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Abstract

We analyze a duopoly entry game where firms trade off the first-mover advantage

(of earning monopoly rents) against the second-mover advantage (of paying a lower

entry cost) in the classic real-option framework. The equilibrium solution features five

regions. There are two waiting regions: a new waiting-to-be-the-second-mover region

and the standard option-value-of-waiting region. For sufficiently high market demand,

there is no first-mover advantage in equilibrium as Follower immediately enters after

Leader. Therefore, firms play mixed strategies and become Leader with a rate increas-

ing in market demand, giving rise to a probabilistic entry region. For intermediate levels

of market demand, firms rush to enter, giving rise to the first-mover-advantage-induced

“rent-equalization” region (Fudenberg and Tirole, 1985; Grenadier, 1996). Finally, a

second probabilistic entry region emerges to connect the rent-equalization region and

the waiting-to-be-the-second-mover region. Quantitatively, the second-mover advan-

tage can cause firms to significantly delay entry and substantially erode firm value.
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1 Introduction

Corporate decisions, e.g., entry into a new product market and R&Ds, typically involve

significant upfront fixed costs and are costly to reverse. These decisions in essence are

American-style real-option-exercising problems, which are widely taught in business schools

and used by management consultants and practitioners.1 However, a key limiting assumption

in standard real-options models is that a firm has an exclusive permanent access to the

investment project and thus in effect solves a monopolist’s real-option exercising problem.

In reality, firms routinely compete against each other for investment opportunities. Despite

the real-world importance of strategic interactions, research at the intersection between real

options and game theory has been quite limited with a few exceptions, e.g., Fudenberg and

Tirole (1985), Grenadier (1996, 2002), and Back and Paulsen (2009).

The existing real-option duopoly models assume that firms incur the same cost when

making entry or investment decisions. However, in many industries, the second mover often

has a more efficient production technology and/or pays a lower entry cost than the first

mover. The ulcer-relief drug Zantac is a well known case study of a successful second mover

(Berndt, Pindyck and Azoulay, 2003).2 While the pioneer pays a steep price in creating the

product category, the later entrant can learn from the experience of the pioneer, enjoying

lower costs and making fewer mistakes as a result.3

Anticipating the second-mover advantage, in addition to preserve the option value in

standard real-option models, firms also have incentives to wait so as to lower its entry cost.

1McDonald and Siegel (1986) is the pioneering contribution to the real-options literature and Dixit and
Pindyck (1994) is the standard reference of this literature. Abel, Dixit, Eberly and Pindyck (1996) make the
connection between the real options approach and the q theory of investment (see, e.g., Hayashi (1982) and
Abel and Eberly (1994, 1996)). Grenadier and Malenko (2010) develop a Bayesian real-options approach and
Orlov, Skrzypacz and Zryumov (2020) study Bayesian persuasion in a real-options environment. Applications
of real-options models include natural resources (Brennan and Schwartz, 1985); real estate (Titman (1985)
and Grenadier (1996)); corporate default (Leland, 1994); mergers (Lambrecht, 2004); takeovers (Morellec
and Zhdanov, 2008); and external equity financing (Hugonnier, Malamud and Morellec, 2015), among others.
Grenadier and Malenko (2011) analyze real-option signaling games. Economic applications involving discrete-
choice models are also real-option models.

2Berndt, Pindyck and Azoulay (2003) show that for the anti-ulcer drug market there are both brand-level
and product-level network externalities. When the product-level externality is stronger than the brand-level
externality, it is better to go second and let the first mover incur various costs of resolving the uncertainties
(e.g., about the likelihood of successful FDA testing and the size of the potential market).

3This is paraphrased from Northwestern Kellogg’s Insight at https://insight.kellogg.northwestern.
edu/article/the_second_mover_advantage, which is based on Shankar, Carpenter and Krishnamurthi
(1998).
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We show that this new waiting motive fundamentally alters the economics of duopoly entry

games. Depending on the level of the total market demand, we show that there are up to five

mutually exclusive regions coexisting in equilibrium. First, the two distinct waiting motives

induce two equilibrium waiting regions where it is optimal for firms not to enter. Second,

there exists a first-mover advantage region where firms compete for entry. This is because

after the first mover enters, the second mover faces a smaller market and rationally waits,

enabling Leader to collect monopoly rents before the total market demand rises to an even

higher level triggering Follower to voluntarily enter as in Fudenberg and Tirole (1985) and

Grenadier (1996).

Third, there are two additional regions where firms prefer to enter as Follower. However,

waiting is costly as firms forgo operating profits. in equilibrium both firms use mixed strate-

gies to enter probabilistically. Why do we have two mixed-strategy regions? In one region

where the total market demand is not very high, Leader collects monopoly rents in equi-

librium as it is suboptimal for Follower to immediately enter. In the other mixed-strategy

region, Follower immediately enters after Leader does because the total market demand is

sufficiently high so that it is optimal for both firms to be in the market.

Now we sketch out our duopoly model. Two ex ante identical firms, Alice’s and Bob’s,

compete to enter a new product market. To ease exposition, we assume that the total profit

of the industry is exogenous and stochastic. We assume that Leader, the firm that enters

first, has a monopoly power over the market demand until Follower enters. As soon as it

enters, Follower takes away a half of the total market demand from Leader.

Entering this new market is exercising an entry option, which can be quite costly for

a firm. As we expect, there are various upfront fixed costs that a firm must incur when

entering a new market. For example, a firm that opens new factories and sells its products

overseas must learn how to work with local governments, familiarize itself with local business

and legal environments, and learn about customer preferences, just to name a few. Entering

the market as the first mover (Leader) can be particularly costly as the firm has to start

pretty much everything from scratch and pay various kinds of setup and learning costs.

In contrast, Follower (the second mover) incurs a smaller upfront entry cost than Leader.

For example, by observing Leader and learning from its success and failure experiences in

the new market, Follower can come up with a more efficient entry strategy and economize
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its cost structure. That is, Leader’s entry generates a positive externality on Follower by

lowering Follower’s entry cost. When this positive externality of reducing Follower’s entry

cost is sufficiently large, firms en ante then have incentives to be the second mover. To

be precise, Leader’s value is lower than Follower’s value. We show that this second-mover

advantage in our duopoly model drives key predictions of our model.

We analyze both mixed-strategy and pure-strategy equilibria for our duopoly setting.

For both types of equilibria, we obtain closed-form solutions for value functions and optimal

entry strategies. Finally, we quantify our model’s predictions and find substantial option

value erosion and socially inefficient entry delay.

Our first and most important contribution is to characterize the mixed-strategy equilib-

rium, which is symmetric in that the two firms’ strategies are the same. They both wait with

probability one when the total profit in the industry x is below an endogenously determined

cutoff threshold x. When the industry profit is sufficiently high, i.e., x ≥ x, both firms enter

probabilistically at an equilibrium rate of λ∗(x). Once one firm enters, the other immediately

follows, which means there is no monopoly profit for Leader.

As firms prefer to be Follower, then why are they willing to enter probabilistically?

This is because the other alternatives, entering for sure as Leader and never entering, are

worse. A firm that never exercises its entry option is worth zero. Stochastic entry is thus a

compromised outcome between the two firms. How do we determine a firm’s entry strategy

in the mixed-strategy equilibrium, characterized by the equilibrium entry rate λ∗(x)?

On one hand, because of the second-mover advantage, each firm wants to free ride on

the other’s entry by being Follower in order to save its entry cost. This encourages firms

to wait. On the other hand, it is also costly for firms to wait as it forgoes the opportunity

of collecting the current profits. Each firm balances the benefit of waiting, which preserves

the option value of becoming the second mover (hence winning the attrition game) and the

opportunity cost of missing the current period’s profit.

In equilibrium, both firms must be indifferent between entering and waiting for another

period. To make them indifferent between the two options, the entry rate λ∗(x) must equal

the ratio between (1.) a firm’s net income, the difference between operating profits and the

interest payment of the entry cost, and (2.) the wedge between Leader’s and Follower’s entry

costs (the reward for the attrition game’s winner). This is because the competitor’s entry
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rate, which equals λ∗(x) in equilibrium, is the rate at which a firm wins the attrition game.

To the best of our knowledge, our paper is among the first to characterize the mixed-strategy

equilibrium in strategic real-option exercising games. We obtain closed-form solutions for

both the entry strategy and value functions. The equilibrium in Grenadier (1996) is of pure

strategy, because there is a first-mover advantage in his model. Firms prefer to be Leader

and thus have no incentive to randomize their entry decisions.

Our second key contribution is to develop a new solution method for the mixed-strategy

equilibrium, which we refer to as the separation principle. This principle allows us to de-

compose the mixed-strategy equilibrium solution into two subproblems. First, we solve

a single firm’s optimal stopping problem (ignoring strategic interactions between the two

firms). Second, we derive a generalized war-of-attrition formula for the equilibrium entry

rate in dynamic entry games. Technically, we extend the standard war-of-attrition result to

settings with stochastic investment opportunities and endogenous entry. We show that the

interactions between the war-of-attrition force and the option value of waiting significantly

enrich our duopoly game analysis. We emphasize that the separation principle holds broadly

for duopoly competition models with second-mover advantages.

The separation principle offers at least three advantages. First, solving a single firm’s real-

option problem is much easier than analyzing a dynamic duopoly entry game. Second, we

show that the war-of-attrition part of our analysis boils down to a straightforward calculation

for the equilibrium entry rate λ∗(x) as if firms were behaving myopically by only taking the

current net income and the reward of being winner (saved entry cost by being Leader)

into account. Finally, we show how to combine the real-options analysis and the war-of-

attrition analysis to obtain the equilibrium outcome. Interestingly, these two forces interact

in an economically intuitive and analytically tractable way. In sum, this two-step procedure

significantly deepens our understanding of the duopoly game’s solution and mechanism.

Our third key contribution is to solve for the pure-strategy equilibria and provide a

tight connection between the mixed-strategy and pure-strategy equilibria. As in the mixed-

strategy equilibrium, Leader exercises its entry option later than the socially optimal level in

our pure-strategy equilibria. This is because Leader takes into account the immediate entry

by Follower. Follower’s incentives to grab one-half of the market share from Leader and

free ride on Leader’s entry cost cause Leader to inefficiently delay its entry. That is, viewed
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from the lens of the war-of-attrition game, the loser of the game (Leader) waits too long

before entry. This inefficiency result differs from standard war-of-attrition examples, where

the pure-strategy equilibria are efficient as the loser immediately drops out (Levin, 2004).

The loser’s inefficient delay is due to the option value of waiting in our model. Again, this

result highlights the rich predictions generated by the interaction between the real options

force and the second-mover advantage in a stochastic entry game.

We further show that Leader’s pre-entry value in a pure-strategy equilibrium equals a

firm’s pre-entry value in the mixed-strategy equilibrium. An implication of this result is that

the threshold above which both firms adopt mixed strategies equals Leader’s optimal entry

threshold in a pure-strategy equilibrium. Despite the two types of equilibria have the same

entry region where x ≥ x, entry is further delayed in the mixed-strategy equilibrium than in

the pure-strategy equilibria path by path. This is because firm entry occurs instantly in the

pure-strategy equilibria but only probabilistically in the mixed-strategy equilibrium.

Finally, we show that the quantitative effects of competition and the second-mover ad-

vantage on firm value and equilibrium entry strategies are quite large. We then characterize

the distributions of entry time using tractable partial differential equations with econom-

ically intuitive boundary conditions for both pure-strategy and mixed-strategy equilibria.

Using these tractable formulas, we show that the quantitative effects of competition and

the second-mover advantage on the distributions of entry time are very large. Compared

with the socially efficient outcome, a firm significantly delays its entry timing as it prefers

to be the second mover and only has one half of the market share. This result that entry is

inefficiently delayed holds for both pure-strategy and mixed-strategy equilibria.

Moreover, the mixed-strategy equilibrium is even more inefficient than the pure-strategy

equilibria and quantitatively the predictions are quite different for the two types of equilibria.

Although the two types of equilibria have the same entry region x ≥ x, Leader is determined

endogenously and probabilistically in the mixed-strategy equilibrium while Leader enters

with probability one in the pure-strategy equilibria whenever x ≥ x. Therefore, the realized

entry time is often much later in the mixed-strategy equilibrium than in the pure-strategy

equilibria. It is this further entry delay in the mixed-strategy equilibrium that makes the

total market capitalization of the industry lower in the mixed-strategy equilibrium than that

in the pure-strategy equilibria.
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While the main focus of our paper is the second-mover advantage, we can generalize

our main model so that the first-mover and second-mover advantages coexist in equilibrium.

Which advantage dominates depends on market demand and the entry-cost wedge for Leader

and Follower. In Section 8, we provide an example with state-contingent advantages.

