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Abstract

We study the wild bootstrap inference for instrumental variable regressions with a small number of
large clusters. We first show that the wild bootstrap Wald test controls size asymptotically up to a
small error as long as the parameters of endogenous variables are strongly identified in at least one of
the clusters. We further develop a wild bootstrap Anderson-Rubin test for the full-vector inference and
show that it controls size asymptotically even under weak identification in all clusters. We illustrate
their good performance using simulations and provide an empirical application to a well-known dataset

about US local labor markets.
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1 Introduction

The instrument variable (IV) regression is one of the five most commonly used causal inference
methods identified by Angrist and Pischke (2008), and it is often applied with clustered data.
For example, Young (2021) analyzes 1,359 IV regressions in 31 papers published by the American

Economic Association (AEA), out of which 24 papers account for clustering of observations. Three
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issues arise when running IV regressions with clustered data. First, the strength of IVs may be
heterogeneous across clusters with one or two clusters providing the main identification power.
Indeed, Young (2021) finds that in the average paper of his AEA samples, with the removal of
just one cluster or observation, the first-stage F' can decrease by 28%, and 38% of reported 0.05
significant two-stage least squares (TSLS) results can be rendered insignificant at that level. Second,
the number of clusters is small in many IV applications. For instance, Acemoglu, Cantoni, Johnson,
and Robinson (2011) cluster the standard errors at the country/polity level, resulting in 12-19
clusters, Glitz and Meyersson (2020) cluster at the sectoral level with 16 sectors, and Rogall (2021)
clusters at the province or district level with 11 provinces and 30 districts. When the number of
clusters is small, any inference procedures that require the number of clusters to diverge to infinity
may not be reliable. Third, it is also possible that IVs are weak for all clusters, in which case
researchers need to use weak-identification-robust inference methods (Andrews, Stock, and Sun,
2019).

Motivated by these issues, in this paper we study the wild bootstrap inference for IV regressions
with a small, and thus, fixed number of clusters. First, we show that a wild bootstrap Wald
test, with or without the cluster-robust covariance estimator (CCE), controls size asymptotically
up to a small error, as long as there exists at least one strong cluster in which the parameters of
endogenous variables are strongly identified. Second, we develop the full-vector inference based on
a wild bootstrap Anderson and Rubin (1949, AR) test, which controls size asymptotically up to a
small error regardless of instrument strength. Third, we establish conditions under which the wild
bootstrap tests have power against local alternatives (e.g., there are at least 5 and 6 strong clusters
for the nominal level a equal to 10% and 5%, respectively). Fourth, we show that in the special case
with a single endogenous variable and single IV, a wild bootstrap test based on the unstudentized
Wald statistic (i.e., the one without CCE) is asymptotically equivalent to a certain wild bootstrap
AR test under both null and alternative, implying that in such a case it is fully robust to weak I'V.
Fifth, we establish the validity result for bootstrapping weak-IV-robust tests other than the AR
test under at least one strong cluster.

Our procedure is empirically relevant. First, it enriches practitioners’ toolbox by providing a
reliable inference for IV regressions with few clusters. Besides the aforementioned examples, the
numbers of clusters may also be rather small in studies that estimate the region-wise effects of

certain intervention if the partition of clusters is at the state level. We illustrate the usefulness of



our bootstrap methods by applying them to the well-known dataset of Autor, Dorn, and Hanson
(2013) in the estimation of the effects of Chinese imports on local labor markets in three US Census
Bureau-designated regions with 11-16 clusters at the state level. Second, our bootstrap inference is
flexible with respect to IV strength: the bootstrap Wald test allows for cluster-level heterogeneity
in the first stage, while its AR counterpart is fully robust to weak IVs. Third, different from
the analytical inference based on the widely used heteroskedasticity and autocorrelation consistent
(HAC) estimators, our approach is agnostic about the within-cluster (weak) dependence structure
and thus avoids the use of tuning parameters to estimate the covariance matrix for dependent data.

The contributions in the present paper relate to several strands of literature. First, it is related
to the literature on the cluster-robust inference.! Djogbenou et al. (2019), MacKinnon et al. (2021),
and Menzel (2021) show bootstrap validity under the asymptotic framework with a large number of
clusters. However, as emphasized by Ibragimov and Miiller (2010, 2016), Bester, Conley, and Hansen
(2011), Cameron and Miller (2015), Canay, Romano, and Shaikh (2017), Hagemann (2019a,b, 2020),
and Canay, Santos, and Shaikh (2021), many empirical studies motivate an alternative framework in
which the number of clusters is small, while the number of observations in each cluster is relatively
large. For the inference, we may consider applying the approaches developed by Bester et al.
(2011), Hwang (2021), Ibragimov and Miiller (2010, 2016), and Canay et al. (2017). However,
Bester et al. (2011) and Hwang (2021) require an (asymptotically) equal cluster-level sample size,
while Ibragimov and Miiller (2010, 2016) and Canay et al. (2017) require strong identification in
all clusters. In contrast, our bootstrap Wald tests are more flexible as it does not require an equal
cluster size and only needs strong identification in one of the clusters. We also provide the bootstrap
AR tests, which are fully robust to weak or partial identification.

Second, we follow Canay et al. (2021) to show the asymptotic equivalence between the wild boot-
strap test and a randomization test with sign changes, but complement their results in the following
aspects. First, Canay et al. (2021) focus on the linear regression with exogenous regressors and then
extend the analysis to a score bootstrap for the GMM estimator. Instead, we focus on extending
the wild restricted efficient cluster (WREC) bootstrap advocated by Finlay and Magnusson (2014,
2019), Davidson and MacKinnon (2010), Roodman, Nielsen, MacKinnon, and Webb (2019), and

!See Cameron, Gelbach, and Miller (2008), Conley and Taber (2011), Imbens and Kolesar (2016), Abadie, Athey, Imbens,
and Wooldridge (2022), Hagemann (2017, 2019a,b, 2020), MacKinnon and Webb (2017), Djogbenou, MacKinnon, and Nielsen
(2019), MacKinnon, Nielsen, and Webb (2021), Ferman and Pinto (2019), Hansen and Lee (2019), Menzel (2021), MacKinnon
(2021), among others, and MacKinnon, Nielsen, and Webb (2022) for a recent survey.



MacKinnon (2021).2 Therefore, our procedure cannot be formulated as a score bootstrap in the
GMM setting. In fact, in order to follow the WREC procedure, the first stage of our bootstrap has
to be carefully designed to ensure its validity with few clusters. Second, we consider Wald statistics
based on general k-class IV estimators, including TSLS, bias-adjusted TSLS, limited information
maximum likelihood (LIML), and modified LIML estimators as special cases. Third, we establish
the local power for the Wald test both with and without CCE under strong identification. The
former result is derived based on the Sherman—Morrison—-Woodbury formula and new to the lit-
erature. We also find that the two types of bootstrap critical values behave rather differently (as
summarized in Table 1), and further establish the power superiority of the Wald test with CCE for
the empirically prevalent case of testing a single restriction. Fourth, we consider the wild bootstrap
AR test, with or without CCE, for the full-vector weak-IV-robust inference, and further establish
the local power for the one without CCE.

Third, our paper is related to the literature on weak identification, in which various normal
approximation-based inference approaches are available for nonhomoskedastic cases, among them
Stock and Wright (2000), Kleibergen (2005), Andrews and Cheng (2012), Andrews (2016), Andrews
and Mikusheva (2016), Andrews (2018), Moreira and Moreira (2019), and Andrews and Guggen-
berger (2019). As Andrews et al. (2019, p.750) remark, an important question concerns the quality
of the normal approximations with influential observations or clusters. On the other hand, when
implemented appropriately, bootstrap may substantially improve the inference for IV regressions.?
We complement this literature by establishing bootstrap validity for the weak-IV-robust statistics
with few clusters.

Last, we note that although empirical applications often involve settings with substantial first-
stage heterogeneity, related econometric literature remains rather sparse. Abadie, Gu, and Shen
(2019) exploit such heterogeneity to improve the asymptotic mean squared error of IV estimators
with independent and conditionally homoskedastic observations. Instead, we focus on developing
bootstrap inference methods that are robust to the first-stage heterogeneity for data with a small
number of clusters, while allowing for (weak) within-cluster dependence and heteroskedasticity.

The remainder of this paper is organized as follows. Section ?? presents the main results for

2The WREC bootstrap has superior finite sample performance for IV regressions with nonhomoskedastic errors and is very
popular among empirical researchers. In our paper, we extend this bootstrap procedure and give conditions under which it is
also valid with few clusters, so that empirical researchers can use the WRE-type procedures in a wide range of scenarios.

3See, for example, Davidson and MacKinnon (2008, 2010), Moreira, Porter, and Suarez (2009), Wang and Kaffo (2016),
Finlay and Magnusson (2019), and Young (2021), among others.



wild bootstrap IV regression. Section 7 provides simulation results. The empirical application is

presented in Section 8. We conclude and provide practical recommendations in Section 9.

2 Setup, Estimation, and Inference Procedure

2.1 Setup

Throughout the paper, we consider the setup of a linear IV regression with clustered data,

yij =X, B+ WZTﬂ + iy, (1)

5J

where the clusters are indexed by j € J = {1,...,¢} and units in the j-th cluster are indexed by
iel,; ={1,..,n;}. In (1), we denote y;; € R, X, € R, Wi € R% and Zi; € R% as an
outcome of interest, endogenous regressors, exogenous regressors, and IVs, respectively. 8 € R%
and v € R% are unknown structural parameters.

We let the parameter of interest 3 to shift with respect to (w.r.t.) the sample size to incorporate
the analyses of size and local power in a concise manner: 5, = By + pg/+/n, where ug € R% is
the local parameter. We let )\gﬁo = Ao, where \g € R%*4 N\, € R* and d, denotes the number
of restrictions under the null hypothesis. Define p = /\guﬁ. Then, the null and local alternative

hypotheses studied in this paper can be written as
Ho:pn=0 wv.s. Hi,:p#0. (2)

2.2 K-Class IV Estimators

Throughout the paper, we consider estimators of the form:
AT A7) TV o T 2\ (T ~ T
(5 4 > _ <X X — X MZX> <X Y — aX MZY>, (3)

where Z = [Z : W], X = [X : W], Y, X, Z, and W are n x 1, n X dy, n X d, and n x d,,-dimensional
Z;, and W\, respectively, and Py = A(ATA)'AT,

- T
vectors and matrices formed by v;;, X; i

0,7
My = I, — P, where A is an n-dimensional matrix and I,, is an n-dimensional identity matrix.
This class includes all of the familiar k-class IV estimators. Specifically, we focus on four cases:

(1) the two-stage least squares (TSLS) estimator, where & = K5 = 1, (2) the limited information



maximum likelihood (LIML) estimator, where
R = Riml = mian?TMW}?r/(TT?TMZ?T), Y =[V:X], and r=(1,-87)",

(3) the modified LIML estimator proposed by Fuller (1977, hereafter FULL estimator), where
Rk = Rpur = Riipy — C/(n — d, — d,,) with some constant C, and (4) the bias-adjusted TSLS (BA)
estimator proposed by Nagar (1959) and Rothenberg (1984), where & = Ap, = n/(n — d, + 2).
Theoretically, we show that all k-class IV estimators are asymptotically the same. However, in
our simulation, we find that Fuller’s modified LIML estimator has the best finite sample perfor-

mance.
2.3 Wild Bootstrap Inference

2.3.1 Inference Procedure by Wald Statistics

For inference, we construct Wald statistics based on the the k-class estimator 3, defined in (3)
with k =k for L € {tsls, liml, full, ba}. When the d, x d, weighting matrix A, is asymptotically
deterministic in the sense of Assumption 4 below (such as flr = 1, the d, x d, identity matrix),

we denote T,, as the Wald statistic without CCE and define it as

T = (Va3 B = 2o)ll4, (4)

where ||u||4 = VuT Au for a generic vector u and a weighting matrix A. When we use A, cg, the
inverse of the CCE as defined in (14) in Section 5 as the weighting matrix, we denote Tog,, as the

Wald statistic with CCE and define it as

T = VAT B = M)l o (5)

We reject the null hypothesis if T}, and T g, are greater than their corresponding critical values
¢p and Cop g, respectively. We compute the critical values by a wild bootstrap procedure described

below.
Step 1: For L € {tsls, liml, full, ba}, compute the null-restricted residual

A T ar Tar
€ij = Yig — Xi,jﬁL - W‘,j’Vu

)



Step 2:

Step 3:

Step 4:

where 37 and 47 are null-restricted k-class IV estimators of 8 and + from (y; ;, X;" PRIAN AR

and the unrestricted residual

€ij =Yij— BL W,LAL, (6)
where BL and 4y, are defined in (3) with Ap.

Construct Z; ; as

~ ~ T
ZZ,] - <Z’L7]1{] — 1}, ...... 5 ZZ,]l{] - q}) 5
where ZJ is the residual of regressing Z; ; on W; ; using the entire sample.

Compute the first-stage residual

where IT; and II,, are the OLS coefficients of Z; ; and W ; from regressing X; ; on (ZZ Wik )T

using the entire sample.

Let G = {—1,1}9 and for any g = (g1, ..., g;) € G generate
X;i(9) = H%ii,j + 10y Wy s + g0 4, yi i (9) = Xz'*,T( )BL + zﬂL + g;€i ;

For each g = (g1, ..., 9,) € G, compute ﬁig and 47 , the analogues of the estimators BL and
A1, using (y;,(9), X*T(g))T in place of (yi,j,XiT) and the same (Z;,, W;)T. Compute the

1,57

bootstrap analogue of the Wald statistic:”

Ti(9) = VRO Br g = o)ll4,s Teral9) = IVR(AZBE 4 — Xo) (8)

A %
r,CR,g

where A;C R, 18 defined in (15).

4The null-restricted k-class estimator is defined as

~ ~ -1 -1 ~
B =B~ (X PzX — X MzX) s (N (X PzX = X MzX) " As) (A3 BL = do),
p =W W) "W (Y — XB}), where fir =& —1 and Z = Mw Z,

for L € {tsls, liml, full, ba}; e.g., see Appendix B of Roodman et al. (2019) for a general formula.
°Let X*(g) and Y*(g) be the n x d, matrix constructed using X;;(g) and the n x 1 vector constructed using Y;*;(g),
respectively. For L € {tsls,liml, full,ba} and g € G,

BL.g

-1
= (X T (9)PzX"(9) = i X T ()MzX"(9) (X T(@)P2Y"(9) = Lo X T (9)MzY"(9)) , where ji}, = # — 1.



Step 5: To obtain the critical values, we compute the 1—a quantiles of {T);(g) : g € G} and {T},,(9) :
g€ G}:

én(l—a)—inf{xER Zl{T* <x}21—0z},

gEG

¢orn(l —a) = inf {xER Zl{TCRn ) <a} > 1—a},

gEG

where 1{ E'} equals one whenever the event E is true and equals zero otherwise. The bootstrap
test for Hy rejects whenever Tog, exceeds ¢orn(l — «) and T, exceeds ¢,(1 — «) for Wald

statistics with and without CCE, respectively.

