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Abstract

We study the wild bootstrap inference for instrumental variable regressions with a small number of

large clusters. We first show that the wild bootstrap Wald test controls size asymptotically up to a

small error as long as the parameters of endogenous variables are strongly identified in at least one of

the clusters. We further develop a wild bootstrap Anderson-Rubin test for the full-vector inference and

show that it controls size asymptotically even under weak identification in all clusters. We illustrate

their good performance using simulations and provide an empirical application to a well-known dataset

about US local labor markets.
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1 Introduction

The instrument variable (IV) regression is one of the five most commonly used causal inference

methods identified by Angrist and Pischke (2008), and it is often applied with clustered data.

For example, Young (2021) analyzes 1,359 IV regressions in 31 papers published by the American

Economic Association (AEA), out of which 24 papers account for clustering of observations. Three
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issues arise when running IV regressions with clustered data. First, the strength of IVs may be

heterogeneous across clusters with one or two clusters providing the main identification power.

Indeed, Young (2021) finds that in the average paper of his AEA samples, with the removal of

just one cluster or observation, the first-stage F can decrease by 28%, and 38% of reported 0.05

significant two-stage least squares (TSLS) results can be rendered insignificant at that level. Second,

the number of clusters is small in many IV applications. For instance, Acemoglu, Cantoni, Johnson,

and Robinson (2011) cluster the standard errors at the country/polity level, resulting in 12-19

clusters, Glitz and Meyersson (2020) cluster at the sectoral level with 16 sectors, and Rogall (2021)

clusters at the province or district level with 11 provinces and 30 districts. When the number of

clusters is small, any inference procedures that require the number of clusters to diverge to infinity

may not be reliable. Third, it is also possible that IVs are weak for all clusters, in which case

researchers need to use weak-identification-robust inference methods (Andrews, Stock, and Sun,

2019).

Motivated by these issues, in this paper we study the wild bootstrap inference for IV regressions

with a small, and thus, fixed number of clusters. First, we show that a wild bootstrap Wald

test, with or without the cluster-robust covariance estimator (CCE), controls size asymptotically

up to a small error, as long as there exists at least one strong cluster in which the parameters of

endogenous variables are strongly identified. Second, we develop the full-vector inference based on

a wild bootstrap Anderson and Rubin (1949, AR) test, which controls size asymptotically up to a

small error regardless of instrument strength. Third, we establish conditions under which the wild

bootstrap tests have power against local alternatives (e.g., there are at least 5 and 6 strong clusters

for the nominal level α equal to 10% and 5%, respectively). Fourth, we show that in the special case

with a single endogenous variable and single IV, a wild bootstrap test based on the unstudentized

Wald statistic (i.e., the one without CCE) is asymptotically equivalent to a certain wild bootstrap

AR test under both null and alternative, implying that in such a case it is fully robust to weak IV.

Fifth, we establish the validity result for bootstrapping weak-IV-robust tests other than the AR

test under at least one strong cluster.

Our procedure is empirically relevant. First, it enriches practitioners’ toolbox by providing a

reliable inference for IV regressions with few clusters. Besides the aforementioned examples, the

numbers of clusters may also be rather small in studies that estimate the region-wise effects of

certain intervention if the partition of clusters is at the state level. We illustrate the usefulness of
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our bootstrap methods by applying them to the well-known dataset of Autor, Dorn, and Hanson

(2013) in the estimation of the effects of Chinese imports on local labor markets in three US Census

Bureau-designated regions with 11-16 clusters at the state level. Second, our bootstrap inference is

flexible with respect to IV strength: the bootstrap Wald test allows for cluster-level heterogeneity

in the first stage, while its AR counterpart is fully robust to weak IVs. Third, different from

the analytical inference based on the widely used heteroskedasticity and autocorrelation consistent

(HAC) estimators, our approach is agnostic about the within-cluster (weak) dependence structure

and thus avoids the use of tuning parameters to estimate the covariance matrix for dependent data.

The contributions in the present paper relate to several strands of literature. First, it is related

to the literature on the cluster-robust inference.1 Djogbenou et al. (2019), MacKinnon et al. (2021),

and Menzel (2021) show bootstrap validity under the asymptotic framework with a large number of

clusters. However, as emphasized by Ibragimov and Müller (2010, 2016), Bester, Conley, and Hansen

(2011), Cameron and Miller (2015), Canay, Romano, and Shaikh (2017), Hagemann (2019a,b, 2020),

and Canay, Santos, and Shaikh (2021), many empirical studies motivate an alternative framework in

which the number of clusters is small, while the number of observations in each cluster is relatively

large. For the inference, we may consider applying the approaches developed by Bester et al.

(2011), Hwang (2021), Ibragimov and Müller (2010, 2016), and Canay et al. (2017). However,

Bester et al. (2011) and Hwang (2021) require an (asymptotically) equal cluster-level sample size,

while Ibragimov and Müller (2010, 2016) and Canay et al. (2017) require strong identification in

all clusters. In contrast, our bootstrap Wald tests are more flexible as it does not require an equal

cluster size and only needs strong identification in one of the clusters. We also provide the bootstrap

AR tests, which are fully robust to weak or partial identification.

Second, we follow Canay et al. (2021) to show the asymptotic equivalence between the wild boot-

strap test and a randomization test with sign changes, but complement their results in the following

aspects. First, Canay et al. (2021) focus on the linear regression with exogenous regressors and then

extend the analysis to a score bootstrap for the GMM estimator. Instead, we focus on extending

the wild restricted efficient cluster (WREC) bootstrap advocated by Finlay and Magnusson (2014,

2019), Davidson and MacKinnon (2010), Roodman, Nielsen, MacKinnon, and Webb (2019), and

1See Cameron, Gelbach, and Miller (2008), Conley and Taber (2011), Imbens and Kolesar (2016), Abadie, Athey, Imbens,
and Wooldridge (2022), Hagemann (2017, 2019a,b, 2020), MacKinnon and Webb (2017), Djogbenou, MacKinnon, and Nielsen
(2019), MacKinnon, Nielsen, and Webb (2021), Ferman and Pinto (2019), Hansen and Lee (2019), Menzel (2021), MacKinnon
(2021), among others, and MacKinnon, Nielsen, and Webb (2022) for a recent survey.
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MacKinnon (2021).2 Therefore, our procedure cannot be formulated as a score bootstrap in the

GMM setting. In fact, in order to follow the WREC procedure, the first stage of our bootstrap has

to be carefully designed to ensure its validity with few clusters. Second, we consider Wald statistics

based on general k-class IV estimators, including TSLS, bias-adjusted TSLS, limited information

maximum likelihood (LIML), and modified LIML estimators as special cases. Third, we establish

the local power for the Wald test both with and without CCE under strong identification. The

former result is derived based on the Sherman–Morrison–Woodbury formula and new to the lit-

erature. We also find that the two types of bootstrap critical values behave rather differently (as

summarized in Table 1), and further establish the power superiority of the Wald test with CCE for

the empirically prevalent case of testing a single restriction. Fourth, we consider the wild bootstrap

AR test, with or without CCE, for the full-vector weak-IV-robust inference, and further establish

the local power for the one without CCE.

Third, our paper is related to the literature on weak identification, in which various normal

approximation-based inference approaches are available for nonhomoskedastic cases, among them

Stock and Wright (2000), Kleibergen (2005), Andrews and Cheng (2012), Andrews (2016), Andrews

and Mikusheva (2016), Andrews (2018), Moreira and Moreira (2019), and Andrews and Guggen-

berger (2019). As Andrews et al. (2019, p.750) remark, an important question concerns the quality

of the normal approximations with influential observations or clusters. On the other hand, when

implemented appropriately, bootstrap may substantially improve the inference for IV regressions.3

We complement this literature by establishing bootstrap validity for the weak-IV-robust statistics

with few clusters.

Last, we note that although empirical applications often involve settings with substantial first-

stage heterogeneity, related econometric literature remains rather sparse. Abadie, Gu, and Shen

(2019) exploit such heterogeneity to improve the asymptotic mean squared error of IV estimators

with independent and conditionally homoskedastic observations. Instead, we focus on developing

bootstrap inference methods that are robust to the first-stage heterogeneity for data with a small

number of clusters, while allowing for (weak) within-cluster dependence and heteroskedasticity.

The remainder of this paper is organized as follows. Section ?? presents the main results for

2The WREC bootstrap has superior finite sample performance for IV regressions with nonhomoskedastic errors and is very
popular among empirical researchers. In our paper, we extend this bootstrap procedure and give conditions under which it is
also valid with few clusters, so that empirical researchers can use the WRE-type procedures in a wide range of scenarios.

3See, for example, Davidson and MacKinnon (2008, 2010), Moreira, Porter, and Suarez (2009), Wang and Kaffo (2016),
Finlay and Magnusson (2019), and Young (2021), among others.
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wild bootstrap IV regression. Section 7 provides simulation results. The empirical application is

presented in Section 8. We conclude and provide practical recommendations in Section 9.

2 Setup, Estimation, and Inference Procedure

2.1 Setup

Throughout the paper, we consider the setup of a linear IV regression with clustered data,

yi,j = X>i,jβ +W>
i,jγ + εi,j, (1)

where the clusters are indexed by j ∈ J = {1, ..., q} and units in the j-th cluster are indexed by

i ∈ In,j = {1, ..., nj}. In (1), we denote yi,j ∈ R, Xi,j ∈ Rdx , Wi,j ∈ Rdw , and Zi,j ∈ Rdz as an

outcome of interest, endogenous regressors, exogenous regressors, and IVs, respectively. β ∈ Rdx

and γ ∈ Rdw are unknown structural parameters.

We let the parameter of interest β to shift with respect to (w.r.t.) the sample size to incorporate

the analyses of size and local power in a concise manner: βn = β0 + µβ/
√
n, where µβ ∈ Rdx is

the local parameter. We let λ>β β0 = λ0, where λβ ∈ Rdx×dr , λ0 ∈ Rdr and dr denotes the number

of restrictions under the null hypothesis. Define µ = λ>β µβ. Then, the null and local alternative

hypotheses studied in this paper can be written as

H0 : µ = 0 v.s. H1,n : µ 6= 0. (2)

2.2 K-Class IV Estimators

Throughout the paper, we consider estimators of the form:(
β̂>, γ̂>

)>
=
(
~X> ~X − κ̂ ~X>M~Z

~X
)−1 (

~X>Y − κ̂ ~X>M~ZY
)
, (3)

where ~Z = [Z : W ], ~X = [X : W ], Y , X, Z, and W are n×1, n×dx, n×dz, and n×dw-dimensional

vectors and matrices formed by yi,j, X
>
i,j, Z

>
i,j, and W>

i,j, respectively, and PA = A(A>A)−1A>,

MA = In − PA, where A is an n-dimensional matrix and In is an n-dimensional identity matrix.

This class includes all of the familiar k-class IV estimators. Specifically, we focus on four cases:

(1) the two-stage least squares (TSLS) estimator, where κ̂ = κ̂tsls = 1, (2) the limited information
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maximum likelihood (LIML) estimator, where

κ̂ = κ̂liml = min
r
r>~Y >MW

~Y r/(r>~Y >M~Z
~Y r), ~Y = [Y : X], and r = (1,−β>)>,

(3) the modified LIML estimator proposed by Fuller (1977, hereafter FULL estimator), where

κ̂ = κ̂full = κ̂liml − C/(n − dz − dw) with some constant C, and (4) the bias-adjusted TSLS (BA)

estimator proposed by Nagar (1959) and Rothenberg (1984), where κ̂ = κ̂ba = n/(n− dz + 2).

Theoretically, we show that all k-class IV estimators are asymptotically the same. However, in

our simulation, we find that Fuller’s modified LIML estimator has the best finite sample perfor-

mance.

2.3 Wild Bootstrap Inference

2.3.1 Inference Procedure by Wald Statistics

For inference, we construct Wald statistics based on the the k-class estimator β̂L defined in (3)

with k̂ = k̂L for L ∈ {tsls, liml, full, ba}. When the dr × dr weighting matrix Âr is asymptotically

deterministic in the sense of Assumption 4 below (such as Âr = Idr , the dr × dr identity matrix),

we denote Tn as the Wald statistic without CCE and define it as

Tn = ||
√
n(λ>β β̂L − λ0)||Âr , (4)

where ||u||A =
√
u>Au for a generic vector u and a weighting matrix A. When we use Âr,CR, the

inverse of the CCE as defined in (14) in Section 5 as the weighting matrix, we denote TCR,n as the

Wald statistic with CCE and define it as

Tn = ||
√
n(λ>β β̂L − λ0)||Âr,CR . (5)

We reject the null hypothesis if Tn and TCR,n are greater than their corresponding critical values

ĉn and ĉCR,n, respectively. We compute the critical values by a wild bootstrap procedure described

below.

Step 1: For L ∈ {tsls, liml, full, ba}, compute the null-restricted residual

ε̂ri,j = yi,j −X>i,jβ̂rL −W>
i,j γ̂

r
L,
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where β̂rL and γ̂rL are null-restricted k-class IV estimators of β and γ from (yi,j, X
>
i,j,W

>
i,j, Z

>
i,j)
>,4

and the unrestricted residual

ε̂i,j = yi,j −X>i,jβ̂L −W>
i,j γ̂L, (6)

where β̂L and γ̂L are defined in (3) with κ̂L.

Step 2: Construct Zi,j as

Zi,j =
(
Z̃>i,j1{j = 1}, ......, Z̃>i,j1{j = q}

)>
,

where Z̃i,j is the residual of regressing Zi,j on Wi,j using the entire sample.

Step 3: Compute the first-stage residual

ṽi,j = Xi,j − Π̃>
Z
Zi,j − Π̃>wWi,j, (7)

where Π̃Z and Π̃w are the OLS coefficients of Zi,j andWi,j from regressingXi,j on (Z
>
i,j,W

>
i,j, ε̂i,j)

>

using the entire sample.

Step 4: Let G = {−1, 1}q and for any g = (g1, ..., gq) ∈ G generate

X∗i,j(g) = Π̃>
Z
Zi,j + Π̃>wWi,j + gj ṽi,j, y∗i,j(g) = X∗>i,j (g)β̂rL +W>

i,j γ̂
r
L + gj ε̂

r
i,j.

For each g = (g1, ..., gq) ∈ G, compute β̂∗L,g and γ̂∗L,g, the analogues of the estimators β̂L and

γ̂L using
(
y∗i,j(g), X∗>i,j (g)

)>
in place of

(
yi,j, X

>
i,j

)>
and the same (Z>i,j,W

>
i,j)
>. Compute the

bootstrap analogue of the Wald statistic:5

T ∗n(g) = ||
√
n(λ>β β̂

∗
L,g − λ0)||Âr , T ∗CR,n(g) = ||

√
n(λ>β β̂

∗
L,g − λ0)||Â∗r,CR,g (8)

where Â∗r,CR,g is defined in (15).

4The null-restricted k-class estimator is defined as

β̂rL = β̂L −
(
X>PZ̃X − µ̂LX

>M~ZX
)−1

λβ
(
λ>β (X>PZ̃X − µ̂LX

>M~ZX)−1λβ
)−1

(λ>β β̂L − λ0),

γ̂rL = (W>W )−1W>(Y −Xβ̂rL), where µ̂L = κ̂L − 1 and Z̃ = MWZ,

for L ∈ {tsls, liml, full,ba}; e.g., see Appendix B of Roodman et al. (2019) for a general formula.
5Let X∗(g) and Y ∗(g) be the n × dx matrix constructed using X∗i,j(g) and the n × 1 vector constructed using Y ∗i,j(g),

respectively. For L ∈ {tsls, liml, full, ba} and g ∈ G,

β̂∗L,g =
(
X∗>(g)PZ̃X

∗(g)− µ̂∗L,gX∗>(g)M~ZX
∗(g)

)−1 (
X∗>(g)PZ̃Y

∗(g)− µ̂∗L,gX∗>(g)M~ZY
∗(g)

)
, where µ̂∗L,g = κ̂∗L,g − 1.
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Step 5: To obtain the critical values, we compute the 1−α quantiles of {T ∗n(g) : g ∈ G} and {T ∗CR,n(g) :

g ∈ G}:

ĉn(1− α) = inf

{
x ∈ R :

1

|G|
∑
g∈G

1{T ∗n(g) ≤ x} ≥ 1− α

}
,

ĉCR,n(1− α) = inf

{
x ∈ R :

1

|G|
∑
g∈G

1{T ∗CR,n(g) ≤ x} ≥ 1− α

}
,

where 1{E} equals one whenever the event E is true and equals zero otherwise. The bootstrap

test for H0 rejects whenever TCR,n exceeds ĉCR,n(1 − α) and Tn exceeds ĉn(1 − α) for Wald

statistics with and without CCE, respectively.

Four remarks are in order. First, Step 1 imposes null when computing the residuals in the

structural equation (1), which is advocated by Cameron et al. (2008), Davidson and MacKinnon

(2010), MacKinnon et al. (2022), and Canay et al. (2021), among others. Second, the estimators

Π̃Z and Π̃w in Step 3 are similar to the efficient reduced-form estimators in the WREC bootstrap

procedures advocated by Finlay and Magnusson (2014, 2019), Davidson and MacKinnon (2010),

Roodman et al. (2019), and MacKinnon (2021), which have superior finite sample performance for

IV regressions, even when the instruments are rather weak. In this paper, we focus on extending

the WREC procedure because (1) we find the resulting bootstrap also has excellent finite sample

performance for IV regressions with a small number of clusters, and (2) we want to be consistent

with Davidson and MacKinnon’s (2010) suggestions. Third, to adapt to the current framework,

we modify the original WREC procedure and use the fully interacted Z̃i,j in Step 3, which is

crucial to guarantee that the bootstrap Jacobian matrix Q̂∗
Z̃X

(g) := 1
n

∑
j∈J
∑

i∈In,j Z̃i,jX
∗>
i,j (g) is

asymptotically equivalent to the original Jacobian Q̂Z̃X . Notice that the fully interacted IVs (i.e.,

Zi,j) are only needed to construct X∗i,j(g), and we still use the uninteracted IVs (i.e., Zi,j) when

computing (β̂>L , γ̂
>
L )> in (3) and their null-restricted and bootstrap counterparts (i.e., (β̂r>L , γ̂r>L )> in

Step 1 and (β̂∗>L,g, γ̂
∗>
L,g)

> in Step 4). Last, when regressing Xi,j on (Z
>
i,j,W

>
i,j, ε̂i,j)

> in Step 3, we need

to use the unrestricted residuals ε̂i,j instead of the null-restricted residuals ε̂ri,j. This modification

is required to establish the power results under few clusters.
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2.3.2 Inference Procedure by Weak-instrument-robust Statistics

In this section, we describe a wild bootstrap inference procedure for Anderson-Rubin (AR) type

Weak-instrument-robust Statistics with or without CCE. Recall that βn = β0 + µβ/
√
n. Under the

null, we have µβ = 0, or equivalently, βn = β0. First, define the AR statistic without CCE as

ARn =
∥∥√nf̂∥∥

Âz
, f̂ = n−1

∑
j∈J

∑
i∈In,j

fi,j,

where Âz is a dz × dz weighting matrix with an asymptotically deterministic limit specified in

Assumption 5 below, fi,j = Z̃i,j ε̄
r
i,j, ε̄

r
i,j = yi,j − X>i,jβ0 − W>

i,j γ̄
r, and γ̄r is the null-restricted

ordinary least squares (OLS) estimator of γ:

γ̄r =

∑
j∈J

∑
i∈In,j

Wi,jW
>
i,j

−1∑
j∈J

∑
i∈In,j

Wi,j(yi,j −X>i,jβ0).

