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Abstract

This paper develops nonparametric panel quantile regression models with sample

selection. The class of models allows the unobserved heterogeneity to be correlated

with time-varying regressors in a time-invariant manner. I adopt the correlated ran-

dom e�ects approach proposed by Mundlak (1978) and Chamberlain (1980), and the

control function approach to correct the sample selection bias. The class of models is

general and �exible enough to incorporate many empirical issues, such as endogeneity of

regressors and censoring. Identi�cation of the static model requires that T ≥ 3, where

T is the number of time periods, and that there is an excluded variable that a�ects

the selection probability. We consider a dynamic extension of the models and provide

identi�cation conditions. The condition on T in dynamic models is stronger than that

in static models as it is needed that T ≥ 4 for identi�cation of dynamic models. We

also propose semiparametric models for practical implementation of estimation. Based

on the identi�cation result, this paper proposes to use penalized sieve minimum dis-

tance estimation to estimate the parameters and establishes the asymptotic theory. A

small Monte-Carlo simulation study con�rms that the estimators perform well in �nite

samples.
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1 Introduction

Sample selection is prevalent in economics. Since the seminal work of Gronau (1974) and

Heckman (1979), sample selection has considerably received a lot of attention from both

theoretical and applied econometrics due to its relevance and importance in many empir-

ical contexts (e.g. Ahn and Powell (1993), Donald (1995), Das et al. (2003), and Newey

(2009)). At the same time, quantile regression models have become a popular alternative

to conditional mean models since the seminal work of Koenker and Bassett (1978) as they

allow to investigate the distribution of the outcome variable and recover heterogeneous ef-

fects. Although many papers have studied sample selection and quantile regression, the

literature on the intersection of them is relatively scarce as most papers have considered

sample selection issues for conditional mean regression models. In particular, sample se-

lection issues in quantile regression models for panel data have not been well-addressed,

whereas the availability of panel data has become larger.

In this paper, we develop a nonseparable panel quantile model with sample selection

and study identi�cation and estimation of the model. Speci�cally, we consider the following

panel quantile model:

Y ∗
t =g(Xt, Ut),

Yt =DtY
∗
t ,

(1)

where t indicates time, Y ∗
t is an outcome variable of interest, Xt is a vector of time-varying

covariates, Ut is an unobserved heterogeneity, and Dt is a dummy variable indicating if it

is selected. The structural function g is assumed to be strictly increasing with respect to

its second argument for almost all Xt.

One of distinct features of the model in (1) is nonseparability between Xt and Ut.

Many papers in the literature on sample selection develop models and estimators under

di�erent sets of assumptions, but they share some common feature that they focus on

additively separable models. For quantile regression in the presence of sample selection,

Buchinsky (1998) considered an additively separable quantile regression model for cross-

sectional data. The additive separability facilitates identi�cation and estimation of model

parameters, but it considerably restricts the type of heterogeneity that can be allowed

in a model. Nonseparability is important in quantile regression as (i) it can allow for

various types of heterogeneous e�ects and (ii) it is less vulnerable to model misspeci�cation.1

Nonseparable quantile regression with sample selection has been studied quite recently by

Arellano and Bonhomme (2017) and Chernozhukov et al. (2018). While their models are

semiparametric and mainly for cross-sectional data, this paper focuses on nonparametric

quantile regression models for panel data. To my best knowledge, this paper is the �rst to

consider nonseparable panel quantile regression models in the presence of sample selection.

1Huber and Melly (2015) point out that the additive separability may lead to inconsistency of the
estimator in the linear quantile regression models and propose a test for the structure.
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Panel data models can incorporate time-invariant heterogeneity that may be correlated

with time-varying regressors. When time-invariant heterogeneity is correlated with time-

varying regressors, it is called time-invariant endogeneity. One can resolve time-invariant

endogeneity by taking some di�erencing-based approach when the model is linear or addi-

tively separable, but it is much harder to deal with time-invariant endogeneity for nonlinear

or nonseparable models. To overcome this di�culty, we consider a correlated random ef-

fects (CRE) approach which was originally pioneered by Mundlak (1978) and Chamberlain

(1980). The main idea of the CRE approach is to assume that the distribution of the

unobserved heterogeneity depends on the whole history of the time-varying covariates. In

doing so, one can allow for time-invariant endogeneity as well as improve tractability of the

model..2

This paper provides conditions under which the model parameters are nonparametri-

cally identi�ed. The main idea of the identi�cation strategy in this paper is to utilize

variation in some excluded variables. The model in this paper contains two types of en-

dogeneity - time-invarant endogeneity and endogenous selection. Therefore, it is expected

to have at least two excluded variables for identi�cation. We show that one can use the

rich information in panel data to deal with the time-invariant endogeneity. This feature

of the identi�cation strategy requires that the number of time periods be greater than or

equal to 3 and covariates have enough variation. On the other hand, we use a control

function approach to correct for the selection bias, and this requires for an instrumental

variable that varies the selection probability but does not directly a�ect the outcome. An

exclusion restriction associated with the instrument, together with a conditional indepen-

dence assumption, allows to resolve the endogenous selection, and this is a generalization

of the approach of Heckman (1979). Under these standard identi�cation conditions, the

structural function of the outcome variable, which is denoted by g(·, ·), and the conditional

distribution of the unobserved error term for the selected are nonparametrically identi�ed.

The identi�cation strategy considered in this paper shares some common with those in

Vytlacil and Yildiz (2007), Torgovitsky (2015), and Chen et al. (2020) in the sense that

it relies on the notion of matching. We also consider several extensions of the model to

address some important empirical issues such as time-varying endogeneity and censoring.

It is shown that the model in this paper can easily be extended to incorporate those issues,

and therefore the class of models in this paper is very general and �exible.

It is often of interest to investigate dynamic relationships when panel data are available.

We develop dynamic panel quantile regression models in which lagged dependent variables

enter as regressors with sample selection and provide conditions for nonparametric iden-

2In the standard linear panel data models, the unobserved heterogeneity Ut is decomposed into two parts:
one is a time-invariant error term, and the other is an time-varying idiosyncratic error. This dependence
is the main motivation of the �xed e�ects model where Xt and time-invariant components are correlated
in an arbitrary manner. In this paper, we do not explicitly distinguish time-invariant components in Ut.
However, the dependence between time-varying regressors and time-invariant components in the error term
is allowed in this paper, and we introduce a time-invariant component by using the CRE approach.
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ti�cation. The presence of lagged dependent variables as regressors requires a stronger

condition on the number of time periods than that in static models. Speci�cally, it is

needed that T ≥ 4 for nonparametric identi�cation as the initial time period is treated as

given. Panel data models with sample selection have been studied by, for example, Kyriazi-

dou (2001), Gayle and Viauroux (2007), and Semykina and Wooldridge (2013), but none

of them considered quantile regression models.

While the fully nonparametric models are robust to model misspeci�cation, they may

not be tractable in estimation. In this regard, we propose two classes of semiparametric

models: (i) semiparametric index models and (ii) additively separable models. These classes

of models are very useful in a sense that one can reduce the dimension of some nonpara-

metric object. Then, we provide conditions under which the parameters of the models are

identi�ed.

The identi�cation result suggests a nonlinear optimization problem for estimation that

the selection probability enters as a control function. Based on the identi�cation result,

we propose to use the penalized sieve minimum distance (PSMD) estimation developed by

Chen and Pouzo (2015). The method of sieves provides a very �exible and general way

to estimate semi-nonparametric or nonparametric models. The sieve method is also easy

to implement in practice, and therefore it has been widely used. This paper provides the

asymptotic theory for the PSMD sieve estimators, including consistency, convergence rates,

and asymptotic normality of smooth functionals. We also develop the asymptotic theory

for the sieve quasi likelihood ratio (QLR) inference.

Unlike the cross-sectional or time-series data, there are multiple types of data in terms

of the number of individuals and the number of time periods, which are denoted by n and T ,

respectively, for panel data models. The relative magnitude between these two quantities

de�nes the data structure, and this feature of the data structure is very important for

panel data models as they are related to estimation of models. This paper considers a

�xed T -panel data model, and the �xed-T framework renders the model �t into data where

T is much smaller than n. The large-T framework is frequently used in the literature on

nonlinear �xed e�ects panel models to handle the incidental parameter problem (Neyman

and Scott (1948)).3 For panel quantile models with �xed e�ects, Koenker (2004), Canay

(2011), Kato et al. (2012), and Besstremyannaya and Golovan (2019) make use of the

large-T framework.4 To adopt the large-T framework, however, the number of time periods

in data should be larger than the number of individuals, and this requirement may not

be appropriate to or suitable for some datasets, especially microdatasets or short panel

3Fernández-Val and Weidner (2018) provide a comprehensive review on the literature on large-T panel
data models.