Related literature. Our paper is naturally related to the real-options, strategic compe-

tition, and war-of-attrition literature. As we have noted, our paper is closely related to

Fudenberg and Tirole (1985) and Grenadier (1996).4 Unlike these papers, we study set-

tings with second-mover advantages. As a result, the key differences in terms of results

include (a.) both pure-strategy and mixed-strategy equilibria exist in our model and only

the pure-strategy equilibrium exists in Grenadier (1996); (b.) the key driving force for both

pure-strategy and mixed-strategy equilibria is the incentive to free ride on Leader in our

model while the key driving force in Grenadier (1996) is a firm’s incentive to make a pre-

emptive entry move and the equilibrium rent equalization force emphasized in Fudenberg

and Tirole (1985); (c.) our model predicts excessively delayed entry while Grenadier (1996)

predicts socially inefficient rushed real-option exercising.5

Our paper is also closely related to Grenadier (2002) and Back and Paulsen (2009), who

study oligopoly games where incumbents make irreversible incremental capital accumulation.

In contrast, we analyze dynamic entry games. Mathematically, their game-theoretic analy-

ses build on an individual firm’s optimal singular control while our duopoly game builds on

stopping-time models. As a result, both the mathematical structure and economic predic-

tions of our model are quite different from Grenadier (2002) and Back and Paulsen (2009).

Our paper is also closely related to Lambrecht (2001), who develops a duopoly exit model

in a standard real-option setting with a second-mover advantage. Different from Lambrecht

(2001), the second-mover advantage is about entry in our model and the mixed-strategy

equilibrium analysis, which is a focus of our paper, is new. Lambrecht and Perraudin (2003)

introduce incomplete information into an equilibrium real-option exercising model.6

4Fudenberg, Gilbert, Stiglitz and Tirole (1983) model preemption games (e.g., patent races) in determin-
istic settings. Smets (1991) studies irreversible investment in a duopoly setting and analyzes an asymmetric
leader-follower equilibrium. Murto (2004) studies a duopoly exit game and focuses on pure strategies.

5The monopolist’s real-option model is based on McDonald and Siegel (1986) and Dixit and Pindyck
(1994). The cooperative duopoly model against which we calculate social surplus loss is related to a similar
benchmark in Weeds (2002).

6Anderson, Friedman and Oprea (2010) generalize Lambrecht and Perraudin (2003) to settings with

6



Weeds (2002) integrates a real-options model with strategic interactions by incorporating

technological uncertainty into models along the lines of Grenadier (1996). There is no war-

of-attrition force and the equilibria are of the pure-strategy type in Weeds (2002).

War-of-attrition models are widely used in economics.7 We build on and generalize

classic deterministic war-of-attrition-style duopoly exit models, e.g., Ghemawat and Nalebuff

(1985, 1990), Fudenberg and Tirole (1986), and Hendricks, Weiss and Wilson (1988) to

incorporate stochastic payoffs and the real option value of waiting. Unlike these papers, we

study endogenous entry in a duopoly game where attrition means entering the market and

letting the other firm to free ride on entry cost reduction. It is worth emphasizing that the

payoff from becoming Leader (upon entering ) in our entry game is endogenous and can only

be obtained via backward induction. This is a major difference between our entry game and

standard war-of-attrition exit games.

Importantly, the interactions between the real-option value of waiting and the war-of-

attrition considerations generate novel predictions in both mixed-strategy and pure-strategy

equilibria. For example, the equilibrium entry rate λ∗(x) is state dependent and the pure-

strategy equilibria are socially inefficient unlike in standard war-of-attrition games.

There is also a growing literature that integrates industrial organization considerations

into asset pricing models. For example, Dou, Ji and Wu (2021) extend the standard Lucas-

tree asset pricing model to allow for endogenous strategic competition. Chen, Dou, Guo and

Ji (2022) study how strategic competition and financial distress dynamically interact.

2 Model

In this section, we set up an entry game in which two ex ante identical firms (entrants)

decide their optimal timing to enter a new market with stochastic profits.

2.1 Market Demand and Industry Structure

As in McDonald and Siegel (1986), Dixit and Pindyck (1994), and Grenadier (1996), we

assume that the total market profit is governed by a stochastic process, {Xt; t ≥ 0}, which

multiple firms.
7Section 8.1 of Tirole (1988) and Levin (2004) offer introductions to the war-of-attrition literature.
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follows a geometric Brownian motion:

dXt = µXtdt+ σXtdZt , (1)

where µ is the expected growth rate of X, σ > 0 is the constant volatility for the growth

rate of X, {Zt; t ≥ 0} is a one-dimensional standard Brownian motion, and the initial value

of X is known: X0 = x0 > 0.8

Let τL denote the stochastic time when Leader enters the market and let τF denote the

stochastic time when Follower enters. By definition, τF ≥ τL. Let K1 > 0 and K2 > 0

denote the one-time upfront fixed entry cost that Leader and Follower have to pay at their

respective entry time τL and τF . More broadly, we interpret Leader’s upfront entry cost

K1 as the present value of all expenses that Leader incurs and similarly K2 as the present

value of all expenses that Follower incurs.9 It is plausible that Leader incurs larger costs

than Follower does as Leader may have to pay additional innovation costs, learn about a

new product market, and work with local governments in the new markets. Follower can

save some of the costs by observing Leader’s actions, learning from Leader’s experiences and

mistakes, and even possibly imitating Leader’s success and copying Leader’s strategies.

The industry structure has three phases. First, before either firm enters (t < τL), the

market is inactive and neither firm receives any cash flow. Which firm becomes Leader is

endogenous and stochastic. Second, after Leader enters at τL and before Follower enters at

τF , Leader receives a monopoly profit at a rate of {Xs; s ∈ [τL, τF )}. Third, after Follower

enters at τF , the economy permanently switches from a monopoly to a duopoly setting in

which Follower and Leader equally split the total market profit and both receive profits

indefinitely at a rate of {Xs/2; s ≥ τF}.
As a key goal of our paper is to study the implications of a second-mover advantage on

firm entry and duopoly equilibrium, we assume that Follower’s entry cost K2 is lower than

a half of Leader’s entry cost K1: K2 ≤ K1/2. This assumption about entry costs is closely

related to the other key assumption that Leader loses one half of its monopoly market share

to Follower upon the latter’s entry. With this pair of assumptions, we can show that there is

a second-mover advantage and therefore a firm prefers to be Follower rather than Leader.10

8Let (Ω,F , {Ft}t≥0,P) denote the probability space. We assume that the process {Zt; t ≥ 0} is progres-
sively measurable with respect to {Ft}t≥0.

9We can generalize our model by incorporating ongoing operating costs that may be different for Follower
and Leader. For brevity, we leave this extension out. Our key results are robust to this extension.

10For a lower entry-cost wedge ∆K = K1−K2, we show that the first-mover and second-mover advantages
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In sum, two ex ante identical firms, firm a (Alice’s) and firm b (Bob’s), maximize their

values by taking the total market profit {Xs; s ≥ 0} process and the industry structure

described above as given. Let τa and τb denote firm a’s and b’s stochastic entry time,

respectively. Both firms are risk-neutral and discount profits at the constant interest rate

r. As in the standard real-option models, we require r > µ and r > 0, which ensure that

firm value is finite.11 Below we summarize these assumptions, which apply throughout our

analysis:

Assumptions : r > µ, r > 0, K1 ≥ 2K2> 0 . (2)

For brevity we do not refer to (2) for the remainder of our paper.

2.2 Leader’s Post-entry and Follower’s Pre-entry Values: L(x), F (x)

Definitions. Follower’s pre-entry value, i.e., for any t ≥ τL, is given by:

F (x) = max
τF≥t

Ext
[∫ ∞

τF

e−r(s−t)
Xs

2
ds− e−r(τF−t)K2

]
, (3)

where Xt = x > 0 and Ext [·] = Et[·|Xt = x] as our model is Markovian.12 Let τ ∗F denote the

optimal stopping time for (3). Taking τ ∗F and F (x) as given, we define Leader’s post-entry

value function, L(x), for any t ∈ [τL, τ
∗
F ] as follows:

L(x) = Ext

[∫ τ∗F

t

e−r(s−t)Xsds+

∫ ∞
τ∗F

e−r(s−t)
Xs

2
ds

]
, (4)

where the first term in (4) gives Leader’s time-t value for its post-entry stochastic monopoly

period and the second term gives the value of being a duopoly after Follower enters at τ ∗F .

Note that F (x) includes Follower’s entry cost K2 but L(x) does not include Leader’s entry

cost K1. We define F (x) and L(x) this way to ease exposition.

As we show later, both pure-strategy and mixed-strategy equilibria exist in our model.

The pure-strategy equilibria are asymmetric and the mixed-strategy equilibrium is symmetric

between the two firms. We analyze both types of equilibria. First, we study the economically

more interesting symmetric mixed-strategy equilibrium.

can coexist. Which advantage dominates depends on the value of x. In Section 8, we use an example to
show state-contingent advantages.

11We can equivalently interpret our optimization problems under the risk-neutral measure (i.e., risk ad-
justed). In this case, µ is the drift under the risk-neutral measure. Introducing risk premia via a stochastic
discount factor allows us to study the asset pricing applications of competition (Duffie, 2001).

12For t = 0, we write Ex0 [·] as Ex[·].
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2.3 Entry Equilibrium

For a given pair of entry times (τa, τb), Firm i’s value function at time t is given by13

Ext
[
e−r(τi∧τ−i−t)

[
1τi<τ−i(L(Xτi)−K1) + 1τi>τ−iF (Xτ−i)

] ]
, i = a, b, (5)

where Xt = x > 0 and 1A is an indicator function that equals one if event A occurs and zero

otherwise. The first term in (5) captures the event where firm i is Leader and the second

term captures the event where firm i is Follower. As the event τi = τ−i has zero probability

almost surely for mixed strategies, we exclude this possibility in (5) to ease exposition.

Here, we focus on the mixed strategies when firms make their entry decisions. We char-

acterize the Markov perfect mixed-strategy equilibrium by using the firms’ stochastic entry

rate processes. Let λi(Xt) denote this controlled stochastic entry rate process at which firm

i exercises its investment option. For any t < τL, the probability that firm i becomes Leader

over a small time interval [t, t+ dt] is λi(Xt)dt. Firm i’s entry time τi is a doubly stochastic

process as the associated intensity process {λi(Xt)}t≥0 is also stochastic.14 Leader’s entry

time τL is then given by15

τL = min{τa, τb} (6)

and is also doubly stochastic but with an intensity process of {λa(Xt) + λb(Xt)}t≥0. Next,

we define feasible mixed strategies and the Markov perfect mixed-strategy equilibrium.

Definition 1 An entry rate λi is a measurable function from R+ to R+. A pair of strategy

(λa, λb) is feasible if and only if for any t > 0,
∫ t

0
λi(Xs)ds <∞ almost surely. Let Φ denote

the set of all feasible mixed strategies.

13We show later that there exist a symmetric mixed-strategy equilibrium and asymmetric pure-strategy
equilibria. For both cases, we can ignore the event where τa = τb almost surely. For brevity, we thus leave
out the τa = τb scenario in our definition of value functions.

14Stopping time τ is doubly stochastic if the underlying counting process {Nt}t≥0 whose first jump time
τ is doubly stochastic. A counting process {Nt}t≥0 is doubly stochastic if its associated intensity process
{λt}t≥0 is {Ft}t≥0-predictable and for all t and s > t, conditional on the σ-algebra generated by {Nu}u∈[0,t]

and Fs, the random variable (Ns −Nt) has a Poisson distribution with parameter
∫ s
t
λudu. Now we apply

these definitions to our model. Let {Gt}t≥0 be the σ-algebra generated by {Ft}t≥0 and {N i
t }t≥0, where

i = a, b. For any t ≥ 0 and s > t, conditional on the σ-algebra generated by Gt
⋃
Fs, the counting processes

{N a
u −N a

t }u∈[t,s] and {N b
u −N b

t }u∈[t,s] are independent and the random variable (N i
s −N i

t ) has a Poisson

distribution with parameter
∫ s
t
λi(Xu)du for i = a, b. Firm i’s entry time τi is thus doubly stochastic with

the underlying counting process {N i
t }t≥0 and the associated intensity process {λi(Xt)}t≥0. See Lando (1998)

and Duffie (2005) among others for applications of doubly stochastic processes to affine credit-risk models.
15Technically, τL = min{t ≥ 0 : N a

t +N b
t = 1}.
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Definition 2 Let Ji(x;λa, λb) denote firm i’s value at time t defined in (5) for a given Xt =

x > 0 and a feasible Markov mixed strategy pair (λa, λb). A feasible strategy pair (λ∗a, λ
∗
b) is

a Markov perfect mixed-strategy equilibrium if for any x > 0, the following conditions hold:

Ja(x;λ∗a, λ
∗
b) ≥ Ja(x;λa, λ

∗
b), ∀ (λa, λ

∗
b) ∈ Φ, (7)

Jb(x;λ∗a, λ
∗
b) ≥ Jb(x;λ∗a, λb), ∀ (λ∗a, λb) ∈ Φ. (8)

Let Vi(x) denote firm i’s equilibrium value function: Vi(x) = Ji(x;λ∗a, λ
∗
b).

Before analyzing duopoly competition, we summarize the solutions for two benchmarks:

a monopoly and a planner’s problem for the cooperative duopoly setting.

