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Abstract

By formalizing a preference-based notion of local linearity in the spirit of Machina

(1982), we introduce two utility representations. Both are equivalent to continuous

finite piecewise linear functions. In the first, it is as if the decision maker has an

optimistic self and a cautious self playing a zero-sum game. In the second, the decision

maker evaluates an alternative through a neural network. The representations are easy

to apply and estimate, can be used for local utility analyses and analyzing choices under

ambiguity, and nest the constant loss aversion model and models with hierarchical

subjective product attributes as special cases.

1 Introduction

Linear utility functions are widely used in economics. For example, expected utility functions

are linear in probability, and empirical research often uses utility functions that are linear

in products’ attributes. It is perhaps not surprising that these linear utility functions may

not describe people’s choice behavior well. Therefore, more descriptive nonlinear utility

functions have been proposed, such as the constant loss aversion model of Kahneman and

Tversky (1979), in which a product’s utility depends on whether each of their attributes is

in the gain region or the loss region.

One of the most prominent nonlinear utility functions was introduced in a seminal paper

by Machina (1982), who, rather than assuming linearity, assumes that the utility function

is differentiable. Differentiability ensures the existence of a local expected utility function
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in an infinitesimal neighborhood of any risky prospect. In other words, the decision maker’s

utility function exhibits a form of local linearity. It has been argued that the main insights

of several important results of expected utility theory continue to hold under differentiable

utility functions, and these functions can generate behavior consistent with empirical findings

that linear utility functions cannot.1

Despite Machina’s (1982) ingenious and insightful analysis of nonlinear utility functions,

several important issues remain unaddressed. First, it is unclear what axioms a decision

maker’s preference should satisfy to have a differentiable utility representation. The notion

of local linearity is a natural relaxation of global linearity, but ideally we may want local

linearity to be defined in terms of the decision maker’s choice behavior, rather than in terms

of the utility representation directly. Second, differentiable utility functions in general do

not offer a simple interpretation of people’s choice behavior, and therefore, it is not easy to

identify special cases that match behavioral phenomena. Third, empirically, it is not obvious

how one should estimate a general differentiable utility function.

In this paper, we take an alternative approach to study local linearity that addresses

the above issues. Our theory is based on notions of local linearity imposed directly on

choice behavior. Similar to Machina (1982), local utility analyses can be performed under

our theory. Moreover, our theory has several advantages. First, compared to differentiable

utility functions, the representations of the decision maker’s preference that we characterize

have a simple and natural axiomatic foundation, and are easier to interpret and apply.

Second, our theory applies to many choice settings, and hence can accommodate a wider

range of empirical findings. Third, our theory provides a useful framework for us to better

understand a variety of choice axioms and decision models. Last, there are well developed

and widely used methods to estimate some of our representations.

Specifically, the linearity of utility functions is characterized, for example, by the inde-

pendence axiom from expected utility theory. Using a variation of the Allais paradox, we

argue that although independence does not hold globally, as shown in the original Allais

paradox, it does seem reasonable to assume that some notion of independence holds locally.

Directly assuming that independence holds locally everywhere, however, will simply bring

us back to linear utility functions. Therefore, we first weaken independence, then require

that it hold locally everywhere. Roughly speaking, fixing any alternative x, we require that

in some neighborhood of x, for any mixtures with x, the independence property holds.

We introduce two kinds of such weakening—weak local independence and weak local

bi-independence—derived from relaxation of two equivalent axioms that characterize linear

1Although the analysis is done in the space of risky prospects, it is clear that the same insights also hold,
for example, in the space of product attributes.
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utility functions: independence and bi-independence, respectively.

Together with the standard weak order and continuity axioms, we first show that weak

local independence implies that the decision maker’s preference must exhibit piecewise inde-

pendence, which means that the set of alternatives can be divided into several regions, and

independence holds in each region. More importantly, under these axioms, generically, the

preference does not have any differentiable utility representations. Thus, our notion of local

independence/linearity that is defined based on choice behavior leads to a different class of

functions from those of Machina (1982). Nonetheless, we show that the powerful local utility

analysis introduced by Machina (1982) continues to work under our axioms.

It might seem that a preference that exhibits piecewise independence can be represented

by a continuous finite piecewise linear (CFPL) function, but this is not true in general.

Rather, weak local bi-independence, which is stronger than weak local independence, to-

gether with the same standard axioms, characterizes CFPL functions, which is an extremely

important class of functions in many academic fields. Hence, the local linearity property of

the utility function we derive from our behavioral definition of local independence is that

the utility function is locally exactly linear almost everywhere.

We introduce two useful representations of the decision maker’s preference that are equiv-

alent to CFPL functions. The first is called the cautiously optimistic linear utility (COLU)

representation, whose equivalence to CFPL functions follows from a result by Tarela and

Mart́ınez (1999) and Ovchinnikov (2002). A preference has a COLU representation if there

are affine functions U1, . . . , Un and I1, . . . , Im ⊆ {1, . . . , n} such that the decision maker’s

preference is represented by max16j6m mini∈Ij Ui. To interpret the COLU representation, it

is as if the decision maker has two conflicting selves playing a sequential zero-sum game.

The first takes an action (i.e., chooses some set Ij) to maximize the utility of the alternative,

and the second takes an action (i.e., chooses some i from the set Ij chosen by the first self)

to minimize the utility of the alternative. One may interpret the first self as the decision

maker’s optimistic self and the second as her cautious self when it comes to evaluating an

alternative.2

A recent paper by Arora, Basu, Mianjy, and Mukherjee (2018) from the computer science

literature shows that neural-network functions with rectified linear units are identical to

CFPL functions. Following this observation, our second representation, which is equivalent

to CFPL functions, features one of the most powerful ingredients of machine learning: neural

networks. We call this representation the neural-network utility (NU) representation. In an

2The COLU representation and its interpretation are similar to the dual-self expected utility represen-
tation and its interpretation in a recent paper by Chandrasekher, Frick, Iijima, and Le Yaouanq (2022), but
the motivations, choice domain, characterizations, and classes of functions characterized are different.
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NU representation, the decision maker takes an alternative and outputs the utility of the

alternative through a feedforward neural network. A feedforward neural network may have

multiple hidden layers, and each hidden layer may have multiple neurons. Each neuron first

aggregates its child neurons’ values in an affine fashion. If the outcome of aggregation is

above the normalized threshold—zero—this neuron is activated and the aggregation value

may be passed to neurons in the next hidden layer. Otherwise, this neuron remains inactive

and has zero value. A neuron in the first hidden layer affinely aggregates all components of

the alternative, and the values of neurons in the last hidden layer are aggregated into the

utility of the alternative.

To interpret this representation, think of X as a space of products characterized by their

attributes. Under the NU representation, first, the decision maker considers multiple ways to

evaluate a product, captured by the first-hidden-layer neurons. It is as if the decision maker

uses the raw attributes of the product to form multiple advanced subjective attributes.

Some of these subjective attributes may be active and some may be inactive. The decision

maker may continue to consider multiple ways (captured by the second-hidden-layer neurons)

to aggregate those active subjective attributes, which enables her to form more advanced

subjective attributes. This process continues until she reaches a final evaluation of the

product.

Similar to the COLU representation, the NU representation is easy to apply. Another

advantage of the NU representation is that the empirical methods for estimating neural-

network models are well developed and widely used in practice. We have seen substantial

evidence of the practical success of neural-network models when paired with a large amount of

data. Therefore, it is quite likely that the NU model will significantly outperform traditional

economic models in prediction and help us identify behavioral phenomena that would be

difficult to identify using traditional methods.

As we introduce the representations, we also present several useful applications of our

theory. First, we show that the COLU representation provides a useful framework that

helps us understand classic axioms from the ambiguity literature in a new way. Second, we

show that the constant loss aversion model is a special case of the COLU representation.

Writing the constant loss aversion model as a COLU representation gives the model a new

interpretation, and suggests natural ways to generalize it. Third, we show how to construct

neurons in a simple and intuitive way in the NU representation to capture behavioral effects,

such as the decision maker’s bias toward risk-free alternatives, which captures the certainty

effect. Last, we present an NU representation in which the decision maker uses raw attributes

of the product to form hierarchically more advanced/complex subjective attributes, which

is an intuitive model of how people evaluate multi-attribute products.
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1.1 Related Literature

A growing literature combines economic theory with machine learning. Fudenberg and Liang

(2019) use a decision tree algorithm to study the initial play of games. By studying games the

algorithm predicts well—but other economic models do not—they identify a new parameter

that, if introduced to the best model, improves the model’s performance. Cho and Libgober

(2021) study a problem in which an agent uses historical data and algorithms to provide

action recommendations to a sequence of players in order to maximize their average long-

run payoffs. Caplin, Martin, and Marx (2022) and Ke, Wu, and Zhao (2022) analyze the

questions of how to model machine learning and how to model people learning from complex

machine learning algorithms, respectively.

Our main representations are equivalent to CFPL functions. The closest paper to ours

is by Ellis and Masatlioglu (2021), who characterize a categorical thinking model. Fixing

any reference point, they assume that bi-independence is preserved for any two cells of an

exogenously given partition of the choice domain and allow the preference to be discontinuous

across cells. We focus on continuous preferences and identify endogenously a finite number

of cells that preserve bi-independence pairwisely from the preference.

In the Anscombe–Aumann choice domain, Siniscalchi (2006) has also characterized CFPL

functions that satisfy the C-independence axiom of Gilboa and Schmeidler (1989). Chan-

drasekher et al. (2022) introduce the dual-self expected utility representation by dropping

uncertainty aversion from Gilboa and Schmeidler’s model. Both the dual-self expected util-

ity representation and the maxmin expected utility representation of Gilboa and Schmeidler

become special cases of CFPL functions that satisfy C-independence if the number of priors

is finite.

Our paper is related to non-expected utility theory. As summarized by Karni, Mac-

cheroni, and Marinacci (2015), there are three approaches to relax the expected utility model:

the axiomatic approach, the descriptive approach, and the local utility analysis. Our theory,

if we focus on the probability simplex as the choice domain, falls into the intersection of all

three. Machina (1982) introduces the notion of local linearity and local utility and studies

smooth utility functions. Due to differentiability, the utility function can be approximated

by affine functions locally everywhere. However, as discussed before, first, local linearity is

not defined on choice behavior directly. Second, the smooth utility function does not have a

simple interpretation and thus is not easy to apply. Third, it is not obvious how to estimate

a smooth utility function from data. Our approach addresses these issues. We provide two

notions of local linearity defined on preferences. In sharp contrast to Machina’s smooth util-

ity functions, our notions of local linearity lead to utility representations that are generically

nondifferentiable. Our COLU representation and the NU representation both have natural
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interpretations, and we offer simple application examples. The NU representation can be

estimated using standard machine learning techniques.

Within the framework of expected utility theory and maintaining independence, Hara,

Ok, and Riella (2019) characterize several new representations by relaxing completeness,

transitivity, and continuity. The main representation, coalitional expected utility represen-

tation, only imposes reflexivity and independence. There is a set of sets (called coalitions) of

expected utility functions such that a lottery x is preferred to another lottery y if and only

if every coalition has a utility function that ranks x above y.

The rest of the paper is organized as follows. In Section 2, we motivate and introduce

our behavioral definition of local linearity. Section 3 presents results based on weak local

independence. Section 4 provides the characterization and uniqueness results for the CFPL

representation of the decision maker’s preference. Sections 5 and 6 introduce the COLU and

NU representations, and discuss applications of these representations. Section 7 concludes.

2 Locally Linear Preferences

Consider a convex and compact choice domain X ⊆ RN with nonempty interior. Each choice

alternative x = (x1, . . . , xN) ∈ X is an N -tuple. For example, when X is a space of products

described by their attributes, xi is the value of attribute i. When X is the probability

simplex in RN , x ∈ X is called a lottery over N prizes, with xi indicating the probability of

prize i. We use x, y, z to denote generic choice alternatives. For any λ ∈ [0, 1], we use λxy

as shorthand for the convex combination λx+ (1−λ)y. The decision maker has a preference

% on X. Its asymmetric and symmetric parts are denoted by � and ∼, respectively.

We know from expected utility theory that % on X satisfies the following axioms if and

only if it has a linear utility representation—that is, there exists an affine function U such

that x % y ⇐⇒ U(x) > U(y).

Axiom 1 (Weak Order) % is complete and transitive.

Axiom 2 (Continuity) For any x ∈ X, {y ∈ X : y % x} and {y ∈ X : x % y} are closed.

Axiom 3 (Independence) For any x, y, z ∈ X and λ ∈ (0, 1), x % y ⇔ λxz % λyz.

The idea of independence is simple—if x is better than y, mixing x and y with any weight

should also be better than mixing x with z with the same weight, and vice versa. This idea

can be expressed in an equivalent way that will be crucial in our paper.

Axiom 4 (Bi-independence) For any x, y, z, z′ ∈ X with z ∼ z′ and λ ∈ (0, 1), x % y ⇔
λxz % λyz′.
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If we require z = z′, bi-independence implies independence. Conversely, by applying

independence twice, we can obtain bi-independence.

Among these axioms, usually (bi-)independence is the one that is violated. For example,

a well-known violation of (bi-)independence comes from the Allais paradox in the choice

domain with objective uncertainty—i.e., when X is the probability simplex in RN and each

x ∈ X is a lottery over n prizes. Confronting the following two pairs of lotteries, most

decision makers choose the left-hand lottery from the first pair and the right-hand lottery

from the second:

First pair Second pair

100%: $1M

3%: $0
87%: $0

13%: $1M

90%: $0

10%: $1.5M
87%: $1M

10%: $1.5M

To see why such behavior is a violation of (bi-)independence, let δr be the degenerate

lottery that pays $r for sure. Let x = δ1M, y = 10
13
δ1.5M + 3

13
δ0, z = δ1M, and z′ = δ0. The first

pair of lotteries becomes 0.13xz and 0.13yz. The second pair becomes 0.13xz′ and 0.13yz′.

(Bi-)independence requires that 0.13xz % 0.13yz if and only if 0.13xz′ % 0.13xz′. Therefore,

the Allais paradox violates (bi-)independence, and thus is inconsistent with linear utility

functions.

Many nonlinear utility functions have been proposed to accommodate empirical evidence

inconsistent with linearity. One of the most prominent is found in Machina (1982). It is

assumed that the utility function is differentiable, which implies the existence of a unique

local expected utility function in an infinitesimal neighborhood of any lottery. In other

words, the decision maker’s utility function exhibits a form of local linearity. It is unclear,

however, what axioms a decision maker’s preference should satisfy to have such a utility

representation. Below, we introduce a definition of locally linear choice behavior, without

assuming some form of local linearity on the utility representation directly.

Since linearity is characterized by (bi-)independence, a natural idea for formalizing local

linearity is to assume that (bi-)independence holds locally, i.e., when the choice alternatives

are close to each other. First, let us show that part of this idea offers a natural solution

to evidence against full linearity. Take the Allais paradox as an example. If the right-hand

lottery 0.13yz in the first pair becomes almost degenerate, decision makers may not be

much biased toward δ1M, and hence the certainty effect may not be strong enough to trigger

violations of (bi-)independence.3 To see this, suppose we now have 0.013xz and 0.013y∗z in

3This idea is different from that of Harless (1992), who turns the risk-free lottery in the Allais paradox
into a slightly risky one. The four lotteries in Harless’s experiment are still far apart.
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the first pair and 0.013xz∗ and 0.013y∗z∗ in the second, in which y∗ = 10
13
δ1.5M + 3

13
δ0.5M and

z∗ = δ0.5M:

First pair Second pair

100%: $1M

0.3%: $0.5M
98.7%: $0.5M

1.3%: $1M

99%: $0.5M

1%: $1.5M
98.7%: $1M

1%: $1.5M

Can we assume that (bi-)independence holds locally around any choice alternative then?