Second, we also define the AR statistic with the (null-imposed) CCE as

ARCR,n =
∥∥√nf̂∥∥

ÂCR
, ÂCR =

n−1∑
j∈J

∑
i∈In,j

∑
k∈In,j

fi,jf
>
k,j

−1 .
Our wild bootstrap procedure for the AR statistics is defined as follows.

Step 1: Compute the null-restricted residual ε̄ri,j = yi,j −X>i,jβ0 −W>
i,j γ̄

r.

Step 2: Let G = {−1, 1}q and for any g = (g1, ..., gq) ∈ G define

f̂ ∗g = n−1
∑
j∈J

∑
i∈In,j

f ∗i,j(gj), and f ∗i,j(gj) = Z̃i,jε
∗
i,j(gj),

where ε∗i,j(gj) = gj ε̄
r
i,j. Compute the bootstrap statistics:

AR∗n(g) =
∥∥√nf̂ ∗g∥∥Âz and AR∗CR,n(g) =

∥∥√nf̂ ∗g∥∥ÂCR .
Step 3: Let ĉAR,n(1 − α) and ĉAR,CR,n(1 − α) denote the (1 − α)-th quantile of {AR∗n(g)}g∈G and

{AR∗CR,n(g)}g∈G, respectively.

Unlike the TCR,n-based Wald test in Section 2.3.1, we do not need to bootstrap the CCE for the

ARCR,n test even though ÂCR also admits a random limit. This is because ÂCR is invariant to the

sign changes.
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3 Main Assumptions and Several Examples

In this section, we introduce the assumptions that will be used in our analysis of the wild bootstrap

tests under a small number of clusters in Sections 4-6. For the rest of the paper, we define Z̃i,j

as the residual of regressing Zi,j on Wi,j using the entire sample, and that for any random vectors

Ui,j and Vi,j, Q̂UV,j = 1
nj

∑
i∈In,j Ui,jV

>
i,j and Q̂UV = 1

n

∑
j∈J
∑

i∈In,j Ui,jV
>
i,j . Further define Q̂ =

Q̂>
Z̃X
Q̂−1
Z̃Z̃
Q̂Z̃X , and Q as the probability limits of Q̂.

Assumption 1. The following statements hold: (i) For each j ∈ J , either (1) Q̂Z̃W,j = 0, or (2)

Q̂Z̃W,j = op(1) and 1√
n

∑
j∈J
∑

i∈In,j Wi,jεi,j = Op(1).

(ii) There exists a collection of independent random variables {Zj : j ∈ J}, where Zj ∼ N(0,Σj)

with Σj positive definite for all j ∈ J , such that 1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 d−−→ {Zj : j ∈ J} .

(iii) For each j ∈ J , nj/n→ ξj > 0.

(iv) 1
n

∑
j∈J
∑

i∈In,j Wi,jW
>
i,j is invertible.

Several remarks are in order. First, we have Q̂Z̃W,j = 0 if Wi,j contains the interactions between

baseline exogenous regressors and cluster dummies or Zi,j is constructed as the residual from the

cluster-level projection of original IVs onto the linear space spanned by Wi,j.
6

Second, when some cluster contains small number of observations, such a cluster-level projection

is numerically unstable (this is just a finite sample issue as asymptotically, we assume the number

of clusters is fixed and the cluster size diverges to infinity). In this case, researchers may prefer to

use baseline exogenous regressors without interacting them with cluster dummies. To accommodate

such a practice, we give another set of conditions in Assumption 1(i)(2). Specifically, we require

Q̂Z̃W,j = op(1) if

1

nj

∑
i∈In,j

∥∥∥W>
i,j

(
Γ̂n − Γ̂n,j

)∥∥∥2 p−→ 0, (9)

where Γ̂n and Γ̂n,j are the dw × dz matrices that satisfy the following orthogonality conditions:

6Specifically, suppose Zi,j are the base IVs. We can construct Zi,j as Zi,j = Zi,j − χ̂>j Wi,j , where χ̂j =

Q̂WW,jQ̂
−
WW,jQ̂

−
WW,jQ̂WZ ,j , and A− denotes the pseudo inverse of the positive semidefinite matrix A. It is possible to

show that Z̃i,j = Zi,j and 1
nj

∑
i∈In,j Z̃i,jW

>
i,j = 0.
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∑
j∈J
∑

i∈In,j Wi,j(Zi,j − Γ̂>nWi,j)
> = 0, and

∑
i∈In,j Wi,j(Zi,j − Γ̂>n,jWi,j)

> = 0. Canay et al. (2021,

Assumption 2(iv) in Section A) imposed the same condition as (9) and pointed out that it holds

whenever the distributions of (Z>i,j,W
>
i,j)
> are the same across clusters. The condition that

1√
n

∑
j∈J

∑
i∈In,j

Wi,jεi,j = Op(1)

is similar to Assumption 1(i) in Canay et al. (2021) and rules out the specification in which εi,j

follows an error-component model, i.e.,

εi,j = ηj + ei,j, (10)

where ηj is a cluster-wide shock for cluster j, ei,j is an idiosyncratic shock for observation i, and

the two shocks are independent. We emphasize again that if a full set of interactions between

baseline exogenous regressors and cluster dummies are used as Wij, then Assumption 1(i)(1) holds

automatically and we do not need to Assumption 1(i)(2).

Third, Assumption 1(ii) is reasonable because Z̃i,j is exogenous. It is satisfied whenever the

within-cluster dependence is sufficiently weak to permit the application of a suitable central limit

theorem and the data are independent across clusters. Assumption 1(iii) gives the restriction on

cluster sizes, and Assumption 1(iv) ensures Γ̂n is uniquely defined.

Assumption 2. The following statements hold: (i) The quantities Q̂Z̃X,j, Q̂Z̃Z̃,j, Q̂Z̃X , and Q̂Z̃Z̃

converge in probability to deterministic matrices, which are denoted as QZ̃X,j, QZ̃Z̃,j, QZ̃X , and

QZ̃Z̃, respectively.

(ii) The matrices QZ̃Z̃,j is invertible for j ∈ J .

(iii) For all j ∈ J , Q̂XX,j = Op(1), Q̂Xε,j = Op(1), and Q̂ε̇ε̇,j ≥ c > 0 for constant c with probability

approaching one, where ε̇i,j is the residual from the cluster-level projection of εi,j on Wi,j.

Assumption 2(i) holds if the dependence of units within clusters is weak enough to render some

type of LLN to hold. Assumption 2(ii) is standard in the literature and holds regardless of the

IVs’ strength. However, it rules out the case that IVs are constructed as the interaction between

baseline IVs and cluster dummies, as discussed below.

We conclude this section with several examples.

Example 3.1 (Cluster-level Exogenous Variable and Fixed Effects). We allow for cluster-level
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exogenous variables and fixed effects. Suppose

yi,j = X>i,jβ +B>1,jθ1,j +B>2,i,jθ2,j + ηj + ei,j, (11)

where yi,j is the outcome variable, Xi,j contains the endogenous variables, B1,j contains the cluster-

level baseline exogenous variables including the intercept, B2,i,j contains the individual-level baseline

exogenous variables, ηj is the unobserved cluster-level fixed effect, ei,j is the individual-level idiosyn-

cratic error, and the linear coefficients (θ1,j, θ2,j) for the baseline covariates Bi = (B1,j, B2,i,j) are

allowed to be heterogeneous across clusters. Further denote Wi,j as the full interaction between

B̃2,i,j = (1, B>2,i,j)
> with cluster dummies and define it as

Wi,j = (B̃>2,i,j1{j = 1}, B̃>2,i,j1{j = 2}, · · · , B̃>2,i,j1{j = q})>. (12)

Then, (11) can be rewritten as (1) with εi,j = ηj + ei,j and γ = (γ>1 , · · · , γ>q )>, where γj =

(B>1,jθ1,j, θ
>
2,j)
>. As Wi,j contains full interaction between β̃2,i,j and cluster dummies, Z̃i,j is nu-

merically the same as the residual from the cluster-level projection of Zi,j on β̃2,i,j, which implies

Q̂Z̃W,j = 0 and Assumption 1(1) holds. We further have
∑

i∈In,j Z̃i,jηj = 0 so that Assumption 1(2)

reduces to  1
√
nj

∑
i∈In,j

Z̃i,jei,j : j ∈ J

 d−−→ {Zj : j ∈ J} ,

which holds if Zi,j and B2,i,j are exogenous and the the within-cluster dependence is sufficiently

weak.

Example 3.2 (Heterogeneous IV Strength across Clusters). We allow for cluster-level heterogeneity

with regard to IV strength. Let Πz,j,n and Πw,j,n be the coefficients of Zi,j and Wi,j, respectively, via

the cluster-level population projection of Xi,j on Zi,j and Wi,j, for each j ∈ J .7 Then, our model

(1) allows for both Πz,j,n and Πw,j,n to vary across clusters. In particular, we allow for some of

Πz,j,n to decay to or be zero for the bootstrap Wald tests and all Πz,j,n to decay to or be zero for the

bootstrap AR tests. We will come back to this point in Sections 4-6 with more details.

Example 3.3 (Homogeneous Slope for the Endogenous Variable). Similar to Canay et al. (2021),

7We note Πz,j,n and Πw,j,n depend on the sample size because the underlying distribution is indexed by n.
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we are unable to allow for β to be heterogeneous across clusters. As a stylized example, let

yi,j = X>i,jβj +Wi,j + ei,j, (13)

where Wi,j is just the cluster dummies. For β equal to weighted average of βj’s, we may rewrite

(13) as (1) with εi,j = X>i,j(βj − β) + ei,j, which implies

1
√
nj

∑
i∈In,j

Z̃i,jεi,j =
1
√
nj

∑
i∈In,j

(Zi,j − Z̄j)(X>i,j(βj − β) + ei,j).

We then see that Assumption 1(2) is violated unless βj = β.

Example 3.4 (Difference-in-Difference and Cluster Randomization). The Wald tests are unable

to allow for cluster-level IVs, which usually occur for difference-in-difference analysis and cluster

randomization with imperfect compliance. In those settings, the treatment status and assignments

are interpreted as our Xi,j and Zi,j, respectively, and they are different due to imperfect compliance.

However, if the cluster is assigned as a control group, then all Zi,j’s for such a cluster take value 0.

When Zi,j is invariant within some cluster j0, then 1√
nj0

∑
i∈In,j0

Z̃i,j0εi,j0 must be degenerate under

Assumption 1(i), which violates Assumption 1(ii). Following the suggestion by Canay et al. (2017)

and Canay et al. (2021), it is possible to merge treated and control clusters to form a more coarse

cluster.

Example 3.5 (Cluster-level Endogenous Variables). If Xi,j is a cluster-level variable (say, Xj), then

the resulting within-cluster limiting Jacobian matrix QZ̃X,j may be random and potentially correlated

with the within-cluster score component Zj as Xj is endogenous, which violates Assumption 2(i).

We notice that similar issues can arise for the approaches by Bester et al. (2011), Hwang (2021),

IM, and CRS. Our wild bootstrap AR tests (ARn and ARCR,n) only requires Assumption 1 but not

Assumption 2, and then, remain valid.

Example 3.6 (Interacting IVs with Cluster Dummies). We require the IVs Zi,j to be the baseline

instruments which are not interacted with cluster dummies. In fact, the condition that Zj have full

rank covariance matrices in Assumption 1(ii) rules out the case in which Zi,j are constructed by

interacting the baseline IVs with the cluster dummies. To see this, we consider the simplest case

that Wi,j only contains the intercept and Zi,j is constructed as the interactions of a scalar baseline
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IV Zi,j with cluster dummies. Then, for the last cluster (the q-th cluster), we have

1
√
nq

∑
i∈In,q

Z̃i,qεi,q =
1
√
nq

∑
i∈In,q

(−ξ1Z1εi,q, · · · ,−ξq−1Zq−1εi,q, (Zi,q − ξqZq)εi,q)
>,

where Zj = 1
nj

∑
i∈In,j Zi,j. Clearly, 1√

nq

∑
i∈In,q Z̃i,qεi,q is linearly dependent, which implies Σq is

degenerated, and thus, Assumption 1(ii) is violated.

We notice that Abadie et al. (2019) interact the baseline IVs with subgroup dummies such as

those for states, gender, or race. However, Abadie et al. (2019) use an analytical covariance matrix

estimator for independent and conditionally homoskedastic observations for inference. In contrast,

as we allow for heteroskedasiticity and are agnostic about the within-cluster dependence, it is dif-

ficult, if not impossible, to derive a consistent estimator of the covariance matrix in our setting

without imposing additional restrictions. Instead, following the lead of Canay et al. (2021), we rely

on the connection between the wild bootstrap and the randomization test to avoid the consistent

estimation of the covariance matrix. Assumption 1(ii) is crucial for such a connection to hold.

4 Asymptotic Results for the Wald Tests without CCE

For the Wald test, we further assume the following assumption.

Assumption 3. (i) QZ̃X is of full column rank.

(ii) One of the following two conditions holds: (1) dx = 1, and define aj = Q−1Q>
Z̃X
Q−1
Z̃Z̃
QZ̃X,j,

where Q = Q>
Z̃X
Q−1
Z̃Z̃
QZ̃X , or (2) there exists a scalar aj for each j ∈ J such that QZ̃X,j = ajQZ̃X .

Several remarks are in order. First, Assumption 3(i) requires (overall) strong identification for

βn. Second, Assumption 3(ii)(1) states that if there is only one endogenous variable, no further

restrictions are required as we can always define a scalar aj = Q−1Q>
Z̃X
Q−1
Z̃Z̃
QZ̃X,j when dx = 1.

A single endogenous variable is the leading case in empirical applications involving IV regressions.

For example, 101 out of 230 specifications in Andrews et al. (2019)’s sample and 1,087 out of

1,359 in Young (2021)’s sample has one endogenous regressor and one IV. Lee, McCrary, Moreira,

and Porter (2021) found that among 123 papers published in AER between 2013 and 2019 that

include IV regressions, 61 employ single instrumental variable (just-identified) regressions. They

pointed out that the single-IV case “includes applications such as randomized trials with imperfect

compliance (estimation of LATE, Imbens and Angrist (1994)), fuzzy regression discontinuity designs
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(see discussion in Lee and Lemieux (2010)), and fuzzy regression kink designs (see discussion in Card,

Lee, Pei, and Weber (2015))”. Angrist and Kolesár (2021) also pointed out that “most studies using

IV (including Angrist (1990) and Angrist and Krueger (1991)) report just-identified IV estimates

computed with a single instrument”.8 In addition, Assumption 3(ii)(1) further allows for the case

of single endogenous regressor and multiple IVs. Third, Assumption 3(ii)(2) is needed if we have

multiple endogenous variables. The condition is similar to that in Canay et al. (2021, Assumption

2(iii)), which restricts the type of heterogeneity of the within-cluster Jacobian matrices. However,

it is still weaker than restrictions assumed in the literature for cluster-robust Wald tests under a

small number of clusters. For example, Bester et al. (2011) and Hwang (2021) provide asymptotic

approximations that are based on t and F distributions for the Wald statistics with CCE. The

conditions in their papers require the within-cluster Jacobian matrices to have the same limit for

all clusters (i.e., Assumption 3(ii)(2) to hold with aj = 1 for all j ∈ J).9 They also impose that

the cluster sizes are approximately equal for all clusters and the cluster-level scores in Assumption

1(ii) have the same normal limiting distribution for all clusters, which are not necessary for the wild

bootstrap. Finally, Assumption 3 will not be needed for the bootstrap AR tests in Section 6, as

they require neither strong identification nor homogeneity conditions.

To further clarify our setting, we can relate the Jacobian matrices with the first-stage projec-

tion coefficient. Specifically, recall Πz,j,n is the coefficient of Zi,j via the cluster-level population

projection of Xi,j on Zi,j and Wi,j. Then, we have limn→∞Πz,j,n = Πz,j := Q−1
Z̃Z̃,j

QZ̃X,j under our

framework. Also define Πz = Q−1
Z̃Z̃
QZ̃X . Assumption 3(i) ensures that overall we have strong iden-

tification as QZ̃X (and Πz) is of full column rank. Furthermore, we call the clusters in which QZ̃X,j

(and Πz,j) are of full column rank the strong clusters, i.e., βn is strongly identified in these clusters.

On the other hand, strong identification for βn is not ensured in the rest of the clusters. Given

the number of clusters is fixed, only one strong cluster is needed for Assumption 3(i) to hold. Two

additional remarks are in order for the case with multiple endogenous variables: (1) Assumption

3(ii)(2) implies that when aj 6= 0, QZ̃X,j (and Πz,j) is of full column rank, so that the j-th cluster

is a strong cluster, and (2) Assumption 3(ii)(2) excludes the case that QZ̃X,j is of a reduced rank

but is not a zero matrix. It is possible to select out the clusters with Jacobian matrices of reduced

rank (Robin and Smith, 2000; Kleibergen and Paap, 2006; Chen and Fang, 2019). We leave this

8In our empirical application, we revisit the influential study by Autor et al. (2013), which also has only one IV.
9E.g., see Bester et al. (2011, Assumptions 3 and 4) and Hwang (2021, Assumptions 4 and 5) for details.
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investigation for future research.

Assumption 4. Suppose Â∗r,g equals Âr and ||Âr−Ar||op = op(1), where Ar is a dr× dr symmetric

deterministic weighting matrix such that 0 < c ≤ λmin(Ar) ≤ λmax(Ar) ≤ C < ∞ for some

constants c and C, λmin(A) and λmax(A) are the minimum and maximum eigenvalues of the generic

matrix A, and ||A||op denotes the operator norm of the matrix A.

Assumption 4 requires the weighting matrix Âr in (4) has a deterministic limit and the bootstrap

weighting matrix Â∗r,g in (8) equals Âr. It rules out the case that Âr equals the inverse of CCE,

which has a random limit under a small number of clusters. We will discuss the bootstrap Wald

test with CCE in Section 5.

Theorem 4.1. Suppose that Assumptions 1-4 hold. Then under H0, for all four estimation methods

(namely, TSLS, LIML, FULL, and BA),

α− 1

2q−1
≤ lim inf

n→∞
P{Tn > ĉn(1− α)} ≤ lim sup

n→∞
P{Tn > ĉn(1− α)} ≤ α +

1

2q−1
.

