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Abstract

After having observed a deviation from backward induction, a player might deem the op-

ponent prone to deviate from backward induction again, making it worthwhile to deviate

themself. Such reaction might make the deviation by the opponent worthwhile in the first

place—which is the backward induction paradox. This argument against backward induction

cannot be made in games where all players move only once. While strategic-form perfect equi-

librium yields backward induction in games where players move only once but not necessarily

otherwise, no existing non-equilibrium concept captures the backward induction paradox by

having these properties. To provide such a concept, we define and epistemically characterize

the Independent Dekel-Fudenberg Procedure. Since beliefs are modelled by non-Archimedean

probabilities, meaning that some opponent choices might be assigned subjective probability

zero without being deemed subjectively impossible, special attention is paid to the formaliza-

tion of stochastically independent beliefs.
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1 Introduction

After having observed a deviation from backward induction in a finite extensive game, like the

centipede game or the finitely repeated prisoners’ dilemma, a player might deem the opponent

prone to deviate from backward induction again. If the player believes with sufficient subjective

probability in this possibility, it might be worthwhile for the player to deviate from backward

induction themself. In turn, such reaction, if predicted, can provide a reason for the opponent

to deviate from backward induction in the first place. This is the backward induction paradox

as introduced by Basu (1988) and Reny (1985, 1988) and discussed by, among others, Binmore

(1987, Section 3), Pettit and Sugden (1989), and Sobel (1993); see also Luce and Raiffa (1957,

pp. 80–81) for an early illustration of a related point and Mas-Colell, Whinston, and Green (1995,

p. 282) for a textbook treatment.

As pointed out by Dufwenberg and Van Essen (2018, p. 126), this argument against backward

induction cannot be made in games where all players move only once. Strategic-form perfect

equilibrium captures this by yielding backward induction in perfect information games where

all players move only once, but not necessarily in games where some player moves more than

once. Indeed, Selten (1975) ensures that his concept of extensive-form perfect equilibrium leads

to backward induction by applying strategic-form perfect equilibrium to the agent-strategic form,

where each player moves only once. However, backward induction is not an equilibrium concept,

but a procedure that corresponds to increasing levels of reasoning.

Therefore, to offer an epistemic foundation of the backward induction paradox, we provide a

non-equilibrium concept, supported by epistemic modeling, that yields the backward induction

strategies in perfect information games where all players move only once, but not necessarily the

backward induction outcome in games where some player moves more than once. To the best of

our knowledge, no previously existing epistemic model solves the backward induction paradox in

the sense of yielding such a non-equilibrium concept. In particular, the Dekel-Fudenberg Procedure

(Dekel and Fudenberg, 1990)—which consists of one round of elimination of weakly dominated

strategies, followed by subsequent rounds of elimination of strictly dominated strategies—does

not even yield backward induction outcomes in perfect information games where all players only

move once, while sequential/quasi-perfect/proper rationalizability (Dekel, Fudenberg, and Levine,

1999, 2002; Schuhmacher, 1999; Asheim and Perea, 2005) always yield the backward induction

strategies.1 Moreover, extensive form rationalizability (Pearce, 1984) leads to the backward induc-

tion outcome in perfect information games with no relevant payoff ties, independently of whether

players move more than once (Battigalli, 1997, Thm. 4; Battigalli and Siniscalchi, 2002, Prop. 8).

We define a refinement of the Dekel-Fudenberg Procedure, called the Independent Dekel-

Fudenberg Procedure, which requires that each player has stochastically independent beliefs about

1The latter property is also shared by common belief in future rationality (Perea, 2014; see also Asheim, 2002),
characterized by a backward dominance procedure, and backward rationalizability (Perea, 2014; Penta, 2015).
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Figure 1: A centipede game and its corresponding strategic form.

the strategy choices of their opponents. As will be illustrated in the game of Figure 2 in Section

2, with such uncorrelated beliefs a player cannot infer anything about the future play of other

players by observing the past play of different players.2 However, the stochastic independence

only concerns “inter-player” inference, not “intra-player” inference, meaning that players can

learn about the behavior of opponents, if these opponents are to move more than once. The

Independent Dekel-Fudenberg procedure formalizes the backward induction paradox, since it has

the feature that, for each player, only the backward induction strategy survives the procedure

in games without relevant payoff ties if players move only once, while outcomes incompatible

with backward induction might survive the procedure otherwise. Furthermore, we provide an

epistemic characterization for the Independent Dekel-Fudenberg Procedure based on common

belief of rationality (maximizing expected payoffs given the beliefs about the strategy choices

of the opponents), caution (taking into account all strategies of the opponents), and stochastic

independence (player i cannot learn anything about the behavior of opponent j by observing the

play of different opponent j′).

The paper is organized as follows: Section 2 presents the backward induction paradox as well

as intuitions for our results in more detail, while the subsequent Section 3 introduces perfect in-

formation games. Section 4 specifies the formal meaning of stochastic independence in a context

where belief are modelled by non-Archimedean probabilities, meaning that some opponent choices

might be assigned subjective probability zero without being deemed subjectively impossible. Sec-

tion 5 defines the Independent Dekel-Fudenberg Procedure and shows how this concept solves

the backward induction paradox, and Section 6 provides its epistemic characterization. Section 7

contains concluding discussion.

2 Backward Induction Paradox

The backward induction paradox can be illustrated in a version of Rosenthal’s (1981) centipede

game, as depicted in Figure 1. In this game, the backward induction procedure entails that player

1 chooses D at this player’s second decision node, inducing player 2 to choose d and player 1 to

choose Out at their first decision node. However, if player 1 deviates from backward induction by

2In the terminology of Stalnaker (1998), the beliefs of the player about the behavior of two different opponents
are epistemically independent.
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Figure 2: A centipede game where players move only once.

choosing In, then player 2 weakly prefers c to d if, conditional on being asked to play, this player

believes that player 1 will deviate from backward induction also at their second decision node, by

choosing C, with at least probability 1
3 . Moreover, player 1 weakly prefers In to Out if this player

believes that player 2 will react to being asked to play by choosing c with at least probability 1
3 .