3 Monopoly and Cooperative Duopoly

We first summarize the solution for the standard single firm’s real-option model, which

we also refer to as the monopoly problem, and later use it as a benchmark with which

we compare our duopoly competition model solution. Additionally, when summarizing the

monopoly solution we introduce a few functions that are helpful for our duopoly analysis.

Monopoly. A stand-alone firm chooses its entry time, τM , to solve the following problem:

M∗(x) = max
τM≥t

Ext
[
e−r(τM−t)

(∫ ∞
τM

e−r(s−τM )Xsds−K1

)]
, (9)

where Xt = x > 0 and M∗(x) is the optimal value function. The firm’s value after exercising

its option (t ≥ τM) is given by the standard Gordon growth model:

Π(x) = Ext
[∫ ∞

t

e−r(s−t)Xsds

]
=

x

r − µ
. (10)

The Π(x) function is the (gross) payoff value for the firm.

The optimal investment policy for the standard real-option problem (9) takes the form

of an endogenous threshold which we denote by xM . That is, the monopolist enters the first

moment τ ∗M when {Xs} exceeds xM to be reported later: τ ∗M = inf{s ≥ t : Xs ≥ xM}.
The standard approach to solving (9) is using the widely used smooth-pasting condition

as in McDonald and Siegel (1986) and Dixit and Pindyck (1994). Here, we solve the real-

option problem as a monopolist’s value-maximizing problem. Doing so has an additional

benefit of allowing us to derive an intermediate result useful for our duopoly analysis.16

16Of course, the monopoly solution method (less used but also known in the literature) and the standard
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First, we calculate the firm’s option value associated with an exogenously given invest-

ment threshold x̂. The value for a firm that invests at the first moment Xs exceeds x̂:

τM = inf{s ≥ t : Xs ≥ x̂}, denoted by M(x; x̂), is given by

M(x; x̂) =
(x
x̂

)β
(Π(x̂)−K1) , x < x̂ , (11)

M(x; x̂) = Π(x)−K1, x ≥ x̂ , (12)

where Π(x) is given by (10) and β > 1 is the optimality parameter given by17

β =
−(µ− 1

2
σ2) +

√
(µ− 1

2
σ2)2 + 2rσ2

σ2
. (13)

In the x < x̂ region the firm waits and in the x ≥ x̂ region the firm invests.

Second, the firm chooses its threshold x̂ to maximize (11), which is effectively a (static)

monopolist’s problem. A higher value of x̂ increases the quantity (Π(x̂)−K1), the net

payoff upon investing at τM , but decreases the price (time-t value of a dollar paid at τM):

Ext [e−r(τM−t)] = (x/x̂)β. The firm chooses x̂ to maximize its value M(x; x̂), the product of

(Π(x̂)−K1) and (x/x̂)β. We obtain the following closed-form solution for x̂ ∗ = xM :

xM =
β

β − 1
(r − µ)K1 . (14)

For any given x ∈ (0, xM), we can show that M(x; x̂) is increasing in x̂ for x̂ ∈ [x, xM ]

and decreasing in x̂ for x̂ > xM .18 Therefore, xM is the optimal entry threshold for (11):

x̂ ∗ = xM and the firm’s value function is M∗(x) = M(x;xM). We next summarize the above

main results below.

Proposition 1 The optimal entry threshold xM is given in (14) and the monopolist’s value

function is given by

M∗(x) = M(x;xM) , (15)

where M(x; x̂), firm value for a given entry threshold x̂, is given by (11)-(12). For a given

x ∈ (0, xM), M(x; x̂) is increasing in the threshold x̂ for x̂ ∈ [x, xM ], which implies

M(x; x̂) ≥M(x;x) = Π(x)−K1 for x̂ ∈ [x, xM ] . (16)

smooth-pasting-condition-based approach are mathematically equivalent.
17That is, β is the larger root of the fundamental quadratic equation, σ2z(z−1)/2+µz−r = 0, associated

with the GBM X process (1) in standard real option models.

18For any x ∈ (0, x̂),
∂M(x; x̂)

∂x̂
=

xβ

x̂β+1
(β − 1)

[
β

β − 1
K1 −Π(x̂)

]
=

xβ

x̂β+1

β − 1

r − µ
(xM − x̂). As β > 1,

∂M(x;x̂)
∂x̂ > 0 for x̂ ∈ (x, xM ) and ∂M(x;x̂)

∂x̂ < 0 for x̂ > xM . Also by definition, ∂M(x;x̂)
∂x̂ = 0 for x̂ ∈ (0, x).
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The last result in Proposition 1 implies that the longer the firm waits before τ ∗M = inf{s ≥
t : Xs ≥ xM}, the higher its value M(x; x̂). We establish the second-mover advantage

using this result in the next section. Next, we solve a planner’s total market capitalization

maximization problem, which we refer to this case as a cooperative duopoly.

Cooperative Duopoly. A planner who maximizes the total market capitalization of the

two firms chooses Leader’s entry time τL ≥ t and Follower’s entry time τF ≥ τL by solving:

Ext
[∫ ∞

τL

e−r(s−t)Xsds−K1e
−r(τL−t) −K2e

−r(τF−t)
]
. (17)

Let W (x) denote the planner’s value function and let (τ̃L, τ̃F ) denote the pair of Leader’s

and Follower’s optimal entry timing strategies. By definition, τ̃L ≤ τ̃F . Since Follower’s value

entirely comes from grabbing a half of the industry profits from Leader and moreover it also

incurs an upfront fixed entry cost K2. It is therefore socially optimal to only allow one firm

to enter and give it the entire profits. Next, we summarize this monopoly efficiency result.

Proposition 2 The planner’s value W (x) equals a monopolist’s value M∗(x). Leader’s

entry time is the same as the monopolist’s: τ̃L = inf{s ≥ t : Xs ≥ xM}, where M∗(x) and

xM are given in Proposition 1. Finally, Follower never enters: τ̃F =∞.

In our model, permanently granting one firm monopoly rights and excluding the other

firm is socially optimal. We purposefully choose this simple setting in order to focus on the

effect of the second-mover advantage in our duopoly competition model.

4 Duopoly Competition: Mixed-Strategy Equilibrium

In this section, we solve for the mixed-strategy equilibrium and value functions for our

duopoly model. To guide our analysis in this section, in Figure 1 we divide the duopoly

game into three periods and then highlight the value functions in each period: t ≥ τF (after

Follower enters), t ∈ [τL, τF ) (after Leader enters but before Follower enters), and t < τL

(before Leader enters). Using backward induction, we first solve Follower’s problem.

4.1 Follower’s Pre-entry and Leader’s Post-entry Values: F (x), L(x)

After Leader enters (t ≥ τL), Follower solves its optimal entry decision problem.

13



Pre-Entry Value: Ji(x) F (x), L(x) Post-Entry Value: Π(x)
2

τL τF
Time: t

Figure 1: This figure summarizes various value functions for a given pair of entry timing
(τL, τF ) in three time periods: t < τL (before Leader’s entry); t ∈ [τL, τF ]; and t > τF (after
Follower’s entry).

Follower’s Optimal Entry and Pre-entry Value. Follower’s problem (3) is the same

as a monopolist’s problem with K1 and {Xs; s ≥ 0} replaced by K2 and {Xs/2; s ≥ 0},
respectively, in Proposition 1. Follower’s pre-entry value F (x) is thus given by:

F (x) =

(
Π(xF )

2
−K2

)(
x

xF

)β
, x < xF , (18)

F (x) =
Π(x)

2
−K2 , x ≥ xF , (19)

where the optimal entry threshold, xF , is given by

xF =
2β

β − 1
(r − µ)K2 . (20)

As in standard real option models, Follower’s pre-entry value F (x) is increasing and convex.

The higher the volatility σ, the higher the value F (x).

Equations (14) for xM and (20) for xF imply that under the assumption K1 ≥ 2K2 a

monopoly with an exclusive access to the industry enters later than Follower in our duopoly

setting: xF ≤ xM . This result implies second-mover advantage in our model.

Leader’s Post-entry Value. Solving (4) for t ≥ τL, we obtain

L(x) = Π(x)− Π(xF )

2

(
x

xF

)β
, x < xF (21)

L(x) =
Π(x)

2
, x ≥ xF . (22)

In the x ≥ xF region, both Leader and Follower are active and they equally split the market

share, valued at Π(x)/2. In the x < xF region, Leader’s time-t value L(x) thus equals the

difference between the industry’s total market capitalization Π(x) and Π(xF )
2

(
x
xF

)β
. The

latter term equals the present value of Leader’s lost profits caused by Follower’s entry.19

19The term Π(xF )
2

(
x
xF

)β
equals the value of lost profits Π(xF )/2 at τF , multiplied by (x/xF )

β
, the time-t

value of a dollar paid when {Xs} reaches xF .
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Next, we summarize the key results for L(x) and F (x).

Proposition 3 Follower’s optimal entry time is given by τ ∗F = inf{s ≥ τL : Xs ≥ xF}, where

xF is its optimal entry threshold given by (20). In the x ≥ xF region, Follower’s pre-entry

and Leader’s post-entry values, F (x) and L(x), are given by (19) and (22), respectively. In

the x < xF region, F (x) and L(x) are given by (18) and (21), respectively. Finally,

L(x)−K1 < F (x) , x > 0 . (23)

Equation (23) states that a firm is always better off being Follower. That is, our model

features a second-mover advantage for all x > 0. We discuss the forces behind this key result

in two steps. First consider the x ≥ xF region. As Follower pays a lower upfront entry cost

than Leader, (L(x) −K1) − F (x) = K2 −K1 < 0. Second, in the x ∈ (0, xF ) region, using

(21) for L(x) and (18) for F (x), we obtain:

(L(x)−K1)− F (x) = (Π(x)−K1)− (Π(xF )−K2) (x/xF )β

< (Π(x)−K1)− (Π(xF )−K1) (x/xF )β

= M(x;x)−M(x;xF ) ≤ 0 . (24)

The first inequality follows from K1 > K2. The second inequality follows from (16) by using

the property that Follower’s entry trigger xF is lower than the monopolist’s entry trigger

xM : xF ≤ xM , implied by K1 ≥ 2K2. In sum, we have shown that our duopoly competition

model features a second-mover advantage: L(x)−K1 < F (x) for any x.20

Inequality (23), the definition of Ji(x;λa, λb) given in (5), and Vi(x) given in Definition

2 together imply that the equilibrium value function Vi(x) satisfies:

L(x)−K1 ≤ Vi(x) ≤ F (x) , x > 0 . (25)

The inequality on the left holds because a firm can always become Leader immediately.

The inequality on the right also holds because the best that a firm can be is Follower:

Vi(x) ≤ Ext [e−r(τL−t)F (XτL)] ≤ F (x). In essence, (25) states that it is always advantageous

to be the second mover (Follower). Next, we turn to a firm’s decision to become Leader.

20We can prove a stronger result than L(x) − K1 < F (x) shown in (24): L(x) − K1 < Π(x)/2 − K2.
(see Remark 1 in Appendix). This inequality states that the Leader’s net payoff upon entry, L(x)−K1, is
always strictly lower than the net payoff value of being Follower: Π(x)/2−K2. The inequality L(x)−K1 <
Π(x)/2−K2 implies L(x)−K1 < F (x) as an option is always at least worth as much as its net payoff value
upon immediate exercising: F (x) ≥ Π(x)/2−K2 for all x > 0.
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4.2 Closed-Form Markov Perfect Mixed-Strategy Equilibrium

First, we solve for firm i’s value, Ji(x;λa(x), λb(x)) for a given mixed strategy pair

(λa(x), λb(x)). The following HJB equation for Ji(x) = Ji(x;λa(x), λb(x)) holds:

rJi(x) =
σ2x2

2
J ′′i (x) + µxJ ′i(x) + λi(x)[L(x)−K1 − Ji(x)] + λ−i(x)[F (x)− Ji(x)] , (26)

where L(x) is given by (21) and (22), and F (x) is given by (18) and (19). The intuition

for the HJB equation (26) is as follows. The first two terms on the right side are standard

and capture the effects of diffusion and drift of X on Ji(x). The third term describes the

effect of Firm i’s own entry strategy on its value. The last term describes the effect of the

competitor’s mixed entry strategy on firm i’s value. If the competitor enters, firm i becomes

Follower and its value function jumps from Ji(x) to F (x). The sum of these four terms on

the right side equals the annualized firm value rJi(x) (Duffie, 2001).

Next, we turn to the symmetric Markov perfect equilibrium. Let λ∗(x) = λ∗a(x) = λ∗b(x)

denote the symmetric equilibrium Markov perfect mixed strategy for the two firms. Let

Vi(x) denote firm i’s equilibrium value function: Vi(x) = Ji(x;λ∗a(x), λ∗b(x)). There are two

scenarios to consider: 1.) λ∗(x) > 0 and 2.) λ∗(x) = 0. When λ∗(x) > 0, the firm must be

indifferent between entering the market (becoming Leader) and waiting, which means the

value functions from the two strategies are equal:

Vi(x) = L(x)−K1 , if λ∗(x) > 0 . (27)

Using (26) and (27), we obtain the following HJB equation for Vi(x):

rVi(x) =
σ2x2

2
V ′′i (x) + µxV ′i (x) + λ∗(x)[F (x)− Vi(x)] , (28)

which hold for both λ∗(x) > 0 and λ∗(x) = 0 cases. The key term in (28) is the last

one, which captures the expected change of firm i’s value due to its competitor’s entry.