4Canay (2011) originally imposed a condition that n/T s → 0 for some s > 1 to establish consistency and
asymptotic normality. Under this condition, one may use short panel data where n grows faster than T .
Besstremyannaya and Golovan (2019), however, point out that the rate condition is not su�cient for exis-
tence of a limiting distribution or for zero mean of a limiting distribution. This result in Besstremyannaya
and Golovan (2019) suggests that the estimator of Canay (2011) does not �t into short panel data.
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datasets. In addition, not only the asymptotic properties of estimators, but �nite-sample

performances also depend on the magnitudes of n and T .5 In this regard, estimators based

on the large-T framework may be sensitive to the model speci�cation and nature of data.

On the other hand, I consider the �xed-T framework while incorporating time-invariant

endogeneity, and this allows for a much wider applicability of the model in this paper.

We conduct a Monte-Carlo simulation study with a semiparametric model to examine

the performance of estimators in �nite samples. The results show that the semiparametric

estimators have negligible biases and small standard deviations, which suggest that they

perform well in �nite samples.

Literature This paper is related to the literature on the panel data models with sam-

ple selection (e.g. Wooldridge (1995); Kyriazidou (1997); Semykina and Wooldridge (2010,

2013)).6 For panel data in the presence of sample selection, Wooldridge (1995) and Kyriazi-

dou (1997) propose estimators for panel data models where the outcome variable equation is

linear in parameters. Wooldridge (1995) adopts the Mundlak-Chamberlain device (Mund-

lak (1978) and Chamberlain (1980)) to handle the time-invariant unobserved heterogeneity

and uses the control function approach in the same spirit of Heckman (1979). The idea

of Wooldridge (1995) is extended by Semykina and Wooldridge (2010) and Semykina and

Wooldridge (2013) to incorporate time-varying endogeneity and dynamic panel data models,

respectively. These papers, however, hugely rely on (semi-) parametric assumptions as well

as the additive separability of the error term. Kyriazidou (1997) considers the conditional

exchangeability assumption and the additively separable structure of the model. However,

not only the additively separable error structure, but the conditional exchangeability con-

dition may also fail to hold in some cases.7 This paper di�ers from the aforementioned

papers in that it considers nonseparable quantile regression models for panel data, whereas

Wooldridge (1995) and Semykina and Wooldridge (2010) consider linear conditional mean

models.

This paper is also related to the studies in the literature on (nonparametric) identi�ca-

tion and estimation with endogeneity. This literature is too large to list all related papers,

and one may refer to Matzkin (2007) for a comprehensive review. Focusing on sample selec-

tion, this paper is closely related to, for example, Buchinsky (1998), Das et al. (2003), and

Newey (2009). The model varies across them, but they make use of the control function

approach to correct for the sample selection bias. This paper shares some common with

them as the identi�cation strategy in this paper also utilizes a control function, but di�ers

from them as the model in this paper is nonseparable and for panel data. As mentioned

earlier, Arellano and Bonhomme (2017) and Chernozhukov et al. (2018) consider nonsep-

5The simulation results in Kato et al. (2012) show that the root mean squared error is quite large when
T is small in the location-scale shift model.

6One can refer to Dustmann and Rochina-Barrachina (2007) for comparison of some estimators including
Wooldridge (1995) and Kyriazidou (1997).

7A related discussion can be found in Altonji and Matzkin (2005).

5



arable quantile regression models with sample selection, but their models are more �tting

into cross-sectional data. Furthermore, they consider semiparametric model speci�cations

for estimation. In contrast, this paper considers a class of nonparametric models with sam-

ple selection for panel data, and the identi�cation or estimation strategy developed in this

paper does not impose such distributional assumptions. As a result, this paper extends

Arellano and Bonhomme (2017) and Chernozhukov et al. (2018) to nonparametric quantile

regression models for panel data.

The literature on (nonlinear) panel data models is another area that this paper is closely

related to. One of the features of the model in this paper is that we adopt the CRE ap-

proach, and this approach is also widely used in the literature to address time-invariant

endogeneity. Abrevaya and Dahl (2008) make use of the CRE approach for linear panel

quantile regression, but this paper di�ers from them as it considers nonparametric non-

separable models. Bester and Hansen (2009) study identi�cation of the marginal e�ects

in general panel data models with the CRE approach with a focus on identi�cation of

marginal e�ects, and therefore this paper is di�erent from theirs in terms of the parameter

of interest and identi�cation/estimation strategy. Arellano and Bonhomme (2016) recently

consider CRE speci�cations and develop a class of tractable nonlinear panel models, but

their identi�cation strategy relies on a high-level condition called injectivity, which is related

to the completeness condition. On the other hand, this paper adopts a control function

approach for identi�cation. For general nonlinear panel data models, Altonji and Matzkin

(2005) study identi�cation and estimation of local average responses (LARs) and structural

functions under an assumption called exchangeability. While the exchangeability condition

generally implies some shape restrictions on the distribution of the unobserved error term,

we circumvent to restrict the shape of the distribution of the error term by taking the CRE

approach. Hoderlein and White (2012), Chernozhukov et al. (2013), and Chernozhukov

et al. (2015) study identi�cation of average structural functions and quantile structural

functions, but this paper considers identi�cation and estimation of the structural functions.

Evdokimov (2010) studies identi�cation and estimation of a class of panel data models, but

his identi�cation is based on deconvolution. Therefore, the identi�cation strategy in this

paper is completely di�erent from his. More importantly, none of them address sample

selection issues which are the main focus of this paper. In the absence of sample selection,

Galvao Jr (2011) develops a dynamic quantile regression model with �xed e�ects. Galvao Jr

(2011) uses lagged regressors as instruments, which is a s well-established approach in the

literature on dynamic panel data models (e.g., Arellano and Bond (1991) and Blundell

and Bond (1998)), to deal with the correlation between lagged dependent variables and

�xed e�ects. On the other hand, we rely on the CRE approach to resolve time-invariant

endogeneity in this paper and focus on sample selection.
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Outline The rest of this paper is organized as follows. In section 2, we introduce the

model and parameters of interest. Section 3 considers nonparametric identi�cation of the

model. Sections 4 and 5 present an dynamic extension of the model and semiparamet-

ric models, respectively. Section 6 proposes two-step sieve estimation and establishes the

asymptotic theory for the nonparametric sieve two-step estimators. Section 7 presents the

results of a Monte-Carlo simulation study. Section 8 concludes and discusses future work.

All mathematical proofs for the asymptotic theory are presented in the appendix.

Notation We introduce some notation. For a vector A, A
′
denotes the transpose of

A. For a generic random variable At, the support of At is denoted by Supp(At). Let

A ≡ (A1, A2, ..., AT )
′
be the random vector consisting of At's from time period 1 to T . and

let A−t ≡ (A1, ..., At−1, At+1, ..., AT )
′
be the random vector consisting of At's from time

period 1 to T but not t. We use notation A−t,s to denote the random vector consisting of

At's from time period 1 to T but not t and s. Realizations of A and A are denoted by a

and a, respectively.8 For two random variables A and B and for any u ∈ (0, 1), QA|B(u|b)
indicates the u-th conditional quantile of A on B = b, and FA|B(a|b) is the conditional

distribution function of A given B = b. E[·] is the expectation operator.

2 The Model

We consider the following general non-separable panel data model:

Y ∗
t = g(Xt, Ut), (2)

where Y ∗
t ∈ R is an outcome variable of interest, Xt ∈ Rdx is a vector of time-varying

covariates, and Ut ∈ R is an unobserved error term. We assume that g(x, ·) is strictly

increasing for almost all x ∈ Supp(Xt) for all t = 1, 2, ..., T and that {Ut : t = 1, 2, ..., T} is

stationary. Since the quantile operator is preserved under a monotone transformation, it is

straightforward to see that for any u ∈ U ⊆ (0, 1),

QY ∗
t |X(u|X) = g(Xt, QUt|X(u|X);u). (3)

Note that the structural function g is allowed to vary across quantile levels.

It is common to assume that the unobserved error term Ut can be decomposed into

time-invariant individual heterogeneity and time-varying idiosyncratic terms and that the

time-invariant individual heterogeneity may be correlated with Xt. For the standard linear

panel data model, such time-invariant heterogeneity can be eliminated by taking di�erence.

For nonlinear models, however, the approach based on di�erencing does not work in general.

8Note that, however, I use u for the quantile level index throughout the paper, and thus u is not a
realization of the random variable Ut in (1).
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To overcome the di�culty in identi�cation and estimation of the model with short pan-

els, we adopt the CRE approach. Speci�cally, we assume that the conditional quantile

function of Ut given X is an unknown function of X. This is motivated by the CRE ap-

proach which was pioneered by Mundlak and Chamberlain (Mundlak (1978); Chamberlain

(1980, 1982)). The CRE approach provides an e�ective way to deal with the unobserved

heterogeneity in nonlinear panel models and it has been widely considered in the literature.

Abrevaya and Dahl (2008) propose a linear panel quantile model, and Bester and Hansen

(2009) investigate identi�cation of marginal e�ects in a class of nonseparable panel mod-

els.9 Both of them utilize some CRE approach to handle the unobserved individual e�ects

with short panels. Arellano and Bonhomme (2016) recently develop a tractable estimation

strategy for nonseparable panel data models based on the CRE approach.