In a game with similar features, namely the finitely repeated prisoners’ dilemma, Pettit and

Sugden (1989) argue that the backward induction solution, where players choose defect in all

rounds, is intuitively implausible. Rather players might choose cooperate to signal a willingness

to do so also in the future, leading players to adopt a tit-for-tat strategy for a while. Indeed,

Kreps, Milgrom, Roberts, and Wilson (1982) demonstrate how such behavior can be rational

when one player can possibly be committed to a tit-for-tat strategy. This is related to Kreps and

Wilson (1982) and Milgrom and Roberts (1982) who show that players might use initial behavior

to acquire a reputation for being ‘tough’ in Selten’s (1978) finitely repeated chain-store game,

leading to a different outcome than that predicted by backward induction in that game.

Reny (1988, 1992b, 1993) and Bicchieri (1989) relate the backward induction paradox to the

impossibility of common knowledge of rationality in perfect information games. So, even if the

players initially assign subjective probability zero to the event that their opponents do not choose

best replies to their beliefs given their payoffs—in contrast to the assumptions made in the papers

by Kreps, Milgrom, Roberts, and Wilson—the analysis must still allow for such irrationality to

be deemed subjectively possible. In the following decades, a series of papers, including Reny

(1992a), Aumann (1995), Ben-Porath (1997), Stalnaker (1998), Battigalli and Siniscalchi (2002),

Asheim (2002), Asheim and Dufwenberg (2003a,b), Brandenburger (2007), Perea (2007, 2008,

2014), Brandenburger, Friedenberg, and Keisler (2008), Arieli and Aumann (2015), and Battigalli

and De Vito (2021), have considered epistemic conditions that lead only to outcomes consistent

with backward induction and those that permit also other outcomes. However, their predictions

in perfect information games appear not to depend on whether players move more than once.

The Independent Dekel-Fudenberg Procedure, introduced here, yields a prediction which does

depend on whether players move more than once. To illustrate how, consider the centipede game

of Figure 2, which is a version of the centipede game of Figure 1 where the two agents of player 1

at the first and last decision nodes of the game have been divided into two separate players, 1 and

3, who however have the same payoffs as a function of the outcomes. In this game, the backward

induction procedure entails that player 3 chooses D, inducing player 2 to choose d and player 1 to
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choose Out. Since D weakly dominates C, only D is a best reply for player 3 to a belief where all

opponent strategy profiles are deemed subjectively possible. This implies that C is eliminated in

the first round of the Independent Dekel-Fudenberg Procedure, while no strategy is eliminated for

players 1 and 2. Turn now to round 2 and player 2. Any belief for player 2 that (i) satisfies that

all opponent strategy profiles are deemed subjectively possible, (ii) assigns subjective probability

1 to player 1 and 3 choosing (Out, D) or (In, D), and (iii) is stochastically independent, has the

property that the belief of player 2 over the strategies of player 3 conditional on the choice by

player 1 assigns subjective probability 1 to D independently of whether player 1 has chosen Out

or In. Hence, c is eliminated in the second round of the Independent Dekel-Fudenberg Procedure,

while no strategy is eliminated for player 1. Hence, in the third round, player 1 must assign

subjective probability 1 to players 2 and 3 choosing (d,D), implying that In is eliminated. In

contrast, the elimination stops after the first round if stochastically independent beliefs are not

imposed or if the same player chooses at the first and last decision nodes, since then player 2 need

not assign subjective probability 1 to the choice of D at the last decision node, conditional on the

choice of In at the first decision node. This will be explained in more detail in Section 5.

3 Perfect Information Games

A finite extensive game form of almost perfect information with I players and M stages can be

described as follows. This description facilitates the proofs while encompassing all game forms

associated with both finite perfect information games and finitely repeated games. The sets of

histories is determined inductively: The set of histories at the beginning of the first stage 1 is

H1 = {∅}. Let Hm denote the set of histories at the beginning of stages m ∈ {1, 2, . . . ,M}.
At every h ∈ Hm, let, for each player i ∈ I := {1, 2, . . . , I}, i’s nonempty and finite action

set be denoted Ai(h), where i is inactive at h if Ai(h) is a singleton. Write A(h) := A1(h) ×
A2(h) × · · · × AI(h). Define the set of histories at the beginning of stage m + 1 as follows:

Hm+1 := {(h, a) | h ∈ Hm and a ∈ A(h)}. This concludes the induction. Let, for each player

i ∈ I,
Hi :=

{
h ∈

⋃M

m=1
Hm | Ai(h) is not a singleton

}
denote the set of histories at which player i makes an action choice; Hi is assumed to be nonempty.

Then H :=
⋃I

i=1Hi is the set of subtrees, and Z := HM+1 is the set of outcomes.

Let, for each player i ∈ I, υi : Z → R denote i’s Bernoulli utility function. The combination

of the extensive form and the vector (υ1, υ2, . . . , υI) of utility functions is an extensive game Γ

with I players. A pure strategy for player i is a function si that assigns an action in Ai(h) to any

h ∈ Hi. Let Si denote player i’s finite set of pure strategies, and write S := S1 × S2 × · · · × SI

and S−i := S1× · · · ×Si−1×Si+1× · · · ×SI . Let z : S → Z map strategy profiles into outcomes.3

3A pure strategy si ∈ Si can be viewed as an act on S−i that assigns z(si, s−i) ∈ Z to any s−i ∈ S−i. The set
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Let, for each player i ∈ I, ui = υi ◦ z denote i’s payoff function. Then G =
(
(Si)i∈I , (ui)i∈I

)
is

the strategic game derived from Γ.