The answer is negative, because in that case (bi-)independence will hold globally. Below, we

introduce two novel ways to mildly weaken (bi-)independence, and require that the weaker

version of (bi-)independence hold locally everywhere. A subset of X is said to be a neigh-

borhood of an alternative x if it is an open convex set that contains x.

Axiom 5 (Weak Local Independence) Any z ∈ X has a neighborhood Lz such that for any

x, y ∈ Lz and λ ∈ (0, 1), x % y ⇔ λxz % λyz.

For a subset L of X, we say that L preserves independence if x, y, z, λxz, λyz ∈ L with

λ ∈ (0, 1) implies that x % y ⇔ λxz % λyz. In other words, any three lotteries in this subset

satisfy the property required by independence. Weak local independence does not imply

that Lz preserves independence. It only requires that preferences be preserved when the

alternatives in Lz are mixed with the given z. In fact, if instead we require that any z ∈ X
have a neighborhood Lz that preserves independence, independence will hold globally.

To see how weak local independence differs from preserving independence locally, consider

the following example. Let X = [0, 1]. Suppose % can be represented by

U(x) =

{
−x+ 0.01, if x < 0.01,

x− 0.01, if x > 0.01.
(1)

It can be verified that no neighborhoods of x = 0.01 preserve independence, but weak local

independence holds.

Weak local independence only informs us of the decision maker’s local choice behavior.

It does not impose any structure on the decision maker’s preference when the choice alterna-

tives are far apart. A local and weakened version of bi-independence, by contrast, imposes

structures on the choice behavior in this situation.

Axiom 6 (Weak Local Bi-independence) Any z, z′ ∈ X with z ∼ z′ have neighborhoods Lz

and Lz′, respectively, such that for any x ∈ Lz, y ∈ Lz′, and λ ∈ (0, 1), x % y ⇔ λxz % λyz′.

For subsets L1, L2 of X, we say that L1 and L2 preserve bi-independence if x, z, λxz ∈ Li,
y, z′, λyz′ ∈ L3−i with i ∈ {1, 2}, λ ∈ (0, 1), and z ∼ z′ implies that x % y ⇔ λxz % λyz′.
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Weak local bi-independence does not require that Lz and Lz′ preserve bi-independence. It

only requires that preferences be preserved when the alternatives x and y are mixed respec-

tively with the given z and z′. Clearly, weak local bi-independence weakens bi-independence

in a fashion similar to how weak local independence weakens independence.

By letting z = z′ in weak local bi-independence, we obtain weak local independence.

Thus, weak local bi-independence is stronger than weak local independence. In fact, weak

local bi-independence is strictly stronger. Figure 1 is an example that satisfies weak local

independence but does not satisfy weak local bi-independence.

0 1

U(·)

z′′

Lz′′

z′

Lz Lz′

z

Figure 1: Let X = [0, 1]. The decision maker’s utility function U : X → R is shown in the
figure. In this example, every alternative z̃ ∈ [0, 1] has a neighborhood such that for any x, y
in that neighborhood and λ ∈ (0, 1), x % y ⇔ λxz̃ % λyz̃. In particular, the neighborhood Lz
satisfies this requirement trivially since U is monotone within Lz. However, z and z′ do not satisfy
the requirement of weak local bi-independence, since any neighborhood of z′ includes a nonlinear
segment. Take any alternative x from that nonlinear segment. We can find y in Lz such that x � y
but λyz � λxz′.

3 Weak Local Independence

First, we introduce results that mainly use weak local independence. A set Y ⊆ X is regular

closed if Y = cl(int(Y )). We say that % exhibits piecewise independence if there exists a

collection of regular closed subsets whose union is X such that each of those subsets preserves

independence. A linear utility function U : X → R is said to be a local utility function of

% if it represents % on a nonempty regular closed subset Y ⊆ X and U(X) ∈ {{0}, [0, 1]}.
In other words, we normalize each local utility function so that it is either a constant utility

function that assigns 0 to any alternative or has range [0, 1].

Theorem 1 If % satisfies weak order, continuity, and weak local independence, then %

exhibits piecewise independence. Furthermore, % has at most a finite number of local utility

functions.
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Assuming weak order and continuity, weak local independence implies that one can de-

compose the choice domain into regular closed regions such that within each region, % has

a linear utility representation. Note that the fact that % has a linear utility representation

within each of these regions does not imply that % can be represented by a CFPL function

(to be formally defined in the next section). For example, the preference in Figure 1 exhibits

piecewise linear independence, since it is monotone within [0, z′′] and within [z′′, 1], but it

cannot be represented by a CFPL function.

One important implication of Theorem 1 is that generically, weak local independence

leads to nondifferentiability of the utility representation.

Proposition 1 Suppose % satisfies weak order, continuity, and weak local independence. If

each local utility function of % is non-constant and % has a differentiable utility representa-

tion, then there exists a linear utility function U such that any local utility function of % is

either U or 1− U .

Thus, assuming weak order, continuity, and weak local independence, if % has non-

constant local utility functions, a necessary condition for % to have a differentiable utility

representation is that it can have at most two local utility functions that represent opposite

preferences. This means that for any regular closed regions X, Y that preserve independence,

each level set in X must be parallel to each level set in Y . To see the intuition, suppose that

there exists two regions in which the level sets are not parallel across regions. If this is the

case, we can find some alternative at which the level set has a kink. Then any representation

of % with non-constant local utility functions cannot be differentiable at that alternative.

Next, we present an example of% such that (i)% has a differentiable utility representation

and (ii) there exists a non-constant U such that U and 1 − U are the only local utility

functions of %. Let X = [0, 1] and suppose % can be represented by V (x) = (x − 0.01)2.4

Then the (normalized) local utility functions are U1(x) = x and U2(x) = 1 − x, and the

corresponding regular closed regions are [0, 0.01] and [0.01, 1], respectively. This example

shows that it is possible for % to exhibit piecewise independence and have a differentiable

representation even if it does not satisfy independence. However, situations in which a

differentiable representation may exist—namely, when % has a constant local utility function

or when % only has two opposite local utility functions—is nongeneric. Therefore, under the

axioms in Proposition 1, generically, % will not have a differentiable utility representation.

Although % may not have a differentiable utility representation, it turns out that we can

still perform the local utility analysis in the spirit of Machina (1982). Consider a preorder

4Note that this % can also be represented by the utility function defined in (1). Thus, the fact that a
binary relation has a nondifferentiable representation does not imply that it does not have a differentiable
representation.
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(a reflexive and transitive binary relation) D defined on X. We say that a utility function

U respects D if for any x, y ∈ X, x D y implies U(x) > U(y). For example, in expected

utility theory, an expected utility function with a strictly increasing Bernoulli index respects

first-order stochastic dominance, which is a preorder. We say that % respects D if it has a

utility representation that respects D. We say that D satisfies betweenness if x D y implies

that x D λxy D y for any λ ∈ [0, 1].

Proposition 2 Suppose % satisfies weak order, continuity, and weak local independence.

For any preorder D that satisfies betweenness, if each local utility function of % respects D,

then % respects D.

Suppose X is the set of lotteries over a (finite) set of monetary prizes. Then first-order

stochastic dominance and second-order stochastic dominance can be defined in the usual

way as partial orders on X. Since both of these partial orders satisfy betweenness, we

conclude that if each local utility function of % respects first-order (second-order) stochastic

dominance, then % will respect first-order (second-order) stochastic dominance. Therefore,

the insights from the main results of Machina (1982) also apply in our theory.

4 Weak Local Bi-independence

Now, we introduce the results that make use of weak local bi-independence. Since weak

local bi-independence is stronger than weak local independence, our results in the previous

section continue to hold here.

As discussed above, Figure 1 shows that weak local independence is too weak to en-

sure that the preference can be represented by a CFPL function, and that weak local bi-

independence is strictly stronger than weak local independence. It turns out that weak local

bi-independence exactly characterizes CFPL functions.

Definition 1 A function f : X → R is CFPL if f is continuous and there exist a finite

collection of regular closed subsets whose union is X such that f is affine on each of those

subsets.5

If a preference can be represented by a CFPL function, we say that the preference has a

CFPL representation.

Theorem 2 The preference % has a CFPL representation if and only if % satisfies weak

order, continuity, and weak local bi-independence.

5In this definition, X may be replaced by a closed subset of X.
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Assuming weak order and continuity, (bi-)independence characterizes linear functions on

X, whereas weak local bi-independence characterizes CFPL functions on X. CFPL functions

have been extremely useful in many academic fields, and the behavioral characterization of

CFPL functions is more challenging than it might appear (see Siniscalchi (2006) for a related

example).

According to this theorem, our stronger behavioral definition of local linearity, weak local

bi-independence, leads to the following local linearity property of the utility function: The

utility representation is locally exactly linear almost everywhere. The measure of the set of

nondifferentiable points/alternatives is zero, and every differentiable point/alternative has a

neighborhood such that the utility representation is affine on that neighborhood.

The uniqueness of CFPL representations is analogous to that of linear representations.

Proposition 3 Suppose the preference % has a CFPL representation W . Then, % can be

represented by another CFPL function W̃ if and only if there exists a strictly increasing

CFPL function f : W (X)→ R such that W̃ = f ◦W .

Therefore, CFPL representations are unique up to positive CFPL transformations, just

like linear representations are unique up to positive (continuous) linear transformations.

4.1 Sketch of the Proof of Theorem 2

We explain why the axioms imply that the preference has a CFPL representation. The proof

consists of three parts. First, we identify the interior of all regions over which the preference

can be represented by an affine function. By weak local independence (implied by weak local

bi-independence), every alternative z has a neighborhood Lz such that for any x, y ∈ Lz and

λ ∈ (0, 1), x % y ⇔ λxz % λyz. Pick any z′ ∈ Lz. We can find a neighborhood Lz′ ⊆ Lz that

has the same property with respect to z′. Inductively, we can find N alternatives inside Lz

and prove that the (regular closed) polytope formed by these N alternatives and z preserves

independence. Figure 2 illustrates the construction when N = 2.

It may appear that the fact that there is a polytope containing z that preserves inde-

pendence for every z ∈ X is sufficient for us to construct a CFPL representation, but if

this is true, we only need weak local independence rather than weak local bi-independence.

We have seen a pathological example in Figure 1 that only satisfies the former but not the

latter, and cannot be represented by a CFPL function. In the actual proof, we use weak

local bi-independence instead to construct polytopes in a similar fashion. This allows us to

show that every pair of such polytopes preserves bi-independence, which is the key to ensure

that each of these polytopes is indeed part of a region over which the preference’s CFPL
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z′

z′′

Lz

Lz′

Lz′′

Figure 2: Let N = 2. Without loss of generality, assume that Lz′′ ⊆ Lz′ ⊆ Lz. It can be shown
that the triangle z′′z′z preserves independence.

representation is affine (called a region for simplicity). Let the union of the interiors of these

polytopes be Xo, which is the union of the interiors of all regions.

Next, we identify each region via Zorn’s lemma. First, we consider the set of all functions

that map Xo into subsets of X that preserve independence individually and bi-independence

pairwisely. By Zorn’s lemma, we are able to find a maximal element among these functions.

It will assign each z ∈ Xo a maximal region that satisfies the required properties. The image

of this maximal function identifies all regions.

The number of regions must be finite. Intuitively, if we do not have finitely many regions,

we can select an alternative in each region and then find an accumulation point of these

alternatives such that any neighborhood of that accumulation point intersects with infinitely

many regions. This turns out to violate weak local independence, which means that weak

local bi-independence is also violated.

Then, we construct a CFPL representation of the preference. The key step in this part

is to show that if a collection of subsets of X preserve independence individually and bi-

independence pairwisely, we can construct a CFPL representation on the union of these

subsets. The proof of this step is similar to Chapter 2.4 of Schmidt (1998).

5 Cautiously Optimistic Linear Utility

Tarela and Mart́ınez (1999) and Ovchinnikov (2002) show that a CFPL function has a

lattice polynomial representation that maximizes over a collection of minimums of sets of

affine functions. Building on their results, we define the COLU representation of the decision

maker’s preference as follows.

Definition 2 We say that % has a COLU representation if there are affine functions U1, . . . , UM

13



and index sets I1, . . . , Im ⊆ {1, . . . ,M} such that

x % y ⇐⇒ max
16j6m

min
i∈Ij

Ui(x) > max
16j6m

min
i∈Ij

Ui(y).

With a COLU representation, it is as if the decision maker has two selves who are playing a

sequential zero-sum game. The first self takes an action (i.e., chooses a set of utility functions

indicated by an index set Ij for further evaluations). The first self’s goal is to maximize the

utility of an alternative eventually. Then, the second self takes an action by choosing some

i from the set Ij chosen by the first self. The second self’s goal is to minimize the expected

utility of the alternative.6 The second self evaluates an alternative with caution. Given what

the second self will do, the first self tries to evaluate the alternative more optimistically.

Corollary 1 The preference % has a COLU representation if and only if % satisfies weak

order, continuity, and weak local bi-independence.

This result directly follows from our Theorem 2 and Tarela and Mart́ınez (1999) and

Ovchinnikov (2002).

A remarkable feature of the COLU representation is its finiteness. If we allow for infinitely

many affine functions under the maximum and minimum operators in the representation,

the COLU representation may not be truly piecewise linear. For example, one can have

a collection of affine functions whose minimum ends up being a parabola. Indeed, simi-

lar representations in the literature, such as the dual-self expected utility representation of

Chandrasekher et al. (2022) and its special case, the maxmin expected utility representation

of Gilboa and Schmeidler (1989), do not have such finiteness. In order to obtain such finite-

ness for a representation, usually some rather demanding axioms are needed. In our case,

we do not have any axioms that directly assume finiteness. Rather, finiteness is naturally

implied by weak local independence, as shown by Theorem 1.

In what sense is the COLU representation unique? A COLU representation may have

many affine functions under the maximum and minimum operators. Some of the affine func-

tions may be redundant. We might hope that by removing the redundant ones, we can obtain

a minimal COLU representation that is unique. However, this is not true. Similar observa-

tions have been made in recent papers with similar representations, such as Hara et al. (2019)

and Chandrasekher et al. (2022). In those papers, the uniqueness of the representation is

6Similar to the dual-self expected utility representation of Chandrasekher et al. (2022), the for-
mat of the set of actions is not important. We can write the COLU representation equivalently as
maxa1∈A1

mina2∈A2
U(x, a1, a2), in which A1, A2 are arbitrary action sets and there is only one utility func-

tion whose value depends on the actions taken by the two selves and the alternative that is being evaluated.
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obtained via half-space closures. In our case, due to the finiteness of the COLU representa-

tion, we can have a much simpler and interpretable canonical COLU representation that is

unique in some sense.

We already know that under weak order, continuity, and weak local bi-independence, the

preference has a CFPL representation that is unique up to a positive CFPL transformation.

Moreover, according to Tarela and Mart́ınez (1999) and Ovchinnikov (2002), every CFPL

function can be rewritten as a COLU representation. In general, however, a CFPL function

may be equal to multiple distinct COLU representations. Therefore, below we discuss, fixing

a particular CFPL representation of the preference, in what sense the COLU representation

of the CFPL representation is unique. In particular, we follow the construction of Tarela

and Mart́ınez (1999) and Ovchinnikov (2002) to illustrate how distinct COLU representations

that are equal to the same CFPL function can be transformed into the same unique canonical

COLU representation.

