and

61



log-mean µ = −σ2/2. A standard result about conditional means of lognormal distributions is

Â(α) =
1− Φ

(
−σ

2 + logα
σ

)
1− Φ

(
σ
2 + logα

σ

) ,

where Φ is the distribution function of a standard normal distribution. Now, note that

ϕ
(
−σ

2 + logα
σ

)
ϕ
(

σ
2 + logα

σ

) = α,

where ϕ is the density function of a standard normal distribution. Therefore

Â(α)

α
=

h
(

σ
2 + logα

σ

)
h
(
−σ

2 + logα
σ

) ,
where h(x) ≡ ϕ(x)/(1−Φ(x)) is the hazard rate of a standard normal distribution. Now, Â(α)/α is

nonincreasing if and only if its logarithm is nonincreasing, and the representation for Â(α)/α just

derived implies that

log
Â(α)

α
=

∫ σ/2+σ−1 logα

−σ/2+σ−1 logα

h̃′(x) dx,

where h̃(x) ≡ log h(x). This expression is nonincreasing in α if h̃ is concave. Direct computation

yields h̃′(x) = h(x) − x, so that h̃′′(x) = h′(x) − 1. A standard fact about h(x) is that it is strictly

convex with limiting slope h′(∞) = 1. Thus h̃ is concave, implying that Â(α)/α is nonincreasing.

Pareto: Suppose that demand is Pareto distributed with shape parameter β > 1 and scale

parameter x = (β − 1)/β. Then

Â(α) =
β

β − 1
α

and Â(α)/α = β/(β − 1), which is nonincreasing in α.

Gamma: Suppose that demand is gamma distributed with shape parameter ν > 0 and scale

parameter θ = 1/ν. Then

Â(α) = ν−1Γ(ν + 1, να)

Γ(ν, να)
,

where Γ(s, x) is the upper incomplete gamma function. This function satisfies the identity

Γ(s+ 1, x) = sΓ(s, x) + xse−x,
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which can be used to rewrite Â(α) as

Â(α) = 1 +
ανe−να

Γ(ν, να)
.

Using the derivative Γx(s, x) = −xs−1e−x, we have

d

dα

(
Â(α)

α

)
=

ζ(α)

(αΓ(ν, να))2
,

where

ζ(α) ≡ −Γ(ν, να)2 − ν−1(να)νe−αν(1− ν + να)Γ(ν, ν, α) + ν−1(να)2ν e−2να.

It is therefore enough to show that ζ is non-positive for all α. The standard limits

lim
x→∞

Γ(s, x) = lim
x→∞

xse−x = lim
x→∞

xs+1e−x = 0

imply that limα→∞ ζ(α) = 0, so it is sufficient to show that ζ ′(α) > 0 for all α. Calculating this

derivative yields

ζ ′(α) = ν(1 + ν(α− 1)2)(να)ν−1e−ναξ(α),

where

ξ(α) ≡ Γ(ν, να)− ν−1 να− ν − 1

1 + ν(α− 1)2
(να)νe−να.

This expression has limit limα→∞ ξ(α) = 0, so ζ ′(α) > 0 for all α so long as ξ′(α) < 0 for all α.

Differentiating and simplifying yields

ξ′(α) = −2ν−1 (να)ν+1e−να

(1 + ν(α− 1)2)2
< 0,

as desired.

F.12 Lemma 7

We first characterize C(·;DC(αC)) for arbitrary αC . Let κC(αC) be the unique solution to αC =

α∗(κ). Then for κ ∈ [κC(αC), µM
E ], the platform has access to enough data to implement κ using

the laissez-faire policy characterized in Lemma 1. Hence C(κ;DC(αC)) = C(κ;DLF ) for all such

κ. Meanwhile for κ ∈ [µD
E , κC(αC)), monotonicity of the profit conversion rate in α implies that

the lowest-cost feasible implementation of κ involves immediate imitation in all non-censored states,

and delayed or random imitation uniformly across all censored states. The optimal policy involving
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delay chooses an imitation time T (κ) for censored states which satisfies

κ = µM
E +∆µE

(∫ α

αC

αdF (α) + e−rT (κ)

∫ αC

α

αdF (α)

)
.