The class of models in this paper is also related to the correlated random coe�cient

models in the literature (e.g. Arellano and Bonhomme (2012); Graham and Powell (2012);

Laage (2019)). For quantile regression, Graham et al. (2018) consider linear panel quantile

models with random coe�cients, building upon Graham and Powell (2012). However,

the model of this paper di�ers from those in that we consider a nonparametric structural

function g with a scalar error term, whereas they consider a parametric structural function

for g with a multi-dimensional error structure. Below we present some illustrative examples

that �t into the class of CRE models in (3).

Example 2.1 (Random Coe�cient Model). Suppose that Supp(Xt) = R and that the data

generating process is as follows:

Y ∗
t = exp(Xt)Ut.

It is obvious that QY ∗
t |X(u|X) = exp(Xt) · QUt|X(u|X), and hence the structural function

g(x, γ;u) = x · γ for all u ∈ U ⊆ (0, 1).

Example 2.2 (Linear Panel Quantile Model). Abrevaya and Dahl (2008) propose a class

of linear panel quantile models as follows:

Y ∗
t = X

′
tβ(u) + α(u) + ϵt(u),

α(u) = X
′
δ(u) + c(u),

where α(u) is an unobserved time-invariant heterogeneity, c(u) is an unobserved error term,

and Qc(u)+ϵt(u)(u|X) = 0. It is straightforward to see that QY ∗
t |X(u|X) = X

′
tβ(u) +X

′
δ(u)

under the restriction on the model. This class of models is a special case of (3). Speci�cally,

one can set Ut = α+ ϵt and g(Xt, γ;u) = X
′
tβ(u) + γ. The conditional quantile of Ut given

X is equal to X
′
δ(u).

9The class of models considered in this paper encompasses the linear panel quantile regression models
in Abrevaya and Dahl (2008) as a special case, and thus it can be viewed as a nonparametric generalization
of the linear panel quantile models with correlated random e�ects.
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Example 2.3 (Panel Quantile Model). Arellano and Bonhomme (2016) consider the fol-

lowing model as an example:

Y ∗
t = X

′
tβ(ϵt) + αδ(ϵt),

α = X
′
µ(V ),

where for all t = 1, 2, ..., T , ϵt and V are uniformly distributed conditional on X and α

is an unobserved time-invariant heterogeneity. As pointed out in Arellano and Bonhomme

(2016), this model is a generalization of the standard linear quantile models of Koenker and

Bassett (1978) to panel data. Assuming that the map u 7→ X
′
tβ(u)+X

′
iµ(u) ·δ(u) is strictly

increasing and that ϵt and V are comonotonic, it can be shown that QY ∗
t |X(u|X) = X

′
tβ(u)+

X
′
θ(u)δ(u).10 Letting Ut ≡ X

′
t{β(ϵt)− β(u)}+X

′
µ(V ) · δ(ϵt), g(x, γ;u) = x

′
β(u) + γ and

QUt|X(u) = X
′
µ(u)δ(u) ≡ X

′
θ(u).

In examples 2.2 and 2.3, although there are two unobserved error terms, they can be

collapsed into a scalar error term. While additivity plays the role of putting them together

in example 2.2, comonotonicity of ϵt and V enables to collapse the error terms into a scalar

error in example 2.3 where the unobserved error terms are nonlinearly enter. Therefore,

the class of generalized CRE models in (3) is quite �exible and general.

Based on (2) and (3), we develop a panel quantile model with sample selection. Let

Pr(Dt = 1|Xt = x, Zt = z) ≡ pt(x, z) be the propensity score (or selection probability),

where Zt ∈ Rdz is a vector of excluded variables and Z = (Z1, Z2, ..., ZT )
′
. The selection

probability conditioning on Xt and Zt is denoted by Pt (i.e. Pt ≡ pt(Xt, Zt)). The random

vector W ≡ (Y,X,Z,D) is observed from the data.

In the presence of sample selection, it is well-known that using only selected observations

usually yields a sample selection bias, and thus it is necessary to correct such a bias. In this

paper, we adopt the control function approach to correct the sample selection bias. The

control function approach to sample selection was originally proposed by Heckman (1979),

and it has been adapted to various models. Speci�cally, I impose the following assumption:

Assumption 1. Let u ∈ U be given. For all t ∈ {1, 2, ., T},

QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = r(X, pt(Xt, Zt);u), (4)

where r is an unknown measurable function.

Note that r is allowed to take a di�erent form across the quantile level u, and thus one

can infer the conditional distribution function of Ut from the conditional quantile function

of Ut, r(X, Pt;u). As a consequence, the way to correct the sample selection bias in this

paper is to implicitly modify the conditional distribution function of the unobserved error

10For the de�nition of comonotonicity, one may refer to Koenker (2005, p.60).
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term, and this is similar to that of Buchinsky (1998). However, it is di�erent from the

way that is considered in Arellano and Bonhomme (2017) or Chernozhukov et al. (2018)

in that we do not impose any parametric or semiparametric structure on the conditional

distribution of Ut. In sum, we consider the following model in this paper:

Y ∗
t = g(Xt, Ut),

Yt = DtY
∗
t ,

QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = r(X, pt(Xt, Zt);u).

(5)

From (5), it is straightforward to see that

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = g(Xt, QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1))

= g(Xt, r(X, pt(Xt, Zt);u);u). (6)

Assumption 1 shares a common feature with the models of Buchinsky (1998), Das et al.

(2003) and Newey (2009) in that the selection bias is adjusted by including a control func-

tion, and this can be considered as a generalization of the control function approach in

Heckman (1979). This paper, however, di�ers from Buchinsky (1998) in that neither any

parametric restriction nor additivity of the error term is imposed on model (5).11 Therefore,

this paper extends the additive semiparametric quantile models for cross-sectional data in

Buchinsky (1998) to nonseparable quantile regression models for panel data. Das et al.

(2003) and Newey (2009) study identi�cation and estimation of nonparametric sample se-

lection models with an additive error term. This paper di�ers from them in that model

(5) does not impose such an additive separability and thus it allows much various types of

heterogeneity. In addition, this paper considers quantile regression, whereas they focus on

conditional mean functions.

The structural functions g and r are related to many objects of interest. We �rst de�ne

the local structural function (LQSF) in time t as follows:

De�nition 2.1 (Local Quantile Structural Function (LQSF)). The local u-th quantile struc-

tural function (LQSF) at (Xt, r(X, Pt)) = (x, γ) in time t is

qlocalt (u, x, γ) ≡ QY ∗
t |Xt,r(X,Pt)(u|Xt = x, r(X, Pt) = γ).

Note that the de�nition of the LQSF is similar to, but slightly di�erent from that

of Fernández-Val et al. (2019). It is straightforward to see that the structural function

g(x, γ;u) in this paper corresponds to the LQSF. Related to the LQSF, one can consider

the quantile structural function (QSF) which was introduced by Imbens and Newey (2009).

The following de�nition of the QSF is a generalization of the QSF in Imbens and Newey

11Buchinsky (1998) considers a class of models where g is characterized by some �nite-dimensional pa-

rameter. Speci�cally, his model is written as g(X, ϵ) = X
′
β + ϵ.
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(2009) to that for panel data:

De�nition 2.2 (Quantile Structural Function (QSF)). The u-th quantile structural func-

tion (QSF) in time t evaluated at Xt = x is

qt(u, x) ≡ E[qlocalt (u, x, r(X, Pt))].

The LQSF and QSF are parameters of interest in many empirical analyses and closely

related to the (local) quantile treatment e�ect of changing Xt. To make it concrete, we

provide the de�nitions of the local and the average quantile treatment e�ects of Xt below:

De�nition 2.3 (Local Quantile Treatment E�ect (LQTE)). The u-th local quantile treat-

ment e�ect in time t of changing Xt from x0 to x1 at r(X, Pt) = γ is

LQTEt(u, x0, x1, γ) ≡ qlocalt (u, x1, γ)− qlocalt (u, x0, γ)

De�nition 2.4 (Quantile Treatment E�ect (QTE)). The u-th average conditional quantile

e�ect in time t of changing Xt from x0 to x1 is

QTEt(u, x0, x1) ≡
∫
qlocalt (u, x1, r(x, h(x, z)))− qlocalt (u, x0, r(x, h(x, z)))dFX,Zt(x, z)

= qt(u, x1)− qt(u, x0).

If Xt is continuous, then the LQTE and QTE can be interpreted as the local and average

marginal e�ects, respectively. Many objects that are similar to the LQTE or the QTE are

considered in the literature on nonseparable panel data models (e.g. Altonji and Matzkin

(2005); Bester and Hansen (2009); Imbens and Newey (2009); Hoderlein and White (2012);

Chernozhukov et al. (2013, 2015)). It is clear to see that the LQTE and QTE are functionals

of the structural functions g and r from the de�nitions.