Several remarks are in order. First, Theorem 4.1 states that as long as there exists at least one

strong cluster, the Tn-based wild bootstrap test has limiting null rejection probability no greater

than α+1/2q−1 and no smaller than α−1/2q−1. The error 1/2q−1 can be viewed as the upper bound

for the asymptotic size distortion, which decreases exponentially with the total number of clusters

rather than the number of strong clusters. Intuitively, although the weak clusters do not contribute

to the identification of βn, the scores of such clusters still contribute to the limiting distributions of

the IV estimators, which in turn determines the total number of sign changes in the bootstrap Wald

statistics. We note that 1/2q−1 equals 1.56% and 0.2% when q = 7 and 10, respectively. If such an

distortion is still of concern, researchers can replace α in our context by α − 1/2q−1 to ensure null

rejection rate.

Second, the wild bootstrap test has resemblance to the group-based t-test in Ibragimov and

Müller (2010, hereafter IM) and the randomization test with sign changes in Canay et al. (2017,

hereafter CRS). However, we notice that for IV regressions, the size properties of the two approaches

can be rather different from that of the wild bootstrap. More specifically, IM and CRS approaches

separately estimate the parameters using the samples in each cluster (say, β̂1, ..., β̂q), and therefore

requires βn to be strongly identified in all clusters. This would rule out weak clusters in the sense of

16



Staiger and Stock (1997), where Πz,j,n has the same order of magnitude as n
−1/2
j .10 In contrast, the

size result in Theorem 4.1 holds even with only one strong cluster, and the wild bootstrap is thus

more robust to cluster heterogeneity in IV strength. On the other hand, if βn is strongly identified

in all clusters and the cluster-level IV estimators have minimal finite sample bias, IM and CRS

have an advantage over the wild bootstrap when there are multiple endogenous variables as they

do not require Assumption 3(ii). The two types of approaches could therefore be considered as

complements, and practitioners may choose between them according to the characteristics of their

data and models.

Third, it is well known that estimators such as LIML and FULL have reduced finite sample

bias relative to TSLS in the over-identified case, especially when the IVs are not strong. Since the

validity of the randomization with sign changes requires a distributional symmetry around zero, the

LIML and FULL-based bootstrap Wald tests may therefore achieve better finite sample size control

than that based on TSLS. This is confirmed by the simulation experiments in Section 7.11

We next examine the power of the wild bootstrap test against local alternatives.

Theorem 4.2. Suppose that Assumptions 1-4 hold. Further suppose that there exists a subset Js

of J such that aj > 0 for each j ∈ Js, aj = 0 for j ∈ J\Js, and d|G|(1−α)e ≤ |G|− 2q−qs+1, where

|G| = 2q, qs = |Js|, and aj is defined in Assumption 3. Then under H1,n, for all four estimation

methods (namely, TSLS, LIML, FULL, and BA),

lim
||µ||2→∞

lim inf
n→∞

P{Tn > ĉn(1− α)} = 1.

Two remarks are in order. First, to establish the power of the Tn-based wild bootstrap test

against n−1/2-local alternatives, we need homogeneity of the signs of Jacobians for the strong clusters

(i.e., aj > 0 for each j ∈ Js). For example, in the case with a single IV, it requires Πz,j to have the

same sign across all the strong clusters. We notice that this condition is not needed for the bootstrap

Wald test described in Section 5. Second, we also need a sufficient number of strong clusters. For

instance, if q equals 10, then |G| = 1024 and the condition d|G|(1 − α)e ≤ |G| − 2q−qs+1 requires

10The cluster-level IV estimators of such weak clusters would become inconsistent and have highly nonstandard limiting
distributions. Also, if there exist both strong and “semi-strong” clusters, in which the (unknown) convergence rates of IV
estimators can vary among clusters and be slower than

√
nj (Andrews and Cheng, 2012), then the estimators with the slowest

convergence rate will dominate in the test statistics that are based on the cluster-level estimators.
11To theoretically document the asymptotic bias due to the dimensionality of IVs, one needs to consider an alternative

framework in which the number of clusters is fixed but the number of IVs tends to infinity, following the literature on
many/many weak instruments (Bekker, 1994; Chao and Swanson, 2005; Mikusheva and Sun, 2022). We leave this direction
of investigation for future research.
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that qs ≥ 5 and qs ≥ 6 for α = 10% and 5%, respectively. Theorem 4.2 suggests that although

the size of the wild bootstrap test is well controlled even with only one strong cluster, its power

depends on the number of strong clusters.

5 Asymptotic Results for the Wald Tests with CCE

Now we consider a wild bootstrap test for the Wald statistic with CCE when the weighting matrix

Âr,CR, the inverse of the CCE, is defined as

Âr,CR =
(
λ>β V̂ λβ

)−1
, V̂ = Q̂−1Q̂>

Z̃X
Q̂−1
Z̃Z̃

Ω̂CRQ̂
−1
Z̃Z̃
Q̂Z̃XQ̂

−1, Q̂ = Q̂>
Z̃X
Q̂−1
Z̃Z̃
Q̂Z̃X , (14)

Ω̂CR = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j Z̃i,jZ̃

>
k,j ε̂i,j ε̂k,j, and ε̂i,j is the unrestricted residual defined in (6).

The corresponding Wald statistic with CCe is denoted as

TCR,n = ||
√
n(λ>β β̂ − λ0)||Âr,CR .

To obtain wild bootstrap critical value for the Wald statistic with CCE, the bootstrap weighting

matrix Â∗r,CR,g in (8) is defined as

Â∗r,CR,g =
(
λ>β V̂

∗
g λβ

)−1
, V̂ ∗g = Q̂∗−1g Q̂∗>

Z̃X
(g)Q̂−1

Z̃Z̃
Ω̂∗CR,gQ̂

−1
Z̃Z̃
Q̂∗
Z̃X

(g)Q̂∗−1g , (15)

where for L ∈ {tsls, liml, full, ba},

Ω̂∗CR,g =
1

n

∑
j∈J

∑
i∈In,j

∑
k∈In,j

Z̃i,jZ̃
>
k,j ε̂
∗
i,j(g)ε̂∗k,j(g), Q̂∗

Z̃X
(g) =

1

n

∑
j∈J

∑
i∈In,j

Z̃i,jX
∗>
i,j (g),

ε̂∗i,j(g) = y∗i,j(g)−X∗>i,j (g)β̂∗g,L −W>
i,j γ̂
∗
g,L, and Q̂∗g = Q̂∗>

Z̃X
(g)Q̂−1

Z̃Z̃
Q̂∗
Z̃X

(g). (16)

Then, we denote the corresponding bootstrap Wald statistic with CCE as

T ∗CR,n(g) = ||
√
n(λ>β β̂

∗
g − λ0)||Â∗r,CR,g ,

and the bootstrap critical value ĉCR,n(1 − α) as the 1 − α quantile of {T ∗CR,n(g) : g ∈ G}. Unlike

the Wald statistic without CCE considered in the previous section, here we need to bootstrap the

weighting matrix because under our asymptotic framework with a small number of clusters Âr,CR

has a random limit, which depends on the limits of the scores and the IV estimators (β̂L, γ̂L).
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Theorem 5.1. Suppose that Assumptions 1-3 hold, and q > dr. Then under H0, for all four

estimation methods (namely, TSLS, LIML, FULL, and BA),

α− 1

2q−1
≤ lim inf

n→∞
P{TCR,n > ĉCR,n(1− α)}

≤ lim sup
n→∞

P{TCR,n > ĉCR,n(1− α)} ≤ α +
1

2q−1
.

We require q > dr because otherwise CCE and its bootstrap counterpart are not invertible.

Theorem 5.1 states that with at least one strong cluster, the TCR,n-based wild bootstrap test controls

size asymptotically up to a small error. Next, we turn to the local power.

Theorem 5.2. (i) Suppose that Assumptions 1-3 hold, and q > dr. Suppose that there exists a subset

Js of J such that minj∈Js |aj| > 0, aj = 0 for each j ∈ J\Js, and d|G|(1−α)e ≤ |G|−2q−qs+1, where

|G| = 2q, qs = |Js|, and aj is defined in Assumption 3. Then under H1,n, for all four estimation

methods (namely, TSLS, LIML, FULL, and BA),

lim
||µ||2→∞

lim inf
n→∞

P{TCR,n > ĉCR,n(1− α)} = 1.

(ii) Further suppose that dr = 1. Then under H1,n, for any e > 0, there exists a constant cµ > 0

such that when ||µ||2 > cµ,

lim inf
n→∞

P(φcrn ≥ φn) ≥ 1− e,

where φcrn = 1{TCR,n > ĉCR,n(1− α)} and φn = 1{Tn > ĉn(1− α)}.

Several remarks are in order. First, different from Theorem 4.2, the power result in Theorem 5.2

does not require the homogeneity condition on the sign of first-stage coefficients for the strong clus-

ters (i.e., it only requires minj∈Js |aj| > 0). Such difference originates from certain good property of

ĉCR,n(1−α). More precisely, although both Tn and TCR,n diverge as ||µ||2 →∞, their corresponding

bootstrap critical values have different behaviors, with ĉn(1−α)
p−→∞ while ĉCR,n(1−α) = Op(1),

which translates into relatively good power properties of the bootstrap Wald test with CCE. The

behaviours of the test statistics and their bootstrap critical values under the distant alternative are

summarized in Table 1.

Second, we further establish in Theorem 5.2(ii) that in the case of a t-test (i.e., when the null

hypothesis involves one restriction), the rejection of the TCR,n-based bootstrap test dominates that

based on Tn with large probability under the distant alternative. Intuitively, we have imposed
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the null when generating the bootstrap pseudo-data, making ε̂∗i,j(g) and, subsequently, λ>β V̂
∗
g λβ

dependent on µ. Therefore, although |
√
n(λ>β β̂

∗
g−β0)| diverges to infinity when ‖µ‖2 →∞, λ>β V̂

∗
g λβ

also diverges so that ĉCR,n(1−α) remains bounded in probability. Now, let c̃CR,n(1−α) denote the

(1−α) quantile of

{
|
√
n(λ>β β̂

∗
g − λ0)|/

√
λ>β V̂ λβ : g ∈ G

}
, in which |

√
n(λ>β β̂

∗
g −λ0)| is studentized

by the original CCE instead of the bootstrap CCE, and notice that 1{Tn > ĉn(1−α)} = 1{TCR,n >

c̃CR,n(1− α)}. The result of Theorem 5.2(ii) follows since
√
λ>β V̂ λβ does not diverge with ||µ||2 so

that c̃CR,n(1− α) > ĉCR,n(1− α) with large probability as ||µ||2 becomes sufficiently large.

Third, these power properties carry over to the linear regression model and the (single-equation)

wild bootstrap procedure studied by Canay et al. (2021), as linear regression with exogenous re-

gressors is a special case of the IV regression.

Test Statistics Bootstrap Critical Values

Wald Tests Tn
p−→∞ ĉn(1− α)

p−→∞
TCR,n

p−→∞ ĉCR,n(1− α) = Op(1)

AR Tests ARn
p−→∞ ĉAR,n(1− α)

p−→∞
ARCR,n = Op(1) ĉAR,CR,n(1− α) = Op(1)

Table 1: Test Statistics and Bootstrap Critical Values under Distant Alternatives
Note: This table summarizes the properties of the Wald and AR statistics and bootstrap critical values when the assumptions

in Theorems 5.2(i) and 6.2 hold. Tn and TCR,n denote the Wald statistics without and with CCE, respectively, and ĉn(1−α)

and ĉCR,n(1 − α) denote their corresponding bootstrap critical values. ARn and ARCR,n denote the AR statistics without

and with CCE, respectively, and ĉAR,n(1− α) and ĉAR,CR,n(1− α) denote their corresponding bootstrap critical values.

6 Asymptotic Results for AR Tests

The size control of the bootstrap Wald tests with or without CCE relies on Assumption 3(i), which

rules out overall weak identification in which all clusters are weak. In the case that the parameter

of interest may be weakly identified in all clusters, we may consider the inference on the full vector

of βn. In this section, we consider bootstrap AR tests, with or without CCE, as defined in Section

2.3.2.

Assumption 5. ||Âz − Az||op = op(1), where Az is a dz × dz symmetric deterministic weighting

matrix such that 0 < c ≤ λmin(Az) ≤ λmax(Az) ≤ C <∞ for some constants c and C.

Theorem 6.1 below shows that, in the general case with multiple IVs, the limiting null rejection

probability of the ARn-based bootstrap test does not exceed the nominal level α, and that of the

ARCR,n test does not exceed α by more than 1/2q−1 when q > dz, irrespective of IV strength.
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Theorem 6.1. Suppose Assumption 1 holds and βn = β0. For ARn, further suppose Assumption

5 holds. For ARCR,n, further suppose q > dz. Then,

α− 1

2q−1
≤ lim inf

n→∞
P{ARn > ĉAR,n(1− α)}

≤ lim sup
n→∞

P{ARn > ĉAR,n(1− α)} ≤ α, and

α− 1

2q−1
≤ lim inf

n→∞
P{ARCR,n > ĉAR,CR,n(1− α)}

≤ lim sup
n→∞

P{ARCR,n > ĉAR,CR,n(1− α)} ≤ α +
1

2q−1
.

Several remarks are in order. First, for the bootstrap AR test studentized by CCE, we require

the number of IVs to be smaller than the number of clusters because otherwise, the CCE may not

be invertible. Second, the behavior of wild bootstrap for other weak-IV-robust statistics proposed

in the literature is more complicated as they depend on an adjusted sample Jacobian matrix (e.g.,

see Kleibergen (2005), Andrews (2016), Andrews and Mikusheva (2016), and Andrews and Guggen-

berger (2019), among others). Further complication therefore arises when all the clusters are weak.

For example, with few clusters this adjusted Jacobian is no longer asymptotically independent from

the score. In Appendix S.H, we establish the validity of wild bootstrap for these statistics with at

least one strong cluster. Third, for the weak-IV-robust subvector inference, one may use a projec-

tion approach (Dufour and Taamouti, 2005) after implementing the wild bootstrap AR tests for βn,

but the result may be conservative. Alternative subvector inference methods (e.g., see Section 5.3 in

Andrews et al. (2019) and the references therein) provide a power improvement over the projection

approach under the framework with a large number of observations/clusters. However, it is unclear

whether they can be applied to our setting with a small number of clusters.12

Next, to study the power of the ARn-based bootstrap test against the local alternative, we let

λβ = Idx for H1,n in (2) so that µ = µβ, and we impose the following condition.

Assumption 6. (i) QZ̃X 6= 0. (ii) There exists a scalar aj for each j ∈ J such that QZ̃X,j = ajQZ̃X .

If dx = dz = 1, Assumption 6(i) implies strong identification. When dz > 1 or dx > 1,

Assumption 6(i) only rules out the case that QZ̃X is a zero matrix, while allowing it to be nonzero

but not of full column rank. As noted below, this means the AR test can still have local power in

12It is unknown whether the asymptotic critical values given by these approaches will still be valid with a small number of
clusters. Also, Wang and Doko Tchatoka (2018) point out that bootstrap tests based on the subvector statistics therein may
not be robust to weak IVs even under conditional homoskedasticity.
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some direction even without strong identification. Assumption 6(ii) is similar to Assumption 3(ii).

In particular, it holds automatically if dx = dz = 1 and Assumption 6(i) holds.

Theorem 6.2. Suppose Assumptions 1, 5, and 6 hold. Further suppose that there exists a subset

Js of J such that minj∈Js aj > 0, aj = 0 for each j ∈ J\Js, and d|G|(1−α)e ≤ |G|−2q−qs+1, where

qs = |Js| and aj is defined in Assumption 6. Then, under H1,n with λβ = Idx,

lim
||Q

Z̃X
µ||2→∞

lim inf
n→∞

P{ARn > ĉAR,n(1− α)} = 1.

Two remarks are in order. First, notice that the bootstrap AR test not studentized by CCE

has power against local alternatives as long as ||QZ̃Xµ||2 → ∞, which may hold even when βn

is not strongly identified and QZ̃X is not of full column rank. Second, when dz = 1, we have

1{ARn > ĉAR,n(1 − α)} = 1{ARCR,n > ĉAR,CR,n(1 − α)}, which implies the ARn and ARCR,n-

based bootstrap tests have the same power against local alternatives. However, such a power

equivalence does not hold when dz > 1. Indeed, unlike the Wald test with CCE in Section 5, we

cannot establish the power of the AR statistics with CCE for the general case. More specifically,

for the Wald statistic TCR,n, we compute its CCE with the estimated residual ε̂i,j, which causes

the Wald CCE to be bounded in probability under the local alternative, and thus, the statistic

TCR,n to diverge with the local parameter µ. On the other hand, we need to impose the null to

compute CCE for ARCR,n, which implies that the test statistic is bounded in probability even when

µ diverges. Therefore, our proving strategy for the power of TCR,n cannot be applied to ARCR,n.

Table 1 summarizes the properties of the AR statistics and their corresponding bootstrap critical

values when the assumptions in Theorem 6.2 hold. Indeed, consistent with the theoretical difference

mentioned above, we observe in Section 7 that the ARCR,n-based bootstrap test has inferior finite

sample power properties compared with its ARn-based counterpart. Furthermore, Table 1 also

suggests that the bootstrap Wald test studentized with CCE has power advantage over the other

tests under strong identification.

Next, we show that in the specific case with one endogenous regressor and one IV (i.e., dx = 1

and dz = 1), if the wild bootstrap procedure described in this section is applied to the unstuden-

tized Wald statistic Tn, then the resulting test will be asymptotically equivalent to the ARn-based

bootstrap test, both under the null and the alternative. More precisely, for Tn = |
√
n(β̂ − β0)|,
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where β̂ is the TSLS estimator, the wild bootstrap generates

T s∗n (g) =

∣∣∣∣∣∣Q̂−1Z̃X 1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

∣∣∣∣∣∣ . (17)

Notice that in this case, the restricted TSLS estimator γ̂r and the restricted OLS estimator γ̄r are

the same, which implies the restricted residuals ε̂ri,j and ε̄ri,j defined in Sections 4 and 6, respectively,

are the same. Let ĉsn(1−α) denote the (1−α)-th quantile of {T s∗n (g)}g∈G. We show this equivalence

result in Theorem 6.3.

Theorem 6.3. Suppose that dx = dz = 1, lim infn→∞ P(Q̂Z̃X 6= 0) = 1, β̂ is the TSLS estimator,

and Assumption 1(iv) holds. Then,

lim inf
n→∞

P{φsn = φarn } = 1,

where φsn = 1{Tn > ĉsn(1− α)} and φarn = 1{ARn > ĉarn (1− α)}.