Four remarks are in order. First, Step 1 imposes null when computing the residuals in the
structural equation (1), which is advocated by Cameron et al. (2008), Davidson and MacKinnon
(2010), MacKinnon et al. (2022), and Canay et al. (2021), among others. Second, the estimators
ﬁ7 and II,, in Step 3 are similar to the efficient reduced-form estimators in the WREC bootstrap
procedures advocated by Finlay and Magnusson (2014, 2019), Davidson and MacKinnon (2010),
Roodman et al. (2019), and MacKinnon (2021), which have superior finite sample performance for
IV regressions, even when the instruments are rather weak. In this paper, we focus on extending
the WREC procedure because (1) we find the resulting bootstrap also has excellent finite sample
performance for IV regressions with a small number of clusters, and (2) we want to be consistent
with Davidson and MacKinnon’s (2010) suggestions. Third, to adapt to the current framework,
we modify the original WREC procedure and use the fully interacted Zj in Step 3, which is
crucial to guarantee that the bootstrap Jacobian matrix @*ZX (9) = 3 Xjes 2ier,, Z 75X ] (g) is
asymptotically equivalent to the original Jacobian @ 5x- Notice that the fully interacted IVs (i.e.,
Z;;) are only needed to construct X;;(g), and we still use the uninteracted IVs (i.e., Z;;) when
computing (] ,47)7 in (3) and their null-restricted and bootstrap counterparts (i.e., (357,457)7 in
Step 1 and (BLE, A;5) T in Step 4). Last, when regressing X; ; on (Z”, W5, &;)7 in Step 3, we need
to use the unrestricted residuals &; ; instead of the null-restricted residuals €7 ;. This modification

is required to establish the power results under few clusters.



2.3.2 Inference Procedure by Weak-instrument-robust Statistics

In this section, we describe a wild bootstrap inference procedure for Anderson-Rubin (AR) type
Weak-instrument-robust Statistics with or without CCE. Recall that 8, = 5y + pg/+/n. Under the

null, we have pug = 0, or equivalently, 3, = By. First, define the AR statistic without CCE as

AR, = |[Vaflls, F=n3"3" fus

Jj€J ie]nhj

where A, is a d, x d, weighting matrix with an asymptotically deterministic limit specified in
Assumption 5 below, f;; = Zd-éaj, g = Yijg — ngﬁo — V[/Jﬂ’", and 4" is the null-restricted

ordinary least squares (OLS) estimator of ~:

~1
=D Wil | DD Wiy — X5,

jEJ i€ln jeJ i€l ;

Second, we also define the AR statistic with the (null-imposed) CCE as

-1

ARCRJL = H\/ﬁ-ﬂ}AcR’ ACR: n_lz Z Z fi’jfl;l’—j

JeJ i€ly j kel, ;

Our wild bootstrap procedure for the AR statistics is defined as follows.

Step 1: Compute the null-restricted residual & ; = y;; — X;',80 — W;[,7".

Step 2: Let G = {—1,1}7 and for any g = (¢1, ..., 9,) € G define

f; =n! Z Z fii(g;), and  f7;(g;) = Z’jgzﬂ'(‘%)’

JET i€l ;

where €7 ;(g;) = g;&; ;. Compute the bootstrap statistics:

AR;(9) = ||Vnf;

i and ARCgp.(9) = Vel

Acr’

Step 3: Let ¢apn(l — @) and éapcrn(l — o) denote the (1 — a)-th quantile of {AR}(g)}4ec and

{ARER 1(9)}geq, Tespectively.

Unlike the Tg »,-based Wald test in Section 2.3.1, we do not need to bootstrap the CCE for the
ARcp,y, test even though ACR also admits a random limit. This is because flc g 1s invariant to the

sign changes.



3 Main Assumptions and Several Examples

In this section, we introduce the assumptions that will be used in our analysis of the wild bootstrap
tests under a small number of clusters in Sections 4-6. For the rest of the paper, we define Z”
as the residual of regressing Z; ; on W, ; using the entire sample, and that for any random vectors
Ui;j and V; ,, @vaj = %ZZE[ U”V and @UV = deJ Zzelnj VT Further define @ =
A%X@;z“@ 7y, and @ as the probability limits of @

Assumption 1. The following statements hold: (i) For each j € J, either (1) @ngj =0, or (2)

QEWJ = Op<1) and \/Lﬁ Zje] Zieln,j Wingi’j = OP<1)'
(11) There exists a collection of independent random variables {Z; : j € J}, where Z; ~ N(0,3;)
with ¥; positive definite for all j € J, such that

\/_ZZJQJ jedy 15 {zjeJ}.
1€y j

(111) For each j € J, nj/n — & > 0.
(iv) %Zjej ZZ.GIM W, ;WL is invertible.

Several remarks are in order. First, we have @ Zw; =0 if W, ; contains the interactions between
baseline exogenous regressors and cluster dummies or Z; ; is constructed as the residual from the
cluster-level projection of original IVs onto the linear space spanned by W; ;.°

Second, when some cluster contains small number of observations, such a cluster-level projection
is numerically unstable (this is just a finite sample issue as asymptotically, we assume the number
of clusters is fixed and the cluster size diverges to infinity). In this case, researchers may prefer to
use baseline exogenous regressors without interacting them with cluster dummies. To accommodate

such a practice, we give another set of conditions in Assumption 1(i)(2). Specifically, we require

Qzw,; = op(1) if

Ly [ ()20 '

ze]n g

where fn and fn,j are the d,, x d, matrices that satisfy the following orthogonality conditions:

Spec1ﬁcally, suppose Z:,; are the base IVs. We can construct Z;; as Z;; = Zi; — X; x) Wi, where ¥; =
QWWJQWW]QWWJQWf], and A~ denotes the pseudo inverse of the positive semidefinite matrix A. It is possible to
show that Z; ; = Z;; and - o Zzeln,j Zij Wl = 0.

10



Yies Sier, Wij(Ziy = TIWi)T =0, and Y., Wij(Ziy — T} ;Wi )T = 0. Canay et al. (2021,
Assumption 2(iv) in Section A) imposed the same condition as (9) and pointed out that it holds

whenever the distributions of (7,

i VVZ-J)T are the same across clusters. The condition that

% DD Wijens = 0,(1)

jeJ i€l ;

is similar to Assumption 1(i) in Canay et al. (2021) and rules out the specification in which ¢; ;

follows an error-component model, i.e.,
€ij =1 T €ij, (10)

where 7); is a cluster-wide shock for cluster j, e;; is an idiosyncratic shock for observation ¢, and
the two shocks are independent. We emphasize again that if a full set of interactions between
baseline exogenous regressors and cluster dummies are used as W;;, then Assumption 1(i)(1) holds
automatically and we do not need to Assumption 1(i)(2).

Third, Assumption 1(ii) is reasonable because Z] is exogenous. It is satisfied whenever the
within-cluster dependence is sufficiently weak to permit the application of a suitable central limit
theorem and the data are independent across clusters. Assumption 1(iii) gives the restriction on

~

cluster sizes, and Assumption 1(iv) ensures I',, is uniquely defined.

Assumption 2. The following statements hold: (i) The quantities @ZXJ., @fij’ @ZX’ and @25
converge in probability to deterministic matrices, which are denoted as QZX,J‘; QZZ,J': Qzy, and
Q) z7, respectively.

(i) The matrices Q77 is invertible for j € J.

(iii) For all j € J, @XXJ = 0,(1), @Xg,j = 0,(1), and @ém > ¢ > 0 for constant ¢ with probability

approaching one, where €, ; is the residual from the cluster-level projection of €;; on W, ;.

Assumption 2(i) holds if the dependence of units within clusters is weak enough to render some
type of LLN to hold. Assumption 2(ii) is standard in the literature and holds regardless of the
IVs’ strength. However, it rules out the case that IVs are constructed as the interaction between
baseline IVs and cluster dummies, as discussed below.

We conclude this section with several examples.

Example 3.1 (Cluster-level Exogenous Variable and Fixed Effects). We allow for cluster-level

11



exogenous variables and fixed effects. Suppose
Yij = X8+ B 01+ By, b2+ + eij, (11)

where y; j 1s the outcome variable, X; ; contains the endogenous variables, B, ; contains the cluster-
level baseline exogenous variables including the intercept, By, ; contains the individual-level baseline
exogenous variables, 1; is the unobserved cluster-level fized effect, e; ; is the individual-level idiosyn-
cratic error, and the linear coefficients (6 ;,02,;) for the baseline covariates B; = (B j, By, ;) are
allowed to be heterogeneous across clusters. Further denote W;; as the full interaction between

Eg,m = (1, By, ;)" with cluster dummies and define it as

Wi,j:( 2zg1{3—1} 32131{]—2} 2”1{]—61}) (12)

Then, (11) can be rewritten as (1) with e;; = n; + e;; and v = (v ,---,7,)", where v; =
(B 61,,05,)". As W, contains full interaction between Ezm and cluster dummies, Z] s nu-
merically the same as the residual from the cluster-level projection of Z; ; on B;,m-, which implies
QZWJ = 0 and Assumption 1(1) holds. We further have ZZE[ Zjn] 0 so that Assumption 1(2)

reduces to

\/_ZZ]ew jeJ —>{Z jeJ},
1€y ;

which holds if Z;; and Bs;; are evogenous and the the within-cluster dependence is sufficiently

weak.

Example 3.2 (Heterogeneous IV Strength across Clusters). We allow for cluster-level heterogeneity
with regard to 1V strength. Let 11, ;, and Il ;, be the coefficients of Z; ; and W ;, respectively, via
the cluster-level population projection of X, ; on Z;; and W, , for each j € J." Then, our model
(1) allows for both 11, ;, and IL, ;, to vary across clusters. In particular, we allow for some of
II, ; » to decay to or be zero for the bootstrap Wald tests and all 11, ;,, to decay to or be zero for the

bootstrap AR tests. We will come back to this point in Sections /-6 with more details.

Example 3.3 (Homogeneous Slope for the Endogenous Variable). Similar to Canay et al. (2021),

"We note 11, ;,», and I1,, ; » depend on the sample size because the underlying distribution is indexed by n.

12



we are unable to allow for [ to be heterogemeous across clusters. As a stylized example, let

Yij = X,Ijﬁ] + VVZ‘J‘ + €4, (13)

where W, ; is just the cluster dummies. For [ equal to weighted average of B;’s, we may rewrite

(13) as (1) with ;5 = X;';(8; — B) + €;j, which implies

1 ~ 1 _
N > Zieiy = NG > (Ziy = Z)(X5 (85— B) + eiy).

i€ln,; i€ln,;

We then see that Assumption 1(2) is violated unless B; = f3.

Example 3.4 (Difference-in-Difference and Cluster Randomization). The Wald tests are unable
to allow for cluster-level IVs, which usually occur for difference-in-difference analysis and cluster
randomization with imperfect compliance. In those settings, the treatment status and assignments
are interpreted as our X; j and Z; ;, respectively, and they are different due to imperfect compliance.
Howewver, if the cluster is assigned as a control group, then all Z; ;’s for such a cluster take value 0.

When Z; ; is invariant within some cluster jo, then Zi joE€ijo must be degenerate under

1

o™ Z’ieln,jo
Assumption 1(i), which violates Assumption 1(ii). Following the suggestion by Canay et al. (2017)
and Canay et al. (2021), it is possible to merge treated and control clusters to form a more coarse

cluster.

Example 3.5 (Cluster-level Endogenous Variables). If X, ; is a cluster-level variable (say, X;), then
the resulting within-cluster limiting Jacobian matriz Q) Zx,j May be random and potentially correlated
with the within-cluster score component Z; as X; is endogenous, which violates Assumption 2(i).
We notice that similar issues can arise for the approaches by Bester et al. (2011), Hwang (2021),
IM, and CRS. Our wild bootstrap AR tests (AR, and ARcr.n) only requires Assumption 1 but not

Assumption 2, and then, remain valid.

Example 3.6 (Interacting IVs with Cluster Dummies). We require the IVs Z; j to be the baseline
instruments which are not interacted with cluster dummies. In fact, the condition that Z; have full
rank covariance matrices in Assumption 1(ii) rules out the case in which Z;; are constructed by
interacting the baseline I'Vs with the cluster dummies. To see this, we consider the simplest case

that W; j only contains the intercept and Z; ; is constructed as the interactions of a scalar baseline
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IV 2 ; with cluster dummies. Then, for the last cluster (the g-th cluster), we have

\/2_(] ig;q Zi,qgi,q = \/Ln_q ig;q(—&?ﬁim T _fq—lzq—lsi,qa (Zig — gqiq)gi,q>—ra
where Z; = % Ziejn}j Z. ;. Clearly, \/% Dietn, Z,qem is linearly dependent, which implies ¥, is
degenerated, and thus, Assumption 1(ii) is violated.

We notice that Abadie et al. (2019) interact the baseline IVs with subgroup dummies such as
those for states, gender, or race. However, Abadie et al. (2019) use an analytical covariance matriz
estimator for independent and conditionally homoskedastic observations for inference. In contrast,
as we allow for heteroskedasiticity and are agnostic about the within-cluster dependence, it is dif-
ficult, if not impossible, to derive a consistent estimator of the covariance matriz in our setting
without imposing additional restrictions. Instead, following the lead of Canay et al. (2021), we rely
on the connection between the wild bootstrap and the randomization test to avoid the consistent

estimation of the covariance matriz. Assumption 1(ii) is crucial for such a connection to hold.

4 Asymptotic Results for the Wald Tests without CCE

For the Wald test, we further assume the following assumption.

Assumption 3. (i) Q3 is of full column rank.
(i) One of the following two conditions holds: (1) d, = 1, and define a; = Q_IQEXQ;ZVQ'ZXJ:

where () = QEXQ;Z”QZ)U or (2) there exists a scalar a; for each j € J such that Qzx ; = a;Qz.

Several remarks are in order. First, Assumption 3(i) requires (overall) strong identification for
Bn- Second, Assumption 3(ii)(1) states that if there is only one endogenous variable, no further
restrictions are required as we can always define a scalar a; = Q_ngxQ;ZQZXJ when d, = 1.
A single endogenous variable is the leading case in empirical applications involving IV regressions.
For example, 101 out of 230 specifications in Andrews et al. (2019)’s sample and 1,087 out of
1,359 in Young (2021)’s sample has one endogenous regressor and one IV. Lee, McCrary, Moreira,
and Porter (2021) found that among 123 papers published in AER between 2013 and 2019 that
include IV regressions, 61 employ single instrumental variable (just-identified) regressions. They
pointed out that the single-IV case “includes applications such as randomized trials with imperfect

compliance (estimation of LATE, Imbens and Angrist (1994)), fuzzy regression discontinuity designs

14



(see discussion in Lee and Lemieux (2010)), and fuzzy regression kink designs (see discussion in Card,
Lee, Pei, and Weber (2015))”. Angrist and Kolesar (2021) also pointed out that “most studies using
IV (including Angrist (1990) and Angrist and Krueger (1991)) report just-identified IV estimates
computed with a single instrument”.® In addition, Assumption 3(ii)(1) further allows for the case
of single endogenous regressor and multiple IVs. Third, Assumption 3(ii)(2) is needed if we have
multiple endogenous variables. The condition is similar to that in Canay et al. (2021, Assumption
2(iii)), which restricts the type of heterogeneity of the within-cluster Jacobian matrices. However,
it is still weaker than restrictions assumed in the literature for cluster-robust Wald tests under a
small number of clusters. For example, Bester et al. (2011) and Hwang (2021) provide asymptotic
approximations that are based on ¢t and F' distributions for the Wald statistics with CCE. The
conditions in their papers require the within-cluster Jacobian matrices to have the same limit for
all clusters (i.e., Assumption 3(ii)(2) to hold with a; = 1 for all j € J).® They also impose that
the cluster sizes are approximately equal for all clusters and the cluster-level scores in Assumption
1(ii) have the same normal limiting distribution for all clusters, which are not necessary for the wild
bootstrap. Finally, Assumption 3 will not be needed for the bootstrap AR tests in Section 6, as
they require neither strong identification nor homogeneity conditions.