An extensive game Γ is of perfect information if {H1, H2, . . . HI} is a partition of H; that is,

there is no history at which two players choose actions simultaneously. In a perfect information

game Γ, let p : H → {1, 2, . . . , I} be the function that, for each h ∈ H, determines the player

who chooses at h. An extensive game Γ has the property that all players choose only once

if, for each player i ∈ I, Hi is a singleton, implying that, for some hi ∈ H, Hi = {hi} and

Si = A(hi). An extensive game Γ has no relevant payoff ties if, for each player i ∈ I and all

s−i ∈ S−i, υi(z(s
′
i, s−i)) ̸= υi(z(s

′′
i , s−i)) whenever s′i, s

′′
i ∈ Si lead to different outcomes; that

is, z(s′i, s−i) ̸= z(s′′i , s−i). In a perfect information game Γ with no relevant payoff ties, the

procedure of backward induction determines a unique strategy profile s∗ through the following

inductive procedure: If h ∈ H ∩HM , then s∗p(h)(h) is the unique action that maximizes υp(h)(h, a)

over all a ∈ Ap(h). Assume that s∗ has been determined for all h ∈ H ∩
(
Hm+1 ∪ · · · ∪HM

)
,

where m ∈ {1, 2, . . . ,M − 1}. If h ∈ H ∩Hm, then s∗p(h)(h) is the unique action that maximizes

υp(h)(h, a, s
∗
p(h,a)(h, a), . . . ) over all a ∈ Ap(h). This concludes the induction.

4 Independent Non-Archimedean Probabilities

Analysis of extensive games in the strategic form is facilitated by applying beliefs about opponent

behavior where certain actions are deemed subjectively possible although assigned subjective

probability zero. This requires so-called non-Archimedean subjective probabilities. Moreover,

our foundation of the backward induction paradox requires that such non-Archimedean subjective

probabilities be stochastically independent. This section concerns the modeling of stochastically

independent non-Archimedean subjective probabilities.

Consider a finite set X. Following Blume, Brandenburger, and Dekel (1991a), a lexicographic

probability system (LPS) λ on X is a vector (µ1, µ2, . . . , µL), where µℓ, for ℓ = 1, 2, . . . , L, are

probability (non-negative one-sum) distributions on X. The support of µ1, suppµ1, is the set of

elements in X that are assigned positive subjective probability, while the support of λ, suppλ =

suppµ1∪ suppµ2∪ · · ·∪ suppµL, is the set of elements in X that are deemed subjectively possible.

In the context of a finite strategic game G =
(
(Si)i∈I , (ui)i∈I

)
, player i’s payoff function ui

combined with an LPS λi = (µ1
i , µ

2
i , . . . , µ

L
i ) on S−i, as a representation of player i’s belief about

opponent behavior, determines player i’s preferences over his own strategies si ∈ Si as follows: si

is weakly preferred to s′i given the beliefs λi if and only if

(
Σ1
ui
(si),Σ

2
ui
(si), . . . ,Σ

L
ui
(si)

)
⩾L

(
Σ1
ui
(s′i),Σ

2
ui
(s′i), . . . ,Σ

L
ui
(s′i)

)
,

of pure strategies Si is partitioned into equivalent classes of acts since a pure strategy si also determines actions in
subtrees which si prevents from being reached. Each such equivalent class corresponds to a plan of action in the
sense of Rubinstein (1991). As there is no need here to differentiate between identical acts, the concept of a plan
of action suffices. Indeed, in the example of Figure 1, we list only the players’ plans of actions.
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where Σℓ
ui
(si) denotes

∑
s−i∈S−i

µℓ
i(s−i)ui(si, s−i) for ℓ ∈ {1, 2, . . . , L}, and where ⩾L is defined

by, for a, b ∈ RL, a ⩾L b if and only if (i) aℓ = bℓ for all ℓ ∈ {1, 2, . . . , L} or (ii) there exists

ℓ ∈ {1, 2, . . . , L} such that aℓ′ = bℓ′ for all ℓ
′ ∈ {1, 2, . . . , ℓ− 1} and aℓ > bℓ. Say that si is a best

reply to λi if, for all s
′
i ∈ Si, si is weakly preferred to s′i given the beliefs λi. Define i’s best reply

correspondence βi from the set of LPSs on S−i to 2S−i\{∅} as follows: For every LPS λi on S−i,

βi(λi) := {si ∈ Si | si is a best reply to λi} .

To define stochastic independence we impose strong independence in the sense of Blume, Bran-

denburger, and Dekel (1991a, Def. 7.1; 1991b, Sect. 3.3). This version of stochastic independence

“requires there to be an equivalent F-valued probability measure that is a product measure”

(Blume, Brandenburger, and Dekel, 1991b, p. 90), where F is “a non-Archimedean ordered field

. . . which is a strict extension of the real number field R” (Blume, Brandenburger, and Dekel,

1991a, p. 72), with the notion of ‘a non-Archimedean ordered field’ not being explained in de-

tail and the concept of ‘equivalence’ only being implicitly defined. Therefore, to expound their

definition, we introduce the notions of non-standard numbers and non-standard probabilities and

refer to literature which analyzes these notions. An infinitesimal ε is a positive number with the

property that ε < a for every positive real number a ∈ R. Following Robertson (1973), Hammond

(1994), and Halpern (2010), let R(ε) be the smallest field that includes all real numbers and the

infinitesimal ε. As shown by Meier and Perea (2020, Sect. 5.1), every finite non-standard number

a ∈ R(ε) can uniquely be written as a = a1 + a2ε+ a3ε
2 + · · · , where aℓ ∈ R for every ℓ ∈ N. Let

st(a) := a1 denote the standard part of a, which is the real number “closest” to a.