Several remarks are in order. First, with one endogenous variable and one IV, the Jacobian

matrix Q̂Z̃X is just a scalar, which shows up in both the Wald statistic Tn and the bootstrap critical

value. After the cancellation of Q̂Z̃X , Tn and its critical value are numerically the same as their

AR counterparts, which leads to Theorem 6.3. Second, for Q̂Z̃X to be cancelled, we only need

lim infn→∞ P{Q̂Z̃X 6= 0} = 1, which is very mild. It holds when at least one of Z̃i,j and Xi,j is

continuously distributed. Even when both Z̃i,j and Xi,j are discrete, it still holds if there exists at

least one strong cluster, i.e., QZ̃X 6= 0, where QZ̃X is the probability limit of Q̂Z̃X . When both

Z̃i,j and Xi,j are discrete and QZ̃X = 0, this condition can still hold. For example, some type

of CLT may still hold such that
√
nQ̂Z̃X

d−−→ N(c, σ2). As N(c, σ2) is continuous, the condition

still holds. Third, the robustness of the Tn-based bootstrap test in (17) does not carry over to the

general case with multiple IVs as Tn and its bootstrap statistic can no longer be reduced to their AR

counterparts. Fourth, the robustness to weak IV cannot be extended to the TCR,n-based bootstrap

test, for which we have to further bootstrap the CCE.

In Section S.A in the Supplement, we further show that our inference procedure allows for

cluster-level exogenous variables in Wi,j, which are invariant within each cluster, and that our

procedure allows for the error-component model in (10). We also explain why our assumptions rule

out the cases with cluster-level variables in IVs and fully-interacted IVs, which are constructed by
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interacting the base IVs with all the cluster dummies.

7 Monte Carlo Simulation

In this section, we investigate the finite sample performance of the wild bootstrap tests and alterna-

tive methods. We consider a simulation design similar to that in Section IV of Canay et al. (2021)

and extend theirs to the IV model. The data are generated as

Xi,j = γ + Z>i,jΠz,j + σ(Zi,j) (av,j + vi,j) , yi,j = γ +Xi,jβ + σ(Zi,j) (aε,j + εi,j) ,

for i = 1, ..., n and j = 1, ..., q. The number of clusters q equals 10, and the cluster size nj is set to

be 50 for j = 1, ..., 5, and 25 for j = 6, ..., 10, respectively. The total sample size n therefore equals

375.13 The disturbances (εi,j, vi,j), cluster effects (aε,j, av,j), IVs Zi,j, and σ(Zi,j) are specified as

follows:

(εi,j, ui,j)
> ∼ N(0, I2), vi,j = ρεi,j + (1− ρ2)1/2ui,j, (aε,j, au,j)

> ∼ N(0, I2),

av,j = ρaε,j + (1− ρ2)1/2au,j, Zi,j ∼ N(0, Idz), and σ(Zi,j) =

(
dz∑
k=1

Zi,j,k

)2

,

where Idz is the dz×dz identity matrix, Zi,j,k denotes the k-th element of Zi,j, and ρ ∈ {0, 0.1, 0.2, · · · , 0.9, 0.99}

corresponds to the degree of endogeneity. We let Wi,j be just all the cluster dummies and the first-

stage coefficients Πz,j = (Π0/
√
dz, ...,Π0/

√
dz)
> for j = 1, ..., 5, while Πz,j = 0.5·(Π0/

√
dz, ...,Π0/

√
dz)
>

for j = 6, ..., 10, with Π0 ∈ {0.5, 1, 2}. Such a DGP satisfies our Assumptions. Specifically, we have

Z̃i,j = Zi,j− 1
nj

∑
i∈In,j Zi,j and 1√

nj

∑
i∈In,j Z̃i,jσ(Zi,j)(aε,j+εi,j) is asymptotically normal conditional

on aε,j.
14 The number of Monte Carlo and bootstrap replications equal 5,000 and 500, respectively.

The nominal level α is set at 10%. The values of β and γ are set at 0 and 1, respectively. For Tn
13We also did simulations with homogeneity in within-cluster sample size and IV strength (e.g., nj = 50 and same Πz,j for

all j), and the patterns are similar to those reported here. Results are omitted for brevity but are available upon request.
14This is because

(
1√
nj

∑
i∈In,j Zi,j

(∑dz
k=1 Z

2
i,j,k

)
,
[

1√
nj

∑
i∈In,j Zi,j

] [
1
nj

∑
i∈In,j

(∑dz
k=1 Z

2
i,j,k

)]
, 1√

nj

∑
i∈In,j Zi,j

(∑dz
k=1 Z

2
i,j,k

)
εi,j
)

are jointly asymptotically normal given (aε,j)j∈J . Then, we have

1
√
nj

∑
i∈In,j

Z̃i,jσ(Zi,j)(aε,j + εi,j) =
aε,j√
nj

∑
i∈In,j

Zi,j

(
dz∑
k=1

Z2
i,j,k

)
+

1
√
nj

∑
i∈In,j

Zi,j

(
dz∑
k=1

Z2
i,j,k

)
εi,j

−

 1
√
nj

∑
i∈In,j

Zi,j

aε,j
nj

∑
i∈In,j

(
dz∑
k=1

Z2
i,j,k

)+ op(1),

which is asymptotically normal given (aε,j)j∈J .
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and ARn, we set the weighting matrices Âr = 1 and Âz = Idz .

Figure 1 reports the null empirical rejection frequencies of the tests that are based on the IV

estimators, including the Tn and TCR,n-based wild bootstrap procedures, the group-based t-tests

of IM, and the randomization tests of CRS. The results of the tests are based on TSLS when

dz = 1, and we further report the results based on TSLS, LIML, and FULL when dz = 3. Following

the recommendation in the literature, we set the tuning parameter of FULL to be 1.15 Several

observations are in order. First, in general size distortions increase when the IVs become weak, the

degree of endogeneity becomes high, or the number of IVs becomes large. Second, IM and CRS

tests with LIML or FULL show a substantial size improvement over their counterparts with TSLS,

as these tests are based on cluster-level estimates (i.e., we run the cluster-by-cluster IV regressions),

which could produce serious finite sample bias if TSLS is employed for the over-identified cases.

Similarly, the LIML or FULL-based bootstrap tests, no matter studentized or unstudentized, show a

size improvement over their TSLS-based counterparts. Third, overall the wild bootstrap procedures

compare favorably with the alternatives, and the unstudentized bootstrap Wald tests (Tn) have the

smallest size distortions across different settings of IV strength, degree of endogeneity, and number

of IVs. In particular, the size control of the Tn-based tests with LIML or FULL remains excellent

when the degree of over-identification increases.

Figure 2 reports the null rejection frequencies of AR tests, including the ARCR,n-based asymp-

totic tests, which reject the null when the square of the corresponding test statistic exceeds χ2
dz ,1−α,

the 1−α quantile of the chi-squared distribution with dz degrees of freedom. Additionally, it reports

the rejection frequencies of the wild bootstrap AR tests in Section 6 that are based on ARn and

ARCR,n, respectively. We notice from Figure 2 that ARCR,n-based asymptotic tests control the size

but under-reject in the over-identified cases (dz = 3).16 By contrast, the bootstrap AR tests always

have rejection frequencies very close to 10%.

Figure 3 compares the power properties of the wild bootstrap tests. For the Wald test, we focus

on LIML and FULL estimators as they have better size control than their TSLS counterparts in the

over-identified case. We also include the ARCR,n-based asymptotic test to compare its power with

15In this case FULL is best unbiased to a second order among k-class estimators under normal errors (Rothenberg, 1984).
16The null rejection probabilities of the ARCR,n-based asymptotic test decrease toward zero when dz approaches q. When

dz is equal to q, the value of ARCR,n will be exactly equal to dz (or q), and thus has no variation (for f̄ =
(
f̄1, ..., f̄q

)>
and

f̄j = n−1∑
i∈In,j fi,j , ARCR,n = ι>q f̄

(
f̄>f̄

)−1
f̄>ιq = ι>q ιq = dz as long as f̄ is invertible, where ιq denotes a q-dimensional

vector of ones). By contrast, the ARn-based bootstrap test works well even when dz is larger than q.
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Figure 1: Null Rejection Probabilities of the Tests based on IV Estimators
Note: “WB-US” (solid line with circle), “WB-S” (dashed line with star), “IM” (dotted line with upward-pointing triangle),

and “CRS” (dash-dotted line with downward-pointing triangle) denote the Tn and TCR,n-based wild bootstrap tests, IM tests,

and CRS tests, respectively.
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Figure 2: Null Rejection Probabilities of the AR Tests
Note: “WB-AR-US” (solid line with circle) and “WB-AR-S” (dashed line with star) denote the ARn and ARCR,n-based wild

bootstrap tests, while “ASY-AR-S” (dash-dotted line with downward-pointing triangle) denote the ARCR,n-based asymptotic

tests, respectively.

those of the bootstrap AR tests. We let the number of IVs be 2, Π0 ∈ {1, 2}, and ρ ∈ {0.1, 0.4, 0.7}.17

First, overall the power ranking among the bootstrap tests is as follows (from the highest to the

lowest): (1) the bootstrap Wald tests with CCE, (2) the bootstrap Wald tests without CCE, (3)

the bootstrap AR tests without CCE, and (4) the bootstrap AR tests with CCE. Second, more

specifically, we notice that among the AR tests, the ARn-based bootstrap tests (the bootstrap AR

tests without CCE) have the highest power, followed by the ARCR,n-based bootstrap tests, which

is in line with our theoretical analysis in Section 6. The ARCR,n-based asymptotic tests have the

lowest power among the AR tests, which is in line with the under-rejections found for the over-

identified cases in Figure 2. Third, the Tn-based bootstrap tests with FULL have remarkable power

advantage over those with LIML, especially when Π0 = 1. This may be due to the fact that FULL

has finite moments, and is thus less dispersed than LIML. Last, in line with our theory in Section

5, the TCR,n-based bootstrap tests (the bootstrap Wald tests studentized by CCE) with both LIML

and FULL are more powerful than their Tn-based counterparts and therefore may be preferred when

17Simulation results for other settings show similar patterns and are available upon request.
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Figure 3: Power of Wild Bootstrap Wald and AR Tests for dz = 2
Note: “WB-LIML-US” (solid line with circle), “WB-LIML-S” (solid line with star), “WB-FULL-US” (dashed line with upward-

pointing triangle), and “WB-FULL-S” (dashed line with downward-pointing triangle) denote the Tn and TCR,n-based wild

bootstrap tests with LIML and FULL, respectively. “ASY-AR-S” (dotted line with cross) denotes the ARCR,n-based AR

tests with asymptotic CVs, while “WB-AR-US” (dash-dotted line with plus) and “WB-AR-S” (dash-dotted line with square)

denote the ARn and ARCR,n-based wild bootstrap AR tests, respectively.

identification is strong.

8 Empirical Application

In an influential study, Autor et al. (2013) analyze the effect of rising Chinese import competition

on US local labor markets between 1990 and 2007, when the share of total US spending on Chinese

goods increased substantially from 0.6% to 4.6%. The dataset of Autor et al. (2013) includes 722
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commuting zones (CZs) that cover the entire mainland US. In this section, we further analyze

the region-wise effects of such import exposure by applying IV regression with the proposed wild

bootstrap procedures to three Census Bureau-designated regions: South, Midwest and West, with

16, 12, and 11 states, respectively, in each region.18

We let the outcome variable (yi,j) denote the decadal change in average individual log weekly

wage in a given CZ. The endogenous variable (Xi,j) is the change in Chinese import exposure

per worker in a CZ, which is instrumented (Zi,j) by Chinese import growth in other high-income

countries.19 In addition, the exogenous variables (Wi,j) include the characteristic variables of CZs

and decade specified in Autor et al. (2013) as well as state fixed effects. Our regressions are based

on the CZ samples in each region, and the samples are clustered at the state level, following Autor

et al. (2013). Besides the results for the full sample, we also report those for female and male

samples separately.

The main result of the IV regression for the three regions is given in Table 2, with the number of

observations (n) and clusters (q) for each region. As we have only one endogenous variable and one

IV, the TSLS estimator is used throughout this section. We further construct the 90% bootstrap

confidence sets (CSs) constructed by inverting the corresponding Tn, TCR,n, and ARn-based wild

bootstrap tests with a 10% nominal level. The computation of the bootstrap CSs was conducted

over the parameter space [−10, 10] with a step size of 0.01, and the number of bootstrap draws is

set at 2,000 for each step.

We highlight the main findings below. First, the results in Table 2 suggest that there may exist

regional heterogeneity in terms of the average effect of Chinese imports on wages in local labor

markets. For instance, the TSLS estimates for the South and West regions equal −0.97 and −1.05,

respectively, while that for the Midwest region equals −0.025. That is, a $1, 000 per worker increase

in a CZ’s exposure to Chinese imports is estimated to reduce average weekly earnings by 0.97, 1.05,

and 0.025 log points, respectively, for the three regions (the corresponding TSLS estimate in Autor

et al. (2013) for the entire mainland US is −0.76). Second, only the effect on CZs in the South is

significantly different from zero at the 10% level under all the three wild bootstrap CSs, while the

effects on CZs in the other two regions are not. Third, we notice that the effect on West is only

significant under the studentized bootstrap Wald CS (the CS is [−1.22,−0.47]). Fourth, compared

18The Northeast region is not included in the study because of the relatively small number of states (9) and small number
of CZs in each state (e.g., Connecticut and Rhode Island have only 2 CZs).

19See Sections I.B and III.A in Autor et al. (2013) for a detailed definition of these variables.
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with that for the South, the wider CSs for the Midwest and West may be due to relatively weak

identification, which our bootstrap AR procedure is able to guard against. Table 2 also reports

the results for female and male samples. We find that across all the regions, the effects are more

substantial for the male samples. Furthermore, the effects for both female and male samples in

the South are significantly different from zero. Last, the studentized bootstrap Wald CSs have the

shortest length among the three types of CSs in most cases in Table 2, which is in line with our

power results in Section 5.

Gender Region n q Estimate Unstud Wald CS Stud Wald CS Unstud AR CS

All South 578 16 -0.97 [-1.71, -0.58] [-1.61, -0.43] [-1.70, -0.58]
Midwest 504 12 -0.025 [-0.69, 0.83] [-0.60, 0.75] [-0.69, 0.83]

West 276 11 -1.05 [-1.50, 0.25] [-1.22, -0.47] [-1.50, 0.24]

Female South 578 16 -0.81 [-1.48, -0.41] [-1.40, -0.26] [-1.48, -0.41]
Midwest 504 12 0.024 [-0.64, 0.74] [-0.56, 0.67] [-0.64, 0.74]

West 276 11 -0.61 [-1.46, 0.74] [-0.91, 0.30] [-1.46, 0.75]

Male South 578 16 -1.08 [-1.90, -0.65] [-1.78, -0.53] [-1.91, -0.65]
Midwest 504 12 -0.17 [-1.02, 0.80] [-0.86, 0.77] [-1.01, 0.82]

West 276 11 -1.26 [-1.99, 0.68] [-1.58, 0.42] [-2.00, 0.69]

Table 2: IV regressions of Autor et al. (2013) with all, female, and male samples for three US regions

9 Conclusion and Practical Recommendations

In this paper, we study the wild bootstrap inference for IV regressions in the framework of a

small number of clusters. For the Wald tests with and without CCE, we extend Davidson and

MacKinnon (2010)’s WREC bootstrap procedure to allow for the setting of few clusters and cluster-

level heterogeneity in IV strength. For the full-vector inference, we further develop wild bootstrap

AR tests that control size asymptotically irrespective of IV strength.

Our results have several important implications for applied works. First, if at least one of

the clusters is strong so that overall the structural parameters of interest are well identified, we

recommend the bootstrap Wald test studentized by CCE because of its superior power properties.

Second, for the over-identified case, instead of using the bootstrap Wald tests with TSLS, we

recommend to use those based on estimators with reduced finite sample bias such as Fuller’s modified

LIML estimator. Third, for the full-vector inference, if researchers are concerned that all clusters are

weak and thus would like to implement a weak-identification-robust procedure, then we recommend

the bootstrap AR test without CCE because of its power advantage over alternative AR tests that
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are studentized by CCE.

Appendices

Sections A and B contain the proofs of Theorems 4.1 and 5.2, respectively. The proofs of other results in the paper

are relegated to the Online Supplement.

Appendix A Proof of Theorem 4.1

Let S ≡ Rdz×dx ×Rdz×dz × ⊗j∈JRdz ×Rdr×dr and write an element s ∈ S by s = (s1, s2, {s3,j : j ∈ J}, s4) where

s3,j ∈ Rdz for any j ∈ J . Define the function T : S→ R to be given by

T (s) =

∥∥∥∥λ>β (s>1 s−12 s1
)−1

s>1 s
−1
2

∑
j∈J

s3,j

∥∥∥∥
s4

(18)

for any s ∈ S such that s2 and s>1 s
−1
2 s1 are invertible and let T (s) = 0 otherwise. We also identify any (g1, ..., gq) =

g ∈ G = {−1, 1}q with an action on s ∈ S given by gs = (s1, s2, {gjs3,j : j ∈ J}, s4). For any s ∈ S and G’ ⊆ G,

denote the ordered values of {T (gs) : g ∈ G’} by T (1)(s|G’) ≤ . . . ≤ T (|G’|)(s|G’). In addition, for any G’ ⊆ G,

denote the ordered values of {T ∗n(g) : g ∈ G’} by T
∗(1)
n (G’) ≤ . . . ≤ T ∗(|G’|)

n (G’).

Given this notation we can define the statistics Sn, Ŝn ∈ S as

Sn =

Q̂Z̃X , Q̂Z̃Z̃ ,
 1√

n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 , Âr

 , Ŝn =

Q̂Z̃X , Q̂Z̃Z̃ ,
 1√

n

∑
i∈In,j

Z̃i,j ε̂
r
i,j : j ∈ J

 , Âr

 .

Let En denote the event En = I
{
Q̂Z̃X is of full rank value and Q̂Z̃Z̃ is invertible

}
, and Assumptions 2-3 imply

that lim infn→∞ P{En = 1} = 1. Also let T ∗n(g) = 0 if En = 0.

We first give the proof for the Wald statistic based on TSLS. Note that whenever En = 1 and H0 is true, the

Frisch-Waugh-Lovell theorem implies that

Tn =

∥∥∥∥√n(λ>β β̂tsls − λ0)∥∥∥∥
Âr

=

∥∥∥∥√nλ>β (β̂tsls − βn)∥∥∥∥
Âr

=

∥∥∥∥λ>β Q̂−1Q̂>Z̃XQ̂−1Z̃Z̃∑
j∈J

1√
n

∑
i∈In,j

Z̃i,jεi,j

∥∥∥∥
Âr

= T (ιSn), (19)

where Q̂ = Q̂>
Z̃X

Q̂−1
Z̃Z̃
Q̂Z̃X and ι ∈ G is a q × 1 vector of ones.

In the following, we divide the proof into three steps. In the first step, we show

T ∗n(g) = T (gŜn) + op(1) for any g ∈ G. (20)
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In the second step, we show

T (gŜn) = T (gSn) + op(1) for any g ∈ G. (21)

In the last step, we prove the desired result.

Step 1. By the continuous mapping theorem, it suffices to show Q̂∗
Z̃X

(g) = Q̂Z̃X + op(1). Note that

Q̂∗
Z̃X

(g) =
1

n

∑
j∈J

∑
i∈In,j

Z̃i,jX
∗>
i,j (g) =

1

n

∑
j∈J

∑
i∈In,j

Z̃i,j (Xi,j + (gj − 1)ṽi,j)
>
.