To further clarify our setting, we can relate the Jacobian matrices with the first-stage projec-
tion coefficient. Specifically, recall 1I, ;,, is the coefficient of Z;; via the cluster-level population
projection of X;; on Z;; and W; ;. Then, we have lim, . II, ;, = II, ; := Q;Z]QZXJ under our
framework. Also define II, = Q;ZVQ sx- Assumption 3(i) ensures that overall we have strong iden-
tification as @z (and II.) is of full column rank. Furthermore, we call the clusters in which @ 7X.
(and II, ;) are of full column rank the strong clusters, i.e., 3, is strongly identified in these clusters.
On the other hand, strong identification for £, is not ensured in the rest of the clusters. Given
the number of clusters is fixed, only one strong cluster is needed for Assumption 3(i) to hold. Two
additional remarks are in order for the case with multiple endogenous variables: (1) Assumption
3(ii)(2) implies that when a; # 0, Q3 ; (and IL, ;) is of full column rank, so that the j-th cluster
is a strong cluster, and (2) Assumption 3(ii)(2) excludes the case that @z ; is of a reduced rank
but is not a zero matrix. It is possible to select out the clusters with Jacobian matrices of reduced

rank (Robin and Smith, 2000; Kleibergen and Paap, 2006; Chen and Fang, 2019). We leave this

8In our empirical application, we revisit the influential study by Autor et al. (2013), which also has only one IV.
°E.g., see Bester et al. (2011, Assumptions 3 and 4) and Hwang (2021, Assumptions 4 and 5) for details.
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investigation for future research.

*

vg cquals A, and ||f1r — Ap||lop = 0p(1), where A, is a d, x d, symmetric

Assumption 4. Suppose A
deterministic weighting matriz such that 0 < ¢ < Apin(4Ar) < Aae(Ar) < C < oo for some
constants ¢ and C', Apin(A) and Anax(A) are the minimum and mazimum eigenvalues of the generic

matriz A, and ||Al|,, denotes the operator norm of the matriz A.

Assumption 4 requires the weighting matrix A, in (4) has a deterministic limit and the bootstrap
weighting matrix flth in (8) equals A,. It rules out the case that A, equals the inverse of CCE,
which has a random limit under a small number of clusters. We will discuss the bootstrap Wald

test with CCE in Section 5.

Theorem 4.1. Suppose that Assumptions 1-4 hold. Then under Ho, for all four estimation methods
(namely, TSLS, LIML, FULL, and BA),

1 L . . . 1
a—o 7 < liminf P{T,, > ¢,(1 — @)} < limsupP{7T,, > ¢,(1 —a)} < a+

2 n—00 n—so0 2¢—1°

Several remarks are in order. First, Theorem 4.1 states that as long as there exists at least one
strong cluster, the T,,-based wild bootstrap test has limiting null rejection probability no greater
than a+1/2971 and no smaller than a—1/29"1. The error 1/297! can be viewed as the upper bound
for the asymptotic size distortion, which decreases exponentially with the total number of clusters
rather than the number of strong clusters. Intuitively, although the weak clusters do not contribute
to the identification of 3,, the scores of such clusters still contribute to the limiting distributions of
the IV estimators, which in turn determines the total number of sign changes in the bootstrap Wald
statistics. We note that 1/297! equals 1.56% and 0.2% when ¢ = 7 and 10, respectively. If such an
distortion is still of concern, researchers can replace « in our context by o — 1/297! to ensure null
rejection rate.

Second, the wild bootstrap test has resemblance to the group-based t-test in Ibragimov and
Miiller (2010, hereafter IM) and the randomization test with sign changes in Canay et al. (2017,
hereafter CRS). However, we notice that for IV regressions, the size properties of the two approaches
can be rather different from that of the wild bootstrap. More specifically, IM and CRS approaches
separately estimate the parameters using the samples in each cluster (say, 317 e Bq), and therefore

requires (3, to be strongly identified in all clusters. This would rule out weak clusters in the sense of
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Staiger and Stock (1997), where II, ;,, has the same order of magnitude as n;1/2.10 In contrast, the
size result in Theorem 4.1 holds even with only one strong cluster, and the wild bootstrap is thus
more robust to cluster heterogeneity in IV strength. On the other hand, if 5, is strongly identified
in all clusters and the cluster-level IV estimators have minimal finite sample bias, IM and CRS
have an advantage over the wild bootstrap when there are multiple endogenous variables as they
do not require Assumption 3(ii). The two types of approaches could therefore be considered as
complements, and practitioners may choose between them according to the characteristics of their
data and models.

Third, it is well known that estimators such as LIML and FULL have reduced finite sample
bias relative to TSLS in the over-identified case, especially when the IVs are not strong. Since the
validity of the randomization with sign changes requires a distributional symmetry around zero, the
LIML and FULL-based bootstrap Wald tests may therefore achieve better finite sample size control
than that based on TSLS. This is confirmed by the simulation experiments in Section 7.t

We next examine the power of the wild bootstrap test against local alternatives.

Theorem 4.2. Suppose that Assumptions 1-4 hold. Further suppose that there exists a subset J
of J such that a; > 0 for each j € J5, a; =0 for j € J\Js, and [|G|(1 — )] < |G| — 29T where
|G| =29, ¢ = |Jy|, and a; is defined in Assumption 3. Then under Hi,, for all four estimation
methods (namely, TSLS, LIML, FULL, and BA),

lim liminf P{7,, > ¢,(1 —a)} = 1.

llnll2—00 n—00

Two remarks are in order. First, to establish the power of the T,-based wild bootstrap test
against n~'/2-local alternatives, we need homogeneity of the signs of Jacobians for the strong clusters
(i.e., a; > 0 for each j € J;). For example, in the case with a single IV, it requires II, ; to have the
same sign across all the strong clusters. We notice that this condition is not needed for the bootstrap
Wald test described in Section 5. Second, we also need a sufficient number of strong clusters. For

instance, if ¢ equals 10, then |G| = 1024 and the condition [|G|(1 — a)] < |G| — 297%T! requires

10The cluster-level IV estimators of such weak clusters would become inconsistent and have highly nonstandard limiting
distributions. Also, if there exist both strong and “semi-strong” clusters, in which the (unknown) convergence rates of IV
estimators can vary among clusters and be slower than y/n; (Andrews and Cheng, 2012), then the estimators with the slowest
convergence rate will dominate in the test statistics that are based on the cluster-level estimators.

To theoretically document the asymptotic bias due to the dimensionality of IVs, one needs to consider an alternative
framework in which the number of clusters is fixed but the number of IVs tends to infinity, following the literature on
many/many weak instruments (Bekker, 1994; Chao and Swanson, 2005; Mikusheva and Sun, 2022). We leave this direction
of investigation for future research.
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that g, > 5 and ¢, > 6 for « = 10% and 5%, respectively. Theorem 4.2 suggests that although
the size of the wild bootstrap test is well controlled even with only one strong cluster, its power

depends on the number of strong clusters.

5 Asymptotic Results for the Wald Tests with CCE

Now we consider a wild bootstrap test for the Wald statistic with CCE when the weighting matrix
AT,CR, the inverse of the CCE, is defined as

-1

i 55 5 _A-1AT A-10._ _A-1A. A1 A_AT A-1A
dron=(MVxs) . V=0"0L,0;500r@;50,xQ7" . Q=0L,Q54Q7 (1)
QCR =nt Zjej Zielm Zkeln,]- Zi,jZ]Ijéi,jék,jy and &, ; is the unrestricted residual defined in (6).

The corresponding Wald statistic with CCe is denoted as

TCR,n = ||\/ﬁ()‘—BI—B - )‘O)HAT,CR'

To obtain wild bootstrap critical value for the Wald statistic with CCE, the bootstrap weighting

matrix /Al:’cpwg in (8) is defined as

1 ~ ~ ~ ~ ~

Ceng = (M) W = Q05 (0Q55 00,0505, (0005, (19)

where for L € {tsls, liml, full, ba},

7T A* Ak Nk *T
CRg Z Z Z Z Zk] i,j >5k,j(g)v QZ E E ZJX
]EJ i€ln 5 k€ly ; JEJ icl,

~

&) =ui;(9) — X1 (@B, — Wi, and Q) = Q3L (9)Q5EQ%,(9). (16)

Then, we denote the corresponding bootstrap Wald statistic with CCE as

T al9) = IV B = Mol

and the bootstrap critical value ¢crn(1 — @) as the 1 — a quantile of {T¢g,(g) : g € G}. Unlike
the Wald statistic without CCE considered in the previous section, here we need to bootstrap the
weighting matrix because under our asymptotic framework with a small number of clusters AT,CR

has a random limit, which depends on the limits of the scores and the IV estimators (B VL)
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Theorem 5.1. Suppose that Assumptions 1-3 hold, and q > d,.. Then under Hgy, for all four
estimation methods (namely, TSLS, LIML, FULL, and BA),

1 .. N
v < h,{g}i}fp{TCRm > ¢opn(l —a)}

<limsup P{Tcrn > Corn(l —a)} < a+

We require ¢ > d, because otherwise CCE and its bootstrap counterpart are not invertible.
Theorem 5.1 states that with at least one strong cluster, the T¢ g ,-based wild bootstrap test controls

size asymptotically up to a small error. Next, we turn to the local power.

Theorem 5.2. (i) Suppose that Assumptions 1-3 hold, and q > d,.. Suppose that there exists a subset

Js of J such that minjey, |a;| > 0, a; = 0 for each j € J\J;, and [|G|(1—a)] < |G| —29"%+1 where

|G| =29, q; = |Js|, and a; is defined in Assumption 3. Then under Hi,,, for all four estimation

methods (namely, TSLS, LIML, FULL, and BA),

lim liminf P{Tor, > éopa(l —a)} = 1.

llull2—00 n—ro00

(11) Further suppose that d, = 1. Then under H,, for any e > 0, there exists a constant ¢, > 0

such that when ||p|l2 > ¢,

liminf P(¢;" > ¢,,) > 1 —e,

n—o0
where ¢ = 1{Tepn > corn(l —a)} and ¢, = {1}, > ¢,(1 —a)}.

Several remarks are in order. First, different from Theorem 4.2, the power result in Theorem 5.2

does not require the homogeneity condition on the sign of first-stage coefficients for the strong clus-

ters (i.e., it only requires minje ;, |a;| > 0). Such difference originates from certain good property of
¢orn(1—a). More precisely, although both 7T}, and T g, diverge as ||x||2 — 00, their corresponding
bootstrap critical values have different behaviors, with é,(1 —a) — oo while éop,(1—a) = O,(1),
which translates into relatively good power properties of the bootstrap Wald test with CCE. The
behaviours of the test statistics and their bootstrap critical values under the distant alternative are
summarized in Table 1.

Second, we further establish in Theorem 5.2(ii) that in the case of a t-test (i.e., when the null

hypothesis involves one restriction), the rejection of the Topg ,-based bootstrap test dominates that

based on T, with large probability under the distant alternative. Intuitively, we have imposed
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the null when generating the bootstrap pseudo-data, making £;,(g) and, subsequently, AEV/;AB
dependent on p. Therefore, although \\/ﬁ()\gﬁ;‘ — [o)| diverges to infinity when ||pu||2 — o0, Agf/g* Y
also diverges so that ¢cp,(1 — a) remains bounded in probability. Now, let écgn(1 — a) denote the
(1 —«) quantile of {y\/ﬁ(AgB; — )|/ AV g € G} , in which [\/n(\} B: — Xo)| is studentized
by the original CCE instead of the bootstrap CCE, and notice that 1{7T},, > ¢,(1 —a)} = I{Tcrn >
¢orn(l — a)}. The result of Theorem 5.2(ii) follows since \/)\EV)\[; does not diverge with ||u||2 so
that ¢orn(l —a) > ¢orn(l — «) with large probability as ||x||2 becomes sufficiently large.

Third, these power properties carry over to the linear regression model and the (single-equation)
wild bootstrap procedure studied by Canay et al. (2021), as linear regression with exogenous re-
gressors is a special case of the IV regression.

Test Statistics  Bootstrap Critical Values

Wald Tests T, 25 o én(1—a) 2 00
TeRrn — 00 éorn(l —a) = 0,(1)
AR Tests AR, & 00 Carn(l —a) L0

ARcrn = Op(1)  Carcrn(l —a) = Oy(1)

Table 1: Test Statistics and Bootstrap Critical Values under Distant Alternatives
Note: This table summarizes the properties of the Wald and AR statistics and bootstrap critical values when the assumptions
in Theorems 5.2(i) and 6.2 hold. T, and Tcr,» denote the Wald statistics without and with CCE, respectively, and &, (1 — «)
and écr,n(l — o) denote their corresponding bootstrap critical values. AR, and ARcr,» denote the AR statistics without

and with CCE, respectively, and éar,n(1 — ) and éar,cr,n(1 — @) denote their corresponding bootstrap critical values.

6 Asymptotic Results for AR Tests

The size control of the bootstrap Wald tests with or without CCE relies on Assumption 3(i), which
rules out overall weak identification in which all clusters are weak. In the case that the parameter
of interest may be weakly identified in all clusters, we may consider the inference on the full vector
of 3,. In this section, we consider bootstrap AR tests, with or without CCE, as defined in Section

2.3.2.

~

Assumption 5. ||A, — A.||op = 0,(1), where A, is a d, x d, symmetric deterministic weighting

matriz such that 0 < ¢ < Apin(A,) < Anae(4,) < C < 00 for some constants ¢ and C.

Theorem 6.1 below shows that, in the general case with multiple IVs, the limiting null rejection
probability of the AR,-based bootstrap test does not exceed the nominal level «, and that of the

ARcR., test does not exceed o by more than 1/297! when ¢ > d., irrespective of IV strength.
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Theorem 6.1. Suppose Assumption 1 holds and B, = By. For AR, further suppose Assumption
5 holds. For ARcp.y, further suppose ¢ > d,. Then,
1 . .
a— — <liminf P{AR,, > ¢spn(l — )}
2q—1 n—00 ’

<limsupP{AR,, > ¢apn(l — )} < «, and

n—o0

1
o — q_ < liminf]P’{ARCRm > éAR,CR,n(l — C()}

2 -1 n—o00
1
< lim sup ]PD{ARCR’H > éAR,CR,n(l — Oé)} <a+ 991
n—0o

Several remarks are in order. First, for the bootstrap AR test studentized by CCE, we require
the number of IVs to be smaller than the number of clusters because otherwise, the CCE may not
be invertible. Second, the behavior of wild bootstrap for other weak-IV-robust statistics proposed
in the literature is more complicated as they depend on an adjusted sample Jacobian matrix (e.g.,
see Kleibergen (2005), Andrews (2016), Andrews and Mikusheva (2016), and Andrews and Guggen-
berger (2019), among others). Further complication therefore arises when all the clusters are weak.
For example, with few clusters this adjusted Jacobian is no longer asymptotically independent from
the score. In Appendix S.H, we establish the validity of wild bootstrap for these statistics with at
least one strong cluster. Third, for the weak-IV-robust subvector inference, one may use a projec-
tion approach (Dufour and Taamouti, 2005) after implementing the wild bootstrap AR tests for 3,,
but the result may be conservative. Alternative subvector inference methods (e.g., see Section 5.3 in
Andrews et al. (2019) and the references therein) provide a power improvement over the projection
approach under the framework with a large number of observations/clusters. However, it is unclear
whether they can be applied to our setting with a small number of clusters.'?