Consider a finite set X. A non-standard probability distribution (NPD) on X is a function

ν : X → R(ε) such that ν(x) ≥ 0 for all x ∈ X and
∑

x∈X ν(x) = 1. Following Halpern (2010,

Def. 4.1 and Lemma A.7), say that an NPD ν on X is equivalent to an LPS λ = (µ1, µ2, . . . , µL)

on X if, for all x ∈ X,

ν(x) =
∑L

ℓ=1
ν̃(ℓ)µℓ(x) ,

where ν̃ : {1, . . . , L} → R(ε) is an NPD on {1, 2, . . . , L} with the properties that

st
( ν̃(ℓ+1)

ν̃(ℓ)

)
= 0

for ℓ ∈ {1, 2, . . . , L− 1} and ν̃(L) > 0. To illustrate, let λ = (µ1, µ2, µ3) be an LPS on X. Then

ν̃ equal to (1 − ε − ε2, ε, ε2) or (1 − ε, ε − ε2, ε2) or (1 − 2ε2, 2(ε2 − 3ε3), 6ε3) are examples of

NPDs on {1, 2, 3} that can be used to aggregate the LPS λ into an equivalent NPD ν.

In the context of a finite strategic game G =
(
(Si)i∈I , (ui)i∈I

)
, player i’s payoff function ui,

combined with an NPD νi on S−i determines player i’s preferences over his own strategies si ∈ Si
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as follows: si is weakly preferred to s′i given the beliefs νi if and only if∑
s−i∈S−i

νi(s−i)ui(si, s−i) ≥
∑

s−i∈S−i

νi(s−i)ui(si, s−i) .

Say that si is a best reply to νi if, for all s
′
i ∈ Si, si is weakly preferred to s′i given the beliefs νi.

If the NPD νi on S−i is equivalent to the LPS λi on S−i, then the set of best replies coincide:

βi(λi) = {si ∈ Si | si is a best reply to νi} .

In fact, as argued by Halpern (2010, footnote 5), this statement holds if we consider the best

reply correspondence βi and the set of best replies as a function of the NPS νi for every possible

payoff function ui on Si × S−i.

An NPD νi on S−i is a product distribution if there exist NPDs νji on Sj for j ∈ I \ {i} such

that
νi(s−i) =

∏
j∈I\{i}

νji (sj)

for all s−i ∈ S−i. An LPS λi on S−i is said to be strongly independent if there exists an equivalent

NPD on S−i that is a product distribution. This concludes our elucidation of the independence

concept defined by Blume, Brandenburger, and Dekel (1991a, Def. 7.1; 1991b, Sect. 3.3).

5 Independent Dekel-Fudenberg Procedure

The Dekel-Fudenberg Procedure (Dekel and Fudenberg, 1990) eliminates, in the first round, all

weakly dominated strategies for all players and, in subsequent rounds, all strictly dominated

strategies for all players, until the procedure reaches a round in which no further elimination is

possible. In the first subsection we first state an equivalent definition where the eliminated strate-

gies in each round are those that can never be best replies to beliefs where only strategies that are

still uneliminated are assigned positive subjective probabilities, but where all opponent strategy

profiles are deemed subjectively possible. We then define the Independent Dekel-Fudenberg Proce-

dure by imposing the additional requirement that beliefs are strongly independent. In the second

subsection we establish three results showing how the Independent Dekel-Fudenberg Procedure

can be used to interpret the backward induction paradox, while the ordinary Dekel-Fudenberg

Procedure cannot.
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5.1 Definitions

Consider first the correspondence aci : {S′
−i ⊆ S−i | S′

−i is a Cartesian product} → 2Si defined as

follows (where superscript c indicates that beliefs are allowed to be correlated):

aci (S
′
−i) := {si ∈ Si | there exists an LPS λi = (µ1

i , . . . , µ
L
i ) on S−i with

suppµ1
i ⊆ S′

−i and suppλi = S−i such that si is a best response to λi}

for all non-empty Cartesian products S′
−i, and aci (∅) := ∅. By Brandenburger (1992, Prop. 2),

the following is an equivalent definition of the Dekel-Fudenberg Procedure.

Definition 1 The Dekel-Fudenberg Procedure. Consider the sequence defined by, for all players

i ∈ I, S0
i = Si and, for every k ≥ 1, Sk

i = aci
(
Sk−1
1 × · · · × Sk−1

i−1 × Sk−1
i+1 × · · · × Sk−1

I

)
. A strategy

si for player i survives the Dekel-Fudenberg Procedure if si ∈ P c
i :=

⋂∞
k=1 S

k
i .

In particular, for each player i ∈ I, S1
i = aci (S−i) is the set of i’s admissible strategies, that is, not

weakly dominated (Blume, Brandenburger, and Dekel, 1991a, Thm. 4.2), while, for every k > 1,

Sk
i = aci (S

k−1
−i ) is the subset of S1

i that are not strictly dominated on Sk−1
−i (Pearce, 1984, Lemma

3, generalized to I-player games where beliefs are allowed to be correlated). Strategies surviving

this procedure are called permissible by Brandenburger (1992); hence, the notation P c
i .

Consider next the correspondence ai : {S′
−i ⊆ S−i | S′

−i is a Cartesian product} → 2Si defined

as follows:

ai(S
′
−i) := {si ∈ Si | there exists a strongly independent LPS λi = (µ1

i , . . . , µ
L
i ) on S−i with

suppµ1
i ⊆ S′

−i and suppλi = S−i such that si is a best response to λi}

for all non-empty Cartesian products S′
−i, and ai(∅) := ∅. This correspondence can be used to

state the following definition.

Definition 2 The Independent Dekel-Fudenberg Procedure. Consider the sequence defined by, for

all players i ∈ I, S0
i = Si and, for every k ≥ 1, Sk

i = ai
(
Sk−1
1 ×· · ·×Sk−1

i−1 ×Sk−1
i+1 ×· · ·×Sk−1

I

)
. A

strategy si for player i survives the Independent Dekel-Fudenberg Procedure if si ∈ Pi :=
⋂∞

k=1 S
k
i .

5.2 Results

We start our analysis of the Dekel-Fudenberg and Independent Dekel-Fudenberg Procedures by

noting the following helpful result, writing P c
−i := P c

1 × · · · × P c
i−1 × P c

i+1 × · · · × P c
I and P−i :=

P1 × · · · × Pi−1 × Pi+1 × · · · × PI .

Lemma 1. (a) For each player i ∈ I, ∅ ̸= Pi ⊆ P c
i ⊆ SI .