Therefore, it suffices to show 1
nj

∑
i∈In,j Z̃i,j ṽi,j = op(1) for all j ∈ J . Recall Zi,j is just Z̃i,j interacted with all the

cluster dummies and Π̃Z is the OLS coefficient of Zi,j defined in (7). Denote Π̃Z,j as the j-th block of Π̃Z , which

corresponds to the OLS coefficient of Π̃Z,j . We have

1

nj

∑
i∈In,j

Z̃i,j ṽi,j =
1

nj

∑
i∈In,j

(
Z̃i,jXi,j − Z̃i,jZ̃>i,jΠ̃Z,j − Z̃i,jW

>
i,jΠ̃w

)
= Q̂Z̃X,j − Q̂Z̃Z̃,jΠ̃Z,j + op(1), (22)

where the second equality in (22) holds by 1
nj

∑
i∈In,j Z̃i,jW

>
i,j = op(1) and Π̃w = Op(1). In particular,

Π̃w =
(
Q̂
W̃W̃
− Q̂

W̃ ε̂
Q̂−1ε̂ε̂ Q̂ε̂W̃

)−1 (
Q̂
W̃X
− Q̂

W̃ ε̂
Q̂−1ε̂ε̂ Q̂ε̂X

)
,

where Q̂
W̃W̃

= 1
n

∑
j∈J

∑
i∈In,j W̃i,jW̃

>
i,j , Q̂W̃ ε̂

= 1
n

∑
j∈J

∑
i∈In,j W̃i,j ε̂i,j , Q̂ε̂ε̂ = 1

n

∑
j∈J

∑
i∈In,j ε̂

2
i,j , W̃i,j = Wi,j −

Γ̂>w,jZ̃i,j , and Γ̂w,j = Q̂−1
Z̃Z̃,j

Q̂Z̃W,j . Notice that by Q̂Z̃W,j = op(1), Γ̂w,j = op(1) so that

Q̂
W̃W̃

= Q̂WW + op(1). (23)

Similarly, we have

Q̂
W̃ ε̂

= Q̂Wε̂ + op(1) = op(1), (24)

where the second equality follows from Q̂Wε̂ = 0 by the first-order condition of the k-class estimators. Furthermore,

Q̂ε̂ε̂ ≥ c > 0 by Assumption 2(iii) and Q̂ε̂ε̂ ≥ 1
n

∑
j∈J

∑
i∈In,j ε̇

2
i,j , where ε̇i,j is the residual from the cluster-level

projection of εi,j on Wi,j . Therefore, Q̂
W̃W̃
− Q̂

W̃ ε̂
Q̂−1ε̂ε̂ Q̂ε̂W̃ = Q̂WW +op(1) by combining (23) and (24), and further

by Assumption 1(iv),

(
Q̂
W̃W̃
− Q̂

W̃ ε̂
Q̂−1ε̂ε̂ Q̂ε̂W̃

)−1
= Op(1). (25)

Next, we define Q̂Z̃Ẋ,j = 1
nj

∑
i∈In,j Z̃i,jẊ

>
i,j and recall Q̂Z̃Z̃,j = 1

nj

∑
i∈In,j Z̃i,jZ̃

>
i,j , where Ẋi,j = Xi,j − Π̃>wWi,j −

Π̃>ε̂ ε̂i,j , and Π̃w and Π̃ε̂ are the OLS coefficients of Wi,j and ε̂i,j , respectively, from regressing Xi,j on (Z
>
i,j ,W

>
i,j , ε̂i,j)

>
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using the entire sample. Then, we have

Π̃Z,j = Q̂−1
Z̃Z̃,j

Q̂Z̃Ẋ,j = Q̂−1
Z̃Z̃,j

[
Q̂Z̃X,j − Q̂Z̃W,jΠ̃w − Q̂Z̃ε̂,jΠ̃ε̂

]
= Q̂−1

Z̃Z̃,j
Q̂Z̃X,j + op(1), (26)

where we use the facts that Q̂Z̃W,j = op(1), Π̃w = Op(1), Π̃ε̂ = Op(1), and Q̂Z̃ε̂,j = op(1). In particular,

Π̃ε̂ =
(
Q̂ε̃ε̃ − Q̂ε̃W Q̂−1WW Q̂Wε̃

)−1 (
Q̂ε̃X − Q̂ε̃W Q̂−1WW Q̂WX

)
,

where Q̂ε̃ε̃ = 1
n

∑
j∈J

∑
i∈In,j ε̃

2
i,j , Q̂ε̃W = 1

n

∑
j∈J

∑
i∈In,j ε̃i,jW

>
i,j , ε̃i,j = ε̂i,j − Γ̂>ε̂,jZ̃i,j , and Γ̂ε̂,j = Q̂−1

Z̃Z̃,j
Q̂Z̃ε̂,j .

Then, by using similar arguments as those for (23), (24), and (25), we obtain

Q̂ε̃ε̃ = Q̂ε̂ε̂ + op(1), Q̂ε̃W = Q̂ε̂W + op(1) = op(1), and
(
Q̂ε̃ε̃ − Q̂ε̃W Q̂−1WW Q̂Wε̃

)−1
= Op(1).

To see the last equality in (26), we note that

Q̂Z̃ε̂,j =
1

nj

∑
i∈In,j

Z̃i,j ε̂i,j

=
1

nj

∑
i∈In,j

Z̃i,jεi,j −
1

nj

∑
i∈In,j

Z̃i,jX
>
i,j(β̂tsls − βn)− 1

nj

∑
i∈In,j

Z̃i,jW
>
i,j(γ̂tsls − γ) = op(1),

where the last equality holds by Assumption 1(ii), Lemma S.B.3, and Lemma S.B.1. Plugging (26) into (22), we

obtain the desired result that 1
nj

∑
i∈In,j Z̃i,j ṽi,j = op(1).

Step 2. We note that whenever En = 1, for every g ∈ G,

∣∣∣T (gSn)− T (gŜn)
∣∣∣ ≤ ∥∥∥∥λ>β Q̂−1Q̂>Z̃XQ̂−1Z̃Z̃∑

j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jX
>
i,j

√
n(βn − β̂rtsls)

∥∥∥∥
Âr

+

∥∥∥∥λ>β Q̂−1Q̂>Z̃XQ̂−1Z̃Z̃∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
>
i,j

√
n(γ − γ̂rtsls)

∥∥∥∥
Âr

. (27)

By Lemma S.B.3, we have

lim sup
n→∞

P


∥∥∥∥λ>β Q̂−1Q̂>Z̃XQ̂−1Z̃Z̃∑

j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
>
i,j

√
n(γ − γ̂rtsls)

∥∥∥∥
Âr

> ε;En = 1

 = 0. (28)

Note under both cases in Assumption 3(ii), we have
∑
j∈J ξjaj = 1 and

λ>βQ
−1Q>

Z̃X
Q−1
Z̃Z̃
QZ̃X,j = ajλ

>
β . (29)
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Then, for any ε > 0, we have

lim sup
n→∞

P


∥∥∥∥λ>β Q̂−1Q̂>Z̃XQ̂−1Z̃Z̃∑

j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jX
>
i,j

√
n(βn − β̂rtsls)

∥∥∥∥
Âr

> ε;En = 1


= lim sup

n→∞
P


∥∥∥∥∑
j∈J

ξjgjaj
√
n(λ>β βn − λ>β β̂rtsls)

∥∥∥∥
Âr

> ε;En = 1

 = 0, (30)

where the last equality holds because λ>β β̂
r
tsls = λ0 under H0.

Note that T (gŜn) = T (gSn) whenever En = 0 as we have defined T (s) = 0 for any s = (s1, s2, {s3,j : j ∈ J}, s4)

whenever s2 or s>1 s
−1
2 s1 is not invertible. Therefore, results in (27), (28) and (30) imply (21).

Step 3. Note that by Assumptions 1, 2, 4, and the continuous mapping theorem, we have

Q̂Z̃X , Q̂Z̃Z̃ ,
 1√

n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 , Âr

 d−−→
(
QZ̃X , QZ̃Z̃ ,

{√
ξjZj : j ∈ J

}
, Ar

)
≡ S, (31)

where ξj > 0 for all j ∈ J by Assumption 1(iii). Therefore, we obtain from (20), (21), (31), and the continuous

mapping theorem that

(T (Sn), {T ∗n(g) : g ∈ G}) d−−→ (T (S), {T (gS) : g ∈ G}) .

For any x ∈ R letting dxe denote the smallest integer larger than x and k∗ ≡ d|G|(1− α)e, we obtain from (19)

that

1 {Tn > ĉn(1− α)} = 1
{
T (Sn) > T ∗(k

∗)
n (G)

}
. (32)

Since lim infn→∞ P{En = 1} = 1, we have

lim sup
n→∞

P{Tn > ĉn(1− α))} = lim sup
n→∞

P{Tn > ĉn(1− α));En = 1}

≤ lim sup
n→∞

P{T (Sn) ≥ T ∗(k
∗)

n (G);En = 1} ≤ P{T (S) ≥ T (k∗)(S|G)} ≤ α+ 21−q,

where the second inequality is due to the Portmanteau’s theorem. To see the last inequality, we note that for all

g ∈ G, P{T (gS) = T (−gS)} = 1, P{T (gS) = T (g̃S)} = 0 for g̃ /∈ {g,−g}, and under the null, T (gS) has the same

distribution across g ∈ G. Let |G| = 2q. Then, we have

|G|E1{T (S) ≥ T (k∗)(S|G)} = E
∑
g∈G

1{T (gS) ≥ T (k∗)(S|G)} ≤ |G| − k∗ + 2,
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which implies

E1{T (S) ≥ T (k∗)(S|G)} ≤ 1− k∗

|G|
+

2

|G|
≤ α+

1

2q−1
.

For the lower bound, first note that k∗ > |G| − 2 implies that α − 1
2q−1 ≤ 0, in which case the result trivially

follows. Now assume k∗ ≤ |G| − 2, then

lim inf
n→∞

P{Tn > ĉn(1− α)} = lim inf
n→∞

P{T (Sn) > T ∗(k
∗)

n (G)} ≥ P{T (S) > T (k∗)(S|G)}

≥ P{T (S) > T (k∗+2)(S|G)}+ P{T (S) = T (k∗+2)(S|G)} ≥ α− 1

2q−1
,

where the first equality follows from (32), the first inequality follows from Portmanteau’s theorem, the second

inequality holds because P{T (z+2)(S|G) > T (z)(S|G)} = 1 for any integer z ≤ |G| − 2 by (18) and Assumption 1,

and the last inequality follows from noticing that k∗+ 2 = d|G|((1−α) + 2/|G|)e = d|G|(1−α′)e with α′ = α− 1
2q−1

and the properties of randomization tests.

Lemma S.B.1 and S.B.2 in the Supplement further show the other k-class estimators and their null-restricted

and bootstrap counterparts are asymptotically equivalent to those of the TSLS estimator. Therefore, the results for

LIML, FULL, and BA estimators can be derived in the same manner. �

Appendix B Proof of Theorem 5.2

For the power analysis, we focus on the TSLS estimator. The results for other k-class estimators can be derived in

the same manner given Lemma S.B.2. Recall aj defined in Assumption 3. We further define

TCR,∞(g) =

∥∥∥∥∥∥λ>β Q̃
∑
j∈J

gj
√
ξjZj

+ c0,gµ

∥∥∥∥∥∥
Ar,CR,g

, (33)

where Q̃ = Q−1Q>
Z̃X

Q−1
Z̃Z̃

, Q = Q>
Z̃X

QZ̃Z̃QZ̃X , c0,g =
∑
j∈J ξjgjaj , and

Ar,CR,g =

∑j∈J ξj

{
λ>β Q̃

[
gjZj − aj

√
ξj
∑
j̃∈J
√
ξj̃gj̃Zj̃

]
+
√
ξj(gj − c0,g)ajµ

}
×
{
λ>β Q̃

[
gjZj − aj

√
ξj
∑
j̃∈J
√
ξj̃gj̃Zj̃

]
+
√
ξj(gj − c0,g)ajµ

}>

−1

.

We order {TCR,∞(g)}g∈G in ascending order: (TCR,∞)(1) ≤ · · · ≤ (TCR,∞)|G|. In the proof of Theorem 4.2, we have

already shown that, under H1,n,

√
n(λ>β β̂tsls − λ0)

d−−→
∑
j∈J

[√
ξjλ
>
β Q̃Zj

]
+ µ,

√
n(λ>β β̂

∗
tsls,g − λ0)

d−−→
∑
j∈J

gj

[√
ξjλ
>
β Q̃Zj

]
+ c0,gµ.
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Next, we derive the limit of Âr,CR and Â∗r,CR,g. We first note that

1√
n

∑
i∈In,j

Z̃i,j ε̂i,j =
1√
n

∑
i∈In,j

Z̃i,j

[
εi,j −X>i,j(β̂tsls − βn)−W>i,j(γ̂tsls − γ)

]
=

1√
n

∑
i∈In,j

Z̃i,jεi,j − ξjQ̂Z̃X,j
√
n(β̂tsls − βn) + op(1)

=
1√
n

∑
i∈In,j

Z̃i,jεi,j − ξjQ̂Z̃X,jQ̂
−1Q̂Z̃XQ̂

−1
Z̃Z̃

∑
j̃∈J

1√
n

∑
i∈In,j̃

Z̃i,j̃εi,j̃ + op(1)

d−−→
√
ξjZj − ξjQZ̃X,jQ

−1QZ̃XQ
−1
Z̃Z̃

∑
j̃∈J

√
ξj̃Zj̃ + op(1),

where the first equality holds by Lemma S.B.3. This implies

Ω̂CR
d−−→
∑
j∈J

ξj

Zj −√ξjQZ̃X,jQ̃∑
j̃∈J

√
ξj̃Zj̃

Zj −√ξjQZ̃X,jQ̃∑
j̃∈J

√
ξj̃Zj̃

> ,
Âr,CR

d−−→ Ar,CR,ι, and TCR,n
d−−→ TCR,∞(ι),

where ι is a q × 1 vector of ones. Similarly, we have

1√
n

∑
i∈In,j

Z̃i,j ε̂
∗
i,j(g)

=
1√
n

∑
i∈In,j

Z̃i,j

[
gj ε̂

r
i,j −X∗>i,j (g)(β̂∗tsls,g − β̂rtsls)−W>i,j(γ̂∗tsls,g − γ̂rtsls)

]
=

gj√
n

∑
i∈In,j

Z̃i,j ε̂
r
i,j − ξjQ̂∗Z̃X,j(g)

√
n(β̂∗tsls,g − β̂rtsls) + op(1)

=
gj√
n

∑
i∈In,j

Z̃i,jεi,j − ξjgjQ̂Z̃X,j
√
n(β̂rtsls − βn)− ξjQ̂Z̃X,j

√
n(β̂∗tsls,g − β̂rtsls) + op(1)

=
gj√
n

∑
i∈In,j

Z̃i,jεi,j − ξjgjQZ̃X,j
√
n(β̂rtsls − βn)− ξjQZ̃X,j

√
n(β̂∗tsls,g − β̂rtsls) + op(1), (34)

where Q̂∗
Z̃X,j

(g) = 1
nj

∑
i∈In,j Z̃i,jX

∗>
i,j (g), the second equality is by Lemma S.B.3, and the last equality holds because

Q̂Z̃X,j = QZ̃X,j + op(1), Q̂∗
Z̃X,j

(g) = QZ̃X,j + op(1) proved in Step 1 of the proof of Theorem 4.1,
√
n(β̂rtsls − βn) =

Op(1), and
√
n(β̂∗tsls,g − βn) = Op(1). In addition, following the same arguments that lead to (S.C.2), we have

√
n(β̂∗tsls,g − β̂rtsls) = Q̃

∑
j̃∈J

∑
i∈In,j̃

gj̃Z̃i,j̃εi,j̃√
n

+ Q̃
∑
j̃∈J

ξj̃gj̃QZ̃X,j̃
√
n(βn − β̂rtsls) + op(1)

= Q̃
∑
j̃∈J

∑
i∈In,j̃

gj̃Z̃i,j̃εi,j̃√
n

+
∑
j̃∈J

ξj̃gj̃aj̃
√
n(βn − β̂rtsls) + op(1). (35)
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Note Q̂∗−1g Q̂∗>
Z̃X

(g)Q̂−1
Z̃Z̃

p−→ Q̃. Therefore, combining (34) and (35), we have

λ>β Q̂
∗−1
g Q̂∗>

Z̃X
(g)Q̂−1

Z̃Z̃

 1√
n

∑
i∈In,j

Z̃i,j ε̂
∗
i,j(g)


= λ>β Q̃

 gj√
n

∑
i∈In,j

Z̃i,jεi,j − ξjgjQZ̃X,j
√
n(β̂rtsls − βn)− ξjQZ̃X,j

√
n(β̂∗tsls,g − β̂rtsls)

+ op(1)

= λ>β Q̃

 gj√
n

∑
i∈In,j

Z̃i,jεi,j

− ξjgjajλ>β√n(β̂rtsls − βn)− ξjajλ>β
√
n(β̂∗tsls,g − β̂rtsls) + op(1)

d−−→ λ>β Q̃
√
ξjgjZj − ξjajλ>β Q̃

∑
j̃∈J

√
ξj̃gj̃Zj̃ + ξj(gj − c0,g)ajµ,

where the second equality is by the fact that Q̃QZ̃X,j = ajIdx and the last convergence is by the fact that λ>β
√
n(β̂rtsls−

βn) = −µ. This implies

Â∗r,CR,g
d−−→ Ar,CR,g, and thus, (TCR,n, {T ∗CR,n(g)}g∈G)

d−−→ (TCR,∞(ι), {TCR,∞(g)}g∈G).

By the Portmanteau theorem, we have

lim inf
n→∞

P{TCR,n > ĉCR,n(1− α)} ≥ P
{
TCR,∞(ι) > (TCR,∞)(k

∗)
}
.

We aim to show that, as ||µ||2 →∞, we have

P
{
TCR,∞(ι) > max

g∈Gs

TCR,∞(g)

}
→ 1, (36)

where Gs = G\Gw, and Gw = {g ∈ G : gj = gj′ ,∀j, j′ ∈ Js}. Then, given |Gs| = |G| − 2q−qs+1 and k∗ =

d|G|(1− α)e ≤ |G| − 2q−qs+1, (36) implies that as ||µ||2 →∞,

P
{
TCR,∞(ι) > (TCR,∞)(k

∗)
}
≥ P

{
TCR,∞(ι) > max

g∈Gs

TCR,∞(g)

}
→ 1.

Therefore, it suffices to establish (36).

By (33), we see that

TCR,∞(ι) =

∥∥∥∥∥∥λ>β Q̃
∑
j∈J

gj
√
ξjZj

+ µ

∥∥∥∥∥∥
Ar,CR,ι

,

and Ar,CR,ι is independent of µ as c0,ι = 1. In addition, we have λmin(Q̃>λ>βAr,CR,ιλβQ̃) > 0 with probability one.