Next, to study the power of the AR, -based bootstrap test against the local alternative, we let

Ag = 14, for H;,, in (2) so that p = ug, and we impose the following condition.
Assumption 6. (1) Q5 # 0. (ii) There exists a scalar a; for each j € J such that Qz ; = a;Qzx-

If d, = d. = 1, Assumption 6(i) implies strong identification. When d, > 1 or d, > 1,
Assumption 6(i) only rules out the case that Q)5 is a zero matrix, while allowing it to be nonzero

but not of full column rank. As noted below, this means the AR test can still have local power in

121t is unknown whether the asymptotic critical values given by these approaches will still be valid with a small number of
clusters. Also, Wang and Doko Tchatoka (2018) point out that bootstrap tests based on the subvector statistics therein may
not be robust to weak IVs even under conditional homoskedasticity.
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some direction even without strong identification. Assumption 6(ii) is similar to Assumption 3(ii).

In particular, it holds automatically if d, = d, = 1 and Assumption 6(i) holds.

Theorem 6.2. Suppose Assumptions 1, 5, and 6 hold. Further suppose that there exists a subset
Js of J such that minjc; a; > 0, a; = 0 for each j € J\J;, and [|G|(1 —a)] < |G| —29"%* 1 where
qs = |Js| and a; is defined in Assumption 6. Then, under Hy,, with \g = I4,,

lim liminf P{AR,, > ¢apn(l —a)} =1

IQzx ull2—00 n—o0

Two remarks are in order. First, notice that the bootstrap AR test not studentized by CCE
has power against local alternatives as long as ||Qzy |l — oo, which may hold even when /3,
is not strongly identified and @)z, is not of full column rank. Second, when d. = 1, we have
I{AR, > Capn(l1 — @)} = 1{ARcRrn > ¢arcrn(l — @)}, which implies the AR,, and ARcg .-
based bootstrap tests have the same power against local alternatives. However, such a power
equivalence does not hold when d, > 1. Indeed, unlike the Wald test with CCE in Section 5, we
cannot establish the power of the AR statistics with CCE for the general case. More specifically,
for the Wald statistic Tcr,, we compute its CCE with the estimated residual &; ;, which causes
the Wald CCE to be bounded in probability under the local alternative, and thus, the statistic
Tery to diverge with the local parameter . On the other hand, we need to impose the null to
compute CCE for ARcg,,, which implies that the test statistic is bounded in probability even when
p diverges. Therefore, our proving strategy for the power of Txg,, cannot be applied to ARcpg .
Table 1 summarizes the properties of the AR statistics and their corresponding bootstrap critical
values when the assumptions in Theorem 6.2 hold. Indeed, consistent with the theoretical difference
mentioned above, we observe in Section 7 that the ARcg,-based bootstrap test has inferior finite
sample power properties compared with its AR,-based counterpart. Furthermore, Table 1 also
suggests that the bootstrap Wald test studentized with CCE has power advantage over the other
tests under strong identification.

Next, we show that in the specific case with one endogenous regressor and one IV (i.e., d, = 1
and d, = 1), if the wild bootstrap procedure described in this section is applied to the unstuden-
tized Wald statistic T},, then the resulting test will be asymptotically equivalent to the AR,,-based
bootstrap test, both under the null and the alternative. More precisely, for T, = |[v/n(f — B,
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where B is the TSLS estimator, the wild bootstrap generates

T (g) Q; Z > giZigér) (17)

]EJ i€ly ;

Notice that in this case, the restricted TSLS estimator 4" and the restricted OLS estimator 4" are
the same, which implies the restricted residuals £ ; and &} ; defined in Sections 4 and 6, respectively,
are the same. Let ¢ (1 —a) denote the (1 —a)-th quantﬂe of {T*(g) } yec. We show this equivalence

result in Theorem 6.3.

Theorem 6.3. Suppose that d, = d, = 1, liminf,,_, P<©ZX #0) =1, B is the TSLS estimator,
and Assumption 1(iv) holds. Then,

liminf P{¢] = ¢} =1,

n—oo
where ¢f = 1{T,, > ¢£(1 — a)} and ¢*" = 1{AR,, > & (1 — a)}.

Several remarks are in order. First, with one endogenous variable and one IV, the Jacobian
matrix @ 7y 18 just a scalar, which shows up in both the Wald statistic 7}, and the bootstrap critical
value. After the cancellation of @ Zy» In and its critical value are numerically the same as their
AR counterparts, which leads to Theorem 6.3. Second, for @ZX to be cancelled, we only need
lim inf,,_, P{@ZX # 0} = 1, which is very mild. It holds when at least one of Z; and X;; is
continuously distributed. Even when both Z; and X, ; are discrete, it still holds if there exists at
least one strong cluster, i.e., @7y # 0, where Q)7 is the probability limit of @ZX When both
Z-,j and X;; are discrete and ()7, = 0, this condition can still hold. For example, some type
of CLT may still hold such that vnQzy —— N(c,0?). As N(c,0?) is continuous, the condition
still holds. Third, the robustness of the T),-based bootstrap test in (17) does not carry over to the
general case with multiple IVs as T}, and its bootstrap statistic can no longer be reduced to their AR
counterparts. Fourth, the robustness to weak IV cannot be extended to the T ,,-based bootstrap
test, for which we have to further bootstrap the CCE.

In Section S.A in the Supplement, we further show that our inference procedure allows for
cluster-level exogenous variables in W; ;, which are invariant within each cluster, and that our
procedure allows for the error-component model in (10). We also explain why our assumptions rule

out the cases with cluster-level variables in IVs and fully-interacted IVs, which are constructed by
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interacting the base IVs with all the cluster dummies.

7 Monte Carlo Simulation

In this section, we investigate the finite sample performance of the wild bootstrap tests and alterna-
tive methods. We consider a simulation design similar to that in Section IV of Canay et al. (2021)

and extend theirs to the IV model. The data are generated as
Xij =9+ Z ML+ 0(Zij) (av; +vig), %ijg =7+ XijB+0(Zij) (ac;+ i),

fori=1,..,nand j =1, ...,¢q. The number of clusters ¢ equals 10, and the cluster size n; is set to
be 50 for j =1, ..., 5, and 25 for 7 = 6, ..., 10, respectively. The total sample size n therefore equals
375.1% The disturbances (g, ;,v;;), cluster effects (a.j,a,;), IVs Z;;, and o(Z; ;) are specified as

follows:
(eijiuij) | ~ N(0,I), vij=pei;+ (1—p") " u , (acj, au;)" ~ N0, ),
2
;= pac;+ (1 —p)2a,;, Zij~N(0,1;), and of (ZZJ k> ,

where I, is the d, xd, identity matrix, Z; ; » denotes the k-th element of Z; ;, and p € {0,0.1,0.2,---,0.9,0.99}
corresponds to the degree of endogeneity. We let W ; be just all the cluster dummies and the first-

stage coefficients I1, ; = (Ily/\/d, ..., Ilo/v/d,) " for j = 1,...,5, while IL, ; = 0.5-(Ily/v/d., ..., Ilo/+/d,) "

for j =6, ...,10, with II, € {0.5,1,2}. Such a DGP satisfies our Assumptions. Specifically, we have

Z’j L Zlel Z; j and —= W D el Z; 0(Z; j)(a.j+¢€; ;) is asymptotically normal conditional

onae;. The number of Monte Carlo and bootstrap replications equal 5,000 and 500, respectively.

The nominal level « is set at 10%. The values of 5 and v are set at 0 and 1, respectively. For T,

13We also did simulations with homogeneity in within-cluster sample size and IV strength (e.g., n; = 50 and same II, ; for
all 7), and the patterns are similar to those reported here. Results are omitted for brevity but are available upon request.

"This is because (\/% Zieln y Zij (Zdz ZEJ k) [\/%—] Zieln‘j Ziyj] [% Zielnd (Zdz Zl2j k)} ) \/%—J Zie[ Zij (Zdz Zz s k) Eiyj)

are jointly asymptotically normal given (a.,;)jes. Then, we have

1 ~
Z Zi.j0(Zij)(ae,; +€i5) =

0 (Zis)(aes - : 72 Z; z;
\/777. iejn_’j , ! zEIn i ? (Z , k) ’LEIZHJ 7 <Z 7 k)
1 a
— Zi,' . ZZ +
[fz 15 2 ()| oo

which is asymptotically normal given (ac ;)jes.
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and AR, we set the weighting matrices A, =1and A, = 1y,

Figure 1 reports the null empirical rejection frequencies of the tests that are based on the IV
estimators, including the 7, and T¢g,-based wild bootstrap procedures, the group-based t-tests
of IM, and the randomization tests of CRS. The results of the tests are based on TSLS when
d, = 1, and we further report the results based on TSLS, LIML, and FULL when d, = 3. Following
the recommendation in the literature, we set the tuning parameter of FULL to be 1.} Several
observations are in order. First, in general size distortions increase when the IVs become weak, the
degree of endogeneity becomes high, or the number of IVs becomes large. Second, IM and CRS
tests with LIML or FULL show a substantial size improvement over their counterparts with TSLS,
as these tests are based on cluster-level estimates (i.e., we run the cluster-by-cluster IV regressions),
which could produce serious finite sample bias if TSLS is employed for the over-identified cases.
Similarly, the LIML or FULL-based bootstrap tests, no matter studentized or unstudentized, show a
size improvement over their TSLS-based counterparts. Third, overall the wild bootstrap procedures
compare favorably with the alternatives, and the unstudentized bootstrap Wald tests (7},) have the
smallest size distortions across different settings of IV strength, degree of endogeneity, and number
of IVs. In particular, the size control of the T},-based tests with LIML or FULL remains excellent
when the degree of over-identification increases.

Figure 2 reports the null rejection frequencies of AR tests, including the ARcp ,-based asymp-
totic tests, which reject the null when the square of the corresponding test statistic exceeds Xflz’lfa,
the 1—a quantile of the chi-squared distribution with d, degrees of freedom. Additionally, it reports
the rejection frequencies of the wild bootstrap AR tests in Section 6 that are based on AR,, and
ARcp p, respectively. We notice from Figure 2 that ARcr ,-based asymptotic tests control the size
but under-reject in the over-identified cases (d. = 3).'°® By contrast, the bootstrap AR tests always
have rejection frequencies very close to 10%.

Figure 3 compares the power properties of the wild bootstrap tests. For the Wald test, we focus
on LIML and FULL estimators as they have better size control than their TSLS counterparts in the

over-identified case. We also include the ARcr,-based asymptotic test to compare its power with

5Tn this case FULL is best unbiased to a second order among k-class estimators under normal errors (Rothenberg, 1984).
16The null rejection probabilities of the AR¢ R,n-based asymptotic test decrease toward zero when d. approaches ¢. When
d is equal to g, the value of ARcr,» will be exactly equal to d. (or g), and thus has no variation (for f = (fl, . fq)T and
fi=nt Zieln i fij, ARCcRn = L;f (Ff)_l flg = LqTLq = d. as long as f is invertible, where 1, denotes a g-dimensional

vector of ones). By contrast, the AR,-based bootstrap test works well even when d. is larger than q.
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Note: “WB-US” (solid line with circle), “WB-S” (dashed line with star), “IM” (dotted line with upward-pointing triangle),
and “CRS” (dash-dotted line with downward-pointing triangle) denote the T, and T¢r,»-based wild bootstrap tests, IM tests,

and CRS tests, respectively.
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Note: “WB-AR-US” (solid line with circle) and “WB-AR-S” (dashed line with star) denote the AR,, and ARcg,n-based wild
bootstrap tests, while “ASY-AR-S” (dash-dotted line with downward-pointing triangle) denote the ARc r n-based asymptotic
tests, respectively.

those of the bootstrap AR tests. We let the number of IVs be 2, IT; € {1,2}, and p € {0.1,0.4,0.7}.17
First, overall the power ranking among the bootstrap tests is as follows (from the highest to the
lowest): (1) the bootstrap Wald tests with CCE, (2) the bootstrap Wald tests without CCE, (3)
the bootstrap AR tests without CCE, and (4) the bootstrap AR tests with CCE. Second, more
specifically, we notice that among the AR tests, the AR,-based bootstrap tests (the bootstrap AR
tests without CCE) have the highest power, followed by the ARcg ,-based bootstrap tests, which
is in line with our theoretical analysis in Section 6. The ARcg ,-based asymptotic tests have the
lowest power among the AR tests, which is in line with the under-rejections found for the over-
identified cases in Figure 2. Third, the T,-based bootstrap tests with FULL have remarkable power
advantage over those with LIML, especially when Il = 1. This may be due to the fact that FULL
has finite moments, and is thus less dispersed than LIML. Last, in line with our theory in Section

5, the T g ,-based bootstrap tests (the bootstrap Wald tests studentized by CCE) with both LIML

and FULL are more powerful than their T},-based counterparts and therefore may be preferred when

17Simulation results for other settings show similar patterns and are available upon request.
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denote the AR,, and ARcRr,n-based wild bootstrap AR tests, respectively.

identification is strong.

8 Empirical Application

In an influential study, Autor et al. (2013) analyze the effect of rising Chinese import competition

on US local labor markets between 1990 and 2007, when the share of total US spending on Chinese

goods increased substantially from 0.6% to 4.6%. The dataset of Autor et al. (2013) includes 722
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commuting zones (CZs) that cover the entire mainland US. In this section, we further analyze
the region-wise effects of such import exposure by applying IV regression with the proposed wild
bootstrap procedures to three Census Bureau-designated regions: South, Midwest and West, with
16, 12, and 11 states, respectively, in each region.'®

We let the outcome variable (y; ;) denote the decadal change in average individual log weekly
wage in a given CZ. The endogenous variable (X; ;) is the change in Chinese import exposure
per worker in a CZ, which is instrumented (Z; ;) by Chinese import growth in other high-income
countries.'” In addition, the exogenous variables (W; ;) include the characteristic variables of CZs
and decade specified in Autor et al. (2013) as well as state fixed effects. Our regressions are based
on the CZ samples in each region, and the samples are clustered at the state level, following Autor
et al. (2013). Besides the results for the full sample, we also report those for female and male
samples separately.

The main result of the IV regression for the three regions is given in Table 2, with the number of
observations (n) and clusters (¢) for each region. As we have only one endogenous variable and one
IV, the TSLS estimator is used throughout this section. We further construct the 90% bootstrap
confidence sets (CSs) constructed by inverting the corresponding T,,, Tery, and AR,-based wild
bootstrap tests with a 10% nominal level. The computation of the bootstrap CSs was conducted
over the parameter space [—10, 10] with a step size of 0.01, and the number of bootstrap draws is
set at 2,000 for each step.

We highlight the main findings below. First, the results in Table 2 suggest that there may exist
regional heterogeneity in terms of the average effect of Chinese imports on wages in local labor
markets. For instance, the TSLS estimates for the South and West regions equal —0.97 and —1.05,
respectively, while that for the Midwest region equals —0.025. That is, a $1, 000 per worker increase
in a CZ’s exposure to Chinese imports is estimated to reduce average weekly earnings by 0.97, 1.05,
and 0.025 log points, respectively, for the three regions (the corresponding TSLS estimate in Autor
et al. (2013) for the entire mainland US is —0.76). Second, only the effect on CZs in the South is
significantly different from zero at the 10% level under all the three wild bootstrap CSs, while the
effects on CZs in the other two regions are not. Third, we notice that the effect on West is only

significant under the studentized bootstrap Wald CS (the CS is [—1.22, —0.47]). Fourth, compared

8The Northeast region is not included in the study because of the relatively small number of states (9) and small number
of CZs in each state (e.g., Connecticut and Rhode Island have only 2 CZs).
19See Sections I.B and IIL.A in Autor et al. (2013) for a detailed definition of these variables.
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with that for the South, the wider CSs for the Midwest and West may be due to relatively weak
identification, which our bootstrap AR procedure is able to guard against. Table 2 also reports
the results for female and male samples. We find that across all the regions, the effects are more
substantial for the male samples. Furthermore, the effects for both female and male samples in
the South are significantly different from zero. Last, the studentized bootstrap Wald CSs have the
shortest length among the three types of CSs in most cases in Table 2, which is in line with our

power results in Section 5.