3 Nonparametric Identi�cation

3.1 Main Results

In this section, we consider identi�cation of the model parameters. The identi�cation

strategy is based on the model implication in (6), and the main objects of interest in (5)

are g(·, ·;u) and r(·, ·;u). Note that the conditional selection probability at time t, pt(x, z),

is identi�ed from the data. As shown earlier, one can answer many questions that are

empirically relevant, such as the marginal e�ect of Xt on the conditional quantile of Y ∗
t ,

through identi�cation of these objects. To achieve identi�cation of g(·, ·;u) and r(·, ·;u), I
impose the following assumption:

Assumption 2. Let T ≥ 3. For any u ∈ U ⊆ (0, 1), the following conditions hold:

11



(i) For each t = 1, 2, ..., T , there exists a known value x̄(u) ∈ Supp(Xt) ⊆ Rdx such that

g(x̄(u), γ;u) = γ ;

(ii) Let x ∈ Supp(Xt) and γ ∈ Supp(r(X, pt(Xt, Zt))) be given. For any t, s ∈ {1, 2, ..., T}
with t ̸= s, there exists a non-empty subset X̃−t,s(x, x̄(u)) of Supp(X−t,s|(Xt, Xs) =

(x, x̄(u))) and such that, for any x−t,s ∈ X̃−t,s(x, x̄(u)), r(x0, p) = γ for some p ∈
Supp(pt(x, Zt)|X = x0) and Pr(X−t,s ∈ X̃−t,s(x, x̄(u))) > 0, where x0 = (Xt =

x,Xs = x̄(u),X−t,s = x−t,s);

(iii) For any t = 1, 2, ..., T and for any x ∈ Supp(Xt) and z ∈ Supp(Zt) ⊆ Rdz , there

exists a non-empty set Zs(z) ⊆ Supp(Zs) for some s ∈ {1, 2, ..., T} such that, for any

z̃ ∈ Zs(z), pt(x, z) = ps(x̄(u), z̃) and Pr(Zs ∈ Zs(z)) > 0.

Condition (i) is a normalization. Theorem 3.1 in Matzkin (2007) implies that it is

necessary to impose a normalization to identify function g(·, ·;u). Note that the value x̄(u)
may di�er across the quantile indices. We assume that x̄(u) remains the same across u ∈ U
for simplicity.

Condition (ii) is implied by su�cient variation in X−t,s. This variable can be viewed

as an excluded variable that provides a source of exogenous variation to r while �xing Xt

and Xs for some t and s. To illustrate how this condition is used for identi�cation, consider

the linear panel quantile model in Example 2.2 with assuming that T = 3 and dx = 1. In

addition, we ignore the sample selection issues, and therefore Y ∗
t is observed for everyone, to

elucidate the role of condition (ii) in identi�cation analysis. Note that x̄(u) = 0, g(x, γ) =

xβ(u) + γ, and r(x) = x
′
δ(u). Let x ∈ Supp(X1) be given. Then, one can show that

QY ∗
1 |X(u|X0) = xβ(u) + r(X0) and that QY ∗

2 |X(u|X0) = r(X0) = xδ1(u) +X3δ3(u), where

δ(u) = (δ1(u), δ2(u), δ3(u))
′
and X0 = (x, 0, X3)

′
. Condition (ii) ensures that one can �nd a

set of values of X3 such that for a given γ ∈ Supp(r(X)), xδ1(u)+X3δ3(u) = γ. Therefore,

a necessary condition in this illustration that guarantees condition (ii) in Assumption 2

is that δ3(u) ̸= 0. If X3 has enough variation conditioning on X1 = x and X2 = 0 and

δ3(u) ̸= 0, then condition (ii) for this example is satis�ed. This is similar to Assumption

2 in Imbens and Newey (2009) that a large support condition for the excluded variable

is satis�ed. Since the model in this paper allows for time-invariant endogeneity and it is

captured by the CRE speci�cation, Xt can be considered endogenous (in the time-invariant

manner), and the covariates in other time periods are used as an excluded variable that

helps resolve the time-invariant endogeneity. It is worth pointing out that more than three

time periods gives additional exogenous variation that can be used to identify the structural

functions and therefore having more than 3 time periods provide additional identi�cation

power.

A related assumption to condition (ii) is exchangeability considered by Altonji and

Matzkin (2005). Exchangeability typically places some restriction on the admissible class

of functions for r, it may help weaken assumptions on variation in the excluded variable.
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Compared to the exchangeability assumption, condition (ii) is likely to require stronger

conditions on the support ofX−t,s, but it does not impose any shape restrictions on the class

of functions that r belongs to. More importantly, exchangeability may not be plausible to

be assumed with panel data where t indicates time. Exchangeability is related to symmetry

of the e�ects of covariates on the distribution of the unobserved error term, and thus the

e�ect of a change in Xs is the same (or similar) to that of a change in Xt for some t ̸= s. In

this regard, exchangeability may be consistent with some variants of the form in Mundlak

(1978) in a sense that the correlated random e�ects speci�cation of Mundlak (1978) is the

average of Xt's over time and therefore the e�ects of Xt and Xs with t ̸= s are symmetric.

On the other hand, I do not impose such restrictions on the model so that one can consider

more �exible speci�cations for r. One can refer to Altonji and Matzkin (2005, pp.1062-1066)

for further discussion on the exchangeability condition and CRE approach.

Condition (iii) requires variation in the excluded variable Zt, which is an instrumental

variable. This condition also requires that the excluded variable Zt a�ect the selection

probability, so one can use the variation in Zt and Zs to match the selection probabilities

in time periods t and s. This condition is needed to deal with the endogenous selection.

For illustration, suppose that Dt = 1(Xtζ + Ztπ ≥ νt), where νt ∼ N(0, 1), (Xt, Zt) ⊥ νt

and dx = dz = 1. Then, for given x ∈ Supp(Xt), Pr(Dt = 1|Xt = x, Zt) = Φ(xζ+Ztπ) and

Pr(Ds = 1|Xs = x̄(u), Zs) = Φ(x̄(u)ζ + Zsπ), where Φ is the standard normal distribution

function. In this case, condition (iii) in Assumption 2 is satis�ed if π ̸= 0 and variation in

either Zt or Zs is large enough. The former condition π ̸= 0 corresponds to the standard

relevance condition for instrumental variables, and such relevance conditions are usually

required for nonparametric identi�cation with endogeneity. The latter condition which is

about variation in Zt (or Zs) is similar to the large support condition in Imbens and Newey

(2009). Similar assumptions to condition (iii) can be found in, for example, Altonji and

Matzkin (2005) and Vytlacil and Yildiz (2007).

An informal description of the identi�cation strategy in this paper is as follows: Fixing

Xt = x, the information in time period s, together with the normalization, is used to derive

an expression for r at (X
′
t , X

′
s,X

′
−t,s)

′
= (x

′
, x̄(u)

′
,X

′
−t,s)

′
and ps(x̄(u), Zs). Then, one can

utilize the variation in X−t,s, Zt, and Zs to �nd values x0 and p such that r(x0, p) = γ ∈
Supp(r(X, h(Xt, Zt))). Taking average over such values yields identi�cation of g(x, γ;u)

over Supp(Xt, r(X, ht(Xt, Zt))) for each t = 1, 2, ..., T . Then, one can identify r(x, p) for

all (x, p) ∈ Supp(X, ht(Xt, Zt)) by taking average of the inverse map of g conditional on

X = x and pt(Xt, Zt) = p. The following theorem demonstrates that Assumption 2 are

su�cient for identi�cation of g(·, ·;u) and r(·, ·;u) in (6).

Theorem 3.1. Let u ∈ U be given. Suppose that Assumptions 1 and 2 hold. Then, for

each t = 1, 2, ..., T , g(·, ·;u) is over Supp(Xt, r(X, pt(Xt, Zt))). Furthermore, r(·, ·;u) is

identi�ed over the set ∪T
t=1Supp(X, pt(Xt, Zt)).

Proof. I drop u in functions g and r for simplicity of notation. Let X0 = (Xt = x,Xs =
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x̄,X−t,s). Note that pt(Xt, Zt) is directly identi�ed from the data. Then, one can show

that under Assumption 2,

QYt|X,Zt,Dt=1(u|X0, Zt) = g(x, r(X0, Pt0)),

QYs|X,Zs,Ds=1(u|X0, Zs) = r(X0, Ps0),

where Pt0 ≡ Pr(Dt = 1|Xt = x, Zt) and Ps0 ≡ Pr(Ds = 1|Xs = x̄, Zs). Let γ ∈ R be given,

then it is straightforward to see that

g(x, γ) = E[QYt|X,Zt,Dt=1(u|X0, Zt)|QYs|X,Zs,Ds=1(u|X0, Zs) = γ, Pt0 = Ps0]. (7)

The conditioning event in (7) has a positive measure by conditions (ii) and (iii) in Assump-

tion 2, and therefore g(x, γ) is identi�ed.

Since g(·, ·;u) is assumed to be strictly monotone in its second argument, there exists

the inverse mapping with respect to the second argument. From (6), one obtains that

r(X, Pt) = g−1(Xt, QYt|X,Zt,Dt=1(u|X, Zt)),

where g−1(x, y) is the inverse mapping of g(x, e) with respect to e that is identi�ed.12 For

any (x, p) ∈ Supp(X, Pt), one obtains that

r(x, p) = E[g−1(x,QYt|X,Z,Dt=1(u|X,Z))|X = x, pt(x, Zt) = p],

and this establishes identi�cation of r(x, p) over Supp(X, pt(Xt, Zt)) for each t = 1, 2, ..., T .