Therefore the discount factor exp(−rT (κ)) is linear in κ. Meanwhile, the cost function in this regime

may be written in terms of T (κ) as

C(κ;DC(αC)) = 1−
(
1− e−rT (κ)

)
F (αC).

Hence C is linear in κ on [µD
E , κC(αC)].

Now, fix D as in the lemma statement. Let αC = α∗(κ∗(D)), so that κC(αC) = κ∗(D).

Then C(κ∗(D);DC(αC)) = C(κ∗(D);DLF ) ≤ C(κ∗(D);D). Meanwhile, Lemma 2 implies that

C(µD
E ;DC(αC)) = C(µD

E ;D) = 1, and convexity of the cost function implies that

C(κ∗(D);D) = 1 +

∫ κ∗(D)

µD
E

C ′(κ;D) dκ ≤ 1 + C ′
−(κ

∗(D);D)(κ∗(D)− µD
E ).

Suppose that C ′
−(κ

∗(D);D) < C ′
−(κ

∗(D);DC(αC)). Then the previous inequality implies that

C(κ∗(D);D) < 1 + (κ∗(D)− µD
E )C ′

−(κ
∗(D);DC(αC)).

Since C is linear on the interval [µD
E , κ∗(D)], the rhs of this inequality equals C(κ∗(D);DC(αC)), a

contradiction. So it must be that C ′
−(κ

∗(D);D) ≥ C ′
−(κ

∗(D);DC(αC)).

The bounds established in the previous paragraph imply that α̂(κ∗(D);DC(αC)) ≥ α̂(κ∗(D);D)

and α∗
−(κ

∗(D);DC(αC)) ≤ α∗
−(κ

∗(D);D). Hence ŪP,−(κ
∗(D);DC(αC)) ≥ ŪP,−(κ

∗(D);D), where

ŪP,− is as defined in the proof of Theorem 1. Combining this inequality with the bound ŪP,−(κ
∗(D);D) ≥

0 implied by optimality of κ∗(D) yields ŪP,−(κ
∗(D);DC(αC)) ≥ 0. Further, linearity of C(·;DC(αC))

on [µD
E , κ∗(D)] implies that Ū ′

P (·;DC(αC)) exists and is decreasing on [µD
E , κ∗(D)]. Hence ŪP (κ;DC(αC)) >

0 for all κ < κ∗(D), implying that κ∗(DC(αC)) ≥ κ∗(D).

F.13 Proposition 5

We proceed by deriving a data policy which maximizes innovation. The proof of Lemma 7 establishes

that any data policy may be (weakly) improved by a lower censorship policy whose censorship

threshold satisfies κ∗(DC(αC)) ≥ κC(αC), where κC(αC) is the unique solution to αC = α∗(κ). So

we may confine our search for optimal data policies within this class, which we will call effective.
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Under any lower censorship policy (not necessarily effective), innovation thresholds κ ≥ κC(αC)

are implementable using the laissez-faire imitation policy and the cost function therefore satisfies

C(κ;DC(αC)) = C(κ;DLF ). In particular, ŪP,+(κ;DC(αC)) = ŪP (κ;DLF ) for all κ ≥ κC(αC),

where ŪP,± are as defined in the proof of Theorem 1 and ŪP denotes the common value of ŪP,±

when C ′ exists.

Let ᾱC ≡ α∗(κ∗). Note that κC(ᾱC) = κ∗ by construction. We first establish that αC ≤ ᾱC

implies κ∗(DC(αC)) = κ∗ ≥ κC(αC). When αC ≤ ᾱC , monotonicity of α∗ implies that κ∗ ≥ κC(αC).

Hence Ū ′
P,+(κ

∗;DC(αC)) = Ū ′
P (κ

∗;DLF ) = 0. Since Ū ′
P,−(κ;DC(αC)) ≥ Ū ′

P,+(κ;DC(αC)) for all κ,

we therefore have

Ū ′
P,−(κ

∗;DC(αC)) ≥ 0 = Ū ′
P,+(κ

∗;DC(αC)).