Gender  Region n q Estimate Unstud Wald CS Stud Wald CS Unstud AR CS

All South 578 16  -0.97 [1.71, -0.58] [1.61,-0.43]  [-1.70, -0.58]
Midwest 504 12 -0.025 [-0.69, 0.83] [-0.60, 0.75] [-0.69, 0.83]

West 276 11 -1.05 [-1.50, 0.25] [1.22,-0.47]  [-1.50, 0.24]

Female  South 578 16  -0.81 [-1.48, -0.41] [1.40, -0.26]  [-1.48,-0.41]
Midwest 504 12 0.024 [-0.64, 0.74] [-0.56, 0.67] [-0.64, 0.74]

West 276 11 -0.61 [-1.46, 0.74] [-0.91, 0.30] [-1.46, 0.75]

Male  South 578 16  -1.08 [-1.90, -0.65] [1.78,-0.53]  [-1.91, -0.65]
Midwest 504 12 -0.17 [-1.02, 0.80] [-0.86, 0.77] [-1.01, 0.82]

West 276 11 -1.26 [-1.99, 0.68] [-1.58, 0.42] [-2.00, 0.69]

Table 2: IV regressions of Autor et al. (2013) with all, female, and male samples for three US regions

9 Conclusion and Practical Recommendations

In this paper, we study the wild bootstrap inference for IV regressions in the framework of a
small number of clusters. For the Wald tests with and without CCE, we extend Davidson and
MacKinnon (2010)’s WREC bootstrap procedure to allow for the setting of few clusters and cluster-
level heterogeneity in IV strength. For the full-vector inference, we further develop wild bootstrap
AR tests that control size asymptotically irrespective of IV strength.

Our results have several important implications for applied works. First, if at least one of
the clusters is strong so that overall the structural parameters of interest are well identified, we
recommend the bootstrap Wald test studentized by CCE because of its superior power properties.
Second, for the over-identified case, instead of using the bootstrap Wald tests with TSLS, we
recommend to use those based on estimators with reduced finite sample bias such as Fuller’s modified
LIML estimator. Third, for the full-vector inference, if researchers are concerned that all clusters are
weak and thus would like to implement a weak-identification-robust procedure, then we recommend

the bootstrap AR test without CCE because of its power advantage over alternative AR tests that
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are studentized by CCE.

Appendices

Sections A and B contain the proofs of Theorems 4.1 and 5.2, respectively. The proofs of other results in the paper

are relegated to the Online Supplement.

Appendix A Proof of Theorem 4.1

Let S = R%*% x R% "% x @, ;R% x R and write an element s € S by s = (51,59, {53, : j € J}, s4) where

83,5 € R for any j € J. Define the function 7: S — R to be given by

T(s) = ‘ (18)

T (T-1
A3 (s1s5"s1) sl 55t g 83,j

jeJ 54

s, are invertible and let T'(s) = 0 otherwise. We also identify any (g1, ..., 9q) =

for any s € S such that sy and s{ s5
g € G = {—1,1}? with an action on s € S given by gs = (s1,52,{g;s3,;:j € J},s4). For any s € S and G’ C G,
denote the ordered values of {T'(gs) : g € G’} by T (s|G*) < ... < TUED(5|G?). In addition, for any G’ C G,
denote the ordered values of {T*(g) : g € G’} by T;(l)(G’) <...< T;‘ZUG’D(G’).

Given this notation we can define the statistics S,,, §n €S as

~ ~ 1 ~ ) R ~ . R
So=|Qzx,Qz7 ﬁzzi,jei,j:JeJ AL Su=|Qzx.Q52 IZZJE jedy A,

i€ly i€l

Let E,, denote the event E,, = I {@ 5 is of full rank value and @ 57 18 invertible} , and Assumptions 2-3 imply
that liminf, ,o P{E, =1} = 1. Also let T}*(¢9) =0 if E,, = 0.
We first give the proof for the Wald statistic based on TSLS. Note that whenever E,, = 1 and H is true, the

Frisch-Waugh-Lovell theorem implies that

T - H\/> Aﬁﬁtals A0

where @ = @}:X@;Z@ZX and + € G is a ¢ X 1 vector of ones.

H \/>)‘,6 Btéls Bn

=T(S,), (19)

/\E@‘l Qéiz\f Z Zi,jii,j

JjeJ i€l, ;

r

In the following, we divide the proof into three steps. In the first step, we show

T (g) = T(gS,) + op(1) for any g € G. (20)
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In the second step, we show
T(9S,) = T(gS,) + 0,(1) for any g € G. (21)

In the last step, we prove the desired result.

Step 1. By the continuous mapping theorem, it suffices to show @*ZX (9) = @ZX + 0,(1). Note that

* ~ T
IR HOEFDID SEATE FEORL I
jEJZEIn] jEJlEInJ
Therefore, it suffices to show - D e, ; Z-yjf)i’j = 0,(1) for all j € J. Recall Z; ; is just Z” interacted with all the
cluster dummies and 1:[7 is the OLS coefficient of Z; ; defined in (7). Denote ﬁz ; as the j-th block of 1:[7, which

corresponds to the OLS coefficient of ﬁZ ;- We have

o o N S
— Z 0,05 = Z ( i Xij — ZijZ; 1z ; — ZiJ'Wi,ij) =Qzx,; —Qzz 1z, +op(1),  (22)

ZEIn] ’LGIn]

where the second equality in (22) holds by n—lj D ier, ; Z]WZTJ = 0,(1) and I, = O,(1). In particular,
~ ~ ~ ~ o~ -1/, < ~ PPN
I, = (wa - QwéQéélQéw) (QWX - QWgQgélQéx) ;

) _ 1 wT _ 1 W, A A1 22 T . —
where Qi = 235, Sicr,  WiiWih Qe = 250y Sier, Wigéig, Qee = 2500, ey, €25, Wiy = Wi —
F Z”, and Fw] = @;Z]-QEWJ' Notice that by @ZW,J‘ = 0,(1), fw,j = 0,(1) so that

Qi = Quww +op(1). (23)
Similarly, we have
Qe = Qe +0p(1) = 0,(1), (24)

where the second equality follows from Q\Wé = 0 by the first-order condition of the k-class estimators. Furthermore,

Qzz > ¢ > 0 by Assumption 2(iii) and Qz > L T2 jes 2 where €; ; is the residual from the cluster-level

&2
i€1n ; 2L

projection of €; ; on W; ;. Therefore, QWW — QWéQé}lQéw = Qww +0,(1) by combining (23) and (24), and further
by Assumption 1(iv),

~ ~ ~ ~ —1
(wa - QmQé}ngw) = Op(1). (25)

Next, we define QZX,j = % Zielw Zi’inTj and recall QZZJ = 1 Zlel where X; ; = X; j — HTWM —

L]’

ﬁgéi,j, and II,, and II; are the OLS coefficients of W, ; and &, ;, 1respectlvely7 from regressing X; ; on (ZZ 0 WZT] i)

32



using the entire sample. Then, we have
T _ A1 A _A- A AT A. 7]l A1 A
My, =y Qzxs = Q55 Qzxy — QawyTlu = Qe 1| = Q5L Qe +0,(1),

where we use the facts that Q\ZWj = o0p(1), I, = O,(1), II; = Opy(1), and Q\Zéj = 0p(1). In particular,

II: = (@55 - @5W@{1}W@W§>_l (@5}( - @5W@§V1W@WX) )

A _TT 7o .. _ 0=l H-
€ij = Eij Fé,ijv and 'z j; = QZZ,;'QZ&J"

where Qzz = %ZjeJ Zieln,j 522,;'7 Qew = *ZjeJ EzeI,” i,j 1Tg7
Then, by using similar arguments as those for (23), (24), and (25), we obtain

N N . R R P —1
Qze = Qze + 0p(1), Qew = Qaw + 0p(1) = 0p(1), and (Q - Q= WQWV[/QW5> = 0,(1).

To see the last equality in (26), we note that

1
Z Z,]X ﬂtsls Bn - Z Z ,J Pytsls - ’7) = Op(l)a

J ie[w Jiel, g el J

where the last equality holds by Assumption 1(ii), Lemma S.B.3, and Lemma S.B.1. Plugging (26) into (22)

obtain the desired result that nlj Zieln,j Z’jﬂi’j = 0p(1).

Step 2. We note that whenever F,, = 1, for every g € G,

~ ~_ 1 ~_ n; Ar

T(gsn) - T(gSn) S ‘ )‘[—;EQ ! —ZJ:XQE%Z = Z ngz JX’L jf( 61&515) .

JEJ ZEInJ Ar
’ )\-BFQ ZXQZ; Z gJZ,jW,gf(7 ’Ytsls) R (27)

jer M er, J Ay

By Lemma S.B.3, we have
lim sup P ‘ A;@_l QZZ Z Z ng JW’J\f(’y Vists)| > e Ba=1p=0. (28)
nTreo jeJ 161 Ay
Note under both cases in Assumption 3(ii), we have Z]EJ &aj; =1 and

(29)

To-10T -1 —_ T
AsQ7 Q5 Q55Qzx ;= aj)s-
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Then, for any ¢ > 0, we have

A AT A 1 - R
5 plZ\TO-10T o=L N 1 7 X B S B, =1
lisolip ‘ ﬂQ ZXQZZ - n n; Z 95 4ij Z,j\/ﬁ(ﬁ Btsls) &
jeJ i€ly, ”
=limsupP < || Y &gjavn(A; B — Ay Biys)||  >eBn=1p =0, (30)
n—oo Ar

jeJ

where the last equality holds because /\EB{SZS = Ao under Hy.
Note that T(gS,) = T(gS,) whenever E, =0 as we have defined T'(s) = 0 for any s = (s1, 52, {s3;:j€J} s4)
whenever s, or s{ s, 's1 is not invertible. Therefore, results in (27), (28) and (30) imply (21).

Step 3. Note that by Assumptions 1, 2, 4, and the continuous mapping theorem, we have

Q\ZX7@ZZ’ % Z Zi,jf:i,j NS J ,/L« L (QZX’QZZ7{ ngj 1 j € J} ,Ar) = S, (31)

i€ly

where &; > 0 for all j € J by Assumption 1(iii). Therefore, we obtain from (20), (21), (31), and the continuous

mapping theorem that
(T(S0) AT (9) : g € G}) = (T(5).{T(9S) : g € G}).

For any = € R letting [2] denote the smallest integer larger than x and k* = [|G|(1 — )], we obtain from (19)
that

L{T > én(1—a)}t =1 {T(Sn) > T;;W)(G)} . (32)
Since liminf,,_, o P{E, = 1} = 1, we have

limsup P{T,, > ¢, (1 — «))} = limsupP{T,, > ¢,(1 — )); E,, = 1}

n— o0 n—0o0
< limsup P{T(S,) > T;*/(G); B, = 1} <P{T(S) > T*)(S|G)} < a +2"77,
n— oo

where the second inequality is due to the Portmanteau’s theorem. To see the last inequality, we note that for all
g€ G,P{T(gS) =T(—9¢S5)} =1, P{T(9S) =T(gS)} =0 for g ¢ {g,—g}, and under the null, T(¢S) has the same

distribution across g € G. Let |G| = 27. Then, we have

GIEWT(S) > T*)(51G)} =E S 1{T(98) > T*)(S|G)} < |G|~ k" +2,
9eG
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which implies

o2
IG[ IG]~ 207t

EHT(S) > T™)(S|G)} <1~

For the lower bound, first note that k* > |G| — 2 implies that o — 5;-1 < 0, in which case the result trivially

29—1

follows. Now assume k* < |G| — 2, then

lim inf P{7;, > &, (1 — a)} = liminf P{T(S,) > T )(G)} > P{T(S) > T*)(S|G)}

n—oo

> P{T(S) > T* *2(5|G)} + P{T(S) = T* +2(5|G)} > a — =

where the first equality follows from (32), the first inequality follows from Portmanteau’s theorem, the second
inequality holds because P{T**2)(S|G) > T (S|G)} = 1 for any integer z < |G| — 2 by (18) and Assumption 1,
and the last inequality follows from noticing that k* +2 = [|G[((1 — a) +2/|G|)] = [|G|(1 — /)] with o/ = o — 5+
and the properties of randomization tests.

Lemma S.B.1 and S.B.2 in the Supplement further show the other k-class estimators and their null-restricted

and bootstrap counterparts are asymptotically equivalent to those of the TSLS estimator. Therefore, the results for

LIML, FULL, and BA estimators can be derived in the same manner. ll

Appendix B Proof of Theorem 5.2

For the power analysis, we focus on the TSLS estimator. The results for other k-class estimators can be derived in

the same manner given Lemma S.B.2. Recall a; defined in Assumption 3. We further define

Torso(9) = [A5Q | D 9iVE;Zi | +cogn : (33)
JjeJ Arcrg

where Q = Q_ngX ;Zn Q= Q—ZFXQEZQZX7 0,9 = D jey 9505, and

-1

ies & (M Q (925 - V8 Y VE9:25] +VEi9; — cogdasn
- T
X {AEQ [gjzj —a;vVE ey \/539333] +VE;(g;5 — Co,g)aj,u}

AnCR,g =

We order {Tcr,(9)}gec in ascending order: (TCR’OO)(l) < <L (TCR’OO)|G|. In the proof of Theorem 4.2, we have

already shown that, under H; ,,

\/ﬁ<)‘gétsls - )‘0) L Z [\/EA,—BFQZJ} + Hy \/H()‘;B:sls,g - )‘0) L> Zg] [\/EAEQZJ] + Co’g/J/.