Although the industry demand X is continuous, firm value is discontinuous and jumps when

its competitor enters the market.

Re-arranging (28) yields the following expression for λ∗(x):21

λ∗(x) =
rVi(x)−

[
σ2x2

2
V ′′i (x) + µxV ′i (x)

]
F (x)− Vi(x)

. (29)

21Mathematically, the numerator of (29) is −AVi(x), where A = σ2x2

2
∂2

∂x2 + µx ∂
∂x − r is the infinitesimal

generator.
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When λ∗(x) > 0, substituting Vi(x) = L(x)−K1 given in (27) into (29), we obtain

λ∗(x) =
rL(x)−

[
σ2x2

2
L′′(x) + µxL′(x)

]
− rK1

F (x)− (L(x)−K1)
. (30)

That is, λ∗(x) is fully determined by L(x) and F (x).

We later show that λ∗(x) > 0 holds for x ≥ x and λ∗(x) = 0 holds for x < x, where

the threshold for the mixed strategy, x, satisfies the following value-matching and smooth-

pasting conditions:

Vi(x) = L(x)−K1, (31)

V ′i (x) = L′(x) . (32)

While these two boundary conditions resemble the standard value-matching and smooth-

pasting conditions for a single firm’s optimal threshold in the standard models, the economics

underpinning (31)-(32) is different from standard real-option models. Mathematically, we

generalize the variational-inequality analysis in standard real-option models to our strategic

setting in the mixed-strategy equilibrium. In Section 5, we propose a separation principle

that links our duopoly competition model to standard real-option problems.

Note that in the λ∗(x) = 0 region, (28) implies the following HJB equation for Vi(x):

rVi(x) =
σ2x2

2
V ′′i (x) + µxV ′i (x) , x < x . (33)

We can show that x > xF holds in equilibrium, which implies that it is optimal for Follower

to enter immediately after Leader does at τ ∗L. Therefore, using (22), we obtain the following

linear payoff function for L(x) at x: L(x) = Π(x)/2 . Substituting L(x) = Π(x)/2 into

(31)-(33), we obtain the closed-form expression for Vi(x), denoted by V ∗(x):

V ∗(x) =
(x
x

)β (Π(x)

2
−K1

)
, x < x , (34)

V ∗(x) =
Π(x)

2
−K1 , x ≥ x , (35)

x =
2β

β − 1
(r − µ)K1 . (36)

Equations (34) and (35) resemble the standard value function expressions in the wait-

ing and exercising regions as in McDonald and Siegel (1986), Dixit and Pindyck (1994),

and Grenadier (1996). Equation (36) implies that the threshold above which firms enter

probabilistically, x, equals the optimal entry trigger for a (hypothetical) monopoly who has

a perpetual option to enter by paying a one-time cost K1 and afterwards receives {Xs/2}
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infinitely. Because Follower’s entry cost is lower than Leader’s (K2 < K1), xF < x which

implies that Follower immediately enters after Leader does (τ ∗F = τ ∗L+). As a result, Leader

never enjoys monopoly rents in equilibrium.

It is worth emphasizing that

x = 2xM . (37)

That is, the threshold above which firms stochastically enter, x, is twice as high as the

monopolist’s entry xM , which maximizes the cooperative duopoly’s total surplus. Intuitively,

competition in our model discourages firms from entering rather than encourages them to

make preemptive moves. This is because firms anticipate no monopoly rents and prefer to

be the second mover so as to save K1 −K2 out of the entry cost.

In the x ≥ x region, both firms optimally randomize their entry decisions. Therefore,

Vi(x) equals Leader’s net payoff value
(
Π(x)/2−K1

)
, as given in (35). Because both firms

wait with probability one in the x < x waiting region (λ∗(x) = 0), firm i’s pre-entry value

Vi(x) equals the product of (a.) (x/x)β, the present value of a dollar paid at the moment

of Leader’s entry τ ∗L, and (b.)
(
Π(x)/2−K1

)
, Leader’s value netting of investment cost K1.

Firm i’s pre-entry value, Vi(x), is increasing and convex in x.

Using the no-arbitrage asset-pricing equation for L(x) to simplify (30), we obtain22

λ∗(x) =
CFL(x)− rK1

F (x)− (L(x)−K1)
, (38)

where CFL(x) is Leader’s equilibrium cash flow. The numerator in (38) is the firm’s net

income (the net benefit of becoming Leader) per unit of time and the denominator F (x)−
(L(x)−K1) is the forgone value of becoming Leader. The equilibrium symmetric entry rate

λ∗(x) must equal the ratio given in (38) so that the firm is indifferent between becoming

Leader now and waiting to enter at the rate of λ∗( · ) the next instant. This result is related to

the war-of-attrition argument for exit games (Levin, 2004). Unlike standard war-of-attrition

games, ours is an entry game with stochastic and endogenous cash flows and reward payoffs.

Additionally, the option value of waiting is crucial in our model.

Since Leader can only capture one half of the market share, we have CFL(x) = x/2 and

F (x)−(L(x)−K1) = K1−K2 for x ≥ x. Therefore, in equilibrium, (38) implies the following

22The asset-pricing equation for L(x) is: rL(x) = CFL(x) + µxL′(x) + σ2x2

2 L′′(x) , which states that the
total expected rate of return, including both cash flows and capital gains (the drift and volatility terms), for
Leader equals the risk-free rate r.
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expression for the equilibrium entry rate λ∗(x):

λ∗(x) =
x/2− rK1

K1 −K2

> 0 , x ≥ x . (39)

The entry rate λ∗(x) increases linearly with x for x ≥ x and approaches ∞ as x→∞. The

numerator in (39) equals firm i’s net income given by the operating profit x/2 minus rK1,

the interest expense of financing the upfront investment cost K1.

While both firms prefer to be Follower, for sufficiently high values of x (in the x ≥
x region), they are indifferent in equilibrium between 1.) entering and becoming Leader

instantly and 2.) waiting for another instant with the hope that the other firm becomes

Leader meanwhile and if not both continue playing the mixed strategy. Because Follower has

a cost-saving advantage over Leader (second-mover advantage), Follower immediately enters

as soon as Leader does. As a result the denominator in (39) equals F (x) − (L(x) −K1) =

K1 −K2 = ∆K, the difference between Leader’s and Follower’s upfront entry cost.

In equilibrium, the entry rate λ∗(x) equals the ratio between firm i’s current net income

1
2
x−rK1 and the entry-cost wedge K1−K2. This insight is analogous to the war-of-attrition

argument for standard exit games Levin (2004). Here, as Follower is clearly better off, neither

firm is ex ante willing to become Leader voluntarily. Both firms prefer free-riding the other

by being Follower and saving ∆K out of its entry cost. The mixed-strategy equilibrium

is thus a compromised outcome between the two firms. As a firm waits for the other to

enter, it forgoes the opportunity of collecting profits x/2 − rK1, but preserves the option

value of being the second mover and saving ∆K = K1 −K2. In equilibrium, both firms are

indifferent between entering and waiting when λ∗ is given in (39). The higher the value of

x, the higher the costs of forgoing one-period profit and thus the more likely it enters (e.g.,

λ∗(x) increasing in x.)

Finally, note the discontinuity of λ∗(x) as x reaches x from the left: λ∗(x) is zero in the

x < x waiting region, jumps to λ∗(x) =
(

β
β−1

r−µ
r
− 1
)

rK1

K1−K2
> 0 at x = x.

We summarize the equilibrium solution in Figure 2. While a duopoly entry game generally

features three stochastic time periods as illustrated in Figure 1, in equilibrium τ ∗F = τ ∗L+

and there are only two time periods in our model. For t < τ ∗F = τ ∗L+, Va(x) = Vb(x).

For t > τ ∗F = τ ∗L+, each firm receives a half of the market share and is valued at Π(x)/2.

Regarding entry, one firm randomly becomes Leader paying K1 at τ ∗L and the other firm

immediately enters at τ ∗F = τ ∗L+ paying K2 as Follower. The probability that firm a ends up
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Pre-Entry Value: Vi(x) Post-Entry Value: Π(x)
2

τ ∗F = τ ∗L+
Time: t

Figure 2: This figure summarizes the mixed-strategy equilibrium solution. For
t < τ ∗F = τ ∗L+, Va(x) = Vb(x). For t > τ ∗F = τ ∗L+, each firm receives one half of the market
share and is valued at Π(x)/2. Regarding entry, one firm randomly becomes Leader paying
K1 at τ ∗L and the other firm immediately enters at τ ∗F = τ ∗L+ paying K2 as Follower.

being the winner (Follower) is one half. Next we summarize our duopoly model solution.

Theorem 1 Firm i’s value function is given by (34)-(35). The symmetric Markov perfect

equilibrium strategy is given by (λ∗a(x), λ∗b(x)) = (λ∗(x), λ∗(x)). In the x < x region, where x

is the threshold for the mixed trategy given by (36), both firms wait: λ∗(x) = 0. In the x ≥ x

region, both firms enter stochastically at the rate of λ∗(x) > 0 given in (39). As soon as one

firm enters, the other also enters immediately: τ ∗F = τ ∗L+.

Next, we provide an alternative solution method for the duopoly mixed-strategy equilib-

rium, which we refer to as the separation principle. This principle helps us understand the

mechanism for the mixed-strategy equilibrium.23

5 Separation Principle and Application to Our Model

Before introducing the separation principle, it is helpful to first define the following real-

option problem. A single firm chooses its optimal entry time τ to receive a gross payoff value

of L(x) given in (21)-(22) by paying a fixed cost K1. Mathematically, the firm solves the

following optimal stopping problem:

H(x) := max
τ≥t

Ext
[
e−r(τ−t)(L(Xτ )−K1)

]
. (40)

We can show that the value function H(x) equals firm i’s value function Vi(x) for the mixed-

strategy equilibrium, which leads to the separation principle.

23Our separation principle is different from the separation principle in the incomplete information optimal
control literature Liptser and Shiryaev (1977), which states that the optimization problem with incomplete
symmetric information can be decomposed into two steps: first estimate the state variables using filtering
techniques and then solve dynamic programming problems using the filtered state variables.
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5.1 Separation Principle

Next we state the separation principle and then discuss the intuition for this principle.

Theorem 2 The value function H(x) for a single firm’s real-option problem (40) equals firm

i’s value function Vi(x) for the mixed-strategy equilibrium. Therefore, we can equivalently

obtain the mixed-strategy equilibrium solution in two steps. First, we solve a single firm’s

real-option problem (40) to obtain the value function in our duopoly setting: Vi(x) = H(x).

Second, we obtain the equilibrium entry rate λ∗(x) in the region where H(x) = L(x)−K1 by

using a war-of-attrition argument given in (30).

The separation principle allows us to decompose the mixed-strategy equilibrium solution

into two subproblems. First, we solve a single firm’s optimal stopping problem (which ignores

the strategic interaction between the two firms). Second, we obtain the equilibrium entry

rate using a war-of-attrition argument. This decomposition result holds for a general duopoly

competition model with a second-mover advantage.

We derive the separation principle in two steps. First, we show that firm i’s value function

in the mixed-strategy equilibrium satisfies the following variational inequality:

max

{
σ2x2

2
V ′′i (x) + µxV ′i (x)− rVi(x), (L(x)−K1)− Vi(x)

}
= 0 , (41)

which is the same variational inequality for H(x), the value function of a single firm’s entry

problem (40) (Øksendal, 2013). As the variational inequality (41) admits a unique solution

Friedman (1982), Vi(x) = H(x).24

Second, we calculate the equilibrium entry rate λ∗(x) = CFL(x)−rK1

F (x)−H(x)
> 0 using (38) in

the region where H(x) = L(x) − K1. This formula allows us to interpret the stochastic

entry game as a generalized war-of-attrition game where the game payoffs and cash flows are

24 We derive the variational inequality (41) as follows. The HJB equation (28) and the inequality Vi(x) ≤
F (x) given in (25) together imply

σ2x2

2
V ′′i (x) + µxV ′i (x)− rVi(x) ≤ 0 .

The other inequality L(x)−K1 ≤ Vi(x) given in (25) and (27) together imply λ∗(x) = 0 if L(x)−K1 < Vi(x).
Substituting this result into (28), we obtain

σ2x2

2
V ′′i (x) + µxV ′i (x)− rVi(x) = 0 if L(x)−K1 < Vi(x).

Combining above with L(x)−K1 ≤ Vi(x), we obtain the variational inequality (41).
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endogenous and the winner of the game is Follower.

In order to make firm i indifferent between quitting the attrition game (by entering) and

continuing the game for another period, its competitor (firm −i) must set its entry rate

λ−i(x) to λ∗(x) by solving the following equation in the H(x) = L(x)−K1 region:

CFL(x)− rK1 = λ∗(x) [F (x)−H(x)] . (42)

The (flow) cost of waiting, CFL(x)− rK1 on the left side of (42), equals the (flow) benefit of

waiting, which equals the reward of being Follower (the attrition game’s winner) multiplied

by λ∗(x), the equilibrium rate at which firm i wins the attrition game.