In other words, κ∗ satisfies the FOC under data policy DC(αC). Since Theorem 1 establishes that

the FOC has a unique solution which maximizes UP , we conclude that κ∗(DC(αC)) = κ∗ ≥ κC(αC).

This result implies that all lower censorship policies with αC ≤ ᾱC are effective, and that further

the platform’s innovation threshold is insensitive to αC over this range. It is therefore without loss

to confine attention to effective policies satisfying αC ≥ ᾱC . For this range of censorship thresholds,

we have κ∗ ≤ κC(αC) and therefore Ū ′
P (κ;DC(αC)) = Ū ′

P (κ;DLF ) < 0 for all κ > κC(αC). It

follows that κ∗(DC(αC)) = κC(αC) for all effective policies satisfying αC ≥ ᾱC . Since κC(αC) is

increasing in αC , one optimal data policy must therefore be the lower censorship policy with the

largest censorship threshold for which the policy remains effective.

For every αC ≥ ᾱC , we have κ∗ ≤ κC(αC) and Ū ′
P,+(κ

C(αC);DC(αC)) = Ū ′
P (κ

C(αC);DLF ) ≤ 0.

Hence a policy with censorship threshold αC ≥ ᾱC is effective if and only if Ū ′
P,−(κ

C(αC);DC(αC)) ≥

0. This inequality may be equivalently written Û ′
P (κ

C(αC)) ≥ 0, where

Û ′
P (κ) ≡

G′(κ)

G(κ)

(
µM
E + (µM

E − κ)Λ(α̂(κ))
)
− Λ(α∗(κ)).

The function Û ′
P is continuous in κ. Since C ′(κ;DLF ) = 1/(|∆µE |α∗(κ)) and α∗ is increasing,

we have that C(·;DLF ) is strictly convex and therefore α∗ is increasing. Meanwhile, the first term

of Û ′
P (κ) is decreasing whenever Λ(α∗(κ)) > 0. Strict convexity of C(·;DLF ) additionally that

C(κ;DLF )− 1

κ− µD
E

=
C(κ;DLF )− C(µD

E ;DLF )

κ− µD
E

< C ′(κ;DLF )

for all κ > µD
E . Hence α∗(κ) > α∗(κ) for all κ ≥ κ∗. Thus in particular Û ′

P (κ) is decreasing at any

κ ≥ κ∗ such that Λ(α∗(κ)) > 0. It follows that for every κ ∈ [κ∗, µM
E ), either Û ′

P is decreasing in κ or

it is positive. And at µM
E , we have Û ′

P (µ
M
E ) = −Λ(α∗(µM

E )) = −Λ(1) < 0. So Û ′
P crosses zero at most
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once, and any crossing is from above. Finally, α∗(κ∗) > α∗(κ∗) implies that Û ′
P (κ

C(ᾱC)) = Û ′
P (κ

∗) >

Ū ′
P (κ

∗;DLF ) = 0. Thus there exists a unique κ̄∗ ∈ (κ∗, µM
E ) such that sign(Û ′

P (κ)) = sign (κ̄∗ − κ)

for κ ∈ [κ∗, µM
E ].

An immediate implication of the construction of κ̄∗ is that αC∗ ≡ α∗(κ̄∗) is the largest censorship

threshold for which DLF (αC) is effective. This policy must therefore be optimal. Since the policy

is effective, it satisfies κ∗(DC(αC∗)) = κC(αC∗) = κ̄∗. Optimality then implies that κ̄∗ ≥ κ∗(D) for

any data privacy policy D. Additionally, effectiveness implies that the platform optimally imitates

immediately in all states above αC∗ and never in states below αC∗, in order to implement the

innovation threshold κC(αC∗).

F.14 Proof of Proposition 6

For any data policy D, the platform’s expected profits may be written

UP (κ, f ;D) = G(κ)
(
µM
P (f)(1−A∗(κ, f)) + µD

P (f)A∗(κ, f)− kPC(κ; f,D)
)
,

where A∗(κ, f) ≡ (µM
E (f)− κ)/|∆µE(f)|. Let

∆UP (κ, f) ≡ UP (κ, f ;D)− UP (κ, f ;DLF ).

Then we may compute

∆UP (κ, f) = G(κ)kP
(
C(κ; f,DLF )− C(κ; f,D)

)
.