(b) For each player i ∈ I, P c
i = aci (P

c
−i) and Pi = ai(P−i).

8



Proof. For all i ∈ I, aci and ai are monotone: if S′
−i and S′′

−i are Cartesian products satisfying ∅ ̸=
S′
−i ⊆ S′′

−i ⊆ S−i, then ∅ ̸= aci (S
′
−i) ⊆ aci (S

′′
−i) ⊆ aci (S−i) and ∅ ̸= ai(S

′
−i) ⊆ ai(S

′′
−i) ⊆ ai(S−i).

Hence, since S is finite, both procedures converge in a finite number of rounds to non-empty sets

of strategies P c
i and Pi, respectively, satisfying P c

i = aci (P
c
−i) and Pi = ai(P−i), for all players

i ∈ I. Since, for any Cartesian product S′
−i ⊆ Si , ai(S

′
−i) ⊆ aci (S

′
−i), a strategy that survives the

Independent Dekel-Fudenberg Procedure also survives the Dekel-Fudenberg Procedure, while the

converse need not hold.

We first show that the Independent Dekel-Fudenberg Procedure determines the profile of

backward induction strategies in perfect information games with no relevant payoff ties where all

players choose only once.

Proposition 1. In any perfect information game Γ with no relevant payoff ties and the property

that all players choose only once, for each player i ∈ I, there is a unique strategy that survives

the Independent Dekel-Fudenberg Procedure, and this strategy is the player’s backward induction

strategy.

Proof. Assume that Γ is a perfect information game with no relevant payoff ties and the property

that all players choose only once. Since all players choose only once, for each i ∈ I, i’s strategy

set Si equals A(hi), where hi is the single history after which i makes an action choice. Since

the game has no relevant payoff ties, there exists, for each i ∈ I, a unique strategy s∗i ∈ A(hi)

that survives the backward induction procedure. Let Im be the set of players that makes an

action choice in stage m ∈ {1, 2, . . . ,M}, implying that {I1, I2, . . . , IM} is a partition of I. The

backward induction procedure has M stages where, for all k ∈ {1, 2, . . . ,M − 1}, A(hi) is the set

strategies surviving k stages for each i ∈ I1 ∪ · · · ∪ IM−k and s∗i is the unique strategy surviving

k stages for each i ∈ IM−k+1∪ · · · ∪IM , while s∗i is the unique strategy surviving M stages for all

i ∈ I. The strategy of proof is to show that, for all k ∈ {1, 2, . . . ,M}, no strategy but s∗i survives

k stages of the Independent Dekel-Fudenberg Procedure for each i ∈ IM−k+1 ∪ · · · ∪ IM .

We prove this by induction. We initiate the induction by first showing that no strategy but

s∗i survives stage 1 of the Independent Dekel-Fudenberg Procedure for each i ∈ IM . This follows

since, for each i ∈ IM , s∗i is the unique best response to an LPS λi on S−i satisfying suppλi = S−i.

We next show that no strategy but s∗i survives stage k+1 of the Independent Dekel-Fudenberg

Procedure for each i ∈ IM−k if no strategy but s∗j survives k stages of the Independent Dekel-

Fudenberg Procedure for each j ∈ IM−k+1 ∪ · · · ∪ IM . Assume that no strategy but s∗j survives

k stages of the Independent Dekel-Fudenberg Procedure for each j ∈ IM−k+1 ∪ · · · ∪ IM , and

let λi = (µ1
i , . . . , µ

L
i ) on S−i be a strongly independent LPS on S−i with suppµ1

i ⊆ Sk
−i and

suppλi = S−i, where Sk
−i is the Cartesian product of opponent strategies that survive k rounds

of the Independent Dekel-Fudenberg Procedure. Since λi is strongly independent, there exists an

equivalent NPD νi on S−i which satisfies that νi(s−i) =
∏

j∈I\{i}ν
j
i (sj), where νji are NPDs on
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Sj for j ∈ I \ {i}. Since Sk
j = {s∗j} for all j ∈ IM−k+1 ∪ · · · ∪ IM , it follows from the property

that suppµ1
i ⊆ Sk

−i that, for each such j, st
(
vj(s

∗
j )
)
= 1. Because of this and the properties of the

backward induction procedure, for each i ∈ IM−k, s
∗
i is the unique best response to the LPS λi,

since suppλi = S−i. It follows that no strategy but s∗i survives stage k + 1 of the Independent

Dekel-Fudenberg Procedure for each i ∈ IM−k. This concludes the induction.

Since, by Lemma 1(a), for each i ∈ I, Pi ̸= ∅, it follows that Pi = {s∗i } for each i ∈ I.

Proposition 1 can be illustrated by the centipede game of Figure 2, the version of the centipede

game of Figure 1 with three separate players. As explained at the end of Section 2, the Independent

Dekel-Fudenberg Procedure leads to the following rounds of elimination in this game:

S1
1 = a1(S2 × S3) = S1 S1

2 = a2(S1 × S3) = S2 S1
3 = a3(S1 × S2) = {D}

S2
1 = a1(S2 × {D}) = S1 S2

2 = a2(S1 × {D}) = {d} S2
3 = a3(S1 × S2) = {D}

S3
1 = a1({d} × {D}) = {Out} S3

2 = a2(S1 × {D}) = {d} S3
3 = a3(S1 × {d}) = {D}

· · · · · · · · ·
Sk
1 = a1({d} × {D}) = {Out} Sk

2 = a2({Out} × {D}) = {d} Sk
3 = a3({Out} × {d}) = {D}

· · · · · · · · ·

Hence, in the game of Figure 2, the eliminations according to the Independent Dekel-Fudenberg

Procedure correspond to the backward induction procedure. Note that the Independent Dekel-

Fudenberg Procedure might eliminate faster than the backward induction procedure. This is

indeed be the case if, in the game of Figure 2, player 1’s payoff of Out would have been 6 instead

of 2, causing In to be eliminated already in the first round. However, in any case, for a perfect

information game with no relevant payoff ties and the property that all players choose only once,

only the backward induction strategies survive the procedure. We next show that this is not the

case for the ordinary Dekel-Fudenberg Procedure.