Suppose a COLU representation is equal to a CFPL function V . According to the

solution to the maxmin problem of the COLU representation, V ’s domain is divided into

several maximal (in the sense of set inclusion) regular closed subsets, X∗1 , . . . , X
∗
j , such that

X =
⋃j
i=1 X

∗
i and V is affine on each X∗i . Let X1, . . . , Xk denote the connected components

of X∗1 , . . . , X
∗
j . Let Ui denote the affine function that is identical to V on Xi, i = 1, . . . , k.

Let U = {U1, . . . , Uk}. For each Xi, define a set of affine functions Ui = {U ∈ U : Ui(x) 6

U(x) for any x ∈ Xi}. Let U = {U1, . . . ,Uk}. For any COLU representation V , we call

maxUi∈U minU∈Ui
U(x) its canonical COLU representation.

The construction of U can be understood as follows. First, we remove redundant affine

functions from the original COLU representation. Each nonredundant affine function solves

the maxmin problem of the original COLU representation on some regular closed maximally

connected subsets of X, which must be a polytope. For each such polytope Xi such that

the affine function Ui solves the maxmin problem on Xi, we construct a subset Ui of U,

which consists of nonredundant affine functions from the original COLU representation that

dominate Ui. Putting these subsets Ui together, we obtain U . The next result follows from

Tarela and Mart́ınez (1999) and Ovchinnikov (2002).

Corollary 2 Every COLU representation is equal to its canonical COLU representation.

Thus, two distinct COLU representations of the preference that are equal to some CFPL

function V must have the same canonical COLU representation because the canonical COLU

representation only depends on V .
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5.1 COLU and Ambiguity

The COLU representation’s functional form is similar to that of a model of ambiguity: the

dual-self expected utility representation (Chandrasekher et al. (2022)). We put the COLU

representation in the context of ambiguity in this subsection. Our choice domain not only

nests the space of product attributes and the probability simplex as special cases, but also

allows us to study subjective uncertainty. Let X = [u, u]N ⊆ RN , in which N indicates the

number of states. Each x = (x1, . . . , xN) ∈ X describes an act that assigns utility xi ∈ [u, u]

to state i. Let 1 = (1, . . . , 1) ∈ RN .

Under this interpretation of X, an affine function f(x) = µ · x + α becomes the sum of

a constant and the inner product between a fixed finite signed measure on the state space

µ ∈ RN and any act x. Below we list several standard axioms in the ambiguity literature,

first introduced by Gilboa and Schmeidler (1989).

Axiom 7 (C-Independence) For any x, y ∈ X, u ∈ [u, u] and λ ∈ (0, 1), x % y ⇔ λx(u1) %

λy(u1).

Axiom 8 (Monotonicity) For any x, y ∈ X, x ≥ y implies x % y.

Axiom 9 (Uncertainty Aversion) For any x, y ∈ X and λ ∈ [0, 1], x ∼ y implies λxy % x.

The next result provides a new perspective on the implications of these axioms, through

the lens of the COLU representation. To simplify the exposition, we impose a nondegeneracy

assumption. We say that a preference is nondegenerate if there exist u, v ∈ R such that

u1 � v1.7

Proposition 4 Suppose a nondegenerate % satisfies weak order, continuity, and weak local

bi-independence. The following statements are true:

1. The preference satisfies C-independence, monotonicity, and uncertainty aversion if and

only if it has a finite maxmin expected utility representation mini∈I µi · x, in which

µi ∈ RN
+ and µi · 1 = 1 for any i.

2. The preference satisfies C-independence and monotonicity if and only if it has a COLU

representation max16j6m mini∈Ij µi · x, in which µi ∈ RN
+ and µi · 1 = 1 for any i.

3. The preference satisfies monotonicity if and only if it has a COLU representation

max16j6m mini∈Ij µi · x+ αi, in which µi ∈ RN
+ and αi ∈ R for any i.

7Without nondegeneracy, the first two statements in Proposition 4 need to allow for the case in which
all finite signed measures are zero measures.
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4. The preference satisfies C-independence if and only if it has a COLU representation

max16j6m mini∈Ij µi · x, in which µi ∈ RN and µi · 1 is identical for any i.

The first result in Proposition 4 shows that if weak local bi-independence is assumed in

addition to standard axioms in Gilboa and Schmeidler (1989), maxmin expected utility with

a finite set of priors is obtained. Siniscalchi (2006) characterizes the same class of preferences

by requiring, roughly speaking, that the mixture of nearby acts do not provide an effective

hedge. Siniscalchi’s axiom can also be regarded as a form of local linearity similar in spirit

to weak local independence. Compared with weak local (bi-)independence, the statement of

Siniscalchi’s axiom is more involved and harder to interpret, and the bite of the axiom relies

on C-independence.

The second result shows that removing uncertainty aversion from the axiomatic system

yields the finite version of the dual-self expected utility representation by Chandrasekher

et al. (2022). Chandrasekher (2019) introduces a partially finite version of the dual-self

expected utility representation that has a finite number of index sets for the optimistic self

to choose from, but each index set may contain an infinite number of measures. Thus, his

axioms do not seem to lead to a CFPL representation.

The last two results show that in our framework, (i) monotonicity’s role is to ensure that

all finite signed measures in the COLU representation are nonnegative measures, and (ii)

C-independence ensures that those finite signed measures have the same total mass, and the

constant terms of the affine functions in the COLU representation can be assumed away.

It can be inferred from Chandrasekher et al. (2022) that the finite signed measures in the

COLU representation are the Clark differentials of the functional that aggregates utilities

across states. In particular, Ghirardato, Maccheroni, and Marinacci (2004) point out that

the combination of monotonicity and C-independence ensures that the Clark differentials

must be a set of probability measures; that is, all finite signed measures are nonnegative and

have the same total mass. When only one of the two axioms is assumed, however, the Clark

differentials may not exist. In this situation, weak local bi-independence comes in handy,

since it ensures the existence of a CFPL representation for which the Clark differentials must

exist. Therefore, in our framework, the effects of C-independence and monotonicity can be

cleanly separated.8

In summary, weak local bi-independence provides a clean framework to relate ambiguity

8Chateauneuf and Faro (2009) propose a maxmin representation with a confidence function over the
probability measures. The confidence function scales the probability measures, essentially making them
nonnegative measures with potentially different total masses, which is similar to our third result. However,
to achieve this, Chateauneuf and Faro posit a set of weakenings of C-independence to obtain a homothetic
aggregator. By contrast, with weak local bi-independence, the COLU representation is not necessarily
homothetic.
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representations with each other. On the one hand, weak local bi-independence is weak

enough to allow for a plethora of choice behaviors. On the other hand, it is also powerful

enough to generate nice technical properties such as the existence of Clark differentials and

Lipschitz continuity.

5.2 COLU and Constant Loss Aversion

One of the most important ideas in behavioral economics is that people’s choice behavior is

affected by their reference points, and they treat gains and losses differently (see Tversky

and Kahneman (1991) and Kahneman and Tversky (1979)). We first show how their model

of reference dependence and loss aversion may be viewed as a special case of the COLU

representation, then show how the COLU representation leads to natural generalizations of

that model.

The well-known constant loss aversion model of Tversky and Kahneman (1991) can be

easily rewritten as a special case of the COLU representation. To see this, consider a simple

example in which X is a space of products described by the values of their two attributes.

Let v : R→ R be defined as follows:

v(xi) =

{
xi, if xi > 0,

2xi, if xi < 0.

The constant loss aversion model assumes that the utility of a product (x1, x2) is equal to

v(x1 − r1) + v(x2 − r2), with (r1, r2) being an exogenously given reference point. Let (0, 0)

be the reference point for simplicity. We can write the constant loss aversion model as the

following equivalent COLU representation, min{x1 + x2, 2x1 + x2, x1 + 2x2, 2x1 + 2x2}. This

COLU representation provides a new interpretation of the constant loss aversion model: The

decision maker has multiple ways in mind to evaluate a product, and she adopts the most

cautious way.9

Viewing the constant loss aversion model in this way, it is clear that the decision maker’s

caution does not need to be so extreme. For example, the decision maker may dislike

losses, but she may also like specialization.10 In other words, she may appreciate a product

relatively more if it excels in one attribute, rather than being mediocre in both attributes.

This idea can be captured by the following modification of the previous COLU representation:

max{min{2x1 +x2, 2x1 +2x2},min{x1 +2x2, 2x1 +2x2}}. In this example, when both x1 and

x2 are positive, the decision maker uses max{2x1 + x2, x1 + 2x2} to evaluate the product,

9Similar observations have also been made by Cerreia-Vioglio, Dillenberger, and Ortoleva (2022).
10There is abundant evidence for product specialization; one obvious reason is that consumers like prod-

ucts with salient good attributes. See, among others, Arndt and Kierzkowski (2001).
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which reflects a preference for specialized products. Otherwise, the decision maker uses

2x1 + 2x2 to evaluate the product, which, relative to max{2x1 + x2, x1 + 2x2}, implies loss

aversion.11

6 Neural-network Utility

A recent paper by Arora et al. (2018) from the computer science literature shows that feed-

forward neural-network functions with rectified linear units are identical to CFPL functions.

Hence, our Theorem 2 also implies that a preference has a COLU representation if and only

if it has the following representation—which we will call the neural-network utility (NU)

representation—that features one of the most powerful ingredients of machine learning, neu-

ral networks.

Given any vector-valued function τ , we use τ (j) to denote the j-th component of τ .

Definition 3 A function U : X → R is an NU if there exist

(i) h,w0, . . . , wh+1 ∈ N with w0 = n and wh+1 = 1, and

(ii) affine functions τi : Rwi−1 → Rwi, i = 1, . . . , h+ 1, such that for any x ∈ X,

U(x) = τh+1 ◦ θ ◦ τh ◦ · · · ◦ θ ◦ τ2 ◦ θ ◦ τ1(x), (2)

in which θ is an entry-wise operation such that for any w ∈ N and b ∈ Rw, we have

θ(b) = (max{bi, 0}, . . . ,max{bw, 0}).

Each function θ ◦ τi is called the i-th hidden layer, and (θ ◦ τi)(j) = max{τ (j)
i (·), 0} is

called a neuron.12 Thus, the i-th hidden layer has wi neurons, and equation (2) characterizes

a network of neurons with h hidden layers. Figure 3 provides an example of an NU function.

Mathematically, to evaluate an alternative x, each neuron in the NU function first ag-

gregates its child neurons’ values in an affine fashion. If the outcome of aggregation is above

the normalized threshold, zero, this neuron is activated and its value becomes the outcome

of aggregation. Otherwise, this neuron remains inactive and has a value zero. It is without

loss of generality to normalize all thresholds to 0, since we can add an arbitrary constant

to each affine function τ
(j)
i and modify the threshold accordingly. The neurons in the first

11For example, when x1 is in the gain region but x2 is in the loss region, max{2x1+x2, x1+2x2} = 2x1+x2.
Therefore, 2x1 + 2x2 puts more weight on the loss, x2, in this case.

12The entry-wise operation θ, called the activation function, may take other functional forms in general.
However, the form we assume in Definition 3, also known as the rectified linear unit, is considered to be
the most popular activation function and to have strong biological motivations (see Hahnloser, Sarpeshkar,
Mahowald, Douglas, and Seung (2000); and LeCun, Bengio, and Hinton (2015), among others).
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x1

x2

x3

max{τ (1)1 (·), 0}

max{τ (2)1 (·), 0}
U(x)

max{τ (1)2 (·), 0}

max{τ (2)2 (·), 0}

First Hidden Layer Second Hidden Layer

Figure 3: Consider an alternative (x1, x2, x3). This NU function has two hidden layers, and each

layer has two neurons. Each affine τ
(j)
1 is from the choice domain (a subset of R3) to R, and each

affine τ
(j)
2 is from R2 to R. Neurons in the first layer are called child neurons of neurons in the

second layer. Neurons in the second layer are called parent neurons of neurons in the first layer.

hidden layer aggregate the input of the NU function, xi’s, directly, and the values of neurons

in the last (h-th) hidden layer are aggregated into the utility of x.

To understand the economic interpretation of the NU representation, think of X as a

space of products characterized by their attributes. An affine function on X describes a

way to evaluate the product. A decision maker whose preference has an NU representation

entertains multiple such ways to evaluate a product. This is captured by the affine functions

of the first-hidden-layer neurons. What the first hidden layer achieves is that the decision

maker uses the primitive attributes to form multiple more advanced subjective attributes.

For example, she might combine several primitive attributes of a car to form a subjective

safety attribute. Some of these subjective attributes may be active and some may not be. The

decision maker may continue to consider multiple ways (captured by the affine functions of

the second-hidden-layer neurons) to aggregate those active subjective attributes. This allows

her to form subjective attributes that are even more advanced. This process continues until

she aggregates the values of last-hidden-layer neurons to obtain the evaluation of the product.

If X is the probability simplex, the decision maker considers multiple expected utility

functions to evaluate the uncertainty of a lottery, which corresponds to the affine functions

of the first hidden layer. For instance, she may have one neuron that activates when the

expected value of prizes is high, and another that activates whenever the downside risk is

high. With multiple risk attitudes, the decision maker wants to aggregate them, and she

may not have a unique view about how to do so. This is captured by the second hidden

layer. The aggregation continues until the decision maker reaches a final evaluation of the

lottery.

The next result follows from our Theorem 2 and Arora et al. (2018).13

13Arora et al. (2018) adopt a slightly different definition of CFPL functions. In particular, each linear
region is assumed to be a polyhedron, i.e., the intersection of finitely many closed half-spaces. This definition
is equivalent to our definition since every CFPL function, according to our definition, can be written in the
COLU form.
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Corollary 3 The preference % has an NU representation if and only if % satisfies weak

order, continuity, and weak local bi-independence.

The NU representation has two advantages. First, we have efficient empirical methods

to estimate a neural-network model, and the same applies to the NU model. This is not

true for the differentiable utility function suggested by Machina (1982). In fact, given the

substantial evidence of the practical success of neural-network models when paired with a

large amount of data, we can expect that the NU model will offer us a superior method to

model people’s choice behavior as we obtain more and more choice data.

Second, it is convenient to use the NU representation to construct special cases that

captures well-known behavioral effects, which is again something not easy to do with a

differentiable utility function. We show this in the next subsections.

6.1 NU and the Certainty Effect

We can construct neurons that capture behavioral effects in an NU representation. From the

Allais paradox, we know that decision makers are often biased toward certainty. Consider the

following example in which X is the set of lotteries over three prizes. Figure 4 presents an NU

representation in which the first neuron captures standard expected utility evaluation, while

the other three neurons capture the bias toward certainty for the three prizes, respectively.14

A certainty-effect neuron for a prize is activated if and only if the lottery yields that prize

with high probability.

x1

x2

x3

V (x)

max{x1 − 0.99, 0}
U(x)

max{x2 − 0.99, 0}

max{x3 − 0.99, 0}

U(x)

x1

x2

x3

Figure 4: In the first neuron, V is affine, which does not seem to satisfy the requirement of a
neuron, because it does not compare an affine function with zero—but this is for simplicity and
without loss of generality, since V (x) = max{V (x), 0} −max{−V (x), 0}. If the probability of the
ith prize is larger than 0.99 for some i ∈ {1, 2, 3}, a neuron that captures the bias toward certainty
will be activated. Finally, U(x) is equal to some weighted sum of all neurons’ values.