JjeJ jeJ

35



Next, we derive the limit of A, cr and fljc R,g- We first note that

1 ~ 1 ~ R
% Z Z; i€ = % Z Zij [Ei,j - XZj(ﬂtsls Bn) — ”(’Ytsls - ’)’)]
€1y, i€1y
Z Z,Jat,j gJQZXj\/H(Btsls_ﬁn)‘Fop(l)
ZEI71 Jd
1 ~
2%“; i,7€i,5 — é-JQZX] 1szQ Z\flg ij Z]+0p( )
n,j jeJ
5 VGZ — §Q7x,Q7 Q71 Q55 Do /GE + 0n(1)
JjEJ

where the first equality holds by Lemma S.B.3. This implies

T
Qor ==& | 2 - VfJQZXJQZ\/ j = \/fJQZXJ‘QZ\/fiZE ;
jed jeJ jeJ
AT,CR L> Ar,CR,m and TCR,n L) TCR,OO(L),
where ¢ is a ¢ X 1 vector of ones. Similarly, we have
Z Zijéi;
Ze]rl \d
1 - AT * Ak AT
= ﬁ Z Zi;j |:gj€i,j - XiJT(g)(ﬁtsls g ﬁtsls) - (’Ytsls .9 7tsls)j|
i€l ;
gj 7 oar A * A% ar
= T 2 Lty = 6@ JOVRBieg = i) + 0n(1)
icl, ;
. g] Z AN \/> ar A~ f Q% ar 1
- ﬁ Z 1,54, — gjngZX,j n(ﬂtsls = Bn) — ngZX,j n(ﬂtsls,g - ﬂtsls) + OP( )
i€l
gj - ar Q% QT
= 7% > Zijeis —9;Qzx V1 (Blas — Bn) — &Qzx V1 Bistsg — Brars) + 0p(1), (34)
iEIn,]‘

where @%X’j (9) = nlj Dic I Z X7 “T ( ), the second equality is by Lemma S.B.3, and the last equality holds because

@ZX,j = QZX,;‘ +0,(1), QZXJ(g) = QZX,]’ + 0,(1) proved in Step 1 of the proof of Theorem 4.1, \/H(B{Sls —Bn) =
Op(1), and \/E(B;sls,g — Bn) = Op(1). In addition, following the same arguments that lead to (S.C.2), we have

\/H(B:sls,g - stle QZ Z g] d J lJ + QZ§ ngZXJ (/Bn - BZsls) + O;D(l)

JGJlEInJ jeg
g 7, ’L, Ar
=Q) > - J S 3 60503V (Bn = Bras) + 0p(1): (35)
jeJiel, 5 jeJ
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Note @;*1@*2; (g)@%lz 25 Q. Therefore, combining (34) and (35), we have

A~ ~ A~ 1
T yx— * T —1 A%
>‘,6 g ! ZX(Q)QZZ ﬁ Z Zi,jei,j(g)

i€l

= )‘g ) | 2L Z Zi7j‘€i7j - EjngZXVj\/’E(BZsls - 6”) - ijZXJ\/H(Bt*sls,g - Bgsls) + Op(l)

= | g > Ar » A
=NQ | Y Zijeig| — 9507V (Bl — Bn) — &a; NV Blars.g — Bras) + 0p(1)

1€1n,
J ~ N
— N QVEG9Z - Ga Q) \/5739335 +&(95 — cog)asp,

jeJ
where the second equality is by the fact that QQZX ;=4 14, and the last convergence is by the fact that )\g\/ﬁ(,@{sls—
Bn) = —p. This implies
A d N d
rCRg — Arcrg, and thus, (Tern, {T¢Rrn(9)}sec) — (ToRr,00(t); {TCR,00(9)}gea)-

By the Portmanteau theorem, we have

liminf P{Tcr n > écpn(l —a)} > P {TCRQO(L) > (TCR’OO)(k*)} .

n—oo

We aim to show that, as ||u||2 = oo, we have

P {TCRW(L) > max TCR)OO(g)} — 1, (36)
g€Gs

where Gy, = G\G,,, and G, = {g € G : g; = g;,Vj,j’ € Js}. Then, given |G,| = |G| — 297! and k* =
[[G](1 — )] < |G| — 277971 (36) implies that as ||u||2 — oo,

P{TCR,OO(L) > (TCR’OO)(’“*)} >P {TCR’OO(L) > max TCR’OO(g)} 1

Therefore, it suffices to establish (36).
By (33), we see that

Teroo(t) = A5Q | D i VEZi | + 1 ;
jed Ar.CR,.

and A, ¢, is independent of y as ¢y, = 1. In addition, we have )\min(QT)\gAr,CR,L)\gé) > 0 with probability one.
Therefore, for any e > 0, we can find a sufficiently small constant ¢ > 0 and a sufficiently large constant M > 0 such

that with probability greater than 1 — e, for any p,
Ter,o(t) 2 cl|pll3 — M. (37)
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On the other hand, for g € G;, we can write Tor oo (g) as

-1
Ter,(9) = {(No,g + CO,QIJ‘)T ij (Nj,g + cjgh)(Njg + Cj,gﬂ)T (No,g + CO,Q#)}a
jeJ

where for j € J, No g4 = )\ng) [Ejej gj\/Eij}, Njg = )\—grQ [ngj - aj\/gj E;ej \/539533}7 and ¢j, = \/Ej(gj -
Co,9)a;-

We claim that for g € Gy, ¢j,4 # 0 for some j € J,. Suppose it does not hold, then it implies that g; = ¢ 4 for all
j € Js, ie., for all j € J,, g; shares the same sign, and thus, contradicts the definition of G,. Therefore, combining
the claim with the assumption that minje, |a;| > 0, we have mingeg, 3¢, &5, > 0.

In addition, we note that

> &(Njg +¢jgi)(Njg + cjgn) "

JjeJ
T T T 2 T
= Z §iNjgNj g+ ZngLgNj,gM + Zﬁjcj,gMNj,g + (Z gjcj,g)'“'“
jeJ jeJ jeJ jeJ

My + Mop" + pMy +¢pp’,

— N T — s . 2 = .2 i
where we denote My = 3 . ;§N;gN; oo Mo = 3 . ;&icjgNjg, and e = 3 ., &cf . For notation ease, we

suppress the dependence of (M7, M2,¢) on g. Then, we have

My M, M. M. T
My + Mo + pMy +@pup” = My — 2522 +<02+C'u> (02+cu> :

Note for any d,- X 1 vector u, by the Cauchy—Schwarz inequality,

2

.
Mo MT Y ics&iu Njge,

uT<M1 2 2>u§ éj(uTNj,gV( s 6 ) >0,

e jeJ ZjGJ&jc?,g
where the equal sign holds if and only if there exist (u,g) € R x G such that

T T
“Nl,g_'”_UNq,g
- - )
Clg Cq,9

which has probability zero if ¢ > d, as {N; 4},cs are independent and non-degenerate normal vectors. Therefore,
the matrix M = M; — Méiéw’; is invertible with probability one. Specifically, denote M as M(g) to highlight its
dependence on g. We have maxgeq, (Amin(M(g)))™* = O,(1). In addition, denote 22 + &y as V, which is a d, x 1
vector. Then, we have

-1

S G+ o) (Nig + o) | =M+ VYT =M™ - MOV VM)V TMC
JjEJ
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where the second equality is due to the Sherman—Morrison—-Woodbury formula.

Next, we note that

A\Y M2 Co
No,g +cogit = Nog+cog ( - 2) =M, + =2V,
c ¢ C
) i N . .
where My = No 4 — CO’%ZMQ = No,g — CO,Q(ZX):{Z?;QQ ”). With these notations, we have
J 47,9

-1

(No,g + CO,gM)T Z & (Njg + cjgr)(Njg + ijg:u)—r (No,g + cog1t)
jeJ

a
- (MO n CO?’QV) (M™! -~ M~V + VTM V) Ly M (MO n %gv)
<2My (M - MV + VIMIV) TV TM )M,

2c2
+ %VT(M‘I ~M VA +V M'V) VMY

2¢§, VM~V 2c2

Trar—1 Ta—1 0,9
< MIM Mo + —5? T < 2Mg M Mo +
2
_ 0,42 jer8i¢ialNig) 26%,
S 2()‘m1n(M)) ! NO,g - oS 2 g 2 EC(g),
Zjejfycj,g Zjejfjcj,g

where the first inequality is due to the fact that (u + v)" A(u +v) < 2(u" Au + v Av) for some d, x d, positive
semidefinite matrix A and u,v € 19" the second inequality holds due to the fact that M~V (1+V M~1V)~ 1V TM~!
is positive semidefinite, the third inequality holds because VI M~'V is a nonnegative scalar, and the last inequality
holds by substituting in the expressions for My and €.

Then, we have

Ter,c0(g) < max C(g). 38
max T o (9) < max C(g) (38)

Combining (37) and (38), we have, as [|p||2 = oo,

liminf P{Tepn > écpn(l —a)} > P {TCR’OO(Lq) > (TCR’OO)W)}
n—oo

>P {TCR,oo(Lq) > max TCR,oo(Q)}

g€G;
=1-P {TCR,oo(Lq) < max TCR,oo(g)}
9€G,
> 1—]P{c||u|§ -M< maxC(g)} —e—1—e,
9€Gy
where the second inequality is by the fact that k* < |G|, and thus, (TCR’OO)(’“*) < maxgea, Tor,00(g) and the last

convergence holds because maxyea, C(g) = Op(1) and does not depend on p. As e is arbitrary, we can let e — 0

and obtain the desired result.
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For the proof of part (ii), let écr.n(1 — ) denote the (1 — a) quantile of
(VO B = 20N T g € 6

i.e., the bootstrap statistic 7% (g) studentized by the original CCE instead of the bootstrap CCE. Then, because

d, = 1, we have
HT, > én(1—a)} = {Tern > ¢orn(l —a)}.

Therefore, it suffices to show that éopn(1 — @) > éorn(l — @) with large probability as ||u||2 becomes sufficiently
large. First, note that as ||u||2 — 0o, we have éogrn(1 — a) - oo, since h/ﬁ(AgB;‘slsy — o) 25 oo forall g € G,

and (x\gf/)\5>71 = 0p(1) as
(Agfuﬁ)_l A A on,

and A, cr,, does not depend on g. On the other hand, écg n(1—a) = Op(1) as has been proved in Part (i). Therefore,
we have for any e > 0, there exists a constant ¢, > 0, such that when ||p||2 > cu, écrn(l — @) > écrn(l — a) with

probability greater than 1 — e. This concludes the proof. B
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Abstract

This document gathers together all the supplementary materials to the main paper. Section
S.A discuss the restrictions we impose on IVs, control variables, and unobserved cluster-level fixed
effects. Section S.B establishes the equivalence between TSLS and other k-class estimators. Sec-
tions S.C—-S.G contain proofs of Theorems 2.2, 2.3, 2.5-2.7, respectively. Sections S.H-S.I discuss
wild bootstrap inference with other weak-IV-robust statistics.

Keywords: Wild Bootstrap, Weak Instrument, Clustered Data, Randomization Test.
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S.A Cluster-level Variables and Interactions
S.B Equivalence Among k-Class Estimators

We define 3, as the k-class estimator with &y, for L € {tsls, liml, full, ba}. Their null-restricted and
bootstrap counterparts are denoted as BE and Bz @ respectively, and 47, 47, and 47} g are similarly
defined. In the following, we show that Btsls, Bliml, B Fulls /S’ba are asymptotically equivalent, and so be

their null-restricted and bootstrap counterparts.
Lemma S.B.1 Suppose Assumptions 1, 2, and 3(i) hold. Then, for L € {liml, full, ba}, we have

BL = Btsls + Op(nil/Q)a Btsls - ﬁn = Op(nil/Q)v
BE = BZSZS + Op(n_l/Z)’ and B:sls - /871 = Op(n_1/2)'

Proof. First, L € {liml, full, ba}, we have iy, = #; — 1 and

~ T o N N o\ —1 R R
(BL.AL) = (XTPsX — X TMzX)  (XTPyY — i XTM,Y)
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N\ -1
= (YTX) 7Y, where T = [P;X — i MzX : W]
Then, by applying the Frisch—Waugh—Lovell Theorem we obtain that
5 T T -1 T T >
Br= (XTP;X — X MzX)  (XTP;Y — i X MyY), where Z = My Z.
By construction, Btsls corresponds to [i;ss = 0. For the LIML estimator, we have
fiimi = minr 'Y "My Z(Z "My Z) ' 2" My Yr/(rTY TM ;Y1) and r=(1,-87)7,
T
which implies that

1 1 AR 1
it < (ﬁaTMWZ> (nZTMWZ) (\/ﬁZTMWe) / <n€TMZ~€>. (SB.1)
We note that
ZTMwé‘ = Zijeij =0 (1) and
7 FL Y -

je€J i€l
-1

(;ZTMWZ>_1 - Z Z i w = 0p(1). (S.B.2)

]EJ 1€y ;

In addition, let &; ; be the residual from the full sample projection of €; ; on W; ;. Then, we have

:L TMﬂs = _ele— %aTZ(ZTZ)*IZTE

ce @EZQ;Z@T~ - @sW@ﬁ}W@eTW
QEWQWWQEW + Op(l)

& +0p(1)

= " &Qzz + 0p(1)

Jj€J
> Zi‘@s‘a‘,j +0p(1)
jeJ
= Qe +0p(1) > cwpald, (S.B.3)

I
@) @) L)) :

where c is a positive constant, the first inequality is by the definition that &; ; is the residual from the
cluster-level projection of €; ; on W ;, and the second inequality is by Assumption 2(iii). Combining
(S.B.1)~(S.B.3), we have fim = Op(n~'). In addition, we have 2 XTM-X = 0,(1), X MY =
Op(1), and
Lo - A _A-1AH -1
<nX PZX) = (Qxé%z%x) = Op(1), (S.B.4)
where the last equality holds by Assumptions 2(ii) and 3(i). This means

Bliml = 3153[5 + Op(nil/z)'



In addition, we note fifu = fliimi — ﬁ = Op(n™1) and fip, = O(n™1), respectively. Therefore,
we have the same results for (Bba,%a).

For the second statement in the lemma, we have
. -1 o~ A 1 o~ o~
(Busts = Ba) = (X PX) X Pge = (Qy5Q55Q7x)  @xzQ55Q7. = 0p(n™?),
where the last inequality holds because Q5 = 1 %2t Zzelm 1i€ij = Op(n=1/2).
Next, we turn to the third statement in the lemma. We note that, for L € {tsls, liml, full, ba} and
A3 BL = o,
ar _ 3 T n - Ty T p 1y, Y T A
By = B~ (XT(Pz = uMp)X)  Ag (ANF(XT(Pz = i Mz)X) ™ Ag) (A3 B = Xo) = Op(1).
As i, = Op(n_l) and ﬁL = Btsls + op(nl/Q) for L € {liml, full, ba}, we have
. . -1 -1 . .
BL = Brsts — (XTPZX> Ag (AE(XTPZX)A)\@ ()\—grﬁtsls — Xo) + op(n~ Y2 = I 4 0,(n"?).
For the last statement in the lemma, we note that
. . -1 -1 .
Braas = Bn = (Busts = Ba) = (XTPzX) A (AF(XTPzX)™A5)  Ad (Bt = B)
-1 -1
—(xXTPx) s (R TR0 (AR B — o) = Oyl
where the last equality holds because )\gﬁn — X = ,U/I’L_1/2 by construction and Btsls —Bn = Op(n_l/Q).
|

Lemma S.B.2 Suppose Assumptions 1, 2, and 3(i) hold and QZW](;YZ —7) = 0p(n"Y2). Then, for
L € {liml, full, ba} and g € G, we have

Bz,g = Bt*sls,g + Op(n_l/Q) and B:sls,g — Pn = Op(n_l/Q)' (SB5)

Proof. By the same argument in the proof of Lemma S.B.1, for L € {tsls, liml, full, ba} and g € G,

we have

By = (XT@PX(0) — i, X T@)MX (0)) (X7 (@)PY" () — i, X" (9)M4Y"(0)) .
(S.B.6)

~x K o & ~x S
such that Hisis,g = 0, Forull,g = Fliml,g — n—d,—dy > Mba,g = Hbas and
ffimig = min YT (9) My Z(ZT Myw Z) ' ZT MY (g)r/(r 'Y " T (9) MY (g)r),

where Y*(g) = [Y*(g) : X*(9)], Y*(g) is an n x 1 vector formed by Y5 (g), and r = (1, -B8NT.