Proposition 2. There exists a perfect information game Γ with no relevant payoff ties and the

property that all players choose only once, where an outcome other than the backward induction

outcome can be reached even if all players choose strategies that survive the Dekel-Fudenberg

Procedure.

Proof. Consider the game of Figure 2, which is a perfect information game with no relevant

payoff ties and the property that all players choose only once. Since D weakly dominates C,

only D is a best reply for player 3 to an LPS where all opponent strategy profiles are deemed

subjectively possible. Hence, S1
3 = ac3(S1 × S2) = {D}, implying that C is eliminated in the

first round of the Dekel-Fudenberg Procedure, while no strategy is eliminated for players 1 and

2. The Dekel-Fudenberg Procedure allows no further elimination. In particular, c is best reply

for player 2 to an LPS λ2 over S1 × S3 = {(Out, D), (Out, C), (In, D), (In, C)} given by λ2 =

((1, 0, 0, 0), (0, 13 ,
1
3 ,

1
3)) since the LPS λ2|{In} conditional on the choice of In by player 1 assigns

subjective probability 1
2 to player 3 choosing C. Note that the LPS λ2 for player 2 satisfies that
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all opponent strategy profiles are deemed subjectively possible and assigns subjective probability

1 to S1
1 × S1

3 = {(Out, D), (In, D)}, but it is not strongly independent. Hence, in addition to the

backward induction outcome Out, also the outcomes (In, d) and (In, c,D) can be reached even if

all players choose strategies that survive the Dekel-Fudenberg Procedure.

Proposition 3. There exists a perfect information game Γ with no relevant payoff ties, where

an outcome other than the backward induction outcome can be reached even if all players choose

strategies that survive the Independent Dekel-Fudenberg Procedure. Such a game necessarily in-

volves some player choosing more than once.

Proof. Consider the game of Figure 1, which is a perfect information game with no relevant payoff

ties. Since InD weakly dominates InC, InC cannot be a best reply for player 1 to an LPS where all

opponent strategy profiles are deemed subjectively possible. Hence, S1
1 = a1(S2) = {Out, InD},

implying that InC is eliminated in the first round of the Independent Dekel-Fudenberg Proce-

dure, while no strategy is eliminated for player 2. The Independent Dekel-Fudenberg Procedure

allows no further elimination. In particular, c is best reply for player 2 to an LPS λ2 over

S1 = {Out, InD, InC} given by λ2 = ((1, 0, 0), (13 ,
1
3 ,

1
3)) since the LPS λ2|{InD, InC} conditional

on the choice of In by player 1 assigns subjective probability 1
2 to player 1 choosing InC. Note

that the LPS λ2 for player 2 satisfies that all opponent strategy profiles are deemed subjectively

possible and assigns subjective probability 1 to S1
1 = {Out, InD}. It is also trivially strongly

independent as the game has only two players. Hence, in addition to the backward induction

outcome Out, also the outcomes (In, d) and (In, c,D) can be reached even if both players choose

strategies that survive the Independent Dekel-Fudenberg Procedure.

6 Epistemic Characterizations

The epistemic analysis builds on the concept of player types, where a type of a player is charac-

terized by an LPS over the others’ strategies and types.

6.1 Definitions

For each i ∈ I, let Ti denote player i’s non-empty and finite type space. The state space is defined

by Ω := S × T , where T := T1 × · · · × TI . For each player i ∈ I, write Ωi := Si × Ti and

Ω−i := Ω1 × · · · × Ωi−1 × Ωi+1 × · · · × ΩI . To each type ti ∈ Ti of every player i is associated an

LPS λi(ti) =
(
µ1
i (ti),µ

2
i (ti), . . . ,µ

L(ti)
i (ti)

)
on Ω−i. For each player i, we thus have the player’s

strategy set Si, type space Ti and a mapping λi that to each of i’s types ti assigns an LPS λi(ti)

over the others’ strategy choices and types. The structure
(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
is called an

S-based interactive belief structure.

For each i ∈ I, let si(ω) and ti(ω) denote i’s strategy and type in state ω ∈ Ω. In other words,

si : Ω → Si is the projection of the state space to i’s strategy set, assigning to each state ω ∈ Ω

11



the strategy si = si(ω) that i uses in that state. Likewise, ti : Ω → Ti is the projection of the

state space to i’s type space. For each player i ∈ I, the belief operator Bi maps each event E ⊆ Ω

to the set of states where player i’s type assigns subjective probability 1 to E:

Bi(E) := {ω ∈ Ω | µ1
i (ti(ω))(E(ωi)) = 1} ,

where E(ωi) := {ω−i ∈ Ω−i | (ωi, ω−i) ∈ E}. This belief operator appears in Hu (2007). The belief

operator Bi satisfies Bi(∅) = ∅, Bi(Ω) = Ω, Bi(E
′) ⊆ Bi(E

′′) if E′ ⊆ E′′ (monotonicity), and

Bi(E) = E if E =
(
projΩi

E
)
× Ω−i. The last property means that each player i always believes

their own strategy-type pair. Since also Bi(E) = (projΩi Bi(E))× Ω−i for all events E ⊆ Ω, the

operator Bi satisfies both positive (Bi(E) ⊆ Bi(Bi(E))) and negative (¬Bi(E) ⊆ Bi(¬Bi(E))

introspection. However, Bi violates the truth axiom, meaning that Bi(E) ⊆ E need not hold for

all E ⊆ Ω. Finally, Bi(E
′)∩Bi(E

′′) ⊆ Bi(E
′∩E′′) for all E′, E′′ ⊆ Ω. Say that, at ω ∈ Ω, there is

mutual belief of E ⊆ Ω if ω ∈ B(E), where B(E) := B1(E)∩· · ·∩BI(E). Say that, at ω ∈ Ω, there

is common belief of E ⊆ Ω if ω ∈ CB(E), where CB(E) := B(E)∩B(B(E))∩B(B(B(E)))∩ . . . .