14This function appears in Chapter 2.4.4.2 of Schmidt (1998), although its connection to neural-network
models is not explored. We thank David Dillenberger for pointing this out.
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6.2 NU and Subjective Attributes

Consider products described by the values of their attributes. A decision maker may have

her own perception of what the product’s attributes are. For example, suppose X is the set

of all electric scooters. Each scooter is described by a speed-related attribute x1, a steering-

related attribute x2, a brake-related attribute x3, and a battery-related attribute x4, in which

xi ∈ [−1, 1], i = 1, . . . , 4. The following NU representation describes a decision maker who

uses x1 and x2 to form a subjective attribute about the performance of the scooter and

uses x1, x2, and x3 to form a subjective attribute about the safety of the scooter. Then,

she combines the performance attribute and the safety attribute, if active, to form a more

advanced attribute about the overall riding experience of the scooter. Finally, this attribute

is combined with x4 to form the final evaluation of the scooter.

Speed

Steering

Brake

Battery

x1

x2

x3

x4

y1 = max{x1 + x2, 0}

Performance

y2 = max{x2 + 2x3 − x1, 0}

Safety

Overall Riding Experience

max{y1 + y2, 0}

Battery

x4

Battery

x4

U(x)

Figure 5: An example in which the decision maker forms hierarchical subjective attributes to
evaluate an electric scooter.

7 Concluding Remarks

This paper introduces two notions of local linearity that are defined based on a decision

maker’s choice behavior, weak local independence and weak local bi-independence. Weak

local independence implies that generically, the decision maker’s preference does not have

any differentiable representations. The stronger notion of local linearity, weak local bi-

independence, characterizes CFPL functions. We introduce two new representations of the

decision maker’s preference that are equivalent to CFPL functions, the COLU representation

and the NU representation. Our approach has several advantages over Machina’s (1982)

approach.
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Appendix

Proof of Theorem 1

Proof. We first establish some useful lemmas. In what follows, stating this explicitly, we

assume for each lemma that % satisfies weak order and continuity. Since X is separable and

connected, by Debreu (1954) it must have a continuous utility representation V : X → R.

For any L ⊆ X , let int(L), cl(L), ∂L, aff(L), dim(L) denote the interior, closure, bound-

ary, affine hull, and the dimension of the affine hull of L, respectively, in RN . For x ∈ X
and ε > 0, let Bε(x) denote the open ball centered at x with radius ε. For any finite set

of choice alternatives {x1, . . . , xm}, let x1 . . . xm := co({x1, . . . , xm}) be the convex hull of

{x1, . . . , xm}.
For any L ∈ X and L ⊆ X, we write L ⊥ z if for any x, y ∈ L and λ ∈ (0, 1),

x % y ⇔ λxz % λyz. Note that in this definition, λxz and λyz do not have to be in L.

The first two lemmas are straightforward. We omit their proofs.

Lemma 1 For any L ⊆ X such that int(L) 6= Ø, the following statements are equivalent:

(i) L preserves independence.

(ii) cl(L) preserves independence.

(iii) If x, y, r, s ∈ L and x− y = λ(r − s) for some λ > 0, x % y ⇐⇒ r % s.

(iv) There exists an affine function U : cl(L)→ R that represents % on cl(L).

Lemma 2 For any convex L ⊆ X and x ∈ L, if L ⊥ x and L ⊥ y, then L ⊥ αxy for any

α ∈ (0, 1).

Now we present a lemma that is key in our construction of the regular closed pieces.

Lemma 3 For any convex L ⊆ X such that int(L) 6= Ø, if L preserves independence and

L ⊥ x, then co(L ∪ {x}) preserves independence.

Proof. We first prove that co(int(L)∪ {x})\{x} preserves independence. Take any y in the

set. There exists y′ ∈ int(L) and α ∈ (0, 1] such that y = αy′x. Since y′ ∈ int(L), there exists

some ε > 0 such that Bε(y
′) ⊆ int(L). For any r, s ∈ Bαε(y), let r′ = r−y

α
+ y′, s′ = s−y

α
+ y′.

Since ||r − y||, ||s− y|| < αε, we have r′, s′ ∈ Bε(y
′) and α(r′ − s′) = r − s. Moreover,

αr′x = r − y + αy′ + (1− α)x = r − y + y = r.

Similarly, αs′x = s. Because L ⊥ x, r % s ⇐⇒ r′ % s′. The above arguments show that

for any y ∈ co(int(L) ∪ {x})\{x}, there exists ε > 0 such that for any r, s ∈ Bε(y), we can

find r′, s′ ∈ int(L) such that r − s = α(r′ − s′) for some α > 0 and r % s ⇐⇒ r′ % s′.
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By Lemma 1, to show that co(int(L) ∪ {x})\{x} preserves independence, we only need

to show that for any r, s, r∗, s∗ ∈ co(int(L)∪ {x})\{x} such that r− s = λ(r∗− s∗) for some

λ > 0, r % s if and only if r∗ % s∗.

First, focus on r and s. Clearly, rs ⊆ co(int(L) ∪ {x})\{x}. For any t ∈ rs, according

to the arguments above, there exists εt > 0 such that for any r̃t, s̃t ∈ Bεt(t), we can find

r̃′t, s̃
′
t ∈ int(L) that satisfy r̃t − s̃t = α(r̃′t − s̃′t) for some α > 0 and r̃ % s̃ ⇐⇒ r̃′ % s̃′.

Note that {Bεt(t) : t ∈ rs} forms an open cover of rs. Since rs is compact, let the

Lebesgue number of the open cover be ρ > 0 and define

tk := r +
min{kρ, ||s− r||}

||s− r|| (s− r)

for k = 0, 1, . . . ,min{j ∈ N : ρj > ||s − r||}. Let m := min{j ∈ N : ρj > ||s − r||} − 1.

By definition, t0 = r, tm = s, and ||tk − tk+1|| < ρ for any k ∈ {0, . . . ,m}. Since ρ is the

Lebesgue number of the open cover, for any k ∈ {0, . . . ,m}, there exists t ∈ rs such that

tk, tk+1 ∈ Bεt(t). Therefore, there exist r′k, s
′
k ∈ int(L) such that tk − tk+1 = βk(r

′
k − s′k) for

some βk > 0 and tk % tk+1 ⇐⇒ r′k % s′k. Note that by construction, for any k ∈ {0, . . . ,m},
tk − tk+1 = λk(r − s) for some λk > 0, which implies that for any k ∈ {0, . . . ,m}, r′k − s′k =

αk(r
′
0 − s′0) for some αk > 0.

Since L preserves independence, by Lemma 1, for any k ∈ {0, . . . ,m}, r′k % s′k ⇐⇒ r′0 %

s′0. It follows that r′0 % s′0 ⇐⇒ tk % tk+1. Then, transitivity requires that r % s ⇐⇒ r′0 %

s′0. Note that r − s = β0
λ0

(r′0 − s′0).

The same arguments apply to r∗ and s∗: There exist some r∗0, s
∗
0 ∈ int(L) such that

r∗ % s∗ ⇐⇒ r∗0 % s∗0 and r∗ − s∗ = λ∗(r∗0 − s∗0) for some λ∗ > 0. Since r − s = λ(r∗ − s∗),
we know that r′0 − s′0 = α∗(r∗0 − s∗0) for some α∗ > 0. By Lemma 1, r′0 % s′0 ⇐⇒ r∗0 % s∗0.

Thus, r % s ⇐⇒ r∗ % s∗. This completes the proof that co(int(L) ∪ {x})\{x} preserves

independence.

It is straightforward to verify that

cl(co(int(L) ∪ {x})\{x}) = cl(co(int(L) ∪ {x})).

Hence, by Lemma 1, cl(co(int(L) ∪ {x})) preserves independence.

To complete the proof of this lemma, we only need to show that co(L ∪ {x}) is a subset

of cl(co(int(L) ∪ {x})). Since L is convex and has nonempty interior, cl(int(L)) = cl(L).

To see this, take any y ∈ cl(L) and let {yk}∞k=1 be some sequence in L that converges to

y. Take any r ∈ int(L). Since L is convex, the sequence {(1 − 1
k
)ykr}∞k=1 is a sequence in

int(L) that converges to y as well. Therefore, y ∈ cl(int(L)). Because cl(int(L)) = cl(L),
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for any y ∈ L, let {yk}∞k=1 be some sequence in int(L) that converges to y. Then, for any

α ∈ [0, 1], αykx converges to αyx, which implies that αyx ∈ cl(co(int(L) ∪ {x})). Thus,

co(L ∪ {x}) ⊆ cl(co(int(L) ∪ {x})).
Now we are ready to prove Theorem 1. Suppose that in addition to weak order and

continuity, % also satisfies weak local independence. Thus, for each x ∈ X, there exists

εx > 0 such that Bεx(x) ⊥ x. Hereafter, for any x ∈ X, let Bx = Bεx(x). We proceed to

construct a polytope that preserves independence for each x ∈ X.

Lemma 4 Suppose % satisfies weak local independence. Then for any x ∈ X, there exist

x1, . . . , xN ∈ X such that xx1 . . . xN preserves independence and has nonempty interior.

Proof. Let x0 := x ∈ X. Then, recursively for i = 1, . . . , N , let xi be an arbitrary point in

(
⋂
j<iBxj)\aff({x0, . . . , xi−1}). Since each Bxi is open and aff({x0, . . . , xi−1})’s dimension is

at most i − 1, such xi’s always exist. By construction, the dimension of ∆ := xx1 . . . xN is

equal to N , the dimension of X, and ∆ has nonempty interior.

Pick some α ∈ (0, 1) such that for any j = 0, . . . , N−1, yj := αxNxj ∈ ⋂N
i=0Bxi . Clearly,

∆′ = y0 . . . yN−1xN also has nonempty interior. In addition, by construction, ∆
′ ⊥ xi for

i = 0, . . . , N because ∆′ ⊆ ⋂N
i=0Bxi . Since xN ∈ ∆′, it follows from Lemma 2 that ∆′ ⊥ yi

for i = 0, . . . , N − 1. Applying Lemma 2 again, we know that ∆′ ⊥ y for any y ∈ ∆′, which

implies that ∆′ preserves independence. Then, applying Lemma 3 iteratively, we know that

co(∆′∪{xN−1}) preserves independence, co(∆′∪{xN−1, xN−2}) preserves independence, and

so on. Since ∆ = co(∆′ ∪ {x0, . . . , xN−1}), ∆ preserves independence.

It follows directly from Lemma 4 that % exhibits piecewise independence. To show the

second statement of Theorem 1, the next step is to identify the “largest” pieces that induce

the same local utility function using Zorn’s Lemma. Let D be the collection of all possible

polytopes constructed using the procedure in Lemma 4. Let Xo :=
⋃

∆∈D int(∆). It is clear

that

X =
⋃

∆∈D

∆ =
⋃

∆∈D

cl(int(∆)) ⊆ cl

(⋃
∆∈D

int(∆)

)
= cl(Xo) ⊆ X.

Thus, Xo is an open and dense subset of X. For any x ∈ Xo, pick ∆x ∈ D such that

x ∈ int(∆x).

For any nonempty open subset Y ⊆ X, we say that Y induces local utility function U if

any x ∈ Y has a neighborhood L ⊆ Y such that U represents % on L. Note that when Y is

not convex, the fact that Y induces U does not imply U represents % on Y . By definition,

if Yi induces local utility function Ui for i = 1, 2 and Y1 ∩ Y2 6= Ø, then U1 = U2.

Let O := {L ⊆ X : L is nonempty, connected, and open}. Let F be the set of all

functions P : Xo → O such that for any x ∈ Xo, (i) int(∆x) ⊆ P (x), and (ii) P (x) induces
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some local utility function. Clearly, F is nonempty, since for any x ∈ X0 we can simply let

P (x) = int(∆x).

Define a binary relation b on F as follows: For any x, y ∈ F , P b Q if for any x ∈ Xo,

P (x) ⊆ Q(x). It is straightforward to verify that b is a partial order on F . Take any totally

ordered subset of F , {Pi}i∈I , in which I is an index set. Let P ∗ : Xo → O be a function

such that for any p ∈ Xo, P
∗(x) :=

⋃
i∈I Pi(x). We show that P ∗ ∈ F . First of all, P ∗(x) is

open since every Pi(x) is open. Second, P ∗(x) is connected, since every Pi(x) is connected

and contains int(∆x), which is connected. Furthermore, each Pi(x) induces the same local

utility function as int(∆x) does. Thus, P ∗(x) also induces the same local utility function as

int(∆x) does. Hence, P ∗ is an upper bound of {Pi}i∈I in terms of b.

Now, we can apply Zorn’s lemma and know that F contains some b-maximal element.

With a harmless abuse of notation, denote this b-maximal element by P ∗. Next we show

that {x ∈ Xo : P ∗(x)} is finite.

For any x ∈ X and ε > 0, let Cε(x) := {y ∈ X : ||x − y||∞ < ε}; that is, Cε(x) is the

open hypercube that is centered at x with edge length 2ε. For any x ∈ X and nonempty

L ⊆ X, let conex(L) := {y ∈ X : y = x + α(z − x) for some α > 0 and z ∈ L}; that is,

conex(L) is the smallest cone with vertex x that contains L.

Lemma 5 Suppose % satisfies weak local independence and P ∗ is a b-maximal element.

Then {x ∈ Xo : P ∗(x)} is finite.

Proof. Suppose P = {x ∈ Xo : P ∗(x)} is not finite. Let P = {Pi}i∈I . Suppose I is not

finite. Pick a countable subset of Pi’s and form a sequence with one choice alternative in

each. By the compactness of X, we can pick an accumulation point of the sequence, denoted

as x. It is clear that any neighborhood of x intersects Pi for an infinite number of i’s in I.

Fix some ε > 0 such that Cε(x) ⊆ Bx, in which Bx is where the second vertex is chosen in the

procedure for constructing the polytope for x in Lemma 4. Let J := {i ∈ I : Cε(x)∩Pi 6= Ø}
and Qi := Cε(x) ∩ cl(Pi) for each i ∈ J . It is easy to verify by the maximality of P ∗ that

Qj ∩ Pi = Ø for any i ∈ I, j ∈ J with i 6= j.

First, we show that for any y ∈ Cε(x) with x 6= y, there exists i ∈ J such that xy ⊆ Qi.

Suppose x 6= y. Applying the procedure in Lemma 4, we can construct ∆ ∈ D such that

xy ⊆ ∆. By the denseness of Xo, there exists z ∈ Xo such that P ∗(z)∩int(∆) 6= Ø. It follows

that int(∆) induces the same local utility function as P ∗(z) does. Then the maximality of

P ∗ implies that int(∆) ⊆ P ∗(z). It follows that xy ⊆ ∆ ⊆ Qi for some i ∈ J .

Second, we show that Qi = Cε(x) ∩ conex(Qi) for all i ∈ J . Loosely speaking, the

intersection of Qi and the hypercube must be a cone with vertex x. On one hand, by

definition, Qi ⊆ Cε(x) and Qi ⊆ conex(Qi), which imply Qi ⊆ Cε(x) ∩ conex(Qi). On the
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other hand, let y ∈ Cε(x)∩conex(Cε(x)∩Pi) for some i ∈ J . Then there exists r ∈ Cε(x)∩Pi
such that y ∈ xr or r ∈ xy. Since r ∈ Cε(x), there exists j ∈ J such that xr ⊆ Qj. By

r ∈ Pi, we have j = i and thus xr ⊆ Qi. If y ∈ xr, then y ∈ Qi. If r ∈ xy, then since

r ∈ xy∩Pi 6= Ø, we have xy ⊆ Qi. In both cases, y ∈ Qi. Thus, Cε(x)∩ conex(Cε(x)∩Pi) ⊆
Qi ⊆ cl(Pi). It follows that Cε(x) ∩ conex(Qi) ⊆ cl(Cε(x) ∩ conex(Cε(x) ∩ Pi)) ⊆ cl(Pi).