Therefore, for any e > 0, we can find a sufficiently small constant c > 0 and a sufficiently large constant M > 0 such

that with probability greater than 1− e, for any µ,

TCR,∞(ι) ≥ c||µ||22 −M. (37)
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On the other hand, for g ∈ Gs, we can write TCR,∞(g) as

TCR,∞(g) =

{
(N0,g + c0,gµ)>

∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

−1 (N0,g + c0,gµ)

}
,

where for j ∈ J , N0,g = λ>β Q̃
[∑

j∈J gj
√
ξjZj

]
, Nj,g = λ>β Q̃

[
gjZj − aj

√
ξj
∑
j̃∈J
√
ξj̃gj̃Zj̃

]
, and cj,g =

√
ξj(gj −

c0,g)aj .

We claim that for g ∈ Gs, cj,g 6= 0 for some j ∈ Js. Suppose it does not hold, then it implies that gj = c0,g for all

j ∈ Js, i.e., for all j ∈ Js, gj shares the same sign, and thus, contradicts the definition of Gs. Therefore, combining

the claim with the assumption that minj∈Js |aj | > 0, we have ming∈Gs

∑
j∈J ξjc

2
j,g > 0.

In addition, we note that

∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

=
∑
j∈J

ξjNj,gN
>
j,g +

∑
j∈J

ξjcj,gNj,gµ
> +

∑
j∈J

ξjcj,gµN
>
j,g + (

∑
j∈J

ξjc
2
j,g)µµ

>

≡ M1 +M2µ
> + µM>2 + c2µµ>,

where we denote M1 =
∑
j∈J ξjNj,gN

>
j,g, M2 =

∑
j∈J ξjcj,gNj,g, and c2 =

∑
j∈J ξjc

2
j,g. For notation ease, we

suppress the dependence of (M1,M2, c) on g. Then, we have

M1 +M2µ
> + µM>2 + c2µµ> = M1 −

M2M
>
2

c2
+

(
M2

c
+ cµ

)(
M2

c
+ cµ

)>
.

Note for any dr × 1 vector u, by the Cauchy–Schwarz inequality,

u>
(
M1 −

M2M
>
2

c2

)
u =

∑
j∈J

ξj(u
>Nj,g)

2 −

(∑
j∈J ξju

>Nj,gcj,g

)2
∑
j∈J ξjc

2
j,g

≥ 0,

where the equal sign holds if and only if there exist (u, g) ∈ <dr ×Gs such that

u>N1,g

c1,g
= · · · = u>Nq,g

cq,g
,

which has probability zero if q > dr as {Nj,g}j∈J are independent and non-degenerate normal vectors. Therefore,

the matrix M ≡ M1 − M2M
>
2

c2
is invertible with probability one. Specifically, denote M as M(g) to highlight its

dependence on g. We have maxg∈Gs
(λmin(M(g)))−1 = Op(1). In addition, denote M2

c + cµ as V, which is a dr × 1

vector. Then, we have

∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

−1 = [M + VV>]−1 = M−1 −M−1V(1 + V>M−1V)−1V>M−1,
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where the second equality is due to the Sherman–Morrison–Woodbury formula.

Next, we note that

N0,g + c0,gµ = N0,g + c0,g

(
V
c
− M2

c2

)
≡M0 +

c0,g
c

V,

where M0 = N0,g − c0,gM2

c2
= N0,g −

c0,g(
∑
j∈J ξjcj,gNj,g)∑
j∈J ξjc

2
j,g

. With these notations, we have

(N0,g + c0,gµ)>

∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

−1 (N0,g + c0,gµ)

=
(
M0 +

c0,g
c

V
)>

(M−1 −M−1V(1 + V>M−1V)−1V>M−1)
(
M0 +

c0,g
c

V
)

≤ 2M>0 (M−1 −M−1V(1 + V>M−1V)−1V>M−1)M0

+
2c20,g

c2
V>(M−1 −M−1V(1 + V>M−1V)−1V>M−1)V

≤ 2M>0 M−1M0 +
2c20,g

c2
V>M−1V

1 + V>M−1V
≤ 2M>0 M−1M0 +

2c20,g

c2

≤ 2(λmin(M))−1

∥∥∥∥∥N0,g −
c0,g(

∑
j∈J ξjcj,qNj,g)∑
j∈J ξjc

2
j,g

∥∥∥∥∥
2

+
2c20,g∑
j∈J ξjc

2
j,g

≡ C(g),

where the first inequality is due to the fact that (u + v)>A(u + v) ≤ 2(u>Au + v>Av) for some dr × dr positive

semidefinite matrix A and u, v ∈ <dr , the second inequality holds due to the fact that M−1V(1+V>M−1V)−1V>M−1

is positive semidefinite, the third inequality holds because V>M−1V is a nonnegative scalar, and the last inequality

holds by substituting in the expressions for M0 and c.

Then, we have

max
g∈Gs

TCR,∞(g) ≤ max
g∈Gs

C(g). (38)

Combining (37) and (38), we have, as ||µ||2 →∞,

lim inf
n→∞

P{TCR,n > ĉCR,n(1− α)} ≥ P
{
TCR,∞(ιq) > (TCR,∞)(k

∗)
}

≥ P
{
TCR,∞(ιq) > max

g∈Gs

TCR,∞(g)

}
= 1− P

{
TCR,∞(ιq) ≤ max

g∈Gs

TCR,∞(g)

}
≥ 1− P

{
c||µ||22 −M ≤ max

g∈Gs

C(g)

}
− e→ 1− e,

where the second inequality is by the fact that k∗ ≤ |Gs|, and thus, (TCR,∞)(k
∗) ≤ maxg∈Gs

TCR,∞(g) and the last

convergence holds because maxg∈Gs C(g) = Op(1) and does not depend on µ. As e is arbitrary, we can let e → 0

and obtain the desired result.
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For the proof of part (ii), let c̃CR,n(1− α) denote the (1− α) quantile of

{
|
√
n(λ>β β̂

∗
tsls,g − λ0)|/

√
λ>β V̂ λβ : g ∈ G

}
,

i.e., the bootstrap statistic T ∗n(g) studentized by the original CCE instead of the bootstrap CCE. Then, because

dr = 1, we have

1{Tn > ĉn(1− α)} = 1{TCR,n > c̃CR,n(1− α)}.

Therefore, it suffices to show that c̃CR,n(1 − α) > ĉCR,n(1 − α) with large probability as ||µ||2 becomes sufficiently

large. First, note that as ||µ||2 →∞, we have c̃CR,n(1− α)
p−→ ∞, since |

√
n(λ>β β̂

∗
tsls,g − λ0)| p−→ ∞ for all g ∈ G,

and
(
λ>β V̂ λβ

)−1
= Op(1) as

(
λ>β V̂ λβ

)−1 d−−→ Ar,CR,ι,

and Ar,CR,ι does not depend on µ. On the other hand, ĉCR,n(1−α) = Op(1) as has been proved in Part (i). Therefore,

we have for any e > 0, there exists a constant cµ > 0, such that when ||µ||2 > cµ, c̃CR,n(1− α) > ĉCR,n(1− α) with

probability greater than 1− e. This concludes the proof. �
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Abstract

This document gathers together all the supplementary materials to the main paper. Section
S.A discuss the restrictions we impose on IVs, control variables, and unobserved cluster-level fixed
effects. Section S.B establishes the equivalence between TSLS and other k-class estimators. Sec-
tions S.C–S.G contain proofs of Theorems 2.2, 2.3, 2.5–2.7, respectively. Sections S.H-S.I discuss
wild bootstrap inference with other weak-IV-robust statistics.
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S.A Cluster-level Variables and Interactions

S.B Equivalence Among k-Class Estimators

We define β̂L as the k-class estimator with κ̂L for L ∈ {tsls, liml, full, ba}. Their null-restricted and

bootstrap counterparts are denoted as β̂rL and β̂∗L,g, respectively, and γ̂L, γ̂rL, and γ̂∗L,g are similarly

defined. In the following, we show that β̂tsls, β̂liml, β̂full, β̂ba are asymptotically equivalent, and so be

their null-restricted and bootstrap counterparts.

Lemma S.B.1 Suppose Assumptions 1, 2, and 3(i) hold. Then, for L ∈ {liml, full, ba}, we have

β̂L = β̂tsls + op(n
−1/2), β̂tsls − βn = Op(n

−1/2),

β̂rL = β̂rtsls + op(n
−1/2), and β̂rtsls − βn = Op(n

−1/2).

Proof. First, L ∈ {liml, full, ba}, we have µ̂L = κ̂L − 1 and(
β̂>L , γ̂

>
L

)>
=
(
~X>P~Z

~X − µ̂L ~X>M~Z
~X
)−1 (

~X>P~ZY − µ̂L ~X
>M~ZY

)
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=
(

Υ> ~X
)−1

Υ>Y, where Υ =
[
P~ZX − µ̂LM~ZX : W

]
.

Then, by applying the Frisch–Waugh–Lovell Theorem we obtain that

β̂L =
(
X>P

Z̃
X − µ̂LX>M~ZX

)−1 (
X>P

Z̃
Y − µ̂LX>M~ZY

)
, where Z̃ = MWZ.

By construction, β̂tsls corresponds to µ̂tsls = 0. For the LIML estimator, we have

µ̂liml = min
r
r>~Y >MWZ(Z>MWZ)−1Z>MW

~Y r/(r>~Y >M~Z
~Y r) and r = (1,−β>)>,

which implies that

nµ̂liml ≤
(

1√
n
ε>MWZ

)(
1

n
Z>MWZ

)−1( 1√
n
Z>MW ε

)
/

(
1

n
ε>M~Zε

)
. (S.B.1)

We note that

1√
n
Z>MW ε =

1√
n

∑
j∈J

∑
i∈In,j

Z̃i,jεi,j = Op(1) and

(
1

n
Z>MWZ

)−1

=

 1

n

∑
j∈J

∑
i∈In,j

Z̃i,jZ̃
>
i,j

−1

= Op(1). (S.B.2)

In addition, let ε̂i,j be the residual from the full sample projection of εi,j on Wi,j . Then, we have

1

n
ε>M~Zε =

1

n
ε>ε− 1

n
ε> ~Z(~Z> ~Z)−1 ~Z>ε

= Q̂εε − Q̂εZ̃Q̂
−1

Z̃Z̃
Q̂>
εZ̃
− Q̂εW Q̂−1

WW Q̂
>
εW

= Q̂εε − Q̂εW Q̂−1
WW Q̂

>
εW + op(1)

= Q̂ε̃ε̃ + op(1)

=
∑
j∈J

ξjQ̂ε̃ε̃,j + op(1)

≥
∑
j∈J

ξjQ̂ε̇ε̇,j + op(1)

= Q̂ε̇ε̇ + op(1) ≥ c w.p.a.1, (S.B.3)

where c is a positive constant, the first inequality is by the definition that ε̇i,j is the residual from the

cluster-level projection of εi,j on Wi,j , and the second inequality is by Assumption 2(iii). Combining

(S.B.1)–(S.B.3), we have µ̂liml = Op(n
−1). In addition, we have 1

nX
>M~ZX = Op(1), 1

nX
>M~ZY =

Op(1), and (
1

n
X>P

Z̃
X

)−1

=
(
Q̂
XZ̃

Q̂−1

Z̃Z̃
Q̂
Z̃X

)−1
= Op(1), (S.B.4)

where the last equality holds by Assumptions 2(ii) and 3(i). This means

β̂liml = β̂tsls + op(n
−1/2).
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In addition, we note µ̂full = µ̂liml − C
n−dz−dw = Op(n

−1) and µ̂ba = O(n−1), respectively. Therefore,

we have the same results for (β̂ba, γ̂ba).

For the second statement in the lemma, we have

(β̂tsls − βn) =
(
X>P

Z̃
X
)−1

X>P
Z̃
ε =

(
Q̂
XZ̃

Q̂−1

Z̃Z̃
Q̂
Z̃X

)−1
Q̂
XZ̃

Q̂−1

Z̃Z̃
Q̂
Z̃ε

= Op(n
−1/2),

where the last inequality holds because Q̂
Z̃ε

= 1
n

∑
j∈J
∑

i∈In,j
Z̃i,jεi,j = Op(n

−1/2).

Next, we turn to the third statement in the lemma. We note that, for L ∈ {tsls, liml, full,ba} and

λ>β β̂
r
L = λ0,

β̂rL = β̂L −
(
X>(P

Z̃
− µ̂LM~Z)X

)−1
λβ

(
λ>β (X>(P

Z̃
− µ̂LM~Z)X)−1λβ

)−1
(λ>β β̂L − λ0) = Op(1).

As µ̂L = Op(n
−1) and β̂L = β̂tsls + op(n

1/2) for L ∈ {liml, full,ba}, we have

β̂rL = β̂tsls −
(
X>P

Z̃
X
)−1

λβ

(
λ>β (X>P

Z̃
X)−1λβ

)−1
(λ>β β̂tsls − λ0) + op(n

−1/2) = β̂rtsls + op(n
−1/2).

For the last statement in the lemma, we note that

β̂rtsls − βn = (β̂tsls − βn)−
(
X>P

Z̃
X
)−1

λβ

(
λ>β (X>P

Z̃
X)−1λβ

)−1
λ>β (β̂tsls − βn)

−
(
X>P

Z̃
X
)−1

λβ

(
λ>β (X>P

Z̃
X)−1λβ

)−1
(λ>β βn − λ0) = Op(n

−1/2),

where the last equality holds because λ>β βn−λ0 = µn−1/2 by construction and β̂tsls−βn = Op(n
−1/2).

�

Lemma S.B.2 Suppose Assumptions 1, 2, and 3(i) hold and Q̂
Z̃W,j

(γ̂rL − γ) = op(n
−1/2). Then, for

L ∈ {liml, full, ba} and g ∈ G, we have

β̂∗L,g = β̂∗tsls,g + op(n
−1/2) and β̂∗tsls,g − βn = Op(n

−1/2). (S.B.5)

Proof. By the same argument in the proof of Lemma S.B.1, for L ∈ {tsls, liml, full,ba} and g ∈ G,

we have

β̂∗L,g =
(
X∗>(g)P

Z̃
X∗(g)− µ̂∗L,gX∗>(g)M~ZX

∗(g)
)−1 (

X∗>(g)P
Z̃
Y ∗(g)− µ̂∗L,gX∗>(g)M~ZY

∗(g)
)
.

(S.B.6)

such that µ̂∗tsls,g = 0, µ̂∗full,g = µ̂∗liml,g −
C

n−dz−dx , µ̂∗ba,g = µ̂ba, and

µ̂∗liml,g = min
r
r>~Y ∗>(g)MWZ(Z>MWZ)−1Z>MW

~Y ∗(g)r/(r>~Y ∗>(g)M~Z
~Y ∗(g)r),

where ~Y ∗(g) = [Y ∗(g) : X∗(g)], Y ∗(g) is an n× 1 vector formed by Y ∗i,j(g), and r = (1,−β>)>.

Following the same argument previously, we have

nµ̂∗liml,g ≤
(

1√
n
ε∗r>g MWZ

)(
1

n
Z>MWZ

)−1( 1√
n
Z>MW ε

∗r
g

)
/

(
1

n
ε∗r>g M~Zε

∗r
g

)
, (S.B.7)
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where ε∗rg is an n× 1 vector formed by gj ε̂
r
i,j . We first note that

1

n
ε∗r>g MWZ =

1

n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

=
∑
j∈J

ξjgj

 1

nj

∑
i∈In,j

Z̃i,jεi,j +
1

nj

∑
i∈In,j

Z̃i,jX
>
i,j(βn − β̂rL) +

1

nj

∑
i∈In,j

Z̃i,jW
>
i,j(γ − γ̂rL)


= Op(n

−1/2), (S.B.8)

where the last line is by Assumptions 1(ii), Lemma S.B.1, and Lemma S.B.3. Second, we have

1

n
ε∗r>g M~Zε

∗r
g =

1

n
ε∗r>g ε∗rg −

1

n
ε∗r>g ~Z(~Z> ~Z)−1 ~Z>ε∗rg

=
1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,j)

2 −

 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jZ̃

>
i,j)

 Q̂−1

Z̃Z̃

 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jZ̃i,j)


−

 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jW

>
i,j)

 Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jWi,j)


=

1

n

∑
j∈J

∑
i∈In,j

(ε̂ri,j)
2 −

 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jW

>
i,j)

 Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jWi,j)

+ op(1),

(S.B.9)

where the last equality is by 1
nj

∑
i∈In,j

ε̂ri,jZ̃i,j = Op(n
−1/2), as in (S.B.8). We further note that

ε̂ri,j = εi,j −X>i,j(β̂rL − βn)−W>i,j(γ̂rL − γ),

where β̂rL − βn = Op(n
−1/2) and

γ̂rL − γ = Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

Wi,j

(
Yi,j −X>i,j β̂rL

)− γ = Q̂−1
WW Q̂Wε +Op(n

−1/2).

Therefore, we have

1

n

∑
j∈J

∑
i∈In,j

(ε̂ri,j)
2 =

1

n

∑
j∈J

∑
i∈In,j

E 2
i,j + op(1),

where Ei,j = εi,j −W>i,jQ̂
−1
WW Q̂Wε. Similarly, we can show that 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jW

>
i,j)

 Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

(gj ε̂
r
i,jWi,j)


=

 1

n

∑
j∈J

∑
i∈In,j

(gjEi,jW
>
i,j)

 Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

(gjEi,jWi,j)

+ op(1),
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which, combined with (S.B.9), implies

1

n
ε∗r>g M~Zε

∗r
g =

1

n

∑
j∈J

∑
i∈In,j

E 2
i,j −

 1

n

∑
j∈J

∑
i∈In,j

(gjEi,jW
>
i,j)

 Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

(gjEi,jWi,j)

+ op(1)

=
1

n

∑
j∈J

∑
i∈In,j

(Ei,j − gjW>i,j θ̂g)2 + op(1),

where θ̂g = Q̂−1
WW

[
1
n

∑
j∈J
∑

i∈In,j
(gjEi,jWi,j)

]
and the second equality holds because

Q̂WW =
1

n

∑
j∈J

∑
i∈In,j

Wi,jW
>
i,j =

1

n

∑
j∈J

∑
i∈In,j

(gjWi,j)(gjWi,j)
>.