Following the same argument previously, we have

1 i 1
T <fz—:;’"TM Z> (nZTMWZ> (\/ﬁZTMWe;T> / (ne;T’TMZs;T>, (S.B.7)



where e3" is an n x 1 vector formed by g;é; ;. We first note that

g
1 *r T 1 ~ ar
LMz =LY S 0
jEJ ie[n,j
. 1 ~ .
= ijgj Z Z,J5w Z Z,J —Br) + . Z Zi,jWi,Tj(’Y —AL)
jeJ zGInJ zEIn] Vel ;
= 0,(n~Y?), (S.B.8)

where the last line is by Assumptions 1(ii), Lemma S.B.1, and Lemma S.B.3. Second, we have

1 *TTM 5 18*7~T6*r_ 1 *TTZ(ZTZ) 1Z_’T€;r

—&
n g n g g n g
]. ~ T ~—1 1 N =
— =Y S - 3 X Y @ Z) | Gk [ X X )
Jj€J i€l ]EJ 1€l ; jeJ i€ly ;
WT A—1 1 T W
-5 X @Emh | G [ 2 Y @
jGJ i€y j jeJ i€ly ;
1 AT \2 T N—1 1 A
D ID ICHIEN IS SIFIE SN KoVl D D SRCIE #1118 B}
jeJ i€l ; jEJ i€ly j jeJicly, ;

(S.B.9)

where the last equality is by % Diel, o E0d -7j = 0,(n""/?), as in (S.B.8). We further note that

&y = eig — Xi(BL = Ba) = Wi(3% =),
where 37 — B, = Op(n~1/?) and

9 =7 = Quiw Z ) Ww( isj X&BE) —7 = QuhyQw= + Op(n™ 7).

]GJ ST

Therefore, we have

D CHIEES DD PR AT

jeJ i€l ; e iel,

where & ; = ¢;; — WiTj@;[}W@WE. Similarly, we can show that

EZ Z (Qjé:,jWi,Tj) @ﬁ/lw %Z Z (gjé;jW”)

jeJ i€l, jeJ iel,
1 T o~ 1

LS S @AW Gite | LY S @i + o),
jeJicl, ; jeJicly, ;



which, combined with (S.B.9), implies

IR DD D 1 3 SItTRI5n] Rt KD b SO RIaR] ey

jed il ; e iel, jeJ i€ly
1 A
_ T A2
= Z Z (i — 9iWi,8g)" + op(1),
jeJ iEIn,j

where 6, = QWW [ dies Qe In, (9j63,;W; J)} and the second equality holds because

Qww = %Z > Wi W = %Z > (9iWis)(giWig) "

jeJ i€l ; jEJ i€l 4
Recall that €; ; is the residual from the cluster-level projection of €; ; on W; ;, which means there exists

a vector éj such that g, ; = €; ; + W 9 and ZZE[ &;, ;Wi j = 0. Then, we have

fz > (5 — 9iWil0,) Z S+ Y (Wi — gwil0,)? | = %Z > &> cwpal,

jET i€l "ier |ietn, i€l jEJ i€l
where the last inequality is by Assumption 2(iii). This implies
:L e T Myel™ > ¢ — op(1). (S.B.10)
Combining (S.B.7), (S.B.8), and (S.B.10), we obtain that iy, , = Op(n~1), and thus, By =
Op(n~1). It is also obvious that by = Op(n~1). Given that Ay = Op(n~1), to establish Bzg =
szsls,g + 01[,(Tfl/2)7 it suffices to show %X*T(g)MZX*(g) = Op(1), %X*T(g)MZY*(g) = Op(1), and
(X (9)PzX*(9)~" = 0p(1).

For 1 X*T(g)MzY*(g) = 2 X*T(9)Y*(9) — L X*T(9)PzY*(g), we first show

X TV o) = 0 S0 Xiy(0) (KT (0B + Wit + 051,
jEJ i€ly ;
= Qiex(9)8 + Qxw(9)3 + Q. (9) = Op(1), (8B.11)

where Q% x(9) = %ZjeJ Zieln,j Xz'*,j(g)ng (9)s QXW( )= 1 ZjeJ Zie[n,j XZj(Q)Wi,Tﬁ and Q% (9) =
% ZjeJ Eieln,j ng;‘,j(g)é’;j. Notice that

Qx(9) =D 1 S (Xiy + (g~ Ding) (i + (95— Ding) = 0p(1)  (SB12)

jeg M i€l
because @XX,]‘ = 0p(1), @\X@j = 0p(1), and @f,m = Op(1). To see these three relations, we note that
Qxp,j = Qxx,; — Qxz 7 — Qxw,;llu = Op(1),

by @XX,j = Op(l)v @Xf,j = Op(1)7 @XW]' =0 ( ) ~? = Op(l)a and ﬁw = Op(1)7 where @XZ,]' =
n%_ Zielw Xi,jZiT,jv and @XW,J- = % Zzel Xi, W . Similar arguments hold for Qf,m. We can also



show that

Qxw(g) = Z Z (Xij + (g5 — Vi) Wil = Op(1), (S.B.13)
jEJ zEInJ
by Qxw,j = Op(1) and Qo = Op(1), where Qxw; = - Sieq,  XigWily and Qowyj = 1 Yiey, | 00, Wil
In addition, we have
Qielg Z Z 9; (Xij + (g5 — D)vij) €5 = Op(1), (S.B.14)
]GJ 1€In]

by @Xéj = Op(1) and Q\f)g,j = Op(1) under similar arguments as those in (S.B.8), where

. 1 .
AT
Qxej = —— > Xijél; and Qpej = E ¥y, j€;

Jiel, J el

Combining (S.B.12), (S.B.13), (S.B.14), A7 = O,(1), and 4} = @ﬁ}wéwe + 0,(1) = Opy(1), we obtain
(S.B.11). Next, by the fact that %E]EJ Zzelw Z W = 0, we have

. ~ O-L 0%
L TP (o) = (@54 0) Qi) (QZZ . )(C;sz(g)),

0 Quww Q?/VY(Q)
where
%Z Z ZiXiT (0 Q)= -3 S Zi¥iilo)
€J i€l jeJicl, ;
and QWY Z Z W, Y

jGJ i€ly

Following the same lines of reasoning, we can show that, for all g € G, @}X(g) = 0p(1), @*Zy(g) =
Op(1), and @}‘/Vy(g) = Op(1). In addition, by Assumptions 1(iv) and 2(iii), Q;Z = Op(1) and @;[}W =
O,(1), which further implies that %X*T(g)MZY*(g) = Op(1).

By a similar argument, we can show %X*T(g)MZX*(g) = Op(1). Last, we have
1 * * I~ A—1 Ax A A1 A —
~X T (9)PzX"(9) = Q3 (9)Q55Q% (9) =Q7 Q73Q7x + 0p(1) = Q5 Q73Qzx

where we use the fact that @’i (9) = Q 7x T 0p(1), which is established in Step 1 in the proof of
Theorem 2.1. In addition, QT QZZQ 7y 1s invertible by Assumptions 2(ii) and 3(i). This implies
(LX*T(g)P;X*(g))~" = Op(1), which further implies BZ,g = B:sls,g + 0p(n~1/2).

For the second result, we note that

N ~ ~ ~ -1
Baey = B = [Q5 (9005505, (9)] Q5 Z > Zigyii(9)| — Ba
]EJ 1€ly,j
. ~ PO -1 ~ 11 ~
= Bae = B+ |05 (9005505 (0)] A 0Q55 | =32 D giZisdly | -
jEJiEInyj



where the second equality holds because jeJ Yic In; ngiJWi—,B‘ = 0. In addition, note that

~ 1 ~ ~ R ~ X B
ij€i = — 15815 — Qzx i (Biats — Bn) — Qzyy s (Bis — 1) = Op(n™1/2).
Zij€}; =~ Zijeig = Qzx;Bras = Bn) = Qi Gtats — 7) = Op(n™7?)

1
.
T iel, ; Vel

Combining this with the fact that B;ls — Bn = Op(n_l/Q) as shown in Lemma S.B.1, we have B:Sls’g —
Bn=0p(n~1%). W

Lemma S.B.3 Suppose Assumptions 1 and 2 hold. Then, we have, for j € J,
Qw77 —7) = 0p(n™V?).
If, in addition, Assumption 3(i) holds, then we have, For j € J, L € {tsls, liml, full, ba}, and g € G,

Q\ij ('?L - 7) = Op(n_1/2)> @ZW,]' (% - ’7) = Op(n_1/2)a and @ZW,j (%,g - 7) = Op(n_l/Q)'

Proof. When Q\ZWj = 0, all the results hold trivially. We now assume @ZWJ‘ = 0p(1) and
# died Qiel, S Wijeij = Op(1). The first statement holds because

) ~ |1
V== Qi | 2D D Wig(Yig — X6) | =
jEJZ'GIn,j

~ 1 ~ ~
= Quw - Z Z Wiicij| — Quin Qwx(Bn — o) = Op(n~1/?), (S.B.15)

jEJ i€l ;

Next, if Assumption 3(i) also holds, then

N ~_ 1 N
L =7 = Quiw - Z Z Wi (Yi; — X.LBL) | —

jeJ iGInJ’

= @t}/lw %Z Z Wijeig| — @E[}W@WX(BL — Bn) = Op(n_1/2), (S.B.16)

JET i€l ;

where the last equality holds by Lemma S.B.1. This implies Q\ZW].(@L —5) = op(n_1/2). In the same
manner, we can show @ZW,]‘ (3% =) = 0p(n~1/2). Last, given Assumptions 1, 2, 3(i), and the fact that
QZW,j ('AYZ _7) = Op(nil/z)v Lemma S.B.2 shows 52,5, _571 = (/Bz,g _Bz(sls,g) + (6:sls,g _Bn) = Op(n71/2)'
Then, following the same argument in (S.B.16), we can show 47 , —v = O, (n~/2), which leads to the

desired result. W

S.C Proof of Theorem 2.2

For the power of the T,-based wild bootstrap test, we focus on the TSLS estimator. As shown in the
end of the proof of Theorem 2.1, the test statistics constructed using LIML, FULL, and BA estimators

and their bootstrap counterparts are asymptotically equivalent to those constructed based on TSLS



estimator, which leads to the desired result. Note that
VRO Bists = M0)ll5, = [1VRA (Busts = Ba) + /RS (B = B,

~ & -
= H)\EQ 1Q;X Z Z 7] Z +\F)‘B( /Btsls) i

Jj€J i€l ;

= MO0 > X ( v Z”nXTJ Jﬁ(ﬁn—égls>){

i’
jeJiel, ;
Notice that Assumptions 1, 2, 3(i), and Lemma S.B.1 imply that \/ﬁ(/é’{sls

— By) is bounded in proba-
bility. This implies

T = (VAT Busts = o)llz, == | 3 [VEN Q0L Q552 (8.C.1)
Jj€J
Recall @ and @; defined in (8) and (9), respectively. We have Q* = Q + 0,(1) and
VIS (Bitsg — Braas)|l 4,
> wT
— |5 @; Q5 (9@ D3PI ( e B g, gy 20 —ﬁ;@) .
eJiel,,
TA-1AT A-1 Zijei; ’FinT' ar
- H)\ﬁQ Qox Q35> D 0 < \%u + == J\/ﬁ(ﬁn—ﬂtszs)> 4 oD, (S.C.2)
jeJ i€ly

where the last equality follows from Lemma S.B.3 and @} (9) = @ 7x T0op(1). Furthermore, we notice
that

Bls = Brsis — Q' Ag ()\TQ 1)\3) <)\,8/Btsls )\0)
1

= Brots — Q~ Ag{(AEQ 1)\5) ¥ Busts — Bn)+()\;@1A5>_1(Agﬁn—/\o)}. (S.C.3)

Therefore, employing (S.C.3) with \/ﬁ()\gﬂn — o) = Agug, we conclude that whenever E,, =1,

21' X T ~ ZZ XzT 3 ) ! 3
Z %\/ﬁ(ﬁn - ﬁZsls) = Z % { <Id“° N Qil/\ﬁ (AnglAlg) /\g> \/ﬁ(ﬁn = Brats)

i€l i€ty ;

~ ~ —1
+Q7s (AFQ71A) Aguﬁ} .

Together with (S.C.2), this implies that

A VAL By = i) =A@ 1@, Q5%
lqrzn—?;p Xy 3 | Zigeig _|_£4@~ Q\—l)\ )\T@—l)\ -1 AT > E =1
jer 2uiel,; 9i \ ~m i%7x,; AN Z BHB ||| 4 —~ &=
| VAL By = i) ~ A QTQL Q5L
= limsupP . S -1
n—o0 X ZjeJ 9; [@Zj +§jQZX,jQ A8 (AﬁQ )\5) ,u]

AT>€;En:1



=timsupP (VNS By = ) = Cyer 95 [VEAQTIQL Q552 + Gasm ||

n—oo

This implies

Ti(9) = ||VAAT (Biuteg = Bias) (8.C.4)

—> H Zgg {\/57)\5 ;XQ;ZZj +§jaju} ‘ A

jeJ

T

In addition, let G; = G\Gy, where G, = {9 € G : g; = ¢7,Yj,j’ € Js}. We note that
|Gs| = |G| — 24791 > k*. Therefore, based on (S.C.1) and (S.C.4), to establish the desired result, it

suffices to show that as ||u||2 — oo,
hgr_l}gf]?{Tn > max T:(g9)} — 1,

which follows under similar arguments as those employed in the proof of Theorem 3.2 in Canay, Santos,
and Shaikh (2021). W

S.D Proof of Theorem 2.3
Following the same argument in the proof of Theorem 2.4, we can show that

(Tern ATErn(9) gea) — (Toreo(), {TOR 0 (9) }ge)

where Tor n(g) is defined in the proof of Theorem 2.4 with 1 = 0 as we are under the null. Then, the
rest of the proof is similar to Step 3 in the proof of Theorem 2.1. We omit the detail for brevity. B

S.E Proof of Theorem 2.5

The proof for the AR,-based wild bootstrap test follows similar arguments as those in Theorem 2.1,
and thus we keep exposition more concise. Let S = ®j¢ JR% x R%*% and write an element s € S by

s=({s1j:j € J},s2) where s1; € R% for any j € J. Define the function T4r: S — R to be given by

TAR(S) = Z S1j (SEl)
jeJ 52
Given this notation we can define the statistics S,,, §n €S as
v 1o g i , n
Sy = > Zigeijijed Ay, Sp= ZZZ JijeJ ALY,
\/> e 'LEIn i ze]n R
where £/, = y; j — Xl J By — ]7 Note that by the Frisch-Waugh-Lovell theorem,
=1 — f Z Zijeiill = Tar(Sn). (S.E.2)
JjEJ i€l Az




Similarly, we have for any action g € G that

1 ~
Zﬁ Y 9iZisE

jeJ i€l

~

ARy, (9) = = Tar(95n)- (S.E.3)

A,

Therefore, letting k£* = [|G|(1 — )], we obtain from (S.E.2)-(S.E.3) that
1{AR,, > éana(l — @)} = 1{Tur(Sy) > T\ (5.|G
{ARn > ¢arn(1 —a)} AR(Sn) > Ty (SalG) ¢ -

Furthermore, note that we have

TAr (—Lgn) =TAr (Lgn) = |

1 > T T~
2 m 2 b (w15 = X360 = W)

jeJ i€, ;

> \/15 > Zi (&',j - WL - 7))

jes V' iel,

= Tar(Sn), (S.E.4)
Az

where the third equality follows from >, ; Zz‘eln,j Z]WZTJ = 0. (S.E.4) implies that if k¥* > |G| — 2,
then 1{Tar(S,) > TXE)(SMG)} = 0, and this gives the upper bound in Theorem 2.5. We therefore

assume that £* < |G| — 2, in which case

limsup P{Tur(Sn) > Ty (Sa|G)} = limsup P{Tan(Sn) > Ty (SalG\ {£14})}

n—00 n—00
< limsupP{Tur(Sn) > T4 (SalG\ {£})}.  (SES5)
n—oo

Then, to examine the right hand side of (S.E.5), first note that by Assumptions 1 and 5, and the

continuous mapping theorem we have

ViZhm! Z = . 3 d .
VI = NT Zieiiijed Ay —Ls {Jg’jzj jed Az} =S, (S.E.6)
\/ﬁ \ n] ieln,j
where & > 0 for all j € J. Furthermore, by Assumptions 1(i), Lemma S.B.3, and /3, = (9, we have
1 ~ 1 ~ 1 ~ 1 ~
— Z Zi’jéf;j = — Z Z; j€ij — — Z Zi’jWi—B\/ﬁ(’_yT —y)=— Z Z; j€ij + Op(l),
vn i€ly,; vn i€ly,; n i€l vn i€ln,j
and thus, for every g € G,
Tar(9Sn) = Tar(gSn) + 0p(1). (S.E.7)

We thus obtain from results in (S.E.6)-(S.E.7) and the continuous mapping theorem that

(TAR(S,L), {TAR(g§n) ge G}) A (Tar(S), {Tar(gS) : g € G}).