Hence, Cε(x) ∩ conex(Qi) ⊆ Cε(x) ∩ cl(Pi) = Qi.

Now let P o
i := int(cl(Pi)) for each i ∈ I. Note that Pi and P o

i may not be the same

set. The next step is to show that P o
i ∩ P o

j = Ø for any i 6= j. Since Pi ⊆ cl(Pi) and Pi

is open, Pi ⊆ P o
i . Suppose P o

i ∩ P o
j 6= Ø. Then there exist r ∈ X and δ > 0 such that

Bδ(r) ∈ P o
i ∩ P o

j ⊆ cl(Pi) ∩ cl(Pj). Since Bδ(r) ⊆ cl(Pi) and Pi is open, we can find an open

ball B ⊆ Bδ(r) such that B ⊆ Pi. Again, since B ⊆ cl(Pj) and Pj is open, we can find an

open ball B′ ⊆ B such that B′ ⊆ Pj. This is a contradiction, since Pi ∩ Pj = Ø. Note that

for any i 6= j, since P o
i ∩ P o

j = Ø, P o
i ∩ cl(Pj) = Ø.

We are now ready to present the main induction argument. Let ε1 := ε
2

and C1 :=

∂Cε1(x); that is, C1 is the surface of hypercube Cε1(x). Clearly, C1 ⊆ Cε(x). Note that

C1 ∩ P o
i 6= Ø for all i ∈ J . To see that, consider any i ∈ J and y ∈ Cε(x) ∩ Pi ⊆ Cε(x) ∩ P o

i

with y 6= x. We have conex({y}) ∩ Cε(x) ⊆ Qi = Cε(x) ∩ conex(Qi). Moreover, since

y ∈ Cε(x) ∩ P o
i = int(Qi),

conex({y}) ∩ C1 ⊆ int(Cε(x) ∩ conex(Qi)) = int(Qi) = Cε(x) ∩ P o
i .

Since conex({y}) ∩ C1 6= Ø, we have C1 ∩ P o
i 6= Ø for any i ∈ J .

When N = 1, C1 contains at most two points, which cannot intersect with an infinite

number of disjoint open sets—a contradiction. Hereafter, we assume N > 2.

Let A1 be a face of C1 that intersects P o
i for an infinite number of i’s in J . By the

compactness of A1, there exists x1 ∈ A1 such that if L is a neighborhood of x1, then L ∩A1

intersects P o
i for an infinite number of i’s in J . Now pick ε′ < ε1 such that Cε′(x

1) ⊆ Bx1 .

Let J1 := {i ∈ J : (Cε′(x
1) ∩ A1) ∩ P o

i 6= Ø} and y1
i := Cε′(x

1) ∩ cl(Pi) for all i ∈ J1.

Let ε2 := ε′
2

and C2 := ∂Cε2(x
1) ⊆ Cε′(x

1). We show that (C2 ∩ A1) ∩ P o
i 6= Ø for all

i ∈ J1. Following the same logic as above, for any y ∈ Cε′(x
1) ∩ A1, there exists i ∈ J1

such that x1y ⊆ y1
i . Furthermore, y1

i = Cε′(x
1) ∩ conex1(y

1
i ). Consider any i ∈ J1 and

y ∈ (Cε′(x
1) ∩ A1) ∩ P o

i with y 6= x1. Since y ∈ Cε′(x1) ∩ P o
i = int(y1

i ),

conex1({y}) ∩ C2 ⊆ int(Cε′(x
1) ∩ conex(y

1
i )) = int(y1

i ) = Cε′(x
1) ∩ P o

i .

Since Ø 6= conex1({y}) ∩ C2 ⊆ A1, we have (C2 ∩ A1) ∩ P o
i 6= Ø.

Now let A2 be a face of C2 such that A1 ∩ A2 intersects P o
i for an infinite number of
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i’s in J1. By the compactness of A1 ∩ A2, there exists x2 ∈ A1 ∩ A2 such that if L is

a neighborhood of x2, then L ∩ A1 ∩ A2 intersects P o
i for an infinite number of i’s in J1.

Inductively, for any k, there exists xk ∈ A1 ∩ · · · ∩ Ak such that if L is a neighborhood of

xk, then L ∩ A1 ∩ · · · ∩ Ak intersects P o
i for an infinite number of i’s in J . Let k = N − 1.

Then A1 ∩ · · · ∩ AN−1 is a line segment that intersects P o
i for i ∈ JN−1 with |JN−1| = ∞.

Pick xN−1 in a way similar to before. Note that there exists ε̂ > 0 small enough such that

Cε̂(x
N−1)∩P o

i = Cε̂(x
N−1)∩conexN−1(Cε̂(x

N−1)∩P o
i ) for any i ∈ JN−1. Since A1∩· · ·∩AN−1

is a line segment, it follows that Cε̂(x
N−1)∩ (A1 ∩ · · · ∩AN−1) intersects P o

i for at most two

i’s, which is a contradiction.

Finally, since each P ∗(x) induces a single local utility function and any regular closed

subset of X must contain some x ∈ X0, we establish the second statement of Theorem 1,

Proof of Proposition 1

Proof. Suppose % satisfies weak order, continuity, and weak local independence, and has

a differentiable representation V : X → R. Let P ∗ be the mapping identified in the proof

of Theorem 4. By Lemma 5, let {x ∈ Xo : P ∗(x)} = {Pi}ni=1 for some n and Ui be the

non-constant local utility function induced by Pi for each i.

When N = 1, X = [a, b] for real numbers a < b. The claim holds trivially, since the only

possible non-constant local utility functions are U(x) = 0, U(x) = x−a
b−a , and U(x) = 1− x−a

b−a

due to the normalization. Thus, we assume N > 2 hereafter.

Next, we prove the following lemma.

Lemma 6 Suppose N > 2. Then for any open ball B in X, if dim(Y ) 6 N − 2, then

B\aff(Y ) is connected.

Proof. We will prove that B\aff(Y ) is path-connected. Pick any distinct x, y ∈ B\aff(Y ).

We know that dim(Y ∪ {x}) 6 N − 1. Since X is a convex set with nonempty interior,

any open ball in X is a convex set of dimension N . Thus there exists z ∈ B\aff(Y ∪ {x}).
Note that xz ∩ aff(Y ∪ {x}) = {x}. To see that, suppose there exists z′ 6= x such that z′ ∈
xz∩aff(Y ∪{x}). Then since z ∈ aff(xz′), it has to be the case that z ∈ aff(Y ∪{x}), which is

a contradiction. Suppose y ∈ aff(Y ∪ {x}). Then similarly we have yz ∩ aff(Y ∪ {x}) = {y},
and xz ∪ yz forms a path from x to y in B\aff(Y ). Suppose y 6∈ aff(Y ∪ {x}). Then we

directly have xy ∩ aff(Y ∪ {x}) = {x}. Thus, xy ⊆ B\aff(Y ) and we are done.

Pick any i and let P =
⋃{Pj : Uj = Ui or Uj = 1 − Ui} and Q = (

⋃n
i=1 Pi) \P . By

way of contradiction, assume that Q 6= Ø. By construction, P and Q are both open and

cl(P ∪ Q) = cl(P ) ∪ cl(Q) = X. Since X is connected, we must have cl(P ) ∩ cl(Q) 6= Ø.

Pick any x1 ∈ cl(P ) ∩ cl(Q) and let B1 be the open ball centered at x1 such that B1 ⊥ x1,
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given by weak local independence. We show that there exists x2 ∈ B1 such that x2 6= x1 and

x2 ∈ cl(P ) ∩ cl(Q). Suppose not. Then B1\{x} = ((B1\{x}) ∩ cl(P )) ∪ ((B1\{x}) ∩ cl(Q))

and (B1\{x})∩ cl(P )∩ cl(Q)) = Ø. This is a contradiction, since B1\{x} is connected when

N > 2. Hence, we can pick x2 ∈ B1 such that x2 6= x1 and x2 ∈ cl(P ) ∩ cl(Q).

Inductively, by Lemma 6, for j = 2, . . . , N , we can pick xj ∈ Bj−1\aff(x1 · · ·xj−1) such

that xj ∈ cl(P )∩cl(Q) and Bj ⊆ Bj−1 such that Bi ⊥ xi. By xN ∈ cl(P )∩cl(Q), there exists

r ∈ P ∩BN and s ∈ Q ∩BN . Since P and Q are both open, we can assume, without loss of

generality, that r, s 6∈ aff(x1 · · ·xN). Using the same argument in Lemma 4, ∆1 = x1 · · ·xNr
and ∆2 = x1 · · ·xNs both preserve independence. By r ∈ P , either Ui or 1 − Ui represents

% on ∆1. We focus on the case in which Ui represents % on ∆1, since the other case is

symmetric. In addition, there exists a non-constant local utility function U 6∈ {Ui, 1 − Ui}
that represents % on ∆2. Pick any z in the relative interior of x1 · · ·xN ; it is clear that

dim({x̃ ∈ ∆1 : Ui(x̃) = Ui(z)} = dim({x̃ ∈ ∆2 : U(x̃) = U(z)} = N − 1.

In addition, since U is a local utility function distinct from Ui and 1 − Ui, the gradient of

V at z, ∇V (z), which needs to be orthogonal to both {x̃ ∈ ∆1 : Ui(x̃) = Ui(z)} and {x̃ ∈
∆2 : U(x̃) = U(z)}, must be ~0. It then follows from the continuity of V that V (x) = V (y)

for any x, y ∈ x1 · · ·xN . Since both Ui and U are non-constant and represent % on x1 · · ·xN ,

which is of dimension N − 1, it must be the case that U = Ui or U = 1 − Ui, which is a

contradiction.

Proof of Proposition 2

Proof. Let D be a preorder that satisfies betweenness and suppose each local utility function

of % respects D. Pick x, y ∈ X such that x D y. For any z ∈ xy, let Bz be an open ball

centered at z such that Bz ⊥ z, given by weak local independence. Thus, {Bz : z ∈ xy} forms

an open cover of xy, which is compact, and thus it has a finite subcover {Bzi}mi=1. Let the

Lebesgue’s number of this finite subcover be δ > 0. Pick x1, x2, . . . , xk ∈ xy such that x1 = x,

xm = y and ||xj−xj+1|| < δ for j = 1, . . . , k−1. By definition of the Lebesgue’s number, for

any j = 1, . . . , k−1, there exists i(j) ∈ {1, . . . ,m} such that xjxj+1 ⊆ Bzi(j) . Thus, following

the same procedure as in Lemma 4, for each j, we can construct two polytopes zi(j)r1 . . . rN

and zi(j)s1 . . . sN with r1 = xj and s1 = xj+1, both of which preserve independence. Since

each local utility function of % respects D, % restricted to zi(j)xj and % restricted to zi(j)xj+1

both respect D. Since
⋃m
j=1

(
zi(j)xj ∪ zi(j)xj+1

)
= xy, it is easy to see that % restricted to

xy respects D, and thus, x % y.
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Proof of Theorem 2

Proof. We will only show the sufficiency of the axioms. We prove this via a sequence of

lemmas. We present the proof of the necessity in the Online Appendix.

In what follows, without stating this explicitly, we assume for each lemma that % satisfies

weak order and continuity. Since X is separable and connected, by Debreu (1954) it must

have a continuous utility representation V : X → R.

The first two lemmas are about the (bi-)independence of line segments. Lemma 7 char-

acterizes when a line segment preserves independence. The proof for Lemma 7 is standard in

the literature and is thus omitted. Lemma 8 characterizes when two line segments preserve

bi-independence, provided that they each preserve independence. We provide the proof in

the Online Appendix.

Lemma 7 For any x, r ∈ X, xr preserves independence if and only if xr ⊥ x.

Lemma 8 For any x, y, r, s ∈ X, if xr and ys each preserve independence, then the following

statements are equivalent:

(i) xr and ys preserve bi-independence.

(ii) For any x′, r′ ∈ xr and y′, s′ ∈ ys such that x′ ∼ y′ and r′ ∼ s′, λx′r′ ∼ λy′s′ for any

λ ∈ (0, 1).

(iii) There exists ε > 0 such that for any y′, s′ ∈ ys with ||y′ − s′|| < ε, xr and y′s′

preserve bi-independence.

Given x and y with x ∼ y, we say that neighborhoods Lx and Ly preserve weak bi-

independence with respect to x and y if for any r ∈ Lx, s ∈ Ly, and λ ∈ (0, 1), r % s ⇔
λxr % λys. We omit the phrase “with respect to x and y” from time to time when there is

no risk of confusion.

We introduce one last lemma before constructing the linear regions.

Lemma 9 Suppose % satisfies weak local bi-independence. Then for any x, there exists

ε > 0 such that for any r ∈ Bε(x) and any convex regular closed subset L that preserves

independence, xr and L preserve bi-independence.

Proof. There is nothing to prove if L = Ø. Let L 6= Ø. By way of contradiction, suppose

for any n there exist rn ∈ B1/n(x) and a nonempty, convex, and regular closed Ln that

preserves independence, such that xrn and Ln do not preserve bi-independence. Thus, there

exists yn, sn ∈ Ln such that xrn and ynsn do not preserve bi-independence. By weak local

independence (implied by weak local bi-independence), for a sufficiently large n, B1/n(x) ⊥ x,
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which implies that xrn preserves independence by Lemma 7. Then by Lemma 8, there exist

x̂n, r̂n ∈ xrn and ŷn, ŝn ∈ ynsn ⊆ Ln such that x̂n ∼ ŷn and r̂n ∼ ŝn, ||ŷn − ŝn|| < 1
n
, and

x̂nr̂n and x̂nŝn do not preserve bi-independence.

It is clear that x̂n, r̂n converges to x as n goes to infinity. Since X is compact, the sequence

{ŷn} has a subsequence that converges to some y. We assume, without loss of generality,

that the subsequence is {ŷn} itself and that ||ŷn − y|| is monotonically decreasing in n. By

continuity, V (ŷn) = V (x̂n) for all n implies that V (y) = V (x).

To derive the desired contradiction, we show that for any ε, δ > 0, Bε(x) and Bδ(y) cannot

preserve weak bi-independence. Fix any ε, δ > 0. We can, without loss of generality, assume

δ is small enough such that Bδ(y) ⊥ y, because if Bε(x) and Bδ(y) cannot preserve weak

bi-independence, Bε(x) and Bδ′(y) cannot preserve weak bi-independence for any δ′ > δ.

Clearly, there exists m such that ||y − ŷm|| < δ − 1
m

. Then it follows that ||y − ŝm|| <
δ − 1

m
+ 1

m
= δ. Hence ŷm, ŝm ∈ Bδ(y). There also exists k such that n > k implies

x̂n, r̂n ∈ Bε(x). Let N = max{m, k}. Then x̂N , r̂N ∈ Bε(x), ŷN , ŝN ∈ Bδ(y). Since LN

is regular closed, LN = cl(int(LN)), which implies that LN ∩ Bδ(y) has nonempty interior.

By Lemma 3, we have that co((LN ∩ Bδ(y)) ∪ {y}) preserves independence. Thus, ŷN ŝNy

preserves independence.

By construction, since x̂N , r̂N ∈ xrN , and xrN preserves independence, we either have

x̂N , r̂N % x or x % x̂N , r̂N . The two cases are symmetric, so we will only consider the

first case. Note that x̂N ∼ ŷN and r̂N ∼ ŝN , and that x̂N r̂N and ŷN ŝN each preserve

independence but do not preserve bi-independence. We either have x̂N � r̂N or r̂N � x̂N .