■

The LQTE and QTE are objects that may be important and relevant to policy eval-

uation. These objects are functionals of the structural functions g, r, and h, and thus

they are identi�ed once those structural functions are identi�ed. The following corollary

demonstrates that the LQTE and QTE are identi�ed under the same set of conditions for

identi�cation of the structural functions.

Corollary 3.2. Suppose that the conditions in Theorem 3.1 hold. Let t ∈ {1, 2, ..., T} and

x0, x1 ∈ Supp(Xt) be given. Then, for any γ ∈ Supp(r(X, ht(Xt, Zt);u)), LQTEt(u, x0, x1, γ)

is identi�ed. In addition, QTE(u, x0, x1) is also identi�ed.

Proof. Recall that m(x, γ;u) = qlocalt (u, x, γ). Since m and r are identi�ed by Theorem 3.1,

one obtains that

LQTEt(u, x0, x1, γ) ≡ qlocalt (u, x1, γ)− qlocalt (u, x0, γ)

= E[g(x1, r(X, pt(Xt, Zt);u);u)− g(x0, r(X, pt(Xt, Zt);u);u)|r(X, pt(Xt, Zt);u) = γ].

12y = g(x, e) if any only if e = g−1(x, y).
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Note that the conditioning event is of a positive probability because γ ∈ Supp(r(X, pt(Xt, Zt);u)),

and thus LQTEt(u, x0, x1, γ) is identi�ed. Similarly, it follows from the de�nition of

QTEt(u, x0, x1) that

QTEt(u, x0, x1) = E[g(x1, r(X, pt(Xt, Zt);u);u)− g(x0, r(X, pt(Xt, Zt);u);u)],

where the expectation is taken over Supp(r(X, pt(Xt, Zt);u)). Therefore, QTEt(u, x0, x1)

is also identi�ed. ■

The CRE approach was also adopted by Bester and Hansen (2009) and Arellano and

Bonhomme (2016), and they require that T to be greater than or equal to 3 for identi�ca-

tion. The identi�cation strategy in this paper, however, is di�erent from theirs. Speci�cally,

Bester and Hansen (2009) focus on the marginal e�ects of continuous covariates without

completely specifying the data generating process. They use a derivative argument for iden-

ti�cation of the marginal e�ects. In contrast, we focus on identi�cation of the structural

functions with specifying the data generating process (equation (1)), and the identi�cation

strategy in this paper is to use variation in excluded variables. The marginal e�ects in this

paper are also identi�ed as a by-product (Corollary 3.2). Arellano and Bonhomme (2016)

consider nonparametric identi�cation of structural functions, but the identi�cation strategy

in Theorem 3.1 is di�erent from that of Arellano and Bonhomme (2016). Speci�cally, Arel-

lano and Bonhomme (2016) use a high-level assumption, called an injectivity condition, and

this condition resembles completeness conditions that are commonly used in the literature

on nonparametric identi�cation (e.g. Newey and Powell (2003) and Blundell et al. (2007)).

The injectivity condition, however, is relatively di�cult to interpret and verify in practice.

More importantly, estimation and inference may su�er from an ill-posed inverse problem

which leads to a slower convergence rate. On the other hand, the identi�cation strategy

in this paper does not rely on completeness conditions, and hence it is not subject to an

ill-posed inverse problem.

The identi�cation strategy in Theorem 3.1 does not require to specify the distribution of

the unobserved error term. In contrast, Arellano and Bonhomme (2017) and Chernozhukov

et al. (2018) consider some semiparametric speci�cation of the joint distribution of Y ∗ and

D. Furthermore, both papers focus on quantile regression models for cross-sectional data,

whereas this paper considers models for panel data.

The implication of model (equation (6)) is similar to that of Lewbel and Linton (2007)

or Escanciano et al. (2016), and hence the identi�cation strategy of this paper shares some

common with their strategies. However, the models of the papers are di�erent from that

of this paper. Speci�cally, the model of Lewbel and Linton (2007) di�ers from (6) in that

they assume that Xt is excluded from X and that the selection probability does not depend

on Xt. Therefore, their identi�cation strategy cannot be directly applied to identify g

and r in (6). Escanciano et al. (2016) study a class of models where there are two index
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functions and g relates these two index functions.13 The focus of Escanciano et al. (2016)

is on identi�cation and estimation of the �nite-dimensional parameter in one of the index

functions, but this paper studies nonparametric identi�cation and estimation of (6) without

specifying an index function for Xt, which allows for more �exibility of the model.

While the linear correlated random coe�cients models allow for multi-dimensional error

terms, the identi�cation comes at cost of a larger (but �xed) number of time periods (e.g.

Arellano and Bonhomme (2012); Graham and Powell (2012); Graham et al. (2018); Laage

(2019)). In contrast, this paper imposes a scalar error term, but identi�cation requires T

be greater than equal to 3 with some support condition. The requirement for T is much

weaker than that in the correlated random coe�cients models where T should be greater

than or equal to the number of covariates. In addition, the model in this paper is completely

nonparametric, whereas most of correlated random coe�cients models are parametric or

semiparametric.

3.2 Extensions

In this section, we discuss some extensions of the panel quantile models with sample selec-

tion in Section 2. We consider (i) endogeneity of Xt and (ii) censoring, which are useful

and relevant to many empirical situations. We show that model (5) can be easily extended

to incorporate these issues.

3.2.1 Endogenous Regressors

Endogeneity issues are prevalent in many empirical questions. The CRE speci�cation e�ec-

tively captures �time-invariant� endogeneity, but some regressors may exhibit �time-varying�

endogeneity.14 The model implication in (6) is closely related to the control function ap-

proach to deal with sample selection bias, and it can be extended to allow for endogeneity of

Xt. To make it concrete, suppose that Xt = (Xe
′

t , X̃
′
t)

′
, where Xe

t is a vector of endogenous

regressors and X̃t is a vector of exogenous regressors. For brevity of the model, we assume

that Xe
t ∈ R, but it can be easily extended to the case where Xe

t is a vector. Assume that

and Zt = (Z
′
1t, Z

′
2t)

′
, and consider the following class of models:

Y ∗
t = g(Xt, Ut), :

Yt = DtY
∗
t ,

Xe
t = q(Z2t, Vt),

QUt|X,Z,Dt=1(u|X, Zt, Dt = 1) = re(X̃, Vt, pt(Xt, Z1t);u),

(8)

13One of the index functions is a linear-index function, and the other one is a known function from data.
14As mentioned earlier, the CRE speci�cation is closely related to the dependence between the regressors

and time-invariant unobserved heterogeneity, which is commonly assumed in �xed e�ects models. On the
other hand, I use the term time-varying endogeneity to allow for dependence between the regressors and
time-varying components of the error term Ut. See also Laage (2019).
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where Vt ∈ R is unobserved and independent of Z2t, and q(z2, v) is a non-trivial function

of z2 and strictly increasing in v for all z2. Without loss of generality, Vt is assumed to be

uniformly distributed on the unit interval, conditional on Z2t. Model (8) is closely related

to the sample selection model with endogeneity that is studied by Das et al. (2003). The

conditional quantile restriction on Ut in model (8) implies that, conditional on Vt, X
e
t is no

longer endogenous, and hence the following model implication is obtained:

QYt|X,Z,Dt=1(u|X,Z, Dt = 1) = g(Xt, r
e(X̃, Vt, pt(Xt, Z1t);u);u). (9)

This extends the control function approach to handle the sample selection bias that is

presented in (6) to a more general case where some regressors are endogenous. The vari-

able Vt plays the role of a control function to handle endogeneity of Xe
t , and needs to be

estimated in the �rst-stage. Since the model implication (6) suggests that the selection

probability pt(Xt, Zt) plays the role of control function to correct selection bias, the roles of

pt(Xt, Zt) and Vt are almost the same. Similar approaches for cross-sectional data models

are considered by, for example, Newey et al. (1999), Lee (2007), Imbens and Newey (2009),

and Chernozhukov et al. (2015). For panel data models, Semykina and Wooldridge (2010)

develop a class of models that is similar to (9), but their focus is on the conditional mean

function with additively separable error terms.

3.2.2 Censoring

Censoring is an issue that empirical researchers frequently face. I consider the following

censoring rule with sample selection:

Y ∗
t = g(Xt, Ut),

Yt = Dt ·max(Y ∗
t , Ct),

where Ct's are �xed constants. Since the quantile operator is preserved under monotone

transformations, quantile regression models can easily incorporate censored data in a similar

fashion of Powell (1986). Speci�cally, one can show that

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = max(QY ∗
t |X,Zt,Dt=1(u|X, Zt, Dt = 1), Ct),

and the conditional quantile function of Y ∗
t is the same as (6). It is worth noting that one

can simultaneously incorporate endogeneity and censoring, as in Chernozhukov et al. (2015).