While (42) may at first appear to be a myopic analysis as the flow benefit on the left side

seems to ignore the dynamics of the state variable x, it is optimal and time consistent. This

seemingly myopic strategy is optimal because the firm’s entry region is already optimized

(from the first step) and a version of the envelope condition is at work.

As our preceding analysis does not depend on specific assumptions of our duopoly model,

the separation principle thus applies broadly to duopoly games with second-mover advan-

tages. Next, we apply the separation principle to our mixed-strategy equilibrium.

5.2 Application of Separation Principle to Our Model

First, using the standard value-matching and smooth-pasting conditions to solve the vari-

ational inequality (41), we obtain the following closed-form solutions for the value function

associated with the single firm’s real-option problem (40):25

H(x) = V ∗(x), (43)

where V ∗(x) is given by (34)-(35). It is helpful to emphasize H(x) = L(x)−K1 in the x ≥ x

region, where x is given by (36).

Second, substituting CFL(x) = x/2 and F (x) − (L(x) − K1) = K1 − K2 into (38), we

obtain the equilibrium entry rate λ∗(x) given in (39). As discussed earlier, this result follows

from the war-of-attrition argument adapted to our duopoly setting. In order to make firm

i indifferent between quitting the attrition game (by entering) and continuing the game for

25We show that only the linear part of the payoff L(x)−K1 in the x ≥ xF region, given by (22), is used
to solve for H(x), which allows us to derive the same closed-form solutions.
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another period, its competitor (firm −i) must set its entry rate λ−i(x) to λ∗(x) by solving:

x/2− rK1 = λ∗(x)(K1 −K2) , for all x ≥ x . (44)

The (flow) cost of waiting, x/2 − rK1 on the left side of (44), equals the (flow) benefit of

waiting, which equals the saved entry cost K1 −K2 = ∆K by being Follower multiplied by

λ∗(x), the equilibrium rate at which firm i wins the attrition game.

In sum, we can obtain the mixed-strategy equilibrium of our duopoly entry model as

follows. First, we solve a single firm’s optimal entry problem (40) to obtain firm value

Vi(x) = V ∗(x) given in (34)-(35) and a threshold x given in (36). Second, we use this

threshold to define the stochastic entry region x ≥ x, where Vi(x) = L(x)−K1 and λ∗(x) > 0.

Additionally, we pin down λ∗(x) using (44) based on a generalized war-of-attrition argument

as discussed above.

6 Pure-strategy Equilibria

In this section, we analyze pure-strategy equilibria.

Pure-strategy Equilibrium Definition. Let Ei ⊂ (0,∞) denote a closed set associated

with firm i’s entry strategy: firm i enters at t if and only if Xt ∈ Ei. Let Φ denote the set

of all feasible entry strategies for firms a and b: (Ea, Eb). Then for each (Ea, Eb) ∈ Φ, firm i’s

time-t value is given by

Ext
[
e−r(τL−t)

(
1τi<τ−i(L(Xτi)−K1) + 1τi>τ−iF (Xτ−i) + 1τi=τ−i

L(Xτi)−K1 + F (Xτi)

2

)]
, (45)

where τL = τi ∧ τ−i and τi = inf{s ≥ t : Xs ∈ Ei} is the first time firm i enters Ei. The first

term in (45) captures the event where firm i is Leader and the second term captures the

event where firm i is Follower. The last term in (45) accounts for the possibility that the

two firms enter at the same time. Next, we define pure-strategy equilibria.

Definition 3 A pair of entry strategy (E∗a , E∗b ) is a pure-strategy equilibrium if for any x > 0

the following conditions hold:

Ja(x; E∗a , E∗b ) ≥ Ja(x; Ea, E∗b ), ∀ (Ea, E∗b ) ∈ Φ, (46)

Jb(x; E∗a , E∗b ) ≥ Jb(x; E∗a , Eb), ∀ (E∗a , Eb) ∈ Φ. (47)

In equilibrium, Ja(x; E∗a , E∗b ) and Jb(x; E∗a , E∗b ) are the value functions for firms a and b.
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Consider an asymmetric pure-strategy equilibrium where firm b never becomes Leader

and firm a becomes Leader at τL.26 In this equilibrium, firm a solves the real-option problem

(40). Let PL(x) and xL denote firm a’s value function and its optimal trigger, respectively.

Then, PL(x) = H(x) = V ∗(x) = Vi(x) and xL = x, where x is given in (36). Hence, firm

a’s optimal entry time is τ ∗L = inf{s ≥ t : Xs ≥ x}. That is, Leader’s value function PL(x)

in the pure-strategy equilibria equals firm value Vi(x) in the mixed-strategy equilibrium and

the optimal trigger xL equals the threshold for the mixed-strategy entry region x.

Second, after firm a enters at τ ∗L, firm b optimally enters at τ ∗F = inf{s ≥ τ ∗L : Xs ≥ xF} ,
where xF is given in (20). Because x > xF , τ ∗F = τ ∗L+. Therefore, Follower’s value is

PF (x) = Ext
[
e−r(τ

∗
L−t)(Π(Xτ∗L

)/2−K2)
]
, (48)

where τ ∗L = inf{s ≥ t : Xs ≥ x}. Solving (48), we obtain the following closed-form solutions:

PF (x) = F (x) = Π(x)/2−K2, x ≥ x, (49)

PF (x) = (x/x)β F (x) = (x/x)β (Π(x)/2−K2), x < x . (50)

Theorem 3 In an asymmetric pure-strategy equilibrium, Leader enters at τ ∗L = inf{s ≥ t :

Xs ≥ xL}, where the threshold xL equals x as given in (36), and its value function PL(x)

equals V ∗(x) as given in (34)-(35). Follower enters at τ ∗F = inf{s ≥ τ ∗L : Xs ≥ xF}, where xF

is given in (20). Because xL = x > xF , Follower enters immediately after Leader (τ ∗F = τ ∗L+)

and its value function PF (x) is given by (49)-(50). Mathematically, E∗a = [xL,∞) and E∗b = ∅
form an asymmetric pure-strategy entry equilibrium.

Next, we compare the total market capitalization for our mixed-strategy and pure-

strategy equilibria.

Corollary 1 The asymmetric pure-strategy equilibrium yields a higher total value than the

symmetric mixed-strategy equilibrium: 2Vi(x) ≤ PL(x) + PF (x) for all x > 0.

The above result follows from Vi(x) = PL(x) ≤ PF (x) for the two types of equilibria.

Note that in our pure-strategy equilibria, Leader still exercises its entry option later than

the socially optimal level. This is because Leader anticipates that its competitor will imme-

diately follow it to enter. Follower’s plan to grab one half of the market share from Leader

causes Leader to inefficiently delay its entry. This result differs from simple war-of-attrition

26Naturally, by switching firm a’s role with b’s, we obtain another asymmetric pure-strategy equilibrium.
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examples, where the pure-strategy equilibria are socially efficient as one firm immediately

drops out Levin (2004). Why are our pure-strategy equilibria socially inefficient? This is

because Leader (the loser in the attrition game) also has the real option value. This result

highlights the rich predictions generated by the interaction between the real-option value

and the second-mover advantage in our stochastic entry game.

We have focused our analysis on the three equilibria: the symmetric mixed-strategy

equilibrium and two asymmetric pure-strategy equilibria (one with firm a being Leader and

the other with firm a being Follower). We point out that there are other equilibria which

heuristically speaking involve a combination of mixed-strategy and pure-strategy equilibria

solutions. For brevity, we leave the details of these equilibria out of the paper.

7 Model Implications and Quantitative Analysis

In this section, we further study model implications and provide a quantitative analysis.

Parameter Choices. Our model is parsimonious with only five parameters in total. As

in Grenadier (1996), we set the annual risk-free rate to r = 0.04, the expected growth rate

(drift) of the profit process X to µ = 0.02, and the volatility of the growth rate of X to

σ = 0.1 per annum. We normalize Leader’s fixed entry cost to K1 = 1. Since Follower’s

entry cuts Leader’s profits by half at all time, we set Follower’s entry cost to half of Leader’s,

K2 = 0.5, to keep the cost-benefit (profit) ratio the same for Leader and Follower.

First, we discuss our model’s implications in the symmetric mixed-strategy equilibrium.

7.1 Value Functions and Equilibrium Entry Strategies

We first analyze the mixed-strategy equilibrium and then the pure-strategy equilibria.

7.1.1 Mixed-strategy Equilibrium

In Panel A of Figure 3, we plot value functions for the mixed-strategy equilibrium. Before

either firm enters the market (t < τ ∗L). the two firms are symmetric and their value functions

are equal: Va(x) = Vb(x). There are two regions to consider. For sufficiently low demand

(x < x = 0.097), the dominant strategy for both firms is to wait (λ∗(x) = 0). The solid
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Figure 3: Value functions and entry rate in the mixed-strategy equilibrium.
Both firms probabilistically enter at the rate of λ∗(x) > 0 for all x ≥ x = 0.097. Follower
immediately enters at τ ∗F after Leader enters at τ ∗L: τ ∗F = τ ∗L+. For t < τ ∗L, Va(x) = Vb(x).

blue line depicts the corresponding firm value Vi(x), which is increasing and convex for

i = a, b. For sufficiently high demand (x ≥ x = 0.097), both firms are willing to enter but

only probabilistically. As they are using mixed strategies, they must be indifferent between

becoming Leader and waiting for another period, which means Va(x) = Vb(x) = L(x)−K1.

Why do firms choose mixed strategies when x is sufficiently high? On one hand firms are

willing to pay the entry cost K1 to become Leader as the payoffs from entering the market

are sufficiently large. But on the other hand, firms prefer to be Follower as its entry cost

is lower than Leader’s by ∆K = K1 − K2. These two considerations make firms settle for

mixed strategies, a compromise between waiting and entering with probability one.

The cutoff threshold above which firms adopt the mixed strategy, x, is determined by

the smooth-pasting condition linking Vi(x) with firm i’s net payoff value function from being

Leader, L(x)−K1 (the magenta line), at x = x = 0.097.

Next, we turn to Follower’s pre-entry problem, which is a standard real-option entry

problem as in McDonald and Siegel (1986), Dixit and Pindyck (1994). Follower behaving as

a monopolist receives a profit flow at the rate of Xs/2 after entering the market. Therefore,

Follower’s optimal entry threshold equals xF given in (20). Follower’s pre-entry value F (x)

has two segments: the convex option value in the x ≤ xF region (the black dotted line) and

the linear net payoff value Π(x)/2 − K2 in the x > xF region (the green dashed and red
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dash-dotted lines).

Note that the threshold above which a firm stochastically becomes Leader, x, is larger

than Follower’s entry threshold xF :

x =
2β

β − 1
(r − µ)K1 >

2β

β − 1
(r − µ)K2 = xF .

As a result, as soon as one firm becomes Leader at τ ∗L, the other firm immediately enters at

τ ∗F = τ ∗L+ as Follower.27

Next, we use Panel A of Figure 3 to illustrate this Leader/Follower entry dynamics.

Suppose by playing mixed strategies, firm i stochastically becomes Leader at τ ∗L = τi when

Xτi = 0.15 > x (the black square on the magenta solid straight line Vi(x) = Π(x)/2 −K1).

Immediately, its competitor (firm −i) exercises its entry option as Follower and its value

jumps from the same black square by ∆K = K1 −K2 = 0.5 to the blue square on the dash

dotted red line F (x) = Π(x)/2−K2. The payoff lines for Leader and Follower are linear and

parallel with a slope of 1/(2(r − µ)).28

Panel B of Figure 3 plots the equilibrium mixed-strategy intensity λ∗(x). For x < x =

0.097, both firms wait with probability one. For x ≥ x = 0.097, both firms probabilistically

enter as Leader at the rate of λ∗(x), which increases linearly with x. Note the discontinuous

jump as we reach x from the left of x = 0.097. The entry rate λ∗(x) equals the ratio of

(a) the (flow) benefit of being Leader and (b.) the (stock) cost of being Leader: λ∗(x) =

(x/2− rK1)/∆K. The (flow) benefit of being Leader equals the difference between duopoly

profit and the interest expense of the entry cost: x/2−rK1. The (stock) cost of being Leader

equals the entry-cost wedge: ∆K = K1 −K2.

Intuitively, in the x ≥ x region, neither firm is willing to become Leader with probabil-

ity one due to the “free-rider” problem (second-mover cost-saving advantage): As Leader,

Follower receives the same post-entry payoff Π(x)/2, but with a lower entry cost K2. Thus,

the only way to determine Leader in this region is for both firms to randomize their entry

decisions at the equilibrium rate λ∗(x).

This is exactly the war-of-attrition argument. But unlike the standard wars of attrition

27This is because (a.) Leader’s entry cost is larger than Follower’s: K1 > K2 and (b.) both firms receive
the same post-entry payoffs in equilibrium: Π(x)/2. Therefore, Follower is more willing to exercise its entry
option than Leader, which means xF < x. By definition τ∗F ≥ τ∗L, therefore in equilibrium as soon as one
firm enters the market, the other immediately follows.