Again, the two cases are symmetric so we will only prove the first case. Hence, x̂N � r̂N % x,

and r̂N ∈ x̂Nx. It follows that ŷN � ŝN % y. Then by continuity there exists s ∈ ŷNy such

that s ∼ ŝN . If Bε(x) and Bδ(y) preserve weak bi-independence, since x ∼ y and x̂N ∼ ŷN ,

we have λx̂Nx ∼ λŷNy for all λ ∈ [0, 1]. Since r̂N ∈ x̂Nx, s ∈ ŷNy, and r̂N ∼ s, it follows

that λx̂N r̂N ∼ λŷNs for all λ ∈ [0, 1]. Note that for all λ ∈ [0, 1], since ŷN ŝNy preserves

independence, λŷNs ∼ λŷN ŝN . It then follows that λx̂N r̂N ∼ λŷN ŝN for all λ ∈ [0, 1]. Thus

x̂N r̂N and ŷN ŝN preserve bi-independence, which is a contradiction.

Now we proceed to construct a polytope for each x ∈ X using similar procedures as in

Lemma 4.

Lemma 10 Suppose % satisfies weak local bi-independence. Then for any x0 ∈ X, there ex-

ist x1, . . . , xN ∈ X such that x0x1 . . . xN preserves independence and has nonempty interior,

and xixj and L preserve bi-independence for any i, j and any convex regular closed subset L

that preserves independence.

Proof. By Lemma 9, for each x ∈ X, there exists εx > 0 such that Bεx(x) ⊥ x, and that
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for any r ∈ Bεx(x) and any convex regular closed subset L that preserves independence, xr

and L preserve bi-independence. For any x, let Bx = Bεx(x). Then construct the polytope

in the same way as in the proof of Lemma 4 and we are done.

The following lemma shows that each polytope constructed in Lemma 10 can be a linear

region of some CFPL representation of %.

Lemma 11 Suppose % satisfies weak local bi-independence and D̂ is the collection of all poly-

topes constructed in Lemma 10. Then for any ∆,∆′ ∈ D̂, ∆ and ∆′ preserve bi-independence.

Proof. Since ∆ and ∆′ both preserve independence and have nonempty interior, Lemma 1

implies that there are affine functions U : ∆ → R and U ′ : ∆′ → R that represent % on ∆

and ∆′, respectively. To prove that ∆ and ∆′ preserve bi-independence, pick any x, r ∈ ∆,

y, s ∈ ∆′, and λ ∈ (0, 1) such that λxr ∈ ∆, λys ∈ ∆′, and x ∼ y. We want to show that

r % s⇔ λxr % λys.

Since ∆ = x0 . . . xN and ∆′ := y0 . . . yN for some x0, . . . , xN ∈ X and y0, . . . , yN ∈ X,

without loss of generality, let U(x0) = mini U(xi), U(xN) = maxi U(xi), U ′(y0) = mini U
′(yi),

and U ′(yN) = maxi U
′(yi). Clearly, U(λxr) ∈ [U(x0), U(xN)] and U ′(λys) ∈ [U ′(y0), U ′(yN)].

The cases with x0 ∼ xN or y0 ∼ yN are straightforward. Therefore, assume that xN � x0

and yN � y1. Without loss of generality, let U(xN) = U ′(yN) = 1 and U(x0) = U ′(y0) =

0. Standard arguments imply that there exist unique α, α′, α′′, β, β′, β′′ ∈ [0, 1] such that

αx0xN ∼ x, α′x0xN ∼ r, α′′x0xN ∼ λxr, βy0yN ∼ y, β′y0yN ∼ s, and β′′y0yN ∼ λys. Then,

U(λpr) = α′′ = λU(p) + (1− λ)U(r) = λα + (1− λ)α′.

Similarly,

U ′(λqs) = β′′ = λU ′(q) + (1− λ)U ′(s) = λβ + (1− λ)β′.

By the construction in Lemma 10, since each ∆ ∈ D̂ is regular closed and convex and

preserves independence, x0xN and ∆′ preserve bi-independence, which implies that x0xN

and y0yN preserve bi-independence. Therefore, since αx0xN ∼ x ∼ y ∼ βy0yN , we have

α′x0xN % β′y0yN ⇒ (λα+ (1− λ)α′)x0xN % (λβ + (1− λ)β′)y0yN and α′x0xN � β′y0yN ⇒
(λα + (1− λ)α′)x0xN � (λβ + (1− λ)β′)y0yN , which establishes the lemma.

Similar to the proof of Theorem 1, we identify the “largest” linear regions using Zorn’s

Lemma. Let X̂o :=
⋃

∆∈D̂ int(∆). It is clear that X̂o is an open and dense subset of

X. For any x ∈ X̂o, pick ∆̂x ∈ D̂ such that x ∈ int(∆̂x). Recall that O = {L ⊆ X :

L is nonempty, connected, and open}. Let F̂ be the set of all functions P : X̂o → O such

that for any x, y ∈ X̂o, (i) int(∆̂x) ⊆ P (x), (ii) P (x) and P (y) preserve bi-independence,
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and (iii) P (x) and ∆ preserve bi-independence for any ∆ ∈ D̂. Clearly, F̂ is nonempty since

it contains x 7→ ∆̂x.

Define a binary relation b̂ on F as follows: For any x, y ∈ F , P b̂ Q if for any x ∈ X̂o,

P (x) ⊆ Q(x). It is straightforward to verify that b̂ is a partial order on F̂ . Take any totally

ordered subset of F̂ , {Pi}i∈I , in which I is an index set. Let P ∗ : Xo → O be a function such

that for any x ∈ X̂o, P
∗(x) :=

⋃
i∈I Pi(x). It must be true that P ∗ ∈ P . First of all, P ∗(x)

is open since every Pi(x) is open. Second, P ∗(x) is connected, since every Pi(x) is connected

and contains int(∆̂x), which is connected. Now we show that P ∗(x) and P ∗(y) preserve

bi-independence for all x, y ∈ X̂o. To see this, for any λ ∈ (0, 1), if x′, r′, λx′r′ ∈ P ∗(x) and

y′, s′, λy′s′ ∈ P ∗(y), by {Pi}i∈I is totally ordered by b̂, there must exist some index j ∈ I
such that x′, r′, λx′r′ ∈ Pj(x) and y′, s′, λy′s′ ∈ Pj(y). Then, the property that we want

x′, r′, λx′r′, y′, s′, λy′s′ to satisfy to ensure that P ∗(x) and P ∗(y) preserve bi-independence

follows from the fact that Pj(x) and Pj(y) preserve bi-independence. Similarly, it is easy

to show that P ∗(x) and ∆ preserve bi-independence for any ∆ ∈ D̂. Hence, P ∗ is an upper

bound of {Pi}i∈I in terms of b̂.

We can apply now Zorn’s lemma and know that F̂ contains some b̂-maximal element.

Denote this b̂-maximal element by P̂ ∗. Clearly,
⋃
x∈X̂o

P̂ ∗(p) is an open and dense subset of

X. The next step is to prove that P̂ ∗ has some nice properties. To do that, we will need the

following two lemmas.

For any two subsets L1, L2 ofX, we write L1 � L2 if there exist xh, xl ∈ L1 and yh, yl ∈ L2

such that xh � xl, yh � yl, xh � yl, and yh � xl. For a finite sequence of subsets L1, . . . , Lm

of X, we write L1 � · · ·� Lm if Li � Li+1 for any i ∈ {1, . . . ,m− 1}. Note that � is not

a transitive binary relation; that is, L1 � L2 � L3 does not imply L1 � L3.

The proof of Lemma 12 is similar to Chapter 2.4 of Schmidt (1998), which we present in

the Online Appendix.

Lemma 12 Suppose L1, . . . , Lm ⊆ X are nonempty, connected, and open subsets such that

Li and Lj preserve bi-independence for any i, j ∈ {1, . . . ,m}. If L1 � · · ·� Lm, there exist

affine functions Ui : Li → R, i = 1, . . . ,m, such that the function U :
⋃m
i=1 Li → R that

satisfies p ∈ Li ⇒ U(p) = Ui(p), i = 1, . . . ,m, represents % on
⋃m
i=1 Li.

To show that different linear regions must have empty intersections, we need one more

lemma, whose proof can be found in the Online Appendix.

Lemma 13 Suppose L1, L2, L3 ⊆ X are nonempty, connected, open subsets such that Li

and Lj preserve bi-independence for any i, j ∈ {1, . . . ,m}. If L1 ∩ L2 6= Ø, then

(i) L1 ∪ L2 preserves independence;

(ii) L1 ∪ L2 and L3 preserve bi-independence.
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Now we proceed to show that the maximal linear regions cannot overlap.

Lemma 14 Suppose % satisfies weak local bi-independence and P̂ ∗ is a b̂-maximal element.

Then for any x, y ∈ X̂o, if P̂ ∗(x) ∩ P̂ ∗(y) 6= Ø, then P̂ ∗(x) = P̂ ∗(y).

Proof. Suppose P̂ ∗(x) ∩ P̂ ∗(y) 6= Ø. By Lemma 13, we have (i)P̂ ∗(x) ∪ P̂ ∗(y) preserves

independence, (ii) P̂ ∗(x)∪ P̂ ∗(y) and P̂ ∗(r) preserve bi-independence for all r ∈ X̂o, and (iii)

P̂ ∗(x) ∪ P̂ ∗(y) and ∆ preserve bi-independence for any ∆ ∈ D̂. Thus, if P̂ ∗(x) ∩ P̂ ∗(y) 6= Ø,

then P̂ ∗ is not b̂-maximal unless P̂ ∗(x) = P̂ ∗(y). To see this, if P̂ ∗(x) 6= P̂ ∗(y), we can

define a new function P̂ : X̂o → O that agrees with P̂ ∗ except at x and y. Let P̂ (x) =

P̂ (y) = P̂ ∗(x) ∪ P̂ ∗(y). Then, we have P̂ 6= P ∗, P̂ ∈ F̂ , and P̂ ∗ b̂ P̂ .

Lemma 15 Suppose % satisfies weak local bi-independence and P̂ ∗ is a b̂-maximal element.

Then {P̂ ∗(x) : x ∈ X̂o} is finite.

Proof. Suppose {P̂ ∗(x) : x ∈ X̂o} = {Pi}i∈I for some infinite index set I. Let Bx be where

the second vertex is chosen in the procedure for constructing ∆ ∈ D̂ in Lemma 10. We show

that for any y ∈ Bx, there exists i ∈ I such that xy ⊆ cl(Pi). Without loss of generality,

assume x 6= y. Applying the procedure in Lemma 10, we can construct ∆ ∈ D̂ such that

xy ⊆ ∆. By the denseness of X̂o, there exists i ∈ I such that Pi ∩ int(∆) 6= Ø. Then by

Lemma 14, it must be the case that int(∆) ⊆ Pi, which implies xy ⊆ ∆ ⊆ cl(Pi). The rest

is similar to the proof of Lemma 5.

Now we start to construct the CFPL representation. The idea is to separate the linear re-

gions into groups according to their utility range and perform positive affine transformations

group by group.

For any P, P ′ ∈ P := {P̂ ∗(x) : x ∈ X̂o}, we write P ′! P if V (P ) = V (P ′) or there is a

finite sequence of subsets P1, . . . , Pm ∈ P such that P1 = P , Pm = P ′, and P1 � · · ·� Pm.

By definition, ! is reflexive and transitive, and hence an equivalence relation defined on

P . Let Q1, . . . ,QK be the equivalence classes induced by !. Since P is finite, it is clear

that there are only a finite number of equivalent classes. Let Q∗i =
⋃
P∈Qi

P for each

i ∈ {1, . . . , K}. It is easy to see that (i) V (Q∗i ) is a (possibly degenerate) interval for any i,

(ii) V (Q∗i ) ∩ V (Q∗j) has empty interior if i 6= j, and (iii) V (Xo) =
⋃K
i=1 V (Q∗i ).

For each i, let V h
i := supV (Q∗i ) and V l

i := inf V (Q∗i ). If V (Xo) is a singleton, then the

whole theorem is trivially true. Without loss of generality, let V (Q∗i ) be a nondegenerate

interval if and only if i ∈ {1, . . . , k}, and assume V h
i 6 V l

i+1 for each i ∈ {1, . . . , k − 1}.
Consider V1 first. By Lemma 12, there exists a CFPL function U1 : Q∗1 → R that

represents % on Q∗1. We can a perform positive affine transformation to U1 such that inf U1 =

V l
1 and supU1 = V h

1 . Since V also represents % on Q∗1, there exists a strictly increasing
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function f1 : V (Q∗1)→ R such that f1(V (p)) = U1(p) for any p ∈ Q∗1. Extend f1’s domain to

V (X) by letting f1(v) = v for any v ∈ V (X)\V (Q∗1).

The proof of the next lemma can be found in the Online Appendix.

Lemma 16 The function f1 is strictly increasing and continuous.

Thus, f1◦V is continuous on X and CFPL on Q∗1. Recursively, for each 2 6 i 6 k, repeat

the exercise above to construct continuous and strictly increasing function fi : V (X) → R
such that fi ◦ fi−1 ◦ · · · f1 ◦ V represents %, and is CFPL on Q∗i . In the end, we have

U = fk ◦ · · · ◦ f1 ◦ V represents %, and is CFPL on
⋃k
i=1Q

∗
i . Since each V (Q∗i ) is a constant

for i > k, U is CFPL on Xo. By Lemma 1, it is clear that U is affine on cl(P ) for any P ∈ P ,

and
⋃
P∈P cl(P ) = X. Since each P ∈ P is open, cl(P ) is regular closed and we are done

with the sufficiency of the axioms.

Proof of Proposition 3

Proof. Suppose W is a CFPL representation of % and for some strictly increasing CFPL

function f : W (X) → R, W̃ = f ◦W . Since f is strictly increasing, W̃ must represent %.

Since f is CFPL, W̃ is also CFPL. Hence, W̃ is a CFPL representation of %.

Next, suppose W, W̃ are CFPL representations of %. For the regular closed subsets in

X such that their union is X and W is affine on each of them, suppose X1, . . . , Xm1 are

the connected components of those subsets. For the regular closed subsets in X such that

their union is X and W̃ is affine on each of them, suppose Y1, . . . , Ym2 are the connected

components of those subsets. Consider the collection of intersections between any Xi and

Yj, denoted by {Z1, . . . , Zm}. Clearly, m is finite, both W and W̃ must be affine on each

Zk, and the union of all Zk’s is X. Let W (Zk) = [W l
k,W

h
k ] and W̃ (Zk) = [W̃ l

k, W̃
h
k ]. Then,

W l
1,W

h
1 ,W

l
2,W

h
2 , . . . ,W

l
m,W

h
m are elements of W (X). Rearrange these numbers in an as-

cending order and denote them by W1 = minXW (x) 6 W2 6 · · · 6 W2m = maxXW (x).

Similarly, W̃ l
1, W̃

h
1 , W̃

l
2, W̃

h
2 , . . . , W̃

l
m, W̃

h
m are elements of W̃ (X). Rearrange them in an as-

cending order and denote them by W̃1 = minX W̃ (x) 6 W̃2 6 · · · 6 W̃2m = maxX W̃ (x). We

know that each W−1([Wi,Wi+1]) = W̃−1([W̃i, W̃i+1]) must be the union of some subsets of of

Z1, . . . , Zm. Hence, W and W̃ are affine on each connected component of W−1([Wi,Wi+1]) =

W̃−1([W̃i, W̃i+1]).

Construct a function f : W (X)→ R as follows. Let f(Wi) = W̃i. Between Wi and Wi+1,

make f an affine function. It is easy to see that W̃ = f ◦W . By construction, f is CFPL.