This result can be further extended to the Tobit type-3 model considered by Fernández-

Val et al. (2019). The model of Fernández-Val et al. (2019) is di�erent from that of this

paper in that the selection rule in their model is not binary and that the error term in the

outcome equation can be multi-dimensional, and their identi�cation strategy relies on the

control function approach of Imbens and Newey (2009). Nevertheless, the model in this
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paper can incorporate such a class of selection rules with the control function approach as

shown earlier.

4 Dynamic Models

Dynamic panel data models are of interest in many empirical situations. Sample selection

issues in panel data models have been addressed by several papers including Kyriazidou

(2001), Gayle and Viauroux (2007), and Semykina and Wooldridge (2013). Including lagged

dependent variables as regressors usually causes many problems. For example, the within-

estimator or �rst-di�erencing estimator in the standard linear �xed e�ects model may not

be consistent when lagged dependent variables are included as regressors. It is much harder

to resolve such issues when the model is nonlinear. In this section, we demonstrate that the

CRE approach combined with a control function approach can e�ectively be incorporated

into dynamic quantile regression with sample selection.

We consider the following class of dynamic autoregressive models:

Y ∗
t = g(Y ∗

t−1, Xt, Ut),

Yt = DtY
∗
t ,

Pr(Dt = 1|Dt−1, Xt, Zt) = pt(Dt−1, Xt, Zt),

(10)

for t = 2, 3, ..., T , where g(y, x, ·) is strictly increasing for almost all y and x. For t = 1, it is

assumed that Y1 = g(X1, U1) and that Pr(D1 = 1|X1, Z1) = p1(X1, Z1). I adopt the idea of

Wooldridge (2005) to formulate �exible and tractable dynamic quantile regression models

using the CRE approach. Speci�cally, it is assumed that the conditional quantile of Ut

given the lagged dependent variables, X, Z, and the selected for two adjacent time periods

is a function of the conditioning variables and selection probabilities at time periods 1 and

t. This assumption is similar to that on the dynamic model in Bester and Hansen (2009)

or Arellano and Bonhomme (2016). To introduce a formal assumption, time period 1 is

treated as the initial time period, and let Wt be the vector that collects all Ws's up to time

period t, where Ws is a generic random variable at time s (i.e., Wt ≡ (W1,W2, ...,Wt)
′
).

Note that WT = W.

Assumption DM.1. Let u ∈ U ⊆ (0, 1) be given. For all t ∈ {2, ..., T},

QUt|Y∗,t−1,X,Z,Dt·Dt−1·D1=1(u|Y∗,t−1,X,Z) = r(Y1,X, Pt, P1;u), (11)

where Pt ≡ pt(Dt−1, Xt, Zt) for t ≥ 2 and P1 ≡ Pr(D1 = 1|X1, Z1) = h1(X1, Z1).

Assumption DM.1 is a dynamic generalization of Assumption 1. In the absence of sample

selection, this assumption can be reduced to that the unknown function r does not depend

on the selection probabilities at time 1 and t, which is similar to the CRE speci�cation of
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the dynamic model in Bester and Hansen (2009) or Arellano and Bonhomme (2016). It is

also worth mentioning that r is a function of Y0 and P1 as well as X and Pt. Conditioning

on D1 = 1 is necessary to observe Y1 that is included in the CRE speci�cation with lagged

dependent variables, and this is why P1 appears as a correction term in equation (11).

Below we provide a set of conditions under which the structural functions are nonpara-

metrically identi�ed. For simplicity, we assume that the support of Yt for each t = 1, 2, ..., T

is the same.

Assumption DM.2. Let T ≥ 4. For any u ∈ U ⊆ (0, 1), the following conditions hold:

(i) For each t = 1, 2, ..., T , there exists a known value (ȳ(u), x̄(u)
′
)
′ ∈ Supp

(
(Yt−1, X

′
t)

′
)
⊆

R1+dx such that g(ȳ(u), x̄(u), γ;u) = γ ;

(ii) Let y1 ∈ Supp(Y1), x1 ∈ Supp(X1), and p1 ∈ Supp(h1(X1, Z1)) be given. For t ̸= 1,

let x ∈ Supp(Xt|X1 = x1) and γ ∈ Supp(r(Y1,X, ht(1, Xt, Zt), h1(X1, Z1);u)) be

given. For s ∈ {2, 3, ..., T} with s ̸= t, there exists a non-empty subset X̃−t,s,1(x1, x, x̄(u))

of Supp(X−t,s,1|(X1, Xt, Xs) = (x1, x, x̄(u)), DtDt−1D1 = 1) such that, for any p ∈
Supp(ht(1, x, Zt)|X = x̃−t,s,1), there exists x−t,s,1 ∈ X̃−t,s,1(x1x, x̄(u)) such that

r(y1,x0, p, p1) = γ, and Pr(X−t,s,1 ∈ X̃−t,s,1(x1, x, x̄(u))) > 0, where x0 = (X1 =

x1, Xt = x,Xs = x̄(u),X−t,s,1 = x−t,s,1);

(iii) Let y1 ∈ Supp(Y1), x1 ∈ Supp(X1), p1 ∈ Supp(P1) be given. For t ̸= 1, let x ∈
Supp(Xt) be given. and for any x ∈ Supp(Xt) and z ∈ Supp(Zt) ⊆ Rdz , there exists

a non-empty set Zs(z) ⊆ Supp(Zs|Zt = z) for some s ∈ {1, 2, ..., T} such that, for

any z̃ ∈ Zs(z), ht(1, x, z) = hs(1, x̄(u), z̃), and Pr(Zs ∈ Zs(z)) > 0

Assumption DM.2 is corresponding to Assumption 2 in Section 2 that imposes identi-

fying conditions for static models, While it is needed that T ≥ 4 to identify the parameters

in static models, Assumption DM.2 requires that T ≥ 4 identi�cation. This is due to the

presence of a lagged dependent variable, which results in that, under Assumption DM.1,

it is not possible to utilize variation in X1 with �xing Y1. One can interpret it as that

the information in time period 1 is treated as given or an initial condition. The identi�-

cation strategy for dynamic models is similar to that for static models, but it is required

that individuals be selected for two consecutive time periods. This is due to the fact that

the structural function in the outcome equation depends on a lagged dependent variable,

and therefore it is needed to observe the values of outcome variables for two adjacent time

periods in order for the structural functions to be well-de�ned.

Theorem 4.1. Let u ∈ U ⊆ (0, 1) be given and suppose that Assumptions DM.1 and

DM.2 hold. Then, the structural functions g and r are nonparametrically identi�ed over

∪T
t=2Supp(Xt, Rt) and ∪T

t=2Supp(Y1,X, Pt, P1), respectively, where Rt ≡ r(Y1,X, ht(1, Xt, Zt), h1(X1, Z1);u),

Pt ≡ ht(Dt−1, Xt, Zt) for t ≥ 2 and P1 = Pr(D1 = 1|X1, Z1).
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Proof. The proof is almost identical to that of Theorem 3.1. Let y1 ∈ Supp(Y1), x1 ∈
Supp(X1), and p1 ∈ Supp(h1(X1, Z1)) be given. For any t ̸= 1, pick any x ∈ Supp(Xt|X1 =

x1), γ ∈ Supp(Rt), and s ∈ {2, 3, ..., T} − {t}. De�ne X0 ≡ (X1 = x1, Xt = x,Xs =

x̄(u),X−t,s,1), and consider

QYt|Yt−1,X,Z,DtDt−1D1=1(u|(y1, Y2, ..., y),X0,Z) = g(y, x, r(y1,X0, ht(1, x, Zt), P1)),

QYs|Ys−1,X,Z,DsD1=1(u|(y1, Y2, ..., ȳ(u)),X0,Z) = r(y1,X0, hs(1, x̄(u), Zs), P1).

By Assumption DM.2-(iii), one obtains Pr (ht(1, Xt, Zt) = hs(1, Xs, Zs)|Xt = x,Xs = x̄(u)) >

0. By Assumption DM.2-(ii), Pr (r(y1,X0, Pt, P1) = γ|Zt = z, Zs ∈ Zs(z)) > 0, where Zs(z)

is de�ned in Assumption DM.2-(iii). Therefore, g(y, x, γ) is identi�ed through the following

conditional expectation:

g(y, x, γ)

=E
[
QYt|Yt−1,X,Z,DtDt−1D1=1(u|(y1, Y2, ..., y),X0,Z)

|QYs|Ys−1,X,Z,DsD1=1(u|(y1, Y2, ..., ȳ(u)),X0,Z) = γ, ht(1, x, Zt) = hs(1, x̄(u), Zs)
]
.

Let p ∈ Supp(ht(Xt, Zt)) and pick any z ∈ Supp(Zt|Xt = x) such that p = ht(x, z).

Then, one obtains that

g(y, x, r(y1,x, p, p1)) = E
[
QYt|Yt−1,X,Z,DtDt−1D1=1(u|(y1, Y2, ..., y),x,Z0)

]
,

where x = (x1, x2, ..., xT )
′ ∈ Supp(X), Z0 = (Z1, Z2, ..., Zt−1, z, Zt+1, ..., ZT )

′ ∈ Supp(Z).