Then, by the Portmanteau’s theorem and the properties of randomization tests, we have

limsupP{AR, > éapn(l — o)} <P {TAR(S) > TEL (G {ﬂq})} =P {TAR(S) > ﬂf{,}(@)} < a.

n—00

The lower bounds follow by applying similar arguments as those for Theorem 2.1.

10



For the ARc R n-based wild bootstrap test, define the statistics Scr n, §cpm €S as

Vi 1 > : ; & Vi 1 = . A
SCRn = — Zijeij:J € J,AcR ¢ ,SCRn = V= —— Zié i jed Acr
n \/ﬁ n] iezln:j 2,7<1,] n \/ﬁ \/717]262[7;] 4,7<1,7

Notice that different from AR,, and AR} (g), we cannot establish that TAR(LS'\CR,,@) = Tar(Scrn) for
Tagr(s) defined in (S.E.1), as n~! > et Zielnj Zkelnj ZJZLE”Z']E”,;] may be different from

-1 Al
n E E: E Z;j 2y, i€ij€k,j-

JET i€l j k€L, ;
We set F,, € R to equal £, =1 {nfl Djed 2aicln,; 2kel,, Z]Z,;rjé’;]é};j is invertible} , and have
liminf P{E, =1} = 1. (S.E.8)
n—oo
In addition, similar to the case with AR,, and AR} (g), we have under /3, = [y,

Tar <Q§CR,n) = Tar (9Scrn) + 0p(1) for every g € G,

ScRn LN {\/{jzj 1j € J, AC’R} = Scr,
where Acg = ZjejngijT, and
(Tar(Scrn). {Tan(98cna) g € GY) = (Tan(Sor) {Tar(gScn) : g € G}). (SE.9)
Therefore, we have

limsupP {ARcrn > éarcrn(l — @)} <limsupP{ARcRr, > ¢arcrn(l — a); B, = 1}

n—o0 n—00

<P {TAR(SCR) > TX?(SCR!G)} ;

which follows from (S.E.8), (S.E.9), the continuous mapping theorem and Portmanteau’s theorem. The
claim of the upper bound in the theorem then follows from similar arguments as those in Theorem
2.1. 1

S.F Proof of Theorem 2.6

Define AR (g9) = ||Ejejgj\/§>jzj + > es69i0;Qz 1|4, In particular, notice that AR (¢) =
112 25e0 VE&iZj + Qzxmlla, since 3 ;& a; = 1. Following same arguments in the proof of Theorem
2.5, we can show that, under Hi, with A\g = I,

(ARy, {AR;(9)}gea) == (ARoo (), {ARso(9)}gea)-

Similar to the proofs of Theorems 2.2 and 2.4, in order to establish Theorem 2.6, it suffices to show

11



that as [|Q 7 pll2 — oo,

P{AR (1) > max AR« (g)} — 1.
9€Gs

By Triangular inequality, we have AR (1) > ||Q 7y 1|4, — Op(1), and

AR.(q) < calllOs 0, (1).
max oo(g)_;ggflggyfga;!\@zxumﬁ p(1)

In addition, maxgeq, | 3 ;e 9;&ia;| < 1 so that as |[Qzypull2 — 00, [|@zyulla, — oo and
Q7 xulla, — max 1> 95&ailllQz xulla. — o
5 ojed

This concludes the proof. B

S.G Proof of Theorem 2.7

Notice that when d, = d, = 1, @ 7y 18 a scalar, and the restricted TSLS estimator 4" is equivalent

=T

to the restricted OLS estimator 4", which is well defined by Assumption 1(iv), so that &l . = &} ..
/y Z7j 1’7]

Therefore,

and whenever @ 7x # 0,

T, = V(B — Bn) + Vn(Bn — 5o)|

~_ 1 ~ . R
- Q2§<7 {Ziﬁi,j — Zi,jXi;(B" — Bn)
jeJ i€l
~_ 1 - _ A _ )
=@ T= X X [Busis = ZusXis B = B) = By W5 =]
ZX n 2%} 1,7 77X s
jeJ i€l

by 8o = 5", ZjeJ Zieln,j Z”Wsz =0, and & ; =¢;; — XZTJ(BT — Ba) — Wz’,Tj(’AYT — ).

In addition, for the bootstrap statistics we have

1 ~ 1 ~
AR} (g) = %Z Z 9 Z; & ;| = ﬁz Z 9iZi jéi

jediel, ; jedicl, ;

12



and whenever @ sx 70,
* AN— 1 7 A AN— *
T (9) = QZ;%Z Z 9iZijéi| = ‘QE}(‘ARn(Q)-
JjeJ ie[n)j

Therefore, 1{T,, > ¢ (1 — )} is equal to 1{AR,, > ¢arn(l — a)} whenever @ZX # 0. We conclude
that liminf,, oo P{¢#? = ¢%"} = 1 because liminf,_,o P {@ZX #+ O} =1. N

S.H Wild Bootstrap for Other Weak-IV-Robust Statistics

In this section, we discuss wild bootstrap inference with other weak-IV-robust statistics. To introduce

the test statistics, we define the sample Jacobian as
@ = (él, ...,édm) € RdZXdz, G\l =n! Z Z 21‘7in’]',[, forl=1,...,d,,
jeJ Z‘Elnyj

and define the orthogonalized sample Jacobian as
ﬁ: (ﬁl,...,ﬁdz> ERdZXdI, ﬁl :(A}l—flﬁ_lfe Rdz,

where O = n~! 2jes Zieln,j Zke[n,j fi,jf;zy and T; = n~! 2jes Zieln,j Zke]n,j (ZJXi,j,l) finv for

[l =1,...,d,. Therefore, under the null 5, = 5y and the framework where the number of clusters tends

to infinity, D equals the sample Jacobian matrix G adjusted to be asymptotically independent of f
Then, the cluster-robust version of Kleibergen (2002, 2005)’s LM statistic is defined as

LM, =nfTQ7 2Py, 507 2F.

In addition, the conditional quasi-likelihood ratio (CQLR) statistic in Kleibergen (2005), Newey and
Windmeijer (2009), and Guggenberger, Ramalho, and Smith (2012) are adapted from Moreira (2003)’s

conditional likelihood ratio (CLR) test, and its cluster-robust version takes the form

1
LRn = 5 <ARCR,n - Tkn + \/(ARCRJL - 7akn)z + 4LMn ' Tkn) )

where rk,, is a conditioning statistic and we let rk, = nDTQ-1D.}

The wild bootstrap procedure for the LM and CQLR tests is as follows. We compute

g g9’

f?:g =n! Z Z Z <Zi,in,j,l> f;7j(gj)T, l=1,..,d,.,

jeJ i€l j kel,

S e S e
Dy = (DigssDig)s Dig=Gi=Ti,0

for any g = (g1, ...,9¢) € G, where the definition of ]?g* and f,;‘j(gj) is the same as that in Section 2.3.

!This choice follows Newey and Windmeijer (2009). Kleibergen (2005) uses alternative formula for 7k, and Andrews
and Guggenberger (2019) introduce alternative CQLR test statistic.
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Then, we compute the bootstrap analogues of the test statistics as

LM;(g) = n(f3) O 2Py 1y, 7V,

* 1 * * 2 *
LR(g) = (ARCR’n(g) — 1k + \/ (ARg g, (9) = ha ) +4LM; (g) rkzn> .

Let ¢rarn(l —a) and érr(1 — a) denote the (1 — o)-th quantile of {LM(g)}gec and {LR}(9)}gea,
respectively. We notice that with at least one strong cluster,
1 —-1/2

d ~ ~
LMn—>H D> gz.;25] D DT> gz.;25 ] D V2
jed jeJ jedJ

9

where D = <l~?1, ...,de>, and for [ = 1,...,d,,

—1
Di=Qzx — Z (ij'z“X,j,z> (\/ngw) Z@Z 2. Z V&2

Jj€J Jje€J
Although the limiting distribution is nonstandard, we are able to establish the validity results by
connecting the bootstrap LM test with the randomization test and by showing the asymptotic equiv-
alence of the bootstrap LM and CQLR tests in this case. We conjecture that similar results can also

be established for other weak-IV-robust statistics proposed in the literature.

Theorem S.H.1 Suppose Assumptions 1, 2(i), and 3 hold, 3, = By, and q > d, then

1 1
Q= 5 <hm1anP’{LM > Crmn(l — o)} <limsupP{LM, > érpn(l—a)} <a+ —;
29~ n—00 201
1 1
a—— <hm1anP’{LR > ¢rrn(1 — o)} <limsupP{LR, > ¢érrn(l —a)} <

24 -1 n—o00 24—
S.I Proof of Theorem S.H.1

The proof for the bootstrap LM test follows similar arguments as those for the studentized ver-
sion of the bootstrap AR test. Let S = R%X% x ®je]Rdz, and write an element s € S by
s = ({s1:5€J},{s2:7€J}). We identify any (g1,...,9¢) = g € G = {—1,1}¢ with an action
on s € S given by gs = ({s1;:j € J},{gjs2;:j € J}). We define the function Ty : S — R to be
given by

1 —-1/2

—1
TLM(S)EH D(s)" ZSQ’jS;j D(s) D(s)" 232713;& ZSQJ

jed jeJ jeJ

. (S.L1)

-1
for any s € Ssuch that 3, ; szjs;’j and D(s)" <Zj€J SQ,J-SQTJ-) D(s) are invertible and set Ty p7(s) =

0 whenever one of the two is not invertible, where
D(s) = (D1(8), ..., Dg,(8)),
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-1
Dy(s) = Z 5141 — Z sl,j,ls;j Z szyjs;’j Z $2.4, (S.1.2)

JjedJ jeJ jedJ j€J
for S1,5 = (817j71, "'781,j,dz) and [ = 1, ...,d;c.

Furthermore, define the statistic S,, as

Sn

1 . 1 . .
ﬁ Z Zi,in,j S J 3, % Z Zi,jgi,j S J R (S.I.?))

i€l USOW;
Note that for [ = 1,...,d, and j € J, by Assumptions 1(iii) and 2(i) we have
1 ~
- " ZigXiji == &Qux i (S.1.4)
’L’EIn.,j
where Q 5 il denotes the [-th column of the d, x d;-dimensional matrix @ ; ;- Then, by Assumptions

1(ii) and 1(iii), 3(i) and 3(ii), and the continuous mapping theorem we have

S, —4s ({gjanZX je g}, {\/gj-zj je J}) =3, (S.L5)

where &; > 0 for all j € J. Also notice that for [ =1, ...,d,,

.
~ 1 . 1 - 1 _
D= - Y ZiXig| - [ D0 - > ZiiXiju NG Zk,jCk,j

jeJ i61n7j jeJ iEIn’j k‘EI}c’j

1
1 . 1 . 1 .
=r =r =r
> N > ZigEi 7 > Zrgthg 7 > ZisEiy (S.1.6)
jeJ i€l ; kely, ; i€l 5

and ﬁ D ict,, Zz’,j?f,j = ﬁ > ict,, Zi jei j +0,(1) by B, = Bo and Lemma S.B.3. In addition, we set
A, € R to equal

A, =1 {ZA) is of full rank value and € is invertible} , (S.I.7)
and we have
lirginf P{A, =1} =1, (S.I.8)

which holds because {@Zj g e d } are independent and continuously distributed with covariance
matrices that are of full rank, and @ ; x,j are of full column rank for all j € Js, by Assumptions 1(ii),
3(i), and 3(ii).

It follows that whenever A, =1,

(LM, {LMy(g) : g € G}) = (TLrr(Sn), {TLm(9Sn) : g € G}) + op(1). (S.1.9)

In what follows, we denote the ordered values of {T7rr(gs) : g € G} by

T (51G) < ... < TS (s]G). (S.1.10)
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Next, we have

limsup P {LM,, > é¢rarn(l —a)}

n—oo

<limsupP{LM, > éLpyn(l —a); A, =1}

n—oo

<P{Tm(S)>influecR: |G| S H{Tim(gS) <up=1-ay o, (S.I.11)
geG

where the final inequality follows from (S.1.3), (S.I.5), (S.1.8), (S.I1.9), the continuous mapping theorem
and Portmanteau’s theorem. Therefore, setting k£* = [|G|(1 — a)], we can obtain from (S.I.11) that

limsupP{LM,, > éLpyn(l —a)}

<P{Tpn () > T (81G) | + P{Ton(s) = T3 (51G) |
<a+P {TLM(S) - Tg;})(syc;)} , (S.1.12)

where the final inequality follows by ¢S 2 S for all g € G and the properties of randomization tests.
Then, we notice that for all g € G, Trar(9S) = Tra(—gS) with probability 1, and P{Tra(gS) =
Tram(gS)} =0 for g ¢ {g,—g}. Therefore,

1

P {TLM(S) - ng\})(S\G)} = o (S.1.13)

The claim of the upper bound in the theorem then follows from (S.I.12) and (S.I.13). The proof for
the lower bound is similar to that for the bootstrap AR test, and thus is omitted.
To prove the result for the CQLR test, we note that

LRy = 4 ARc R — i +\/(ARcR — rhn)? +4- LM, - rkz}

ARCR,n — Tkn)Q

4. LM, -k,
ARcpp — rkn + |ARCRn — Thn \\/ ! }

rk
n—rkn +|A mn—rky| | 1+2- LM, n 1 1
ARGy vy + | AR = ko] (142 LMy T (1-40,(1) ) |

l\'JM—\ l\')\)—t l\')\
/—/H/—/H/—/H

= m(l +0p(1)) = LM, + 0p(1), (S.1.14)

where the third equality follows from the mean value expansion 1+ z = 14 (1/2)(z 4 o(1)), the
fourth and last equalities follow from ARcp , —rk, < 0 w.p.a.1 since ARcR,, = Op(1) while rk,, — oo
w.p.a.1l under Assumption 3(i). Using arguments similar to those in (S.I1.14), we obtain that for each

g €@,

LER;,(g) = LM(g) it ( )(1 +0p(1)) = LM (g) + 0p(1), (S.1.15)

rkn — ARG (9

by ARGR ,(9) — rkn < 0 w.p.a.l since ARG ,(9) = Op(1) for each g € G. Then, it follows that
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whenever A, =1,

(LRy, {LR}(9) : g € G}) = (Tar(Sn) {Trar(9Sn) = g € G}) + 0p(1). (S.1.16)
Then, we obtain that

limsupP{LR, > ¢rrn(l —a)}

n—oo

<limsupP{LR, > ¢Lrn(l — a); A, =1}

n—oo
1
<P{Try(S)>inf{uecR: @] S H{Tim(gS) <up>=1-ayp o, (S.1.17)
geG

where the second inequality follows from (S.1.3), (S.I.5), (S.L.8), (S.I.16), the continuous mapping the-
orem and Portmanteau’s theorem. Finally, the upper and lower bounds for the studentized bootstrap

CQLR test follows from the previous arguments for the bootstrap LM test. Il
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