28The vertical distance between the two lines equals ∆K = K1 −K2 = 0.5 for all x ≥ x.
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Figure 4: Value functions for pure-strategy equilibria. Leader’s value equals the
one in the mixed-strategy equilibrium: PL(x) = Va(x) = Vb(x) and Follower’s value PF (x) is
higher than Leader’s value: PF (x) > PL(x). The optimal Leader’s entry threshold xL equals
the threshold, x, for stochastic entry in the mixed-strategy equilibrium: xL = x = 0.097.

in graduate micro theory lecture note (Levin, 2004), our duopoly model is an entry rather

than an exit game and moreover it blends the insights from both the real-option theory and

the war-of-attrition literature. Importantly, we show that the interaction of these two forces

generates new predictions. While competition erodes a firm’s option value, it does so not by

speeding up entry but rather by delaying entry. Next, we analyze pure-strategy equilibria.

7.1.2 Pure-strategy Equilibria

In Figure 4, we plot Leader’s and Follower’s value functions, PL(x) and PF (x), for the

asymmetric pure-strategy equilibria, and then compare them with the value function Vi(x)

for the symmetric mixed-strategy equilibrium.

In a pure-strategy equilibrium, firms are pre-assigned to be Leader or Follower (e.g., firm

a is Leader and b is Follower). The solid lines depict the equilibrium pre-entry Leader’s value

PL(x) where the blue segment is increasing and convex in x in the waiting region (x < x) and

the magenta line is Leader’s net linear payoff function Π(x)/2−K1 in the entry region (x ≥ x).

The solid red line gives Follower’s net linear payoff function PF (x) = F (x) = Π(x)/2 −K2

at τ ∗F in the region where Follower enters (x ≥ x).

Also, Follower’s pre-entry value function PF (x) in the waiting region (x < x) is increasing
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and convex (the solid green line.) Because Follower can only enter when x exceeds x, which

is higher than Follower’s unconstrained entry threshold xF given in (20), Follower’s value

function is lower than F (x), i.e., PF (x) < F (x) in our pure-strategy equilibrium. The black

dotted and green dashed line segments for F (x) in Figure 4 aid our understanding of the

model’s mechanism and solutions but are off-the-equilibrium path.29

7.1.3 Comparing Mixed-strategy with Pure-strategy Equilibria

Now we link the symmetric mixed-strategy equilibrium with the asymmetric pure-strategy

equilibria. First, in both mixed-strategy and pure-strategy equilibria, the dominant strategy

for both firms is to wait in the x ≤ x region with probability one. This is because second-

mover advantages prevail in both types of equilibria: Neither firm has incentives to become

Leader as the competitor will immediately enter by paying a lower entry cost K2 and taking

a half of the total market share. Therefore, there are no monopoly profits for Leader in

equilibrium.

Second, Leader in a pure-strategy equilibrium sets its entry threshold xL at x as its

problem is equivalent to a real-option problem with an entry cost of K1 and a payoff that

is one-half of the market share as we show in Theorem 3. The pure-strategy equilibrium

solution for Leader corresponds to a single firm’s problem in McDonald and Siegel (1986)

with a properly chosen payoff function. Then using our separation principle for the mixed-

strategy equilibrium, we conclude that (1.) the entry threshold must also equal x and (2.)

Vi(x) equals Leader’s value in a pure-strategy equilibrium PL(x):

Va(x) = Vb(x) = PL(x) .

Third, as x = 2xM > xF , Follower enters immediately after Leader does in both types

of equilibria. As K1 > K2, Follower’s value in the pure-strategy equilibria is larger than in

the mixed-strategy equilibrium: PF (x) > Vi(x). The industry’s total market capitalization

in a pure-strategy equilibrium is thus larger than in the mixed-strategy equilibrium for

all x > 0: PL(x) + PF (x) − [Va(x) + Vb(x)] = PF (x) − Vi(x) = PF (x) − PL(x) > 0 , as

PL(x) = Va(x) = Vb(x) and PF (x) > PL(x) (implied by the second-mover advantage).

Let Ψ(x) denote the fractional loss of the industry’s total market capitalization as we

29To ease exposition, we use solid lines to draw all the on-the-equilibrium-path value functions.
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Figure 5: Fractional loss of the industry’s total market capitalization Ψ(x).
This figure plots Ψ(x) as we move from a pure-strategy equilibrium to the mixed-strategy
equilibrium and shows that the mixed-strategy equilibrium is less efficient than the
pure-strategy equilibria. Quantitatively, these effects are significant especially in the x ≤ x
waiting region. For the three cases: K1 = 1, 2, 3, x = 0.097, 0.194, 0.291 (the black dots).

move from a pure-strategy equilibrium to the mixed-strategy equilibrium:

Ψ(x) = 1− Va(x) + Vb(x)

PL(x) + PF (x)
=
PF (x)− PL(x)

PF (x) + PL(x)
> 0 , x > 0 .

In Figure 5, we plot Ψ(x) for three levels of Leader’s entry cost: K1 = 1, 2, 3. The higher

the entry cost K1, the larger the total market capitalization differences between the two

types of equilibria Ψ(x). The black dots depict the relation: x(K1)= 2β
β−1

(r − µ)K1.

In the x ∈ (0, x) region, both firms wait and the fractional loss Ψ(x) as we move from a

pure-strategy equilibrium to the mixed-strategy equilibrium is constant: Ψ(x) = K1−K2
β+1
β−1

K1−K2
.

In Figure 5, we demonstrate that the value loss is large and crucially depends on K1. As

we increase the entry cost from K1 = 1 to K1 = 3, the threshold x increases from 0.097 to

0.291, and the fractional loss Ψ(x) increases from 14.9% to 22.62% in the x ∈ (0, x) region.

In the x ≥ x region, Ψ(x) = K1−K2

Π(x)−K1−K2
, which decreases with x. Intuitively, the higher

the value of x the more likely firms enter in the mixed-strategy equilibrium. The inefficiency

of the mixed-strategy equilibrium relative to pure-strategy equilibria decreases.

Having compared mixed-strategy and pure-strategy equilibrium solutions for a given

economy, next we study the effect of competition on welfare by comparing our duopoly

competition model solution to the cooperative duopoly solution.
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7.2 Competition and Option Value Erosion

We measure inefficiency by comparing the total market capitalization of the competitive

duopoly industry with the cooperative duopoly setting. We first analyze the mixed-strategy

equilibrium and then turn to the pure-strategy equilibria.

7.2.1 Mixed-strategy Equilibrium

Let ∆(x) denote the fractional value loss of the industry due to duopoly competition:

∆(x) = 1− Va(x) + Vb(x)

W (x)
, (51)

where Va(x) + Vb(x) is the industry’s total market capitalization in the mixed-strategy equi-

librium and W (x) = M∗(x) is the cooperative duopoly (also monopoly) value given by (15).

Recall that a monopolist enters whenever x exceeds the threshold xM = β/(β−1)(r−µ)K1

and in contrast firms in the mixed-strategy equilibrium enter probabilistically when x ≥ x =

2xM . Note that x is twice as high as the monopolist’s threshold xM indicating substantial

inefficient delay. We divide the entire x > 0 in three regions to ease our discussion of ∆(x).

Using closed-form expressions, we can show that in the x ≤ xM region, both firms wait

with probability one and the fractional value loss equals ∆(x) = 1 − (1/2)β−1, which is

independent of Leader’s entry cost K1. This independence result is reflected by the three

squares on the horizontal line at the top of panel A. In our example, β = 1.70 and ∆(x) =

38.5% in the x ≤ xM = 0.0485K1 region. This almost 40% substantial value loss comes from

anticipated significant entry delay in the future.

In the intermediate region where x ∈ (xM , x) = (xM , 2xM) = (0.0485K1, 0.097K1), firms

in our duopoly model still wait even though it is socially efficient to enter. The fractional

value loss is given by

∆(x) = 1− (x/x)β (Π(x)− 2K1)

Π(x)−K1

. (52)

The numerator in the second term is the total market capitalization while waiting and

the denominator equals the monopolist’s value (by exercising the entry option). Panel A of

Figure 6 shows that ∆(x) decreases with x and reaches the same value ∆(x) = (β−1)/(β+1)

regardless of Leader’s entry cost K1 at x = x. The three black dots on the dashed black line

reflect this result. In our example, this fractional value loss is substantial: ∆(x) = 25.97%.

Finally, in the x ≥ x region where both firms stochastically enter, the fractional value
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Figure 6: Total Value Losses (as a Fraction of Cooperative Duopoly Value
W (x)). Panels A and B plot the value loss, ∆(x) for the mixed-strategy equilibrium and
∆P (x) for the pure-strategy equilibria, respectively. Quantitatively, the mixed-strategy
equilibrium is significantly more inefficient than the pure-strategy equilibria.

loss equals ∆(x) = K1

Π(x)−K1
as both firms probabilistically enter without coordinating. Note

that ∆(x) is independent of Follower’s entry cost K2 for all x > 0. This is because Follower

immediately enters after Leader does.

Unlike in Grenadier (1996) where firms in equilibrium make preemptive moves under

competition and hence enter sooner, in our model firms enter later than the socially optimal

level as they try to capture the second-mover advantage. The higher Leader’s entry cost K1,

the stronger incentives firms have to delay their entry decisions and the higher the fractional

value loss ∆(x). Next, we analyze the pure-strategy equilibria.

7.2.2 Pure-strategy Equilibria

Let ∆P (x) denote the fractional value loss of the industry due to duopoly competition:

∆P (x) = 1− PL(x) + PF (x)

W (x)
, (53)

where PL(x) +PF (x) is the industry’s total market capitalization in a pure-strategy equilib-

rium and W (x) = M∗(x) is the cooperative duopoly (also monopoly) value given by (15).

As for the mixed-strategy equilibrium, we also divide the entire x > 0 range into three

regions to ease our discussion of ∆P (x). In the x ≤ xM region, both firms wait with
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probability one and the fractional value loss is given by ∆P (x) = 1− 1
2β−1

(
1+(β−1)K1−K2

2K1

)
,

which is constant and lower than the corresponding constant fractional loss ∆(x) = 1− 1
2β−1

in the same x ≤ xM region for the mixed-strategy equilibrium. In our example with K1 = 1

and K2 = 0.5, ∆P (x) = 27.72% in the x ≤ xM = 0.0485 region.

In the intermediate region where x ∈ (xM , x) = (xM , 2xM) = (0.0485K1, 0.097K1), firms

in our duopoly model continue to wait even though it is socially efficient to enter. Then,

∆P (x) = 1− (x/x)β (Π(x)−K1 −K2)

Π(x)−K1

< ∆(x) (54)

in this region. Finally, in the x ≥ x region, Leader enters with probability one and the

fractional value loss equals ∆P (x) = K2

Π(x)−K1
, which is again lower than ∆(x) in the mixed-

strategy equilibrium. This is because there is no more inefficient delay once {Xs} reaches x

in a pure-strategy equilibrium. In contrast, firms continue to play a war-of-attrition game

in the mixed-strategy equilibrium even when x is very large.

Panel B of Figure 6 plots ∆P (x) for three levels of Leader’s entry cost: K1 = 1, 2, 3 in a

pure-strategy equilibrium. As panel A, panel B confirms our preceding qualitative analysis

for a pure-strategy equilibrium.

Quantitatively, the competition effect of firm value in a pure-strategy equilibrium is also

large. And importantly, the differences between the fractional value loss ∆(x) for the mixed-

strategy equilibrium and ∆P (x) for the pure-strategy equilibrium are also large.

Comparing the two panels in Figure 6 makes it clear that the mixed-strategy equilibrium

while more natural to us (say due to its symmetric treatment of the two firms) is much more

inefficient than the pure-strategy equilibria. This is because firms enter probabilistically with

the hope that the other firm becomes Leader in the mixed-strategy equilibrium. In contrast,

the pre-assigned Leader has no incentives to further delay once the threshold x is reached or

exceeded, as Leader anticipates the immediate entry by Follower.

Next, we analyze our model-implied distributions of time to entry.

7.3 Distributions of Time to Entry τ ∗L − t

Definitions. Fix a calendar date T and let Xt = x for any t ≤ T . Let G(t, x;T ) denote

the time-t cumulative distribution function (CDF) that Leader enters before T in the mixed-

strategy equilibrium. Similarly, let G(t, x;T ) denote the time-t CDF for the same event in
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the pure-strategy equilibria. Mathematically, for any x > 0 and time t ∈ [0, T ]:

G(t, x) = Pxt (τmixed
L − t ≤ T − t) and G(t, x) = Pxt (τ

pure
L − t ≤ T − t) . (55)

In (55), we use superscripts, mixed and pure, to indicate that Leader’s entry time τ ∗L in the

mixed-strategy equilibrium (characterized in Theorem 1) and the pure-strategy equilibria

(characterized in Theorem 3) , respectively.