Since g(·, ·, ·) is strictly increasing in its last argument, identi�cation of r can be achieved

by inverting the structural function m in the above equation. ■

Remark 4.2. One can include a lag of covariates into the outcome equation in the same

way to Bester and Hansen (2009). In such cases, the requirement on the number of time

periods should be strengthened. For example, when the structural function m depends on

Yt−1, Xt, Xt−1, and Ut, it is required that T ≥ 5 for nonparametric identi�cation, with

some proper normalization condition.

5 Semiparametric Models

While fully nonparametric models are attractive as they are robust to model misspeci�ca-

tion, one important and practical issue is that it is di�cult to estimate parameters in them

when the dimension of covariate is large. Although the CRE approach allows us to consider

�exible and general models, the number of covariates involved in estimating parameters can

be very large and thus the fully nonparametric model presented in the previous section may
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not be practically useful. To address such issues, we propose some semiparametric models

and study identi�cation of the parameters in them. The semiparametric models considered

in this section are static, but their dynamic extensions are straightforward.

5.1 Index Models

One can impose an index structure on the structural function r , and this is originally mo-

tivated by the original CRE approach of Mundlak (1978) and Chamberlain (1980). Specif-

ically, we impose the following assumption.

Assumption 1′. Let u ∈ U be given. For all t ∈ {1, 2, ..., T},

QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = r(X
′
ψ(u), Pt), (12)

where ψ(u) =
(
ψ1(u)

′
, ψ2(u)

′
, ..., ψT (u)

′
)′

and ψt(u) ∈ Rdx for all t.

The index structure is consistent with the CRE speci�cation of Chamberlain (1980) and

reduces the dimension of the structural function r, while allowing for nonseparability be-

tween the index and Pt. This semiparametric speci�cation requires additional assumptions

for identi�cation of the index coe�cient vector ψ, and these assumptions depend on Xt

being continuous or discrete. To make the role of each type of regressor, we assume that

Xt = (Xc′
t , X

d′
t )

′
, where Xc

t ∈ Rdxc is a vector of continuous regressors and Xd
t ∈ Rdxd is

a vector of discrete regressors. Consequently, we partition the coe�cient ψ into two parts,

ψt =
(
(ψc

t )
′
,
(
ψd
t

)′)′

, where ψc
t = (ψc

1t, ψ
c
2t, ..., ψ

c
dxct

)
′
and ψd

t = (ψd
1t, ψ

d
2t, ..., ψ

d
dxdt

)
′
.

Assumption 2′. Let T ≥ 3. For any u ∈ U ⊆ (0, 1), the following conditions hold:

(i) For each t = 1, 2, ..., T , there exists a known value x̄(u) ∈ Supp(Xt) ⊆ Rdx such that

g(x̄(u), γ;u) = γ ;

(ii) Let x ∈ Supp(Xt) and γ ∈ Supp(r(X
′
ψ, h(Xt, Zt))) be given. For any t, s ∈ {1, 2, ..., T}

with t ̸= s, there exists a non-empty subset X̃ S
−t,s(x, x̄(u)) of Supp(X

′
−t,sψ−t,s|(Xt, Xs) =

(x, x̄(u))) and such that, for any x−t,s ∈ X̃ S
−t,s(x, x̄(u)), r(x

′
0ψ, p) = γ for some

p ∈ Supp(pt(x, Zt)|X = x0) and Pr(X−t,s ∈ X̃−t,s(x, x̄(u))) > 0, where x0 = (Xt =

x,Xs = x̄(u)),X−t,s = x−t,s);

(iii) For any t = 1, 2, ..., T and for any x ∈ Supp(Xt) and z ∈ Supp(Zt) ⊆ Rdz , there

exists a non-empty set Zs(z) ⊆ Supp(Zs) for some s ∈ {1, 2, ..., T} such that, for any

z̃ ∈ Zs(z), pt(x, z) = ps(x̄(u), z̃) and Pr(Zs ∈ Zs(z)) > 0.

(iv) ψc
1t = 1 for all t.

(v) g(·, ·) is di�erentiable with respect to the second argument, and r(·, ·) is di�erentiable
with respect to the �rst argument.
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(vi) r(·, ·) is invertible with respect to the �rst argument.

Conditions (i), (ii), and (iii) in Assumption 2′ are almost the same as conditions (i),

(ii), and (iii) in Assumption 2, respectively. Condition (iv) � (vi) in Assumption 2 are

additionally imposed to identify the �nite-dimensional parameter ψ. Condition (iv) is a

normalization, which is very standard in the literature (e.g. Escanciano et al. (2016)). It

requires that there exist at least on continuous regressor whose the coe�cient is nonzero.

Condition (v) imposes some smoothness on g and r, and this condition allows one to

identify ψc
t 's. It is worth pointing out that if Xt consists only of continuous regressors, the

coe�cients ψc
t 's are be identi�ed without condition (vi) in Assumption 2′. Condition (vi) can

be implied by strict monotonicity of r(·, ·) with respect to its �rst argument, and Escanciano

et al. (2016) also impose a similar condition to identify the coe�cients on discrete regressors.

To motivate this assumption, consider the linear panel quantile model in Example 2.2. It

can easily be shown that QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = Xtβ + Xψ + h(Pt) for some

unknown function h(·) and that r(a, p) = a + h(p). In this case, the structural function r

is strictly increasing in its �rst argument, and therefore condition (vi) is satis�ed. In the

wage equation example, the X
′
ψ can be considered as the ability of individual, and it is

natural to assume that the structural function r is monotonically increasing in X
′
ψ. A

similar assumption is made by Evdokimov (2010), without considering the CRE approach.

The following theorem demonstrates that the parameters of the semiparametric model

in (12) are identi�ed under Assumptions 1′ and 2′.

Theorem 5.1. Let u ∈ U be given and Assumption 1′ hold. Suppose that conditions (i) �

(v) in Assumption 2′ are satis�ed. Then, for each t = 1, 2, ..., T , g(·, ·;u) and r(·, ·;u) are
identi�ed over Supp(Xt, r(X

′
ψ, pt(Xt, Zt))) and the set ∪T

t Supp(X
′
ψ, pt(Xt, Zt)), respec-

tively, and ψc
t 's are also identi�ed. If condition (vi) in Assumption 2′ additionally holds,

then ψd
t 's are also identi�ed.

Proof. Let t ∈ {1, 2, ..., T} be given. Under conditions (i) through (iii) in Assumption 2′,

the structural function m is identi�ed over it support and one can show that

r(X
′
ψ, Pt) = g−1(Xt, QYt|X,Zt,Dt=1(u|X, Zt)) (13)

by using the same argument of the proof of Theorem 3.1. In addition, the structural function

r is also identi�ed from (13) over its support in a similar way to the proof of Theorem 3.1.

I �rst identify the coe�cients on the continuous regressors ψc
t 's. Choose s ∈ {1, ..., t −

1, t+ 1, ..., T}. Taking derivative with respect to Xc
1s, one obtains that

r1(X
′
ψ, Pt) = g−1

2 (Xt, QYt|X,Zt,Dt=1(u|X, Zt))
∂QYt|X,Zt,Dt=1(u|X, Zt)

∂Xc
1s

. (14)
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Pick any k ∈ {2, 3, ...., dx}. Taking derivative with respect to Xc
ks yields that

r1(X
′
ψ, Pt)ψ

c
ks = g−1

2 (Xt, QYt|X,Zt,Dt=1(u|X, Zt))
∂QYt|X,Zt,Dt=1(u|X, Zt)

∂Xc
ks

. (15)

As a result, one can see that ψc
ks is identi�ed by the ratio between (14) and (15), and

therefore one can identify ψ
′c
t for all t ∈ {1, 2, ..., T}. Note that to identify ψc

t , one can

consider the model restriction in (13) for some di�erent time period s and use the same

argument.

By the invertibility condition (condition (vi) in Assumption 2′), one obtains that

X
′
ψ = r−1(g−1(Xt, QYt|X,Zt,Dt=1(u|X, Zt)), Pt).

Using the variation in the discrete regressor Xd
t , one can identify ψd

t 's. ■

One can also consider an index structure for structural function g, and this is in

particular useful when the dimension of Xt is large. Speci�cally, if it is assumed that

g(Xt, γ) = g(X
′
tβ, γ) for some β ∈ Rdx , then one can use a similar argument in the proof

of Theorem 5.1 under similar conditions for g to those for r. These conditions include

(i) the di�erentiability and invertibility of g with respect to its �rst argument and (ii) a

normalization condition for β.

5.2 Additively Separable Models

Additively separable models are very popular in empirical studies as they are very tractable.

In particular, one can use a location-scale model for quantile regression to allow for gen-

eral and �exible speci�cations even with additive separability. The following assumption

imposes additive separability between Xt and r as well as a parametric speci�cation for

structural function h.

Assumption 1′′. Let u ∈ U be given. For all t ∈ {1, 2, ..., T},

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = h(Xt;u) +X
′
ψ(u) + k(Pt;u). (16)

Assumption 2′′. Let T ≥ 2.