Recall that ε̇i,j is the residual from the cluster-level projection of εi,j on Wi,j , which means there exists

a vector θ̂j such that εi,j = ε̇i,j +W>i,j θ̂j and
∑

i∈In,j
ε̇i,jWi,j = 0. Then, we have

1

n

∑
j∈J

∑
i∈In,j

(Ei,j − gjW>i,j θ̂g)2 =
1

n

∑
j∈J

 ∑
i∈In,j

ε̇2
i,j +

∑
i∈In,j

(W>i,j θ̂j − gjW>i,j θ̂g)2

 ≥ 1

n

∑
j∈J

∑
i∈In,j

ε̇2
i,j ≥ c w.p.a.1,

where the last inequality is by Assumption 2(iii). This implies

1

n
ε∗r>g M~Zε

∗r
g ≥ c− op(1). (S.B.10)

Combining (S.B.7), (S.B.8), and (S.B.10), we obtain that µ̂∗liml,g = Op(n
−1), and thus, µ̂∗full,g =

Op(n
−1). It is also obvious that µ̂∗ba,g = Op(n

−1). Given that µ̂∗L,g = Op(n
−1), to establish β̂∗L,g =

β̂∗tsls,g + op(n
−1/2), it suffices to show 1

nX
∗>(g)M~ZX

∗(g) = Op(1), 1
nX
∗>(g)M~ZY

∗(g) = Op(1), and

( 1
nX
∗>(g)P

Z̃
X∗(g))−1 = Op(1).

For 1
nX
∗>(g)M~ZY

∗(g) = 1
nX
∗>(g)Y ∗(g)− 1

nX
∗>(g)P~ZY

∗(g), we first show

1

n
X∗>(g)Y ∗(g) =

1

n

∑
j∈J

∑
i∈In,j

X∗i,j(g)
(
X∗>i,j (g)β̂rn +Wi,j γ̂

r
n + gj ε̂

r
i,j

)
= Q̂∗XX(g)β̂rn + Q̂∗XW (g)γ̂rn + Q̂∗Xε(g) = Op(1), (S.B.11)

where Q̂∗XX(g) = 1
n

∑
j∈J
∑

i∈In,j
X∗i,j(g)X∗>i,j (g), Q̂∗XW (g) = 1

n

∑
j∈J
∑

i∈In,j
X∗i,j(g)W>i,j , and Q̂∗Xε(g) =

1
n

∑
j∈J
∑

i∈In,j
gjX

∗
i,j(g)ε̂ri,j . Notice that

Q̂∗XX(g) =
∑
j∈J

nj
n

1

nj

∑
i∈In,j

(Xi,j + (gj − 1)ṽi,j) (Xi,j + (gj − 1)ṽi,j)
> = Op(1) (S.B.12)

because Q̂XX,j = Op(1), Q̂Xṽ,j = Op(1), and Q̂ṽṽ,j = Op(1). To see these three relations, we note that

Q̂Xṽ,j = Q̂XX,j − Q̂XZ,jΠ̃Z − Q̂XW,jΠ̃w = Op(1),

by Q̂XX,j = Op(1), Q̂XZ,j = Op(1), Q̂XW,j = Op(1), Π̃Z = Op(1), and Π̃w = Op(1), where Q̂XZ,j =

1
nj

∑
i∈In,j

Xi,jZ
>
i,j , and Q̂XW,j = 1

nj

∑
i∈In,j

Xi,jW
>
i,j . Similar arguments hold for Q̂ṽṽ,j . We can also

5



show that

Q̂∗XW (g) =
∑
j∈J

nj
n

1

nj

∑
i∈In,j

(Xi,j + (gj − 1)ṽi,j)W
>
i,j = Op(1), (S.B.13)

by Q̂XW,j = Op(1) and Q̂ṽW,j = Op(1), where Q̂XW,j = 1
nj

∑
i∈In,j

Xi,jW
>
i,j and Q̂ṽW,j = 1

nj

∑
i∈In,j

ṽi,jW
>
i,j .

In addition, we have

Q̂∗Xε(g) =
∑
j∈J

nj
n

1

nj

∑
i∈In,j

gj (Xi,j + (gj − 1)ṽi,j) ε̂
r
i,j = Op(1), (S.B.14)

by Q̂Xε̂,j = Op(1) and Q̂ṽε̂,j = Op(1) under similar arguments as those in (S.B.8), where

Q̂Xε̂,j =
1

nj

∑
i∈In,j

Xi,j ε̂
r
i,j and Q̂ṽε̂,j =

1

nj

∑
i∈In,j

ṽi,j ε̂
r
i,j .

Combining (S.B.12), (S.B.13), (S.B.14), β̂rL = Op(1), and γ̂rL = Q̂−1
WW Q̂wε + op(1) = Op(1), we obtain

(S.B.11). Next, by the fact that 1
n

∑
j∈J
∑

i∈In,j
Z̃i,jW

>
i,j = 0, we have

1

n
X∗>(g)P~ZY

∗(g) =
(
Q̂∗>
Z̃X

(g) Q̂∗XW (g)
)(Q̂−1

Z̃Z̃
0

0 Q̂−1
WW

)(
Q̂∗
Z̃Y

(g)

Q̂∗WY (g)

)
,

where

Q̂∗
Z̃X

(g) =
1

n

∑
j∈J

∑
i∈In,j

Z̃i,jX
∗>
i,j (g), Q̂∗

Z̃Y
(g) =

1

n

∑
j∈J

∑
i∈In,j

Z̃i,jY
∗
i,j(g),

and Q̂∗WY (g) =
1

n

∑
j∈J

∑
i∈In,j

Wi,jY
∗
i,j(g).

Following the same lines of reasoning, we can show that, for all g ∈ G, Q̂∗
Z̃X

(g) = Op(1), Q̂∗
Z̃Y

(g) =

Op(1), and Q̂∗WY (g) = Op(1). In addition, by Assumptions 1(iv) and 2(iii), Q̂−1

Z̃Z̃
= Op(1) and Q̂−1

WW =

Op(1), which further implies that 1
nX
∗>(g)M~ZY

∗(g) = Op(1).

By a similar argument, we can show 1
nX
∗>(g)M~ZX

∗(g) = Op(1). Last, we have

1

n
X∗>(g)P

Z̃
X∗(g) = Q̂∗>

Z̃X
(g)Q̂−1

Z̃Z̃
Q̂∗
Z̃X

(g) =Q̂>
Z̃X

Q̂−1

Z̃Z̃
Q̂
Z̃X

+ op(1)
p−→ Q>

Z̃X
Q−1

Z̃Z̃
Q
Z̃X

,

where we use the fact that Q̂∗
Z̃X

(g) = Q̂
Z̃X

+ op(1), which is established in Step 1 in the proof of

Theorem 2.1. In addition, Q>
Z̃X

Q−1

Z̃Z̃
Q
Z̃X

is invertible by Assumptions 2(ii) and 3(i). This implies

( 1
nX
∗>(g)P

Z̃
X∗(g))−1 = Op(1), which further implies β̂∗L,g = β̂∗tsls,g + op(n

−1/2).

For the second result, we note that

β̂∗tsls,g − βn =
[
Q̂∗>
Z̃X

(g)Q̂−1

Z̃Z̃
Q̂∗
Z̃X

(g)
]−1

Q̂∗>
Z̃X

(g)Q̂−1

Z̃Z̃

 1

n

∑
j∈J

∑
i∈In,j

Z̃i,jy
∗
i,j(g)

− βn
= β̂rtsls − βn +

[
Q̂∗>
Z̃X

(g)Q̂−1

Z̃Z̃
Q̂∗
Z̃X

(g)
]−1

Q̂∗>
Z̃X

(g)Q̂−1

Z̃Z̃

 1

n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

 ,
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where the second equality holds because
∑

j∈J
∑

i∈In,j
gjZ̃i,jW

>
i,j = 0. In addition, note that

1

nj

∑
i∈In,j

Z̃i,j ε̂
r
i,j =

1

nj

∑
i∈In,j

Z̃i,jεi,j − Q̂Z̃X,j(β̂
r
tsls − βn)− Q̂

Z̃W,j
(γ̂rtsls − γ) = Op(n

−1/2).

Combining this with the fact that β̂rtsls − βn = Op(n
−1/2) as shown in Lemma S.B.1, we have β̂∗tsls,g −

βn = Op(n
−1/2). �

Lemma S.B.3 Suppose Assumptions 1 and 2 hold. Then, we have, for j ∈ J ,

Q̂
Z̃W,j

(γ̄r − γ) = op(n
−1/2).

If, in addition, Assumption 3(i) holds, then we have, For j ∈ J , L ∈ {tsls, liml, full, ba}, and g ∈ G,

Q̂
Z̃W,j

(γ̂L − γ) = op(n
−1/2), Q̂

Z̃W,j
(γ̂rL − γ) = op(n

−1/2), and Q̂
Z̃W,j

(γ̂∗L,g − γ) = op(n
−1/2).

Proof. When Q̂
Z̃W,j

= 0, all the results hold trivially. We now assume Q̂
Z̃W,j

= op(1) and

1√
n

∑
j∈J
∑

i∈In,j
Wi,jεi,j = Op(1). The first statement holds because

γ̄r − γ = Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

Wi,j(Yi,j −X>i,jβ0)

− γ
= Q̂−1

WW

 1

n

∑
j∈J

∑
i∈In,j

Wi,jεi,j

− Q̂−1
WW Q̂WX(βn − β0) = Op(n

−1/2), (S.B.15)

Next, if Assumption 3(i) also holds, then

γ̂L − γ = Q̂−1
WW

 1

n

∑
j∈J

∑
i∈In,j

Wi,j(Yi,j −X>i,j β̂L)

− γ
= Q̂−1

WW

 1

n

∑
j∈J

∑
i∈In,j

Wi,jεi,j

− Q̂−1
WW Q̂WX(β̂L − βn) = Op(n

−1/2), (S.B.16)

where the last equality holds by Lemma S.B.1. This implies Q̂
Z̃W,j

(γ̂L − γ) = op(n
−1/2). In the same

manner, we can show Q̂
Z̃W,j

(γ̂rL−γ) = op(n
−1/2). Last, given Assumptions 1, 2, 3(i), and the fact that

Q̂
Z̃W,j

(γ̂rL−γ) = op(n
−1/2), Lemma S.B.2 shows β̂∗L,g−βn = (β̂∗L,g−β̂∗tsls,g)+(β̂∗tsls,g−βn) = Op(n

−1/2).

Then, following the same argument in (S.B.16), we can show γ̂∗L,g− γ = Op(n
−1/2), which leads to the

desired result. �

S.C Proof of Theorem 2.2

For the power of the Tn-based wild bootstrap test, we focus on the TSLS estimator. As shown in the

end of the proof of Theorem 2.1, the test statistics constructed using LIML, FULL, and BA estimators

and their bootstrap counterparts are asymptotically equivalent to those constructed based on TSLS
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estimator, which leads to the desired result. Note that

||
√
n(λ>β β̂tsls − λ0)||Âr

= ||
√
nλ>β (β̂tsls − βn) +

√
nλ>β (βn − β̂rtsls)||Âr

=
∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

Z̃i,jεi,j√
n

+
√
nλ>β (βn − β̂rtsls)

∥∥∥
Âr

=
∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

(
Z̃i,jεi,j√

n
+
Z̃i,jX

>
i,j

n

√
n(βn − β̂rtsls)

)∥∥∥
Âr

.

Notice that Assumptions 1, 2, 3(i), and Lemma S.B.1 imply that
√
n(β̂rtsls− βn) is bounded in proba-

bility. This implies

Tn = ||
√
n(λ>β β̂tsls − λ0)||Âr

d−−→
∥∥∥∑
j∈J

[√
ξjλ
>
βQ
−1Q>

Z̃X
Q−1

Z̃Z̃
Zj
]

+ µ
∥∥∥
Ar

. (S.C.1)

Recall Q̂ and Q̂∗g defined in (8) and (9), respectively. We have Q̂∗−1
g = Q̂−1 + op(1) and

||
√
nλ>β (β̂∗tsls,g − β̂rtsls)||Âr

=
∥∥∥λ>β Q̂∗−1

g Q̂∗>
Z̃X

(g)Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

gj

(
Z̃i,jεi,j√

n
+
Z̃i,jX

>
i,j

n

√
n(βn − β̂rtsls) +

Z̃i,jW
>
i,j

n

√
n(γ − γ̂rtsls)

)∥∥∥
Âr

=
∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

gj

(
Z̃i,jεi,j√

n
+
Z̃i,jX

>
i,j

n

√
n(βn − β̂rtsls)

)∥∥∥
Âr

+ op(1), (S.C.2)

where the last equality follows from Lemma S.B.3 and Q̂∗
Z̃X

(g) = Q̂
Z̃X

+op(1). Furthermore, we notice

that

β̂rtsls = β̂tsls − Q̂−1λβ

(
λ>β Q̂

−1λβ

)−1 (
λ>β β̂tsls − λ0

)
= β̂tsls − Q̂−1λβ

{(
λ>β Q̂

−1λβ

)−1
λ>β (β̂tsls − βn) +

(
λ>β Q̂

−1λβ

)−1
(λ>β βn − λ0)

}
. (S.C.3)

Therefore, employing (S.C.3) with
√
n(λ>β βn − λ0) = λ>β µβ, we conclude that whenever En = 1,

∑
i∈In,j

Z̃i,jX
>
i,j

n

√
n(βn − β̂rtsls) =

∑
i∈In,j

Z̃i,jX
>
i,j

n

{(
Idx − Q̂−1λβ

(
λ>β Q̂

−1λβ

)−1
λ>β

)√
n(βn − β̂tsls)

+Q̂−1λβ

(
λ>β Q̂

−1λβ

)−1
λ>β µβ

}
.

Together with (S.C.2), this implies that

lim sup
n→∞

P


∥∥∥√nλ>β (β̂∗tsls,g − β̂rtsls)− λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

×
∑

j∈J
∑

i∈In,j
gj

(
Z̃i,jεi,j√

n
+ ξjQ̂Z̃X,jQ̂

−1λβ

(
λ>β Q̂

−1λβ

)−1
λ>β µβ

)∥∥∥
Âr

> ε;En = 1


= lim sup

n→∞
P


∥∥∥√nλ>β (β̂∗tsls,g − β̂rtsls)− λ>βQ−1Q>

Z̃X
Q−1

Z̃Z̃

×
∑

j∈J gj

[√
ξjZj + ξjQZ̃X,jQ

−1λβ

(
λ>βQ

−1λβ

)−1
µ

] ∥∥∥
Âr

> ε;En = 1
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= lim sup
n→∞

P
( ∥∥∥√nλ>β (β̂∗tsls,g − β̂rtsls)−

∑
j∈J gj

[√
ξjλ
>
βQ
−1Q>

Z̃X
Q−1

Z̃Z̃
Zj + ξjajµ

] ∥∥∥
Âr

> ε;En = 1
)

= 0.

This implies

T ∗n(g) =
∥∥∥√nλ>β (β̂∗tsls,g − β̂rtsls)

∥∥∥
Âr

d−−→
∥∥∥∑
j∈J

gj

[√
ξjλ
>
βQ
−1Q>

Z̃X
Q−1

Z̃Z̃
Zj + ξjajµ

] ∥∥∥
Ar

. (S.C.4)

In addition, let Gs = G\Gw, where Gw = {g ∈ G : gj = gj′ ,∀j, j′ ∈ Js}. We note that

|Gs| = |G| − 2q−qs+1 ≥ k∗. Therefore, based on (S.C.1) and (S.C.4), to establish the desired result, it

suffices to show that as ||µ||2 →∞,

lim inf
n→∞

P{Tn > max
g∈Gs

T ∗n(g)} → 1,

which follows under similar arguments as those employed in the proof of Theorem 3.2 in Canay, Santos,

and Shaikh (2021). �

S.D Proof of Theorem 2.3

Following the same argument in the proof of Theorem 2.4, we can show that

(TCR,n, {T ∗CR,n(g)}g∈G)
d−−→ (TCR,∞(ι), {TCR,∞(g)}g∈G)

where TCR,n(g) is defined in the proof of Theorem 2.4 with µ = 0 as we are under the null. Then, the

rest of the proof is similar to Step 3 in the proof of Theorem 2.1. We omit the detail for brevity. �

S.E Proof of Theorem 2.5

The proof for the ARn-based wild bootstrap test follows similar arguments as those in Theorem 2.1,

and thus we keep exposition more concise. Let S ≡ ⊗j∈JRdz ×Rdz×dz and write an element s ∈ S by

s = ({s1j : j ∈ J}, s2) where s1j ∈ Rdz for any j ∈ J . Define the function TAR: S→ R to be given by

TAR(s) =

∥∥∥∥∑
j∈J

s1j

∥∥∥∥
s2

. (S.E.1)

Given this notation we can define the statistics Sn, Ŝn ∈ S as

Sn =


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J, Âz

 , Ŝn =


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,j ε̄
r
i,j : j ∈ J, Âz

 ,

where ε̄ri,j = yi,j −X>i,jβ0 −W>i,j γ̄r. Note that by the Frisch-Waugh-Lovell theorem,

ARn =

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

Z̃i,jεi,j

∥∥∥∥
Âz

= TAR(Sn). (S.E.2)
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Similarly, we have for any action g ∈ G that

AR∗n(g) =

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

gjZ̃i,j ε̄
r
i,j

∥∥∥∥
Âz

= TAR(gŜn). (S.E.3)

Therefore, letting k∗ ≡ d|G|(1− α)e, we obtain from (S.E.2)-(S.E.3) that

1 {ARn > ĉAR,n(1− α)} = 1
{
TAR(Sn) > T

(k∗)
AR (Ŝn|G)

}
.

Furthermore, note that we have

TAR

(
−ιŜn

)
= TAR

(
ιŜn

)
=

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j

(
yi,j −X>i,jβ0 −W>i,j γ̄r

)∥∥∥∥
Âz

=

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j

(
εi,j −W>i,j(γ̄r − γ)

)∥∥∥∥
Âz

= TAR (Sn) , (S.E.4)

where the third equality follows from
∑

j∈J
∑

i∈In,j
Z̃i,jW

>
i,j = 0. (S.E.4) implies that if k∗ > |G| − 2,

then 1{TAR(Sn) > T
(k∗)
AR (Ŝn|G)} = 0, and this gives the upper bound in Theorem 2.5. We therefore

assume that k∗ ≤ |G| − 2, in which case

lim sup
n→∞

P{TAR(Sn) > T
(k∗)
AR (Ŝn|G)} = lim sup

n→∞
P{TAR(Sn) > T

(k∗)
AR (Ŝn|G \ {±ιq})}

≤ lim sup
n→∞

P{TAR(Sn) ≥ T (k∗)
AR (Ŝn|G \ {±ιq})}. (S.E.5)

Then, to examine the right hand side of (S.E.5), first note that by Assumptions 1 and 5, and the

continuous mapping theorem we have
√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J, Âz

 d−−→
{√

ξjZj : j ∈ J,Az
}
≡ S, (S.E.6)

where ξj > 0 for all j ∈ J . Furthermore, by Assumptions 1(i), Lemma S.B.3, and βn = β0, we have

1√
n

∑
i∈In,j

Z̃i,j ε̄
r
i,j =

1√
n

∑
i∈In,j

Z̃i,jεi,j −
1

n

∑
i∈In,j

Z̃i,jW
>
i,j

√
n(γ̄r − γ) =

1√
n

∑
i∈In,j

Z̃i,jεi,j + op(1),

and thus, for every g ∈ G,

TAR(gŜn) = TAR(gSn) + op(1). (S.E.7)

We thus obtain from results in (S.E.6)-(S.E.7) and the continuous mapping theorem that(
TAR(Sn),

{
TAR(gŜn) : g ∈ G

})
d−−→ (TAR(S), {TAR(gS) : g ∈ G}) .