Next, define C̃(A;D) to be the value of the problem

min
T∈T

E[e−rT ] s.t. E[αe−rT ] = A

for A ∈ [0, 1]. Given the participation constraint

κ = µM
E (f) + ∆µE(f)A

∗(κ, f),

the cost function C is related to C̃ via C(κ; f,D) = C̃(A∗(κ, f);D). So we may equivalently write

∆UP (κ, f) as

∆UP (κ, f) = G(κ)kP

(
C̃(A∗(κ, f);DLF )− C̃(A∗(κ, f);D)

)
.
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C and C̃ additionally satisfy the inverse relationship C̃(A;D) = C(µM
E (f)+∆µE(f)A; f,D). Hence

C̃ ′
±(A

∗(κ, f);D) = C ′
±(κ; f,D)∆µE(f) =

[
α∗
±(κ, f ;D)

]−1
.

So we may express the derivative of ∆UP (κ, f) wrt f as

∂

∂f±
∆UP (κ, f) = G(κ)kP

(
1

α∗
±(κ, f)

− 1

α∗
±(κ, f ;D)

)
∂A∗

∂f
(κ, f).

Meanwhile, the derivative of A∗ wrt f may be written

∂A∗

∂f
(κ, f) =

1

∆µE(f)

(
(1−A∗(κ, f))

dµM
E

df
+A∗(κ, f)

dµD
E

df

)
.

Since dµs
E/df < 0 under each market structure, we have ∂A∗/∂f < 0. Hence

sign
(

∂

∂f±
∆UP (κ, f)

)
= sign

(
α∗
±(κ, f)− α∗

±(κ, f ;D)
)
.

At f = f∗(κ), it must be that ∂
∂f+

UP (κ, f ;DLF ) ≤ 0. Therefore if α∗
+(κ, f) ≤ α∗

+(κ, f ;D),

then ∂
∂f+

UP (κ, f ;D) ≤ 0. Quasiconcavity and uniqueness of the maximizer f∗(κ;D) then implies

that f∗(κ;D) ≤ f∗(κ). A similar argument in the other direction establishes that if α∗
−(κ, f) ≥

α∗
−(κ, f ;D), then f∗(κ;D) ≥ f∗(κ).

If both C ′(κ, f∗(κ)) and C ′(κ, f∗(κ);D) exist, then the reasoning of the previous paragraph

may be strengthened. In particular, it must be that ∂
∂fUP (κ, f ;DLF ) = 0 at f = f∗(κ), in which

case α∗(κ, f) < α∗(κ, f ;D) implies that ∂
∂fUP (κ, f ;D) < 0 and therefore (supposing that f∗(κ) is

interior) f∗(κ;D) < f∗(κ). Similar reasoning applies in the other direction.

F.15 Proof of Lemma 8

Fix a data privacy policy D. Since it is held fixed throughout this proof, we suppress it in all

notation. Let C̃(A) be as defined in the proof of Proposition 6. Recall that C is related to C̃ via

C(κ; f) = C̃(A∗(κ, f)), where A∗(κ, f) ≡ (µM
E (f)− κ)/|∆µE(f)|. as well as the inverse relationship

C̃(A) = C(µM
E (f) + ∆µE(f)A; f). The latter identity implies that C̃ is convex given that C is.

Using the relationship C(κ; f) = C̃(A∗(κ, f)), we may compute

C ′
±(κ; f) =

C̃ ′
± (A∗(κ, f))

∆µE(f)
,
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allowing the marginal demand state to be written

α∗
±(κ; f) =

[
C̃ ′

± (A∗(κ, f))
]−1

.

Now, the definition of A∗(κ, f) may be rearranged to read

κ = µM
E (f)(1−A∗(κ, f)) + µD

E (f)A∗(κ, f).

Since µM
E and µD

E are each decreasing in f and ∆µE(f) > 0, this identity can be satisfied for all f only

if A∗(κ, f) is decreasing in f. Meanwhile, convexity of C̃ implies that C̃ ′
±(A) are each nondecreasing

in A. Therefore α∗
±(κ; f) are nondecreasing in f.
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