Finally, since both W and W̃ represent the same preference, f is strictly increasing.
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Proof of Proposition 4

Proof. The first and second statements are straightforward. We only prove the only-if part

of the third and fourth statements. For the former, take a canonical COLU representation

of %, V (x) = max16j6m mini∈Ij µi ·x+αi. Since each µi ·x+αi is equal to V in some regular

closed subset of X, applying monotonicity in that subset immediately implies that µi ∈ RN
+

for any i.

For the only-if part of the last statement, take a CFPL representation of %, V . Let

X1, . . . , Xk be the connected components of the regular closed subsets in the definition of

the representation. Each Xi is a regular closed connected subset of X such that V is affine

on Xi. First, V is not constant on any of these Xi’s. To see this, suppose V is constant

on Xi. By Lemma 3 and C-independence, co(Xi ∪ {u1}) must preserve independence, and

hence co(Xi ∪ {u1, u1}) must preserve independence. This implies that V is constant on

{u1 : u ∈ [u, u]}, which violates the assumption that the preference is nondegenerate.

Next, without loss of generality, suppose X1 contains an alternative that maximizes V .

By Lemma 3 and C-independence, Y1 = co(X1 ∪ {u1, u1}) preserves independence. On

the restricted domain Y1, V is CFPL. We can find a strictly increasing CFPL function to

transform V into W such that W is equal to µ1 · x on Y1, in which µ1 · 1 is normalized to

either 1 or −1. Without loss of generality, assume that µ1 · 1 = 1. Note that by Proposition

3, W also represents % and is CFPL. Let Y1, . . . , Yl be the connected components of the

regular closed subsets in the definition of a CFPL function for W . Clearly, Y1 contains an

alternative that maximizes W .

Similar to the binary relations� and! defined in the proof of Theorem 2, let Yi � Yj

if W (Yi) ∩W (Yj) has nonempty interior. Let Yi ! Yj if there exist i1, . . . , im ∈ {1, . . . , l}
such that i1 = i, im = j, and Yi1 � · · ·� Yim . By definition and because W is not constant

on any Yi, ! is reflexive, symmetric, and transitive. Different equivalent classes induced

by ! have at most one point in common in terms of their utility ranges.

Take the equivalent class of Y1 induced by !. On an arbitrary set in that equivalent

class, suppose W ’s local utility function is µ · x + α. We want to prove that µ · 1 = 1 and

α = 0. If Y1 is the only element of that equivalent class, we are done. Suppose this is not

true. Let Yi be an element of that equivalent class. There must be some Yj in that class such

that Yi � Yj. Since W (Yi) ∩W (Yj) has nonempty interior, there must exist xi ∈ int(Yi)

and xj ∈ int(Yj) such that W (xi) = W (xj). Fixing two arbitrary distinct constant u’s in

[u, u], by C-independence, for a sufficiently small λ ∈ (0, 1) such that λxi(u1) ∈ int(Yi) and

λxj(u1) ∈ int(Yj), it must be true that W (λxi(u1)) = W (λxj(u1)). Suppose W ’s local

utility functions on Yi and Yj are µi · x + αi and µj · x + αj respectively. Then, we have

λW (xi) + (1 − λ)(µi · (u1) + αi) = λW (xj) + (1 − λ)(µj · (u1) + αj) for two distinct u’s,
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which implies that µi · 1 = µj · 1 and αi = αj. Following the same argument, we know that

for all Yi’s in this equivalent class with W on each Yi written as µi · x + αi, µi’s must have

the same total mass and αi’s must be identical. Since Y1 is in this equivalent class, we know

that µi’s in this equivalent class must have the same total mass 1 and αi’s in this equivalent

class must be 0.

If Y1, . . . , Yl are all in the same equivalent class, we are done. Suppose this is not true.

Then, at least one of Y1, . . . , Yl must contain an alternative that minimizes W and does not

belong to the equivalent class of Y1. Without loss of generality, suppose it is Yl. Consider

YL = co(Yl ∪ {u1, u1}). First, observe that by Lemma 3 and C-independence, YL preserves

independence. Also observe that the utility range of YL must overlap with that of the

equivalent class of Y1, because they both contain {u1 : u ∈ [u, u]} and W ({u1 : u ∈ [u, u]})
is not a singleton.

Next, denote the subset of YL whose utility range does not overlap with that of the

equivalent class of Y1 by Y ∗L . We can find a strictly increasing CFPL transformation that is

equal to the identity function on W (X)\W (Y ∗L ) to transform W into W ∗ such that at any

point in Y ∗L , W ∗’s local utility function µ∗ ·x+α∗ satisfies µ∗ ·1 = 1. We can normalize µ∗ ·1
to 1 rather than −1 because of the following reason. Note that YL has a subset whose utility

range overlaps with that of the equivalent class of Y1 but does not overlap with that of Y ∗L .

Therefore, at any point of that subset, either W ’s or W ∗’s local utility function, µ · x + α,

must satisfy µ ·1 = 1 and α = 0, as we have established previously. Then, since YL preserves

independence, it cannot be the case that µ∗ · 1 = −1.

Finally, we prove that α∗ must also be zero. If α∗ is not zero, W ∗ must be discontinuous

at the boundary between cl(YL\Y ∗L ) and YL, because on either of these two sets, the total

mass of the finite signed measure of the local utility function of W ∗ is 1, but the constant

term of the local utility function is different, which makes W ∗ discontinuous and hence we

reach a contradiction. Then, note that any point in X, whose local utility function of W ∗

is µ · x+ α, must belong to an element of either the equivalent class of Y1 or the equivalent

class of Y ∗L . Then, we know that µ · 1 = 1 and α = 0, which follows from the argument that

we use to show that any two Yi, Yj that overlap with each other in terms of the utility range

must satisfy µi · 1 = µj · 1 and αi = αj.
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Online Appendix

Proof of Lemma 8

Lemma 8 For any x, y, r, s ∈ X, if xr and ys each preserve independence, then the following

statements are equivalent:

(i) xr and ys preserve bi-independence.

(ii) For any x′, r′ ∈ xr and y′, s′ ∈ ys such that x′ ∼ y′ and r′ ∼ s′, λx′r′ ∼ λy′s′ for any

λ ∈ (0, 1).

(iii) There exists ε > 0 such that for any y′, s′ ∈ ys with ||y′ − s′|| < ε, xr and y′s′

preserve bi-independence.

Proof. (i)⇒(iii) is trivial. We will show (ii)⇒(i) and (iii)⇒(ii).

To show (ii)⇒(i), suppose (ii) holds but xr and ys do not preserve bi-independence.

Without loss of generality, assume that x ∼ y and r � s but λys % λxr for some λ ∈ (0, 1).

Now we show that there must exist r′ ∈ xr and s′ ∈ ys such that r′ ∼ s′, and λxr′ 6∼ λys′,

which is a contradiction.

Case 1: x ∼ y % r � s. Since xr and ys each preserve independence, we have y % λys %

λxr % r. By x ∼ y % r � s and continuity, there exist s′ ∈ ys such that r ∼ s′. Then, since

xr and ys each preserve independence, we have λys′ � λys % λxr and we are done.

Case 2: r � s % x ∼ y. Similar to case 1, we have s % λys % λxr % x. By r � s % x ∼ y

and continuity, there exist r′ ∈ xr such that r′ ∼ s. Then, since xr and ys each preserve

independence, we have λys % λxr � λxr′, and we are done.

The case in which r � x ∼ y � s is impossible, since it implies λxr � x ∼ y � λys.

Hence, we have established (ii)⇒(i).

Now we show (iii)⇒(ii). Suppose (iii) holds. Consider x′, r′ ∈ xr and y′, s′ ∈ ys such that

x′ ∼ y′ and r′ ∼ s′. We want to show that λx′r′ ∼ λy′s′ for any λ ∈ (0, 1). Since x′r′ and y′s′

each preserve independence, it is without loss of generality to assume that x′ ∼ y′ � r′ ∼ s′.

Pick m ∈ N such that ||y′ − s′|| < mε, in which ε is given in (iii). For k ∈ {0, 1, . . . ,m},
let tk = y′ + (s′ − y′)k/m. It is clear that ||tk − tk+1|| < ε. By (iii), tktk+1 and x′r′ preserve

bi-independence for any k ∈ {0, 1, . . . ,m}.
Suppose t0tk and x′r′ preserve bi-independence. Since x′r′ preserves independence, there

exists a monotone transformation f such that U(λx′r′) = f ◦V (λx′r′) = λ for any λ ∈ [0, 1].

Note that since V represents %, U = f ◦ V also represents %. Let α, β ∈ (0, 1) be such

that αx′r′ ∼ tk and βx′r′ ∼ tk+1. Since x′(αx′r′) and t0tk preserve bi-independence, we have

U(λx′(αx′r′)) = U(λt0tk) for any λ ∈ [0, 1]. Thus,

U(λt0tk) = U((λ+ (1− λ)α)x′r′)) = λ+ (1− λ)α.
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Since (αx′r′)(βx′r′) and tktk+1 preserve bi-independence, U(λ(αx′r′)(βx′r′)) = U(λtktk+1)

for any λ ∈ [0, 1]. Thus,

U(λtktk+1) = λα + (1− λ)β.

Thus, U is continuous on t0tk+1 and linear on t0tk, tktk+1, and x′r′. If U restricted to t0tk+1

has a kink at tk, it is easy to see that x′r′ and t0tk+1∩Bε(t
k) cannot preserve bi-independence,

which contradicts (iii). Hence, U is linear on both t0tk+1 and x′r′, which implies that t0tk+1

and x′r′ preserve bi-independence. Inductively, we establish that t0tm = y′s′ and x′r′ preserve

bi-independence, and thus λy′s′ ∼ λx′r′ for any λ ∈ (0, 1).

Proof of Lemma 12

Lemma 12 Suppose L1, . . . , Lm ⊆ X are nonempty, connected, and open subsets such that

Li and Lj preserve bi-independence for any i, j ∈ {1, . . . ,m}. If L1 � · · ·� Lm, there exist

affine functions Ui : Li → R, i = 1, . . . ,m, such that the function U :
⋃m
i=1 Li → R that

satisfies x ∈ Li ⇒ U(x) = Ui(x), i = 1, . . . ,m, represents % on
⋃m
i=1 Li.

Proof. We say that U :
⋃m
i=1 Li → R weakly represents % for L1 � · · ·� Lm if U represents

% on each Lj ∪ Lj+1, j = 1, . . . ,m− 1.

We first consider the case in which m = 2. Since Li and Li preserve bi-independence,

Li preserves independence. By Lemma 1, we can find an affine function Ui : Li → R that

represents % on Li, i = 1, 2, respectively. Since L1 � L2, we can find xh, xl ∈ L1 and

yh, yl ∈ L2 such that both xh and yh are strictly preferred to both xl and yl. Since % on Li

can be represented by a continuous affine function and Li is connected, i = 1, 2, there must

exist x ∈ L1 and y ∈ L2 such that x ∼ y. Since L1 is open and there exists xh, xl ∈ L1 such

that xh � xl, we can always find x∗, x∗ in a small ε-ball centered at x such that x∗x∗ ⊆ L1

and x∗ � x ∼ y � x∗. Without loss of generality, let U1(x) = 0. Since L1 and L2 are open, by

continuity, there exists some small enough α ∈ (0, 1) such that r ∈ L1 implies αrx ∈ L1 and

x∗ � αrx � x∗, and s ∈ L2 implies αsy ∈ L2 and x∗ � αsy � x∗. Then, standard arguments

imply that for each s ∈ L2 there exists a unique λs ∈ (0, 1) such that αsy ∼ λsx
∗x∗. Define

for each s ∈ L2

Û2(s) =
1

α
U1(λsx

∗x∗).

Take any s, s′ ∈ L2. Since L2 preserves independence, we have s % s′ ⇐⇒ αsy %

αs′y ⇐⇒ Û2(s) > Û2(s′). Hence, Û2 represents % on L2. For any λ ∈ (0, 1) such that

λss′ ∈ L2, since L1 and L2 preserve bi-independence,

α(λss′)y = λ(αsy)(αs′y) ∼ λ(λsx
∗x∗)(λs′x

∗x∗),
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which implies that

Û2(λss′) =
1

α
U1((λλs + (1− λ)λs′)x

∗x∗)

=
1

α
U1(λ(λsx

∗x∗)(λs′x
∗x∗))

=
1

α
[λU1(λsx

∗x∗) + (1− λ)U1(λs′x
∗x∗)]

= λÛ2(s) + (1− λ)Û2(s′).

Thus, Û2 is affine and we can find some positive affine transformation to convert U2 into Û2.

Without loss of generality, let U2 = Û2. Note that since x ∼ y,

U2(y) =
1

α
U1(λyx

∗x∗) =
1

α
U1(x) = 0 = U1(x).

Take any x′ ∈ L1 and y′ ∈ L2. We want to verify that x′ % y′ ⇐⇒ U1(x′) > U2(q′).

Because L1 and L2 preserve bi-independence and x ∼ y, x′ % y′ ⇐⇒ αx′x % αy′y.

According to the definition of α, we can let γ ∈ (0, 1) be the unique number such that

γx∗x∗ ∼ αx′x. Since U1(x) = U2(y) = 0,

U1(x′) =
1

α
U1(αx′x) =

1

α
U1(γx∗x∗),

and

U2(y′) =
1

α
U1(λy′x

∗x∗)

where λy′x
∗x∗ ∼ αy′y. Then,

x′ % y′ ⇐⇒ αx′x % αy′y ⇐⇒ γ > λy′ ⇐⇒ U1(x′) > U2(y′).

These observations also imply that if x ∈ L1 ∩ L2, U1(x) = U2(x). Then, we can define a

function U : L1 ∪ L2 → R such that x ∈ Li ⇒ U(x) = Ui(x), i = 1, 2. The above arguments

show that U represents % on L1 ∪ L2. Clearly, any positive affine transformations of U also

represent % on L1 ∪ L2.

Now we proceed to prove the lemma for any m > 2. By applying the procedure above and

performing positive affine transformations inductively, we can find affine functions U1, . . . , Um

such that U :
⋃m
i=1 Li → R weakly represents % for L1 � · · ·� Lm. We want to prove that

U represents % on
⋃m
i=1 Li. Recall % has a continuous representation V .

Step 1 : We prove that if for some i ∈ {2, . . . ,m − 1}, Li−1 � Li+1, U must weakly

represent % for L1 � L2 � · · · � Li−1 � Li+1 � Li+2 � · · · � Lm. To prove this, we
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only need to verify that U represents % on Li−1 ∪ Li+1. Because Li−1, Li, and Li+1 are

connected, V (Li−1), V (Li) and V (Li+1) are all intervals. By Li−1 � Li � Li+1 � Li−1,

V (Li−1) ∩ V (Li) ∩ V (Li+1) contains some nonempty open interval of R. In other words,

we can find some x ∈ Li−1, y ∈ Li, r ∈ Li+1, α ∈ (0, 1), and Bε(y) ⊆ Li such that

V (x) = V (y) = V (r) and V (αx′x), V (αr′r) ∈ V (Bε(y)) for any x′ ∈ Li−1 and r′ ∈ Li+1.

Take any x′ ∈ Li−1 and r′ ∈ Li+1. Since Li−1 and Li+1 preserve bi-independence and

x ∼ r,

x′ % r′ ⇐⇒ αx′x % αr′r ⇐⇒ V (αx′x) > V (αr′r).

Recall that V (αx′x), V (αr′r) ∈ V (Bε(y)), which means that we can find some yx, yr ∈ Bε(y)

such that yx ∼ αx′x and yr ∼ αr′r. Since U represents % on Li−1 ∪ Li and Li ∪ Li+1,

respectively, U(yx) = U(αx′x) and U(yr) = U(αr′r). Then,

αx′x % αr′r ⇐⇒ U(yx) > U(yr) ⇐⇒ U(αx′x) > U(αr′r) ⇐⇒ U(x′) > U(r′),

where the last equivalence follows from U(x) = U(y) and U(y) = U(r).