Then, by the Portmanteau’s theorem and the properties of randomization tests, we have

lim sup
n→∞

P {ARn > ĉAR,n(1− α)} ≤ P
{
TAR(S) ≥ T k∗AR(G \ {±ιq})

}
= P

{
TAR(S) > T k

∗
AR(G)

}
≤ α.

The lower bounds follow by applying similar arguments as those for Theorem 2.1.
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For the ARCR,n-based wild bootstrap test, define the statistics SCR,n, ŜCR,n ∈ S as

SCR,n =


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J, ÂCR

 , ŜCR,n =


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,j ε̄
r
i,j : j ∈ J, ÂCR

 .

Notice that different from ARn and AR∗n(g), we cannot establish that TAR(ιŜCR,n) = TAR(SCR,n) for

TAR(s) defined in (S.E.1), as n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j

Z̃i,jZ̃
>
k,j ε̄

r
i,j ε̄

r
k,j may be different from

n−1
∑
j∈J

∑
i∈In,j

∑
k∈In,j

Z̃i,jZ̃
>
k,jεi,jεk,j .

We set En ∈ R to equal En ≡ 1
{
n−1

∑
j∈J
∑

i∈In,j

∑
k∈In,j

Z̃i,jZ̃
>
k,j ε̄

r
i,j ε̄

r
k,j is invertible

}
, and have

lim inf
n→∞

P{En = 1} = 1. (S.E.8)

In addition, similar to the case with ARn and AR∗n(g), we have under βn = β0,

TAR

(
gŜCR,n

)
= TAR (gSCR,n) + op(1) for every g ∈ G,

SCR,n
d−−→
{√

ξjZj : j ∈ J,ACR
}
≡ SCR,

where ACR =
∑

j∈J ξjZjZ>j , and(
TAR(SCR,n), {TAR(gŜCR,n) : g ∈ G}

)
d−−→ (TAR(SCR), {TAR(gSCR) : g ∈ G}) . (S.E.9)

Therefore, we have

lim sup
n→∞

P {ARCR,n > ĉAR,CR,n(1− α)} ≤ lim sup
n→∞

P {ARCR,n ≥ ĉAR,CR,n(1− α);En = 1}

≤ P
{
TAR(SCR) ≥ T (k∗)

AR (SCR|G)
}
,

which follows from (S.E.8), (S.E.9), the continuous mapping theorem and Portmanteau’s theorem. The

claim of the upper bound in the theorem then follows from similar arguments as those in Theorem

2.1. �

S.F Proof of Theorem 2.6

Define AR∞(g) = ||
∑

j∈J gj
√
ξjZj +

∑
j∈J ξjgjajQZ̃Xµ||Az . In particular, notice that AR∞(ι) =

||
∑

j∈J
√
ξjZj + Q

Z̃X
µ||Az since

∑
j∈J ξjaj = 1. Following same arguments in the proof of Theorem

2.5, we can show that, under H1,n with λβ = Idx ,

(ARn, {AR∗n(g)}g∈G)
d−−→ (AR∞(ι), {AR∞(g)}g∈G).

Similar to the proofs of Theorems 2.2 and 2.4, in order to establish Theorem 2.6, it suffices to show
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that as ||Q
Z̃X

µ||2 →∞,

P{AR∞(ι) > max
g∈Gs

AR∞(g)} → 1.

By Triangular inequality, we have AR∞(ι) ≥ ||Q
Z̃X

µ||Az −Op(1), and

max
g∈Gs

AR∞(g) ≤ max
g∈Gs

|
∑
j∈J

gjξjaj |||QZ̃Xµ||Az +Op(1).

In addition, maxg∈Gs |
∑

j∈J gjξjaj | < 1 so that as ||Q
Z̃X

µ||2 →∞, ||Q
Z̃X

µ||Az →∞ and

||Q
Z̃X

µ||Az − max
g∈Gs

|
∑
j∈J

gjξjaj |||QZ̃Xµ||Az →∞.

This concludes the proof. �

S.G Proof of Theorem 2.7

Notice that when dx = dz = 1, Q̂
Z̃X

is a scalar, and the restricted TSLS estimator γ̂r is equivalent

to the restricted OLS estimator γ̄r, which is well defined by Assumption 1(iv), so that ε̂ri,j = ε̄ri,j .

Therefore,

ARn =

∣∣∣∣∣∣ 1√
n

∑
j∈J

∑
i∈In,j

Z̃i,j ε̄
r
i,j

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
n

∑
j∈J

∑
i∈In,j

Z̃i,j ε̂
r
i,j

∣∣∣∣∣∣ ,
and whenever Q̂

Z̃X
6= 0,

Tn = |
√
n(β̂ − βn) +

√
n(βn − β0)|

=

∣∣∣∣∣∣Q̂−1

Z̃X

1√
n

∑
j∈J

∑
i∈In,j

[
Z̃i,jεi,j − Z̃i,jXi,j(β̂

r − βn)
]∣∣∣∣∣∣

=

∣∣∣∣∣∣Q̂−1

Z̃X

1√
n

∑
j∈J

∑
i∈In,j

[
Z̃i,jεi,j − Z̃i,jXi,j(β̂

r − βn)− Z̃i,jW>i,j(γ̂r − γ)
]∣∣∣∣∣∣

=

∣∣∣∣∣∣Q̂−1

Z̃X

1√
n

∑
j∈J

∑
i∈In,j

Z̃i,j ε̂
r
i,j

∣∣∣∣∣∣ =
∣∣∣Q̂−1

Z̃X

∣∣∣ARn,
by β0 = β̂r,

∑
j∈J
∑

i∈In,j
Z̃i,jW

>
i,j = 0, and ε̂ri,j = εi,j −X>i,j(β̂r − βn)−W>i,j(γ̂r − γ).

In addition, for the bootstrap statistics we have

AR∗n(g) =

∣∣∣∣∣∣ 1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̄
r
i,j

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

∣∣∣∣∣∣
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and whenever Q̂Z̃X 6= 0,

T s∗n (g) =

∣∣∣∣∣∣Q̂−1

Z̃X

1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

∣∣∣∣∣∣ =
∣∣∣Q̂−1

Z̃X

∣∣∣AR∗n(g).

Therefore, 1{Tn > ĉsn(1 − α)} is equal to 1{ARn > ĉAR,n(1 − α)} whenever Q̂
Z̃X
6= 0. We conclude

that lim infn→∞ P {φsn = φarn } = 1 because lim infn→∞ P
{
Q̂
Z̃X
6= 0
}

= 1. �

S.H Wild Bootstrap for Other Weak-IV-Robust Statistics

In this section, we discuss wild bootstrap inference with other weak-IV-robust statistics. To introduce

the test statistics, we define the sample Jacobian as

Ĝ =
(
Ĝ1, ..., Ĝdx

)
∈ Rdz×dx , Ĝl = n−1

∑
j∈J

∑
i∈In,j

Z̃i,jXi,j,l, for l = 1, ..., dx,

and define the orthogonalized sample Jacobian as

D̂ =
(
D̂1, ..., D̂dx

)
∈ Rdz×dx , D̂l = Ĝl − Γ̂lΩ̂

−1f̂ ∈ Rdz ,

where Ω̂ = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j

fi,jf
>
k,j , and Γ̂l = n−1

∑
j∈J
∑

i∈In,j

∑
k∈In,j

(
Z̃i,jXi,j,l

)
f>k,j , for

l = 1, ..., dx. Therefore, under the null βn = β0 and the framework where the number of clusters tends

to infinity, D̂ equals the sample Jacobian matrix Ĝ adjusted to be asymptotically independent of f̂ .

Then, the cluster-robust version of Kleibergen (2002, 2005)’s LM statistic is defined as

LMn = nf̂>Ω̂−1/2P
Ω̂−1/2D̂

Ω̂−1/2f̂ .

In addition, the conditional quasi-likelihood ratio (CQLR) statistic in Kleibergen (2005), Newey and

Windmeijer (2009), and Guggenberger, Ramalho, and Smith (2012) are adapted from Moreira (2003)’s

conditional likelihood ratio (CLR) test, and its cluster-robust version takes the form

LRn =
1

2

(
ARCR,n − rkn +

√
(ARCR,n − rkn)2 + 4LMn · rkn

)
,

where rkn is a conditioning statistic and we let rkn = nD̂>Ω̂−1D̂.1

The wild bootstrap procedure for the LM and CQLR tests is as follows. We compute

D̂∗g =
(
D̂∗1,g, ..., D̂

∗
dx,g

)
, D̂∗l,g = Ĝl − Γ̂∗l,gΩ̂

−1f̂∗g ,

Γ̂∗l,g = n−1
∑
j∈J

∑
i∈In,j

∑
k∈In,j

(
Z̃i,jXi,j,l

)
f∗k,j(gj)

>, l = 1, ..., dx,

for any g = (g1, ..., gq) ∈ G, where the definition of f̂∗g and f∗k,j(gj) is the same as that in Section 2.3.

1This choice follows Newey and Windmeijer (2009). Kleibergen (2005) uses alternative formula for rkn, and Andrews
and Guggenberger (2019) introduce alternative CQLR test statistic.
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Then, we compute the bootstrap analogues of the test statistics as

LM∗n(g) = n(f̂∗g )>Ω̂−1/2P
Ω̂−1/2D̂∗g

Ω̂−1/2f̂∗g ,

LR∗n(g) =
1

2

(
AR∗CR,n(g)− rkn +

√(
AR∗CR,n(g)− rkn

)2
+ 4LM∗n(g) · rkn

)
.

Let ĉLM,n(1−α) and ĉLR,n(1−α) denote the (1−α)-th quantile of {LM∗n(g)}g∈G and {LR∗n(g)}g∈G,

respectively. We notice that with at least one strong cluster,

LMn
d−−→
∥∥∥∥
D̃>

∑
j∈J

ξjZε,jZ>ε,j

−1

D̃

−1/2

D̃>

∑
j∈J

ξjZε,jZ>ε,j

−1∑
j∈J

√
ξjZε,j

∥∥∥∥2

,

where D̃ =
(
D̃1, ..., D̃dx

)
, and for l = 1, ..., dx,

D̃l = Q
Z̃X
−

∑
j∈J

(
ξjQZ̃X,j,l

)(√
ξjZε,j

)
∑
j∈J

ξjZε,jZ>ε,j


−1∑

j∈J

√
ξjZε,j .

Although the limiting distribution is nonstandard, we are able to establish the validity results by

connecting the bootstrap LM test with the randomization test and by showing the asymptotic equiv-

alence of the bootstrap LM and CQLR tests in this case. We conjecture that similar results can also

be established for other weak-IV-robust statistics proposed in the literature.

Theorem S.H.1 Suppose Assumptions 1, 2(i), and 3 hold, βn = β0, and q > dz, then

α− 1

2q−1
≤ lim inf

n→∞
P{LMn > ĉLM,n(1− α)} ≤ lim sup

n→∞
P{LMn > ĉLM,n(1− α)} ≤ α+

1

2q−1
;

α− 1

2q−1
≤ lim inf

n→∞
P{LRn > ĉLR,n(1− α)} ≤ lim sup

n→∞
P{LRn > ĉLR,n(1− α)} ≤ α+

1

2q−1
.

S.I Proof of Theorem S.H.1

The proof for the bootstrap LM test follows similar arguments as those for the studentized ver-

sion of the bootstrap AR test. Let S ≡ Rdz×dx × ⊗j∈JRdz , and write an element s ∈ S by

s = ({s1,j : j ∈ J}, {s2,j : j ∈ J}). We identify any (g1, ..., gq) = g ∈ G = {−1, 1}q with an action

on s ∈ S given by gs = ({s1,j : j ∈ J}, {gjs2,j : j ∈ J}). We define the function TLM : S → R to be

given by

TLM (s) ≡

∥∥∥∥∥
D(s)>

∑
j∈J

s2,js
>
2,j

−1

D(s)

−1/2

D(s)>

∑
j∈J

s2,js
>
2,j

−1∑
j∈J

s2,j

∥∥∥∥∥
2

, (S.I.1)

for any s ∈ S such that
∑

j∈J s2,js
>
2,j andD(s)>

(∑
j∈J s2,js

>
2,j

)−1
D(s) are invertible and set TLM (s) =

0 whenever one of the two is not invertible, where

D(s) ≡ (D1(s), ..., Ddx(s)) ,

14



Dl(s) ≡
∑
j∈J

s1,j,l −

∑
j∈J

s1,j,ls
>
2,j

∑
j∈J

s2,js
>
2,j

−1∑
j∈J

s2,j , (S.I.2)

for s1,j = (s1,j,1, ..., s1,j,dx) and l = 1, ..., dx.

Furthermore, define the statistic Sn as

Sn ≡

 1

n

∑
i∈In,j

Z̃i,jX
>
i,j : j ∈ J

 ,

 1√
n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J


 , (S.I.3)

Note that for l = 1, ..., dx and j ∈ J , by Assumptions 1(iii) and 2(i) we have

1

n

∑
i∈In,j

Z̃i,jXi,j,l
p−→ ξjQZ̃X,j,l, (S.I.4)

where QZ̃X,j,l denotes the l-th column of the dz×dx-dimensional matrix QZ̃X,j . Then, by Assumptions

1(ii) and 1(iii), 3(i) and 3(ii), and the continuous mapping theorem we have

Sn
d−−→
({
ξjajQZ̃X : j ∈ J

}
,
{√

ξjZj : j ∈ J
})
≡ S, (S.I.5)

where ξj > 0 for all j ∈ J . Also notice that for l = 1, ..., dx,

D̂l =
∑
j∈J

 1

n

∑
i∈In,j

Z̃i,jXi,j,l

−
∑
j∈J

 1

n

∑
i∈In,j

Z̃i,jXi,j,l

 1√
n

∑
k∈Ik,j

Z̃k,j ε̄
r
k,j

>


·

∑
j∈J

 1√
n

∑
i∈Ii,j

Z̃i,j ε̄
r
i,j

 1√
n

∑
k∈Ik,j

Z̃k,j ε̄
r
k,j

>

−1

1√
n

∑
i∈Ii,j

Z̃i,j ε̄
r
i,j , (S.I.6)

and 1√
n

∑
i∈In,j

Z̃i,j ε̄
r
i,j = 1√

n

∑
i∈In,j

Z̃i,jεi,j + op(1) by βn = β0 and Lemma S.B.3. In addition, we set

An ∈ R to equal

An ≡ I
{
D̂ is of full rank value and Ω̂ is invertible

}
, (S.I.7)

and we have

lim inf
n→∞

P{An = 1} = 1, (S.I.8)

which holds because
{√

ξjZj : j ∈ J
}

are independent and continuously distributed with covariance

matrices that are of full rank, and QZ̃X,j are of full column rank for all j ∈ Js, by Assumptions 1(ii),

3(i), and 3(ii).

It follows that whenever An = 1,

(LMn, {LM∗n(g) : g ∈ G}) = (TLM (Sn), {TLM (gSn) : g ∈ G}) + op(1). (S.I.9)

In what follows, we denote the ordered values of {TLM (gs) : g ∈ G} by

T
(1)
LM (s|G) ≤ ... ≤ T |G|LM (s|G). (S.I.10)
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Next, we have

lim sup
n→∞

P {LMn > ĉLM,n(1− α)}

≤ lim sup
n→∞

P {LMn ≥ ĉLM,n(1− α);An = 1}

≤ P

TLM (S) ≥ inf

u ∈ R :
1

|G|
∑
g∈G

I{TLM (gS) ≤ u} ≥ 1− α


 , (S.I.11)

where the final inequality follows from (S.I.3), (S.I.5), (S.I.8), (S.I.9), the continuous mapping theorem

and Portmanteau’s theorem. Therefore, setting k∗ ≡ d|G|(1− α)e, we can obtain from (S.I.11) that

lim sup
n→∞

P {LMn > ĉLM,n(1− α)}

≤ P
{
TLM (S) > T

(k∗)
LM (S|G)

}
+ P

{
TLM (S) = T

(k∗)
LM (S|G)

}
≤ α+ P

{
TLM (S) = T

(k∗)
LM (S|G)

}
, (S.I.12)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization tests.

Then, we notice that for all g ∈ G, TLM (gS) = TLM (−gS) with probability 1, and P{TLM (gS) =

TLM (g̃S)} = 0 for g̃ /∈ {g,−g}. Therefore,

P
{
TLM (S) = T

(k∗)
LM (S|G)

}
=

1

2q−1
. (S.I.13)

The claim of the upper bound in the theorem then follows from (S.I.12) and (S.I.13). The proof for

the lower bound is similar to that for the bootstrap AR test, and thus is omitted.

To prove the result for the CQLR test, we note that

LRn =
1

2

{
ARCR,n − rkn +

√
(ARCR,n − rkn)2 + 4 · LMn · rkn

}
=

1

2

{
ARCR,n − rkn + |ARCR,n − rkn|

√
1 +

4 · LMn · rkn
(ARCR,n − rkn)2

}

=
1

2

{
ARCR,n − rkn + |ARCR,n − rkn|

(
1 + 2 · LMn

rkn
(ARCR,n − rkn)2

(1 + op(1))

)}
= LMn

rkn
rkn −ARCR,n

(1 + op(1)) = LMn + op(1), (S.I.14)

where the third equality follows from the mean value expansion
√

1 + x = 1 + (1/2)(x + o(1)), the

fourth and last equalities follow from ARCR,n−rkn < 0 w.p.a.1 since ARCR,n = Op(1) while rkn →∞
w.p.a.1 under Assumption 3(i). Using arguments similar to those in (S.I.14), we obtain that for each

g ∈ G,

LR∗n(g) = LM∗n(g)
rkn

rkn −AR∗CR,n(g)
(1 + op(1)) = LM∗n(g) + op(1), (S.I.15)

by AR∗CR,n(g) − rkn < 0 w.p.a.1 since AR∗CR,n(g) = Op(1) for each g ∈ G. Then, it follows that
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whenever An = 1,

(LRn, {LR∗n(g) : g ∈ G}) = (TLM (Sn), {TLM (gSn) : g ∈ G}) + op(1). (S.I.16)

Then, we obtain that

lim sup
n→∞

P {LRn > ĉLR,n(1− α)}

≤ lim sup
n→∞

P {LRn ≥ ĉLR,n(1− α);An = 1}

≤ P

TLM (S) ≥ inf

u ∈ R :
1

|G|
∑
g∈G

I{TLM (gS) ≤ u} ≥ 1− α


 , (S.I.17)

where the second inequality follows from (S.I.3), (S.I.5), (S.I.8), (S.I.16), the continuous mapping the-

orem and Portmanteau’s theorem. Finally, the upper and lower bounds for the studentized bootstrap

CQLR test follows from the previous arguments for the bootstrap LM test. �
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