We connect types with the payoff functions by, for each player i ∈ I, defining i’s choice

correspondence Si : Ti → 2Si as follows: For each of i’s types ti ∈ Ti,

Si(ti) := βi(margS−i
λi(ti))

consists of i’s best replies when player i is of type ti. For each player i ∈ I, write [rati] for the

event that player i uses a best reply:

[rati] := {ω ∈ Ω | si(ω) ∈ Si(ti(ω))} .

One may interpret [rati] as the event that i is rational: if ω ∈ [rati], then si(ω) is a best reply to

margS−i
λi(ti(ω)). For each player i ∈ I, write [caui] for the event that player i has beliefs with

full support on the strategy profiles of the others:

[caui] := {ω ∈ Ω | supp
(
margS−i

λi(ti(ω))
)
= S−i} .

One may interpret [caui] as the event that i is cautious. For each player i ∈ I, write [indi] for the
event that player i has stochastically independent beliefs about the strategy choices of the others:

[indi] := {ω ∈ Ω | margS−i
λi(ti(ω)) is strongly independent} .

Write [rat] := [rat1] ∩ · · · ∩ [ratI ], [cau] := [cau1] ∩ · · · ∩ [cauI ], and [ind] := [ind1] ∩ · · · ∩ [indI ]

for the events that all players, respectively, are rational, are cautious, and have stochastically

independent belief about the strategy choices of the others.
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6.2 Results

We can now state the following characterization results.

Proposition 4. For each player i ∈ I and any strategy si ∈ Si for i, si survives the Dekel-

Fudenberg Procedure if and only if there exists an S-based interactive belief structure
(
(Si)i∈I ,

(Ti)i∈I , (λi)i∈I
)
such that si = si(ω) for some ω ∈ CB ([rat] ∩ [cau]).

The proof is deleted, as the result is well-known (Börgers, 1994), and its proof can be obtained

by removing the independence requirement from the proof of the following Proposition 5. The

epistemic characterization of the Dekel-Fudenberg Procedure in Proposition 4 can be illustrated

in the game of Figure 2 by letting T1 = {tOut
1 , tIn1 }, T2 = {td2, tc2}, and T3 = {tD3 }, where λ1(t

Out
1 ) =

(µ1
1(t

Out
1 ),µ2

1(t
Out
1 ),µ3

1(t
Out
1 )) and λ1(t

In
1 ) = (µ1

1(t
In
1 ),µ2

1(t
In
1 )) are given by:

µ1
1(t

Out
1 )((d, td2), (D, tD3 )) = 1 ,

µ2
1(t

Out
1 )((d, td2), (C, t

D
3 )) = µ2

1(t
Out
1 )((c, td2), (D, tD3 )) =

1
2 ,

µ3
1(t

Out
1 )((c, td2), (C, t

D
3 )) = 1 ,

µ1
1(t

In
1 )((d, td2), (D, tD3 )) = µ1

1(t
In
1 )((c, tc2), (D, tD3 )) =

1
2 ,

µ2
1(t

In
1 )((d, td2), (C, t

D
3 )) = µ2

1(t
In
1 )((c, tc2), (C, t

D
3 )) =

1
2 ,

where λ2(t
d
2) = (µ1

2(t
d
2),µ

2
2(t

d
2),µ

3
2(t

d
2)) and λ2(t

c
2) = (µ1

2(t
c
2),µ

2
2(t

c
2)) are given by:

µ1
2(t

d
2)((Out, tOut

1 ), (D, tD3 )) = 1 ,

µ2
2(t

d
2)((Out, tOut

1 ), (C, tD3 )) = µ2
2(t

d
2)((In, t

Out
1 ), (D, tD3 )) =

1
2 ,

µ3
2(t

d
2)((In, t

Out
1 ), (C, tD3 )) = 1 ,

µ1
2(t

c
2)((Out, tOut

1 ), (D, tD3 )) = 1 ,

µ2
2(t

c
2)((Out, tOut

1 ), (C, tD3 )) = µ2
2(t

c
2)((In, t

In
1 ), (D, tD3 )) = µ2

2(t
c
2)((In, t

In
1 ), (C, tD3 )) =

1
3 ,

and where λ3(t
D
3 ) = (µ1

3(t
D
3 ),µ

2
3(t

D
3 ),µ

3
3(t

D
3 )) is given by:

µ1
3(t

D
3 )((Out, tOut

1 ), (d, td2)) = 1 ,

µ2
3(t

D
3 )((Out, tOut

1 ), (c, td2)) = µ2
3(t

D
3 )((In, t

Out
1 ), (d, td2)) =

1
2 ,

µ3
3(t

D
3 )((In, t

Out
1 ), (c, td2)) = 1 .

Then, for each state in {(Out, tOut
1 ), (In, tIn1 )}×{(d, td2), (c, tc2)}×{(D, tD3 )}, there is common belief

of rationality and caution, since S1(t
Out
1 ) = {Out}, S1(t

In
1 ) = {In}, S2(t

d
2) = {d}, S2(t

c
2) = {c},

and S3(t
D
3 ) = {D}. This corresponds to the fact that Out and In for player 1, d and c for player

2, and D for player 3 survive the Dekel-Fudenberg Procedure.
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Proposition 5. For each player i ∈ I and any strategy si ∈ Si for i, si survives the Indepen-

dent Dekel-Fudenberg Procedure if and only if there exists an S-based interactive belief structure(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
such that si = si(ω) for some ω ∈ CB ([rat] ∩ [cau] ∩ [ind]).