Step 2 : We prove that if L1 � Lm, there must exist some i ∈ {2, . . . ,m − 1} such that

Li−1 � Li+1. If m = 3 there is nothing to prove. Suppose m > 4. Let vhi := supx∈Li
V (x)

and vli := infx∈Li
V (x) for any i ∈ {1, . . . ,m}. By definition, vhi > vli for any i ∈ {1, . . . ,m},

and whenever Lj � Lk for some j, k ∈ {1, . . . ,m}, (vlj, v
h
j ) ∩ (vlk, v

h
k ) 6= Ø.

Suppose for any i ∈ {2, . . . ,m−1}, Li−1 6� Li+1; that is, either vhi−1 6 vli+1 or vhi+1 6 vli−1.

If vhi−1 6 vli+1 holds for every i ∈ {2, . . . ,m− 1}, we must have L1 6� Lm. This is clear if m

is odd. Suppose m is even. Since L1 � L2 � L3, it must be the case that vh2 > vl3 > vh1 .

Hence, for any even m > 2, vlm > vh2 > vh1 , which implies that L1 6� Lm. Similarly, it cannot

be the case that vhi+1 6 vli−1 holds for every i ∈ {2, . . . ,m− 1}.
For m = 4, the arguments above implies that if Li−1 6� Li+1 for all i, then either (i)

vh1 6 vl3 and vh4 6 vl2, or (ii) vh3 6 vl1 and vh2 6 vl4. The two cases are symmetric, so we will

focus on the former. Since L3 � L4, it is clear that vl3 < vh4 , which implies that vh1 < vl2.

This contradicts the fact that L1 � L2.

Now let m > 5. Then by Li−1 6� Li+1 for all i, there must be some j ∈ {3, . . . ,m − 2}
such that max{vhj+2, v

h
j−2} 6 vlj or vhj 6 min{vlj−2, v

l
j+2}. We focus on the former case, since

the latter is similar. Because Li−2 � · · · � Lj+2, it must be the case that vlj−1 < vhj−2 6

vlj < vhj−1 and vlj+1 < vhj+2 6 vlj < vhj+1. Then, (vlj−1, v
h
j−1) ∩ (vlj+1, v

h
j+1) 6= Ø, and thus,

Lj−1 � Lj+1.

Step 3 : We prove that if there exist affine functions Ui : Li → R, i = 1, . . . ,m, such

that the function U :
⋃m
i=1 Li → R that satisfies x ∈ Li ⇒ U(x) = Ui(x), i = 1, . . . ,m,

weakly represents % for L1 � · · · � Lm, then U represents % on
⋃m
i=1 Li. The claim is
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trivial if m = 1, 2. Next, suppose for some m̄ > 2, the claim is true for any m 6 m̄. Assume

that now m = m̄ + 1. Take any x, y ∈ ⋃m
i=1 Li. If x, y ∈ Li for some i ∈ {1, . . . ,m},

x % y ⇐⇒ U(x) > U(y). Therefore, for the rest of the proof of this lemma, let x ∈ Li and

y ∈ Lj/Li for some distinct i, j ∈ {1, . . . ,m}.
First, suppose {x, y} 6⊆ L1 ∪ Lm. Then, either {x, y} ⊆ ⋃m

i=2 Li or {x, y} ⊆ ⋃m−1
i=1 Li.

Since U weakly represents % for L1 � · · · � Lm, it also weakly represents % for L2 �

· · · � Lm and for L1 � · · · � Lm−1, respectively. By the induction hypothesis, we have

x % y ⇐⇒ U(x) > U(y).

Second, consider the case in which {x, y} ⊆ L1 ∪ Lm. Without loss of generality, let

x ∈ L1 and y ∈ Lm\L1. If L1 � Lm, from Steps 1 and 2, we know that there must exist

some i ∈ {2, . . . ,m − 1} such that Li−1 � Li+1, and hence U weakly represents % for

L1 � L2 � · · · � Li−1 � Li+1 � Li+2 � · · · � Lm. Then, we know that U represents %

on L1 ∪ L2 ∪ · · · ∪ Li−1 ∪ Li+1 ∪ Li+2 ∪ · · · ∪ Lm, and hence that x % y ⇐⇒ U(x) > U(y).

Hence, suppose L1 6� Lm. Without loss of generality, let vl1 > vhm. (If it is the other case,

we reverse the indices of L1, . . . , Lm.) It must be the case that x % y. Then, we only need

to prove that x ∼ y ⇒ U(x) = U(y) and x � y ⇒ U(x) > U(y). For any i ∈ {1, . . . ,m− 1},
since (vli, v

h
i ) ∩ (vli+1, v

h
i+1) is nonempty, (vli, v

h
i ) ∪ (vli+1, v

h
i+1) is an open interval. Therefore,⋃m−1

i=1 (vli, v
h
i ) is an open interval that contains

vl1+vh1
2

and
(⋃m−1

i=1 (vli, v
h
i )
)
∩ (vlm, v

h
m) 6= Ø.

Notice that since
vl1+vh1

2
> vl1 > vhm, we must have vhm ∈

⋃m−1
i=2 (vli, v

h
i ); that is, there exists

some r ∈ Li, i ∈ {2, . . . ,m−1} such that V (r) = vhm. Note that by the induction hypothesis

U represents % on
⋃m−1
i=1 Li and

⋃m
i=2 Li, respectively. Since x ∈ L1, y ∈ Lm with vl1 > vhm,

if x ∼ y, the only possibility is that V (x) = V (y) = vl1 = vhm = V (r). Then it follows that

U(x) = U(r) = U(y) and we are done. If x � y, then V (x) > V (r) > V (y) and at least

one of the inqualities is strict. It follows that U(x) > U(r) > U(y) and at least one of the

inqualities is strict. Thus, x � y ⇒ U(x) > U(y).

Proof of Lemma 13

Lemma 13 Suppose L1, L2, L3 ⊆ X are nonempty, connected, open subsets such that Li

and Lj preserve bi-independence for any i, j ∈ {1, . . . ,m}. If L1 ∩ L2 6= Ø, then

(i) L1 ∪ L2 preserves independence;

(ii) L1 ∪ L2 and L3 preserve bi-independence.

Proof. We first show (i). Let L0 be an open ball such that L0 ⊆ L1 ∩ L2. Suppose x ∼ y

for any x, y ∈ L0. Then since L1 and L2 each preserve independence, by Lemma 1, we

have x ∼ y for any x, y ∈ L1 ∪ L2. Clearly, in this case, L1 ∪ L2 preserves independence.

Suppose there exists x, y ∈ L0 such that x � y. Then by definition, L1 � L0 � L2. Since
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L1 and L2 each preserve independence, it is clear that Li and Lj preserve bi-independence

for any i, j ∈ {0, 1, 2}. By Lemma 12, there exist affine functions Ui : Li → R, i = 0, 1, 2,

such that the function U :
⋃2
i=0 Li → R that satisfies x ∈ Li ⇒ U(x) = Ui(x), i = 0, 1, 2,

represents % on
⋃2
i=0 Li. Note that U is well-defined only if U0(x) = U1(x) = U2(x) for any

x ∈ L0 ⊆ L1∩L2. Since L0 is an open ball and Ui is affine, i = 0, 1, 2, it follows that U must

be affine on
⋃2
i=0 Li = L1 ∪ L2. Thus, L1 ∪ L2 preserve independence.

To show (ii), we first show that if L1 ∪ L2 6� L3, then L1 ∪ L2 and L3 preserve bi-

independence. Since L1 ∪ L2 and L3 are both connected, V (L1 ∪ L2) and V (L3) are two

(potentially degenerate) intervals, which implies that V (L1 ∪ L2) ∩ V (L3) is an interval. If

V (L1 ∪ L2) ∩ V (L3) = Ø it is straightforward to verify that L1 ∪ L2 and L3 preserve bi-

independence. By L1∪L2 6� L3, the only remaining case is when V (L1∪L2)∩V (L3) = {v}
for some v ∈ R. Pick x ∈ L1∪L2 and y ∈ L3 such that V (x) = V (y) = v. Let U0 be an affine

function that represents % on L1 ∪L2 and U3 be an affine function that represents % on L3.

In addition, we require U0(x) = U3(x). Then, standard arguments imply that U defined on

L1 ∪ L2 ∪ L3, which agrees with U0 on L1 ∪ L2 and agrees with U3 on L3, represents % on

L1 ∪ L2 ∪ L3. Note that U is affine on both L1 ∪ L2 and L3. Then, it is straightforward to

verify that L1 ∪ L2 and L3 preserve bi-independence.

Now suppose L3 � L1 ∪ L2. Let vhi = supx∈Li
V (x) and vli = infx∈Li

V (x) for i = 1, 2, 3.

Since both L3 and L1 ∪ L2 are nonempty, open, and connected, L3 � L1 ∪ L2 implies

(vl3, v
h
3 ) ∩ (min{vl1, vl2},max{vh1 , vh2}) 6= Ø. Since L1 ∩ L2 6= Ø, (min{vl1, vl2},max{vh1 , vh2}) =

(vl1, v
h
1 )∪ (vl2, v

h
2 ). It follows that L1 � L3 or L2 � L3. Furthermore, since L1 ∪L2 preserves

independence and (min{vl1, vl2},max{vh1 , vh2}) ⊆ V (L1 ∪ L2), L1 ∩ L2 6= Ø implies L1 � L2.

Hence, we can apply Lemma 12 and find affine functions U1 : L1 → R, U2 : L2 → R, and

U3 : L3 → R such that U : L1∪L2∪L3 → R that agrees with Ui on Li, i = 1, 2, 3, represents

% on L1 ∪ L2 ∪ L3. Since L1 ∩ L2 is nonempty and open, Û : L1 ∪ L2 → R that agrees

with U1 on L1 and with U2 on L2 must be affine on L1 ∪ L2. Thus, U is affine on L1 ∪ L2

and L3, respectively. Then, it is straightforward to verify that L1 ∪ L2 and L3 preserve

bi-independence.

Proof of Lemma 16

Lemma 16 The function f1 is strictly increasing and continuous.

Proof. First, we show that f1 is strictly increasing. Take v ∈ V (Q∗1) and u, u′ ∈ V (X)\V (Q∗1)

such that u > v > u′. Pick x ∈ Q∗1 and y, y′ ∈ X\Q∗1 such that V (x) = v, V (y) = u, and

V (y′) = u′. Since Q∗1 is nondegenerate, it follows that P � P ′ for any P, P ′ ∈ Q1. Thus, for

any P ∈ Q1, V (P ) is a nondegenerate interval. Since each P ∈ Q1 is open, for any x ∈ Q∗1,
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there exist x′, x′′ ∈ Q∗1 such that x′ � x � x′′. Hence

u > v > u′ ⇒ V (y) > supU1 > U1(x) > inf U1 > V (y′),

which implies that f1(u) > f1(v) > f1(u′). Thus, f1 is strictly increasing on V (X), and thus

f1(V ) represents % on X.

Second, we show that f1 is continuous. Let {vj} ⊆ (V l
1 , V

h
1 ) be a sequence that converges

to v. We want to show that f1(vj) converges to f1(v). For each j, pick yj ∈ Q∗1 such that

V (yj) = vj. If v ∈ (V l
1 , V

h
1 ), then pick y ∈ Q∗1 such that V (y) = v. It suffices to show that

U1(yj) converges to U1(y). This is clear, since there exists P ∈ P such that y ∈ P , and U1

is affine on P , an open set. Now suppose v = V h
1 . Pick y ∈ X such that V (y) = v. Without

loss of generality, assume that {vj} is increasing. We want to show that U1(yj) converges to

v = V h
1 = supU1. Suppose not. Then, there exists r ∈ Q∗1 such that r � yj for all j. Then

continuity implies that r % y and thus V (r) > V (y) = V h
1 , which is a contradiction of the

fact that Q∗1 is the union of some open subsets, each of which has a nondegenerate affine

representation. Hence, limv↑V h
1
f1(v) = V h

1 . Similarly, if v = V l
1 , we have limv↓V l

1
f1(v) = V l

1 .

The rest is straightforward, since f1 is simply the identity mapping outside (V l
1 , V

h
1 ).

Necessity of the Axioms in Theorem 2

Proof. Suppose the preference % has a CFPL representation. The fact that weak order

and continuity hold is clear. Now we show that % satisfies weak local bi-independence.

By Theorem 2.1 in Ovchinnikov (2002), there exists distinct affine functions U1, . . . , Un and

index sets I1, . . . , Im such that

x % y ⇐⇒ max
16j6m

min
i∈Ij

Ui(x) > max
16j6m

min
i∈Ij

Ui(y).

Since U1, . . . , Un are distinct, for each i 6= j, aff({x ∈ X : Ui(x) = Uj(x)}) is either empty

or defines an affine hyperplane in RN . We denote the collection of these affine hyperplanes

as A. Thus, A is an arrangement of hyperplanes in RN . A region of A in X is a connected

component of X\(⋃H∈AH). Let R(A) be the collection of regions of A in X. For each

L ∈ R(A), it is easy to see that L is nonempty, open, and cl(L) is a polytope.15 Let

P(A) := {cl(L) : L ∈ R(A)}. SinceA is finite, P(A) must be finite. Clearly
⋃
P∈P(A) P = X,

and for any P ∈ P(A) there exists k such that max16j6m mini∈Ij Ui(x) = Uk(x) for any x ∈ P .

For any x ∈ X, let A(x) := {H ∈ A : x ∈ H} and consider A′ = A\A(x). Clearly, there

exists Lx ∈ R(A′) such that x ∈ Lx. It is clear that x ∈ ⋂{P ∈ P(A) : x ∈ P}.
15A polytope is the bounded intersection of finitely many closed half-spaces in Rn.
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Next, we show that

Lx = int
(⋃
{P ∈ P(A) : x ∈ P}

)
.

The claim is trivially true if A(x) = Ø. If A(x) 6= Ø, then by construction A(x) is an

arrangement of hyperplanes in RN . Moreover, x ∈ ⋂H∈A(x) H. It follows that x is in any

closed half-spaces defined by hyperplanes in A(x). Thus, x ∈ P ′ for any P ′ ∈ P(A(x)).

Since x ∈ Lx, we have that x ∈ P ′ ∩ Lx for any P ′ ∈ P(A(x)). It is clear that

{L′ ∩ Lx : L′ ∈ R(A(x))} = {L ∈ R(A) : L ⊆ Lx}.

It follows that x ∈ P for any P ∈ P(A) such that P ⊆ cl(Lx). Since x ∈ Lx, we have x 6∈ P
if P 6⊆ cl(Lx). Hence,

cl(Lx) = cl
(⋃
{L′ ∩ Lx : L′ ∈ R(A(x))}

)
= cl

(⋃
{L ∈ R(A) : L ⊆ Lx}

)
=

⋃
{P ∈ P(A) : P ⊆ cl(Lx)}

=
⋃
{P ∈ P(A) : x ∈ P}.

Note that since Lx is the interior of a polytope, it is regular open. Thus, Lx = int(cl(Lx))

and we are done with this step.

The last step is to show that this Lx construction is exactly what we want for weak local

bi-independence. Given x, y ∈ X with x ∼ y, by the convexity of each P ∈ P(A), it is clear

that for any r ∈ Lx and s ∈ Ly, xr ⊆ P and ys ⊆ P ′ for some P, P ′ ∈ P(A). Since U

coincides with an affine function within P and P ′, we are done.
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