It is worth noting that for every sample path, entry in the pure-strategy equilibria is

sooner than in the mixed-strategy equilibrium. This is because firms follow trigger strategies

with the same entry region x ≥ x for both mixed-strategy and pure-strategy equilibria.

However, firms enter with probability one in the entry region for the pure-strategy equilibria

but only stochastically in the mixed-strategy equilibrium. This path-by-path dominance

result implies that the CDF G(t, x) for time to entry τ ∗L − t in the mixed-strategy equilibria

also first-order stochastically dominates the CDF G(t, x) for τ ∗L − t in the pure-strategy

equilibrium: G(t, x) ≤ G(t, x) for any x > 0 and t ∈ [0, T ].

CDF for the Mixed-strategy Equilibrium: G(t, x;T ). The CDF for time to entry

τ ∗L − t satisfies the following partial differential equation (PDE) for t < T and all x > 0:

G t(t, x) + µxGx(t, x) +
1

2
σ2x2Gxx(t, x) + 2λ∗(x)(1−G(t, x)) = 0 (56)

subject to economically intuitive boundary conditions: G(t, 0) = 0 and limx→∞G(t, x) = 1

for t ∈ [0, T ) and G(T, x) = 0 for x ∈ (0,∞). The first three terms in the PDE (56) are the

standard terms describing the calendar time effect, the drift effect of x, and the volatility

effect of x on the CDF. The last term captures the “jump” effect of stochastic entry, which is

only present for the mixed-strategy equilibrium. Because both firms stochastically become

Leader at the rate of λ∗(x), G(t, x) increases to one at the rate of 2λ∗(x) and therefore the

expected change of the CDF G(t, x) equals 2λ∗(x)(1−G(t, x)).

CDF for the Pure-strategy Equilibria: G(t, x;T ). The CDF for τ ∗L − t in the pure-

strategy equilibria, G(t, x), satisfies the following PDE for t < T and x ∈ [0, x):

G t(t, x) + µxGx(t, x) +
1

2
σ2x2Gxx(t, x) = 0 , x ∈ [0, x) , (57)
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Figure 7: CDF of time to entry τ ∗L − t in pure-strategy and mixed-strategy
equilibria. Panel A plots the CDF of τ ∗L − t in the mixed-strategy equilibrium for four
levels of x: 0.1, 0.4, 0.7, 1. Panel B plots the CDF of τ ∗L − t in the pure-strategy equilibrium
for four levels of x: 0.07, 0.08, 0.09, 0.1.

subject to intuitive boundary conditions: G(t, x) = 1 and G(t, 0) = 0 for t ∈ [0, T ) and

G(T, x) = 0 for x ∈ [0, x). The CDF G(t, x) has the following closed-form solution:

G(t, x) = Φ(d2) + (x/x)(1−2µ/σ2) Φ(d1), (58)

where Φ( · ) is the CDF for the standard normal distribution and the pair (d1, d2) is given by

d1 = d2 −
(
2µ/σ2 − 1

)
σ
√
T − t , (59)

d2 =
ln(x/x) + (µ− 1

2
σ2)(T − t)

σ
√
T − t

. (60)

The first term Φ(d2) in (58) equals the time-t probability for the event XT ≥ x.30 The second

term gives the probability for all the events where XT < x but {Xs; s ∈ (t, T )} exceeds x at

least once at some s ∈ (t, T ).

Comparing CDFs for Mixed-strategy and Pure-strategy Equilibria. The CDFs of

time to entry τ ∗L−t for the two types of equilibria are dramatically different qualitatively and

quantitatively. Panel A in Figure 7 plots the CDFs G(t, x;T ) of τ ∗L− t in the mixed-strategy

equilibrium for four levels of x: 0.1, 0.4, 0.7, 1. When Xt = x = 0.1, firms enter within one

30The first term is analogous to the conditional (risk-neutral) probability that the option holder receives
a strictly positive payoff at the option maturity date in the Black-Scholes option pricing formula.
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year with a small probability (3.57%). Even within four years, firms only enter with 15.4%

probability. In contrast, in a pure-strategy equilibrium, as Xt = x = 0.1 > x = 0.097,

entry occurs with probability one. This comparison of CDFs for the mixed-strategy and

pure-strategy equilibria shows that quantitative predictions of the model are quite different

depending on which equilibrium we choose. To us, the mixed-strategy equilibrium is more

natural and robust as it is symmetric between the two firms.31

In the mixed-strategy equilibrium, entry can take significantly much longer time. For

example, even when Xt = x = 1, there is still 16% = 1 − G(t, 1; t + 1) probability that

firms have not entered within one year. This is in sharp contrast with the prediction in

a pure-strategy equilibrium where entry is immediate provided that x ≥ x = 0.097 as we

discussed earlier.
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Figure 8: Mean and volatility of time to entry τ ∗L − t conditional on Xt = x. The entry
threshold is x = 0.097.

Finally, Panel A of Figure 8 compares the conditional mean of time to entry τ ∗L − t in

mixed-strategy and pure-strategy equilibria.32 Again, we see that for x ≥ x, it can take

much time for firms to enter in mixed-strategy equilibria while entry is immediate in pure-

strategy equilibria (as it’s above the entry threshold). Panel B of Figure 8 compares the

31Additionally, as known in the war of attrition literature, the mixed-strategy equilibrium is the unique
one in settings with incomplete information about the competitor’s type.

32For the pure-strategy equilibria, in the x ∈ (0, x) waiting region, the conditional mean of time to

entry equals Ext [τpure
L − t] = log(x/x)

µ−σ2/2 , and the conditional variance of time to entry equals varxt [τpure
L − t] =

σ2 log(x/x)
(µ−σ2/2)3 , for any µ > σ2/2.
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conditional volatility of time to entry τ ∗L − t for the two types of equilibria and shows that

the conditional volatility in the mixed-strategy equilibrium is quite large even when x is

significantly larger than the threshold x. The key takeaway from this figure is that the

mixed-strategy equilibrium can be much more inefficient than the pure-strategy equilibria.

8 State-contingent Advantages

So far we have focused on how the second-mover advantage alters strategic real-option

exercising, e.g., entry, decisions. In this section, we show that both the first-mover and

second-mover advantages endogenously arise in equilibrium for a small positive entry-cost

wedge ∆K = K1 − K2. For this case, we can show that the first-mover advantage as

emphasized in Fudenberg and Tirole (1985) and Grenadier (1996) dominates and causes

firms to enter for intermediate values of x. For sufficiently large values of x, the second-

mover advantage still dominates as in our baseline model of Section 2. In sum, for a small

entry-cost wedge ∆K, the equilibrium solution features state-contingent advantages where

firms play pure entry strategies for intermediate values of x due to the first-mover advantage

but play a war-of-attrition game for sufficiently large values of x.

We can offer a complete characterization of our model solutions for any positive pair of

(K1, K2). Due to space considerations, we provide an example illustrating the key mechanism

of the case with state-contingent advantages.

In Figure 9, we plot the equilibrium value functions Va(x) = Vb(x) using the solid line,

which divides the positive real line into four line segments, for the new K1 = 0.6 case which

implies ∆K = 0.1. Compared with the baseline example analyzed in Section 7 where K1 = 1

and ∆K = 0.5, the entry-cost wedge for the new case is much lower.

A key implication of reducing the entry-cost wedge ∆K to 0.1 from 0.5 is that the first-

mover advantage endogenously arises in the (x̂L, x̂F ) = (0.0221, 0.0414) region, as Leader’s

net payoff L(x) −K1 is above Follower’s value F (x): the dashed red line segment is above

the dash-dotted magenta line segment. It is the dominant strategy for both firms to enter

and become Leader in this region. Which firm becomes Leader is purely random with one

half probability. As a result, their pre-entry value functions in this region equal Va(x) =

Vb(x) = (L(x) −K1 + F (x))/2. In sum, in this region, a firm becomes Leader by realizing

its first-mover advantage. Its (unlucky) competitor will enter only when {Xs} reaches the
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Figure 9: Equilibrium value functions Va(x) = Vb(x). In a symmetric equilibrium, in
the x ∈ [x̂L, x̂F ] = [0.0221, 0.0414] (first-mover advantage) region, firms compete to enter:
one wins the competition as Leader and the other enters as Follower only when {Xs}
reaches xF = 0.0485. In the x ≥ x = 0.0621 region, firms probabilistically enter at the rate
of λ∗(x). After one firm enters, the other also immediately enters. For all other values of x,
both firms wait with probability one. The solid line depicts the value function Vi(x). All
parameter values are the same as in Section 7 other than Leader’s entry cost: K1 = 0.6.

endogenous threshold xF = 0.0485 (the green dot). Unlike in our baseline model, here firms

enter sequentially with an economically significant time gap τ ∗F − τ ∗L > 0.

For x > x̂F = 0.0414, the second-mover advantage dominates: F (x) > L(x) − K1:

the dash-dotted magenta line for F (x) is above the dashed red line for Leader’s net payoff

L(x)−K1 in Figure 9. But firms enter probabilistically when x is sufficiently large: x ≥ x =

0.062. This is because further delaying entry with probability one is simply too costly. In

equilibrium, the two firms compromise using the mixed strategies to enter.

Then what happens in the region x ∈ (x̂F , x), which lies between the first-mover-

advantage entry region (x̂L, x̂F ) and the stochastic entry region (x,∞)? There is a second-

mover advantage as L(x)−K1 < F (x) when x ∈ (x̂F , x). Therefore, firms have incentives to

wait. Moreover, because the cost of waiting (forgone profit x/2−rK1) is also not high, firms

choose to wait with probability one in this region. As a result, (x̂F , x) is a waiting region

that divides the two entry regions.

The x < x̂L = 0.0221 region is the other waiting region where it is optimal for both firms
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Figure 10: Entry rates in the symmetric equilibrium. Both firms probabilistically
enter at the rate of λ∗(x) = (x/2− rK1)/∆K = 5x− 0.24 > 0 in the x ≥ x = 0.0621
region. In the x ∈ [x̂L, x̂F ] = [0.0221, 0.0414] region, both firms are willing to enter
immediately. In equilibrium, one firm is randomly chosen to be Leader with probability
1/2 and the other firm enters as Follower in the future when {Xs} reaches xF = 0.0485. All
parameter values are the same as in Section 7 other than Leader’s entry cost: K1 = 0.6.

to preserve the option value by delaying entry. In this region, firm value is increasing and

convex: Va(x) = Vb(x) = F (x) (the solid black line segment).

The first-mover and second-mover advantages not only co-exist but also are intercon-

nected. The triggers (x̂F , x̂L) that define first-mover and second-mover advantages are

endogenous and are part of the interdependent value functions L(x) and F (x). Figure 9

shows that as x increases from zero to ∞, a firm finds itself in one of the four mutually

exclusive regions: 1.) the (first) waiting region (to preserve option value); 2.) the first-

mover-advantage region where the two firms compete to enter; 3.) the (second) waiting

region; and 4.) the mixed-strategy probabilistic entry region. In Figure 10, we plot the

corresponding equilibrium mixed-strategy entry rates λ∗(x). In the two disjoint waiting re-

gions (x < x̂L and (x̂F , x)), λ∗(x) = 0 by definition. In the [x̂L, x̂F ] region, one firm (lucky

Leader decided by a lottery outcome) enters immediately (λ∗(x) = ∞) and the other waits

until {Xs} reaches xF to enter as Follower. Finally, in the (x,∞) region, both firms enter

probabilistically at the rate of λ∗(x) = (x/2− rK1)/∆K and once one firm enters the other

immediately follows.
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9 Conclusion

We present a tractable model of duopoly competition where firms make their irreversible

market entry timing decisions. Firms endogenously arise as Leader and Follower in equilib-

rium. A key property of the duopoly industry structure that we analyze is the second-mover

advantage in that Leader’s net payoff upon entry is lower than Follower’s pre-entry value.

In equilibrium, firms prefer to be Follower rather than Leader.

We derive closed-form solutions for both mixed-strategy and pure-strategy equilibria.

We develop and prove a separation principle which allows us to derive the mixed-strategy

equilibrium solution using a two-step procedure: first we obtain the solution for a monopolist’

real-option problem and then use a generalized war-of-attrition argument to derive firms’

equilibrium entry rates in the symmetric mixed-strategy equilibrium. Finally, we conduct

quantitative analysis and find that (a.) the welfare losses due to competition and second-

mover advantage are substantial and (b.) entry in our duopoly model is much further delayed

in the mixed-strategy equilibrium, which we consider a more natural equilibrium concept,

than in the pure-strategy equilibria.

To derive our results in a most parsimonious setting we have made some simplifying

assumptions. While we mainly focus on the case with only the second-mover advantage, in

Section 8 we also highlight the key result in a setting where the first-mover advantage, the key

driving force in Fudenberg and Tirole (1985) and Grenadier (1996), and the second-mover

advantage coexist and interact with each other, creating state-contingent advantages.33 We

have also assumed that a firm has complete information about its competitor’s cost structure

and type. We plan to study the effects of reputation as in Kreps and Wilson (1982), Mil-

grom and Roberts (1982), and Abreu and Gul (2000) on equilibrium real-option exercising

strategies.