Proof. Part 1: For each player i ∈ I and any strategy si ∈ Pi (that is, si survives the Inde-

pendent Dekel-Fudenberg Procedure), there exists an S-based interactive belief structure
(
(Si)i∈I ,

(Ti)i∈I , (λi)i∈I
)
such that si = si(ω) for some ω ∈ CB ([rat] ∩ [cau] ∩ [ind]). For each i ∈ I

and any si ∈ Pi, let tsii denote a type of i for which si ∈ Si(t
si
i ), supp

(
margS−i

µ1
i (t

si
i )

)
⊆ P−i,

supp
(
margS−i

λi(t
si
i )

)
= S−i, and margS−i

λi(t
si
i ) is strongly independent. By Lemma 1, such

types exist since, for each i, Pi ̸= ∅ and Pi = ai(P−i). Furthermore, assume that, for all

(s−i, t−i) ∈ Ω−i, µ
1
i (t

si
i )(s−i, t−i) > 0 only if, for all j ̸= i and sj ∈ Pj , tj = t

sj
j . Write, for each

i ∈ I, Ti := {ti = tsii | si ∈ Pi}. The definitions of [rat], [cau], and [ind] imply

{(s1, . . . , sI , t1, . . . , tI) | for all i ∈ I, si ∈ Pi and ti = tsii } ⊆ CB ([rat] ∩ [cau] ∩ [ind]) .

Hence, for each player i ∈ I and any strategy si ∈ Pi,
(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
has the property

that si = si(ω) for some ω ∈ CB ([rat] ∩ [cau] ∩ [ind]).

Part 2: For each player i ∈ I, if si = si(ω) for some ω ∈ CB ([rat] ∩ [cau] ∩ [ind]), where(
(Si)i∈I , (Ti)i∈I , (λi)i∈I

)
is an S-based interactive belief structure, then si ∈ Pi. If, for i ∈ I,

si = si(ω) for some ω ∈ [rat] ∩ [cau] ∩ [ind], then si ∈ ai(S−i). Let, for all i ∈ I,

S′
i = {si ∈ Si | si = si(ω) for some ω ∈ Bk−1([rat] ∩ [cau] ∩ [ind]), where k ∈ N}.

Then if, for i ∈ I, si = si(ω) for some ω ∈ Bk([rat]∩[cau]∩[ind]), then si ∈ ai(S
′
−i). It now follows

from the definition of Pi that si ∈ Pi if si = si(ω) for some ω ∈ CB ([rat] ∩ [cau ∩ [ind]).

The epistemic characterization of the Independent Dekel-Fudenberg Procedure can also be

illustrated in the game of Figure 2, by noting that there is common belief of rationality, cau-

tion, and stochastically independent beliefs in the state
(
(Out, tOut

1 ), (d, td2), (D, tD3 )
)
, where the

types tOut
1 , td2, and tD3 are defined as above. In particular, margS−1

λ1(t
Out
1 ), margS−2

λ2(t
d
2), and

margS−3
λ3(t

D
3 ) are strongly independent, since by aggregating the three levels of these LPSs by

the NPS ν̃, where ν̃(1) = (1 − ε)2, ν̃(2) = 2(ε − ε2), and ν̃(3) = ε2, it follows that the aggre-

gated NPSs are product distributions. This corresponds to the fact that Out for player 1, d for

player 2, and D for player 3 survive the Independent Dekel-Fudenberg Procedure. In contrast,

margS−2
λ2(t

c
2), where tc2 is defined as above, is not strongly independent, reflecting that c for

player 2 and In for player 1 do not survive the Independent Dekel-Fudenberg Procedure.

Combined with Propositions 1–3, these results imply that stochastically independent beliefs

are an essential ingredient in an epistemic characterization of the backward induction paradox.
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7 Discussion

Requiring that beliefs about opponents’ choices are stochastically independent in games with more

than two players was the traditional view in game theory, as reflected by equilibrium concepts

(like Nash equilibrium and strategic-form perfect equilibrium) and non-equilibrium concepts (like

rationalizability as originally defined by Bernheim, 1984, and Pearce, 1984). Over the years,

however, this view has been challenged with the argument that players can have stochastically

dependent beliefs about the choices of opponents even though the opponents choose independently.

Moreover, allowing for correlated beliefs leads to the strategies that are never best replies being

exactly those that are dominated.

The Dekel-Fudenberg Procedure is an uncontroversial solution concept, as it eliminates only

those strategies that cannot be rational if rationality and caution are commonly believed. The

question of whether stochastic independence of beliefs about opponents’ choices should also be

imposed, leading to the Independent Dekel-Fudenberg Procedure, might be made subject to em-

pirical analysis by designing experiments which compare games like those depicted in Figures 1

and 2 as different treatment. We are not aware of any such experiments,4 and answering this

question is beyond the scope of the present paper. Its purpose has been to point out that this

refinement of the Dekel-Fudenberg Procedure can be used to interpret the backward induction

paradox (as shown by Proposition 1 and 3), and that its epistemic characterization (Proposition

5) thereby yields an epistemic foundation of this paradox.

Instead of using the Dekel-Fudenberg Procedure as our point of departure, we could have used

other concepts that always yield backward induction in 2-player games where the each player

moves only once, but which might lead to outcome incompatible with backward induction if

players move more than once. The concept of Fully Permissible Sets as defined and epistemically

characterized by Asheim and Dufwenberg (2003a) for 2-player games and applied to extensive

games in Asheim and Dufwenberg (2003b) does have these properties. The concept essentially

yields the same prediction as the Dekel-Fudenberg Procedure in the game of Figure 1, while

being more restrictive by yielding the backward induction outcome in the game of Reny (1992a,

Fig. 1). Asheim and Perea (2019, Def. 9) generalize this concept to games with more than two

players without imposing stochastically independent beliefs. If instead stochastic independence

is imposed when generalizing Fully Permissible Sets to such games, this concept would yield an

alternative interpretation and epistemic foundation of the backward induction paradox.

4The experimental results of Dufwenberg and Van Essen (2018) show that backward induction might not obtain
even if each player moves only once, in games where the backward induction strategy for each player depends on
whether there is an even or odd number of remaining players. This can be interpreted as a test of the common
belief assumption rather than the assumption that beliefs are stochastically independent.
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