33Due to space considerations, we have omitted the details for the complete analysis of the first-mover and
second-mover advantages in our duopoly setting.
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A Proofs

Let AV (x) denote the infinitesimal generator operating on a function V (x):

AV (x) =
σ2

2
x2V ′′(x) + µxV ′(x)− rV (x) (61)

First we introduce the following lemma.

Lemma 1 The optionality parameter β given in (13) satisfies β > 1 and β
β−1

r−µ
r
> 1.

Proof of Lemma 1: As in McDonald and Siegel (1986), β is the positive root of the

(fundamental) quadratic equation: g(z) = 0 where g(z) = 1
2
σ2z(z − 1) + µz − r. Using

g(1) = µ − r < 0 and g(z) → ∞ as z → ∞, we obtain β > 1, a standard result. The

inequality β
β−1

r−µ
r

> 1 is the same as r > βµ. This result apparently holds when µ ≤ 0.

When µ > 0, g(r/µ) = 1
2
σ2(r/µ)(r/µ− 1) > 0 and g(β) = 0 imply r > βµ. �

Proof of Proposition 1: First, recall that in footnote 18, we have shown the monotonicity of

M(x; x̂) in x̂ for x̂ ∈ [x, xM ]. Next, we verify that M(x;xM) satisfies the following variational

inequality (Øksendal, 2013):

max {AM∗(x), (Π(x)−K1)−M∗(x)} = 0. (62)

Equation (16) implies M(x;xM) ≥ Π(x)−K1 for x < xM . Since AM(x;xM) = 0 for x < xM

and M(x;xM) = Π(x)−K1 for x ≥ xM , it suffices to show A(Π(x)−K1) ≤ 0 for x > xM .34

We can show that for x > xM :

A(Π(x)−K1) = rK1 − x ≤ rK1 − xM = rK1

(
1− β

β − 1

r − µ
r

)
< 0 , (63)

where the last inequality follows from β
β−1

r−µ
r
> 1 in Lemma 1. �

Proof of Proposition 2: See the discussion preceding this proposition. �

Proof of Proposition 3: See the discussion preceding and following this proposition. �

Before proving Theorems 1-3, we introduce the following lemma.

34At x = xM , M ′′(x;xM ) does not exist but AM(xM ;xM ) ≥ 0 holds in a generalized sense; see, e.g.,
Friedman (1982).
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Lemma 2 Let V ∗(x) and x be given in (34)-(36). We have

AV ∗(x) ≤ 0, x > 0, (64)

V ∗(x) ≥ L(x)−K1, x > 0 . (65)

Proof of Lemma 2: Proposition 1 implies that V ∗(x) and x given in (34)-(36) are the value

function and optimal threshold for a monopolist’s real-option entry problem where the entry

cost is K1 and the post-entry profit equals {Xs/2}:

V ∗(x) = max
τM≥t

Ext
[∫ ∞

τM

e−r(s−t)
Xs

2
ds− e−r(τM−t)K1

]
. (66)

Using the relation between an optimal stopping problem and its variational inequality, we

immediately obtain (64).

By the definitions of F (x) and Π(x) given in (3) and (10), we have

F (x)−
(

Π(x)

2
−K2

)
=Ext

[
K2(1− e−r(τ∗F−t))−

∫ τ∗F

t

e−r(s−t)
Xs

2
ds

]
, (67)

where τ ∗F = inf{s ≥ t : Xs ≥ xF}. (66) implies

V ∗(x) ≥ Ext

[∫ ∞
τ∗F

e−r(s−t)
Xs

2
ds− e−r(τ∗F−t)K1

]
. (68)

Combining (4) with (68), we obtain

V ∗(x)− (L(x)−K1) ≥ Ext
[
K1(1− e−r(τ∗F−t))−

∫ τ∗F

t

e−r(s−t)Xsds

]
≥ Ext

[
2K2(1− e−r(τ∗F−t))−

∫ τ∗F

t

e−r(s−t)Xsds

]
= 2

[
F (x)−

(
Π(x)

2
−K2

)]
≥ 0, (69)

where the second inequality follows from K1 ≥ 2K2 and the equality follows from (67).

Therefore, (65) holds. �

Remark 1 One implication of the preceding proof is that Leader’s net payoff upon entry,

L(x)−K1, is always strictly lower than Follower’s net payoff upon entry, Π(x)
2
−K2:

L(x)−K1 <
Π(x)

2
−K2 , for any x > 0. (70)

Indeed, for any x > 0, using L(x) and Π(x) defined in (4) and (10), respectively, we have

L(x)− Π(x)

2
= Ext

[∫ τ∗F

t

e−r(s−t)
Xs

2
ds

]
≤ Ext

[
K2(1− e−r(τ∗F−t))

]
< K2 ≤ K1 −K2 ,
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where the first inequality follows from (67) and F (x) ≥ Π(x)
2
−K2 for any x > 0. Finally, we

can derive (23) by using (70) (see footnote 20).

Next we prove the theorems.

Proof of Theorem 1: Let f(x) := AV ∗(x) for x ≥ 0 where V ∗(x) is given in (34)-(35). We

can verify

f(x) := AV ∗(x) = λ∗(x)[L(x)−K1 − F (x)], x > 0, (71)

where λ∗(x) is given by (39) for x ≥ x and λ∗(x) = 0 for x < x. Using V ∗(x) as in (34)-

(35), we can show f(x) = 0 for any x < x and f(x) = rK1 − x/2 < 0 for any x > x. As

λ∗(x) ≥ λ∗(x) =
(

β
β−1

r−µ
r
− 1
)

rK1

K1−K2
> 0 for any x > x, we can conclude

e−
∫∞
t λ∗(Xs)ds = 0, almost surely. (72)

Next, we complete the proof in two steps.

Step 1: We prove V ∗(x) ≥ Ja(x;λa, λ
∗) where (λa, λ

∗) ∈ Φ.

Let τa and τb be firm a’s and b’s stochastic entry time associated with λa and λb = λ∗,

respectively, and let τ := min{τa, τb}. Note that V ∗(x) ∈ C2(R+ \ {x}) ∩ C1(R+). Applying

Itô’s Lemma to e−rsV ∗(Xs) for s ∈ [t, τ ], we obtain

V ∗(x) = Ext [e−r(τ−t)V ∗(Xτ )]− Ext
[∫ τ

t

e−r(s−t)AV ∗(Xs)ds

]
. (73)

Substituting (65) into (73), we obtain

V ∗(x) ≥ Ext [e−r(τ−t)(L(Xτ )−K1)]− Ext [
∫ τ

t

e−r(s−t)AV ∗(Xs)ds]. (74)

Note that

Ja(x;λa, λ
∗) =Ext

[
e−r(τ−t) [1τa<τb(L(Xτ )−K1) + 1τa>τbF (Xτ )]

]
=Ext [e−r(τ−t)(L(Xτ )−K1)]− Ext

[
1τa>τbe

−r(τ−t)(L(Xτ )−K1 − F (Xτ ))
]
, (75)

where the second equality follows from the property: 1τa=τb = 0 almost surely. Using (75)

and (74), we obtain

Ja(x;λa, λ
∗)

≤V ∗(x) + Ext
[∫ τ

t

e−r(s−t)AV ∗(Xs)ds− 1τa>τbe
−r(τ−t)(L(Xτ )−K1 − F (Xτ ))

]
. (76)
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We can show

Ext
[∫ τ

t

e−r(s−t)AV ∗(Xs)ds

]
=Ext

[∫ τ

t

e−r(s−t)f(Xs)ds

]
=Ext

[∫ ∞
t

∫ τa∧z

t

e−r(s−t)f(Xs)λ
∗(Xz)e

−
∫ z
t λ
∗(Xu)dudsdz

]
=Ext

[∫ τa

t

∫ ∞
s

λ∗(Xz)e
−

∫ z
t λ
∗(Xu)dudze−r(s−t)f(Xs)ds

]
=Ext

[∫ τa

t

e−
∫ s
t (r+λ∗(Xu))duf(Xs)ds

]
=Ext

[∫ τa

t

e−
∫ s
t (r+λ∗(Xu))duλ∗(Xs)[L(Xs)−K1 − F (Xs)]ds

]
=Ext

[
1τa>τbe

−r(τb−t)[L(Xτb)−K1 − F (Xτb)]
]

(77)

using (71), Tonelli’s Theorem (to interchange the integration order in the third equality as

f(x) ≤ 0 and λ∗(x) ≥ 0 for any x > 0), integration by parts, and (72). Combining (76) and

(77) yields Ja(x;λa, λ
∗) ≤ V ∗(x).

Step 2: We prove V ∗(x) = Ja(x;λ∗, λ∗).

Let τ ∗a and τ ∗b be firm a’s and b’s stochastic entry time, respectively, associated with

strategy (λa(x), λb(x)) = (λ∗(x), λ∗(x)), and let τ ∗ := min{τ ∗a , τ ∗b }. Because λ∗(x) = 0 for

any x < x, we have Xτ∗ ≥ x, which implies V ∗(Xτ∗) = L(Xτ∗) − K1. Therefore, we can

see that (74)-(76) hold with equality if λa, τa, τb and τ therein are set to λ∗, τ ∗a , τ ∗b and τ ∗,

respectively. We have thus shown V ∗(x) = Ja(x;λ∗, λ∗).

In sum, combining our analyses in Steps 1 and 2, we obtain Ja(x;λ∗, λ∗) ≥ Ja(x;λa, λ
∗).

By symmetry, we also have Jb(x;λ∗, λ∗) ≥ Jb(x;λ∗, λb) for (λ∗, λb) ∈ Φ. �

Proof of Theorem 2: It suffices to show that Vi(x) satisfies the variational inequality (41).

See footnote 24. �

Proof of Theorem 3: We first prove (43). Equation (66) implies

V ∗(x) = Ext
[
e−r(τ

∗
L−t)

(
Π(Xτ∗L

)

2
−K1

)]
= Ext

[
e−r(τ

∗
L−t)(L(Xτ∗L

)−K1)
]
, (78)

where τ ∗L = inf{s ≥ t : Xs ≥ x}. We thus only need to show that for stopping time τ ≥ t,
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the following inequality holds

V ∗(x) ≥ Ext
[
e−r(τ−t)(L(Xτ )−K1)

]
. (79)

Note that V ∗(x) ∈ C2(R+\{x})∩C1(R+). Applying Itô’s Lemma to e−rsV ∗(Xs) for s ∈ [t, τ ],

we obtain

V ∗(x) =Ext [e−r(τ−t)V ∗(Xτ )]− Ext
[∫ τ

t

e−r(s−t)AV ∗(Xs)ds

]
.

Using (64) and (65), we obtain (79).

Next, we prove Ja(x; E∗a , E∗b ) ≥ Ja(x; Ea, E∗b ), where (Ea, E∗b ) ∈ Φ. Denote τa = inf{s ≥ t :

Xs ∈ Ea}. As E∗b = ∅, we have

Ja(x; E∗a , E∗b ) = Ext
[
e−r(τ

∗
L−t)(L(Xτ∗L

)−K1)
]

= V ∗(x)

≥ Ext [e−r(τa−t)(L(Xτa)−K1)] = Ja(x; Ea, E∗b ),

where the above inequality follows from (79).

Finally, we prove Jb(x; E∗a , E∗b ) = PF (x) ≥ Jb(x; E∗a , Eb), where (E∗a , Eb) ∈ Φ. By definition

we immediately obtain Jb(x; E∗a , E∗b ) = PF (x). Let τ ∗a := inf{s ≥ t : Xs ≥ x}, τb := inf{s ≥
t : Xs ∈ Eb}, and τ := min{τ ∗a , τb}. For any x ≥ x, we have

Jb(x; E∗a , Eb) ≤ Ext [e−r(τ−t)F (Xτ )] = F (x) + Ext
[∫ τ

t

e−r(s−t)AF (Xs)ds

]
≤ F (x) = PF (x),

where the first and second inequalities follow from F (x) ≥ L(x) − K1 and AF (x) ≤ 0,

respectively. For any x ∈ (0, x), applying Itô’s Lemma to e−rsPF (Xs) where s ∈ [t, τ ], we

obtain

PF (x) =Ext [e−r(τ−t)PF (Xτ )] = Ext
[
e−r(τ−t)

(
F (Xτ∗a )1τ∗a≤τb + PF (Xτ )1τ∗a>τb

)]
≥Ext

[
e−r(τ−t)

(
F (Xτ∗a )1τ∗a≤τb + (L(Xτ )−K1)1τ∗a>τb

)]
≥ Jb(x; Ea, E∗b ),

where the first inequality follows from Xτ ≤ x and PF (x) ≥ L(x)−K1 for any x ≤ x,35 the

second equality uses Xτ∗a ≥ x and PF (x) = F (x) for any x ≥ x, and the last inequality uses

the result F (x) ≥ L(x)−K1 for any x > 0. �

35For any x ∈ (0, x], PF (x) = (x/x)
β
F (x) ≥ (x/x)

β
(L(x)−K1) = Vi(x) ≥ L(x)−K1 (see Lemma 2).
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