(i) For each t = 1, 2, ..., T , there exists a known value x̄(u) ∈ Supp(Xt) ⊆ Rdx such that

h(x̄(u);u) = 0 ;

(ii) For any u ∈ U ⊆ (0, 1) and for any t ̸= s and (x
′
t, x

′
s)

′ ∈ Supp(Xt, Xs), there exists

Z((x
′
t, x

′
s)

′
) ⊆ Supp(Zt, Zs) such that Pr(Z((x

′
t, x

′
s)

′
)) > 0 and pt(xt, zt) = ps(xs, zs)

for all (z
′
t, z

′
s)

′ ∈ Z((x
′
t, x

′
s)

′
).

While it is evident that Assumption 1′′ restricts the type of heterogeneity that can be

allowed in the model, it provides substantial identifying power. Speci�cally, one can weaken

23



the condition on the number of time periods that is needed for identi�cation. Condition (i)

in Assumption 2′′ is a normalization condition. Condition (ii) in Assumption 2′′ is similar

to condition (iii) in Assumption 2, which requires the excluded variable Zt to have su�cient

variation. If Zt has a large support and the selection is determined by a threshold crossing

equation model, then this condition is likely to be met.

Theorem 5.2. Suppose that Assumptions 1′′ and 2′′ hold. Then, for any u ∈ U ⊆
(0, 1), δ(u) is identi�ed and h(·;u) and k(·;u) are also identi�ed over ∪T

t=1Supp(Xt) and

∪T
t=1Supp(Pt), respectively.

Proof. For simplicity of notation, we assume that Xt is a continuous random variable.

Identi�cation of ψ is from the following derivative:

ψs =
∂QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)

∂Xs
,

where t ̸= s. Since ψ ∈ RT and there are T × (T − 1) equations, one can identify ψ.

For identi�cation of β, pick any t, s ∈ {1, 2, ..., T} such that t ̸= s. For a given value

x ∈ Supp(Xt), de�ne x0 ≡ (x
′
, x̄

′
)
′
. Then,

QYt|X,Zt,Dt=1(u|x0, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|x0, Zs, Ds = 1) = h(x)− h(x̄) + k(Pt)− k(Ps)

= h(x) + k(Pt)− k(Ps)

Taking conditional expectation on (Z
′
t, Z

′
s)

′ ∈ Z((x
′
, x̄

′
)
′
), one obtains that

E[QYt|X,Zt,Dt=1(u|x0, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|x0, Zs, Ds = 1)|x0, (Z
′
t, Z

′
s)

′ ∈ Z((x
′
, x̄

′
)
′
)] = h(x),

and this conditional expectation is well-de�ned by Assumption 2′′. Therefore, h(·) is iden-
ti�ed over ∪T

t Supp(Xt). Since h(·) and δ are identi�ed, k is identi�ed over ∪T
t Supp(Pt) by

using (16). ■

The identi�cation strategy used in this paper does not rely on the derivative of the

reduced form parameter with respect to the excluded variables even for additively separable

models. This is di�erent from the identi�cation strategy of Das et al. (2003) who use a

derivative argument. While the identi�cation strategy of Das et al. (2003) requires that

the excluded variables be continuous, the identi�cation strategy in this paper potentially

allows for discrete excluded variables as long as their support is large enough.

One can choose a speci�c form of structural function g(·;u). A popular choice is a linear

function, and one can write the model restriction with a linear speci�cation as follows:

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = X
′
tβ(u) +X

′
ψ(u) + k(Pt;u). (17)

Equation (17) is corresponding to the model considered in Example 2.2, and it is a
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special case of the nonparametric model in (5). The quantile restriction in equation (17) is

similar to that of Buchinsky (1998) and the conditional mean restriction of Das et al. (2003).

When structural function m is speci�ed as a linear function, the following assumption,

together with su�cient variation in excluded variables, guarantees identi�cation of the

model parameters:

Assumption 3′′. Let T ≥ 2 and u ∈ U ⊆ (0, 1) be given. For any t ̸= s,

Pr
(
rank

(
(Xt −Xs) · (Xt −Xs)

′
)
= dx

)
= 1.

Assumption 3′′ is a rank condition that requires that the time-varying covariate Xt

have su�cient variation across time periods, and this condition is standard in the literature

on panel data models. It is worth noting that this condition rules out the case where Xt

contains some time-invariant regressors, such as a constant regressor.

The result below is a direct consequence of Theorem 5.2 and establishes the identi�cation

of β, δ, and k(·) under Assumptions 1′′, 2′′, and 3′′.

Corollary 5.3. Let u ∈ U be given and suppose that 0 ∈ Supp(Xt) for all t = 1, 2, ..., T .

If Assumptions 1′′, 2′′-(ii), and 3′′ hold with h(x;u) = x
′
β(u), then, β(u) and ψ(u) are

identi�ed. Moreover, k(·;u) is identi�ed over ∪T
t=1Supp(Pt).

Proof. Identi�cation of ψ is the same as in Theorem 5.2. Note that the normalization

condition in Assumption 2′′ is satis�ed with x̄ = 0. For identi�cation of β, pick any

t, s ∈ {1, 2, ..., T} such that t ̸= s. Then,

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|X, Zs, Ds = 1) = (Xt−Xs)
′
β+k(Pt)−k(Ps).

Taking conditional expectation on (Z
′
t, Z

′
s)

′ ∈ Z((X
′
t , X

′
s)

′
), one obtains that

E[QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|X, Zs, Ds = 1)|Xt, Xs, (Z
′
t, Z

′
s)

′ ∈ Z((X
′
t , X

′
s)

′
)]

= (Xt −Xs)
′
β

and this condition expectation is well-de�ned by condition (ii) in Assumption 3′′. Therefore,

by condition (i) in Assumption 3′′, one can show that

β =
(
(Xt −Xs) · (Xt −Xs)

′
)−1

· (Xt −Xs)

× E[QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|X, Zs, Ds = 1)|Xt, Xs, (Z
′
t, Z

′
s)

′ ∈ Z((X
′
t , X

′
s)

′
)].

Since β and ψ are identi�ed, k(·) is also identi�ed over ∪T
t=1Supp(Pt) from equation (17). ■
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6 Estimation and Inference

We use a PSMD procedure to estimate the parameters developed by Chen and Pouzo (2015).

Note that since the in�nite-dimensional parameters do not depend on any endogenous

regressors, the estimators do not su�er from an ill-posed inverse problem; and therefore,

one can expect that the role of penalization is not signi�cant. For this reason, the PSMD

procedure employed in this paper is is the one with slowly growing �nite-dimensional linear

sieves and small �exible penalty (Chen and Pouzo (2012, 2015)). We also establish the

asymptotic theory for the PSMD estimators for inference on general functionals of the

parameters. Since the moment conditions used to estimate the parameters are non-smooth,

the asymptotic theory in this paper considers sieve quasi likelihood ratio (SQLR) inference

that allows one to avoid estiatming asymptotic variances. 15

We introduce additional notation. For a generic vector A, vec(A) denotes the vec-

torization of A. Let {Ai ≡ (Yi,X
′
i,Z

′
i,D

′
i)

′
: i = 1, 2, ...N} be the data, where Xi ≡

(vec(Xi1)
′
, ..., vec(XiT )

′
)
′
and Zi ≡ (vec(Zi1)

′
, ..., vec(ZiT )

′
)
′
. For a positive de�nite square

matrix W and a comformable vector A, de�ne ||A||W ≡
√
A′WA. I also de�ne several

norms that are used in this paper. The Euclidean norm is denoted by || · ||E . Let || · ||∞
and || · ||2 denote the supremum-norm and L2-norm on a function space, respectively. For

any α1, α2 ∈ A, de�ne ||α1 − α2||22 ≡ ||g1 − g2||22 + ||r1 − r2||22 + ||p1 − p2||22.

6.1 Penalized Sieve Minimum Distance Estimation

For a given value of u ∈ U , let g0, r0, and p0 be the true parameter values for g, r,

and p, respectively.16 Let G, R, and P be classes of admissible functions for g, r, and p,

respectively. The parameter is denoted by α ≡ (g, r, p)
′
, and the parameter space A is the

Cartesian product of G, R, and P (i.e., A ≡ G ×R× P).
De�ne

ρ1,t(Y,D,X,Z;α) ≡ Dt − p(Xt, Zt),

ρ2,t(Y,D,X,Z;α) ≡ Dt {1 (Yt − g(Xt, r(X, p(Xt, Zt))) ≤ 0)− u} ,

for each t = 1, 2, ..., T . For each j = 1, 2, let

ρj(Y,D,X,Z;α) ≡ [ρj,1(Y,D,X,Z;α), ρj,2(Y,D,X,Z;α), ..., ρj,T (Y,D,X,Z;α)]
′

15It is worth noting that the identi�cation the model implication (6) suggests a two-step estimation
procedure in which the selection probabilitiy Pr(Dit = 1|Xit, Zit) is estimated in the �rst step and the
structural functions are estimated by using the standard quantile regression with the estimated selection
probability. Hahn et al. (2018) develop the asymptotic thoery for nonparametric two-step sieve estimators,
including consistency, convergence rates, and

√
n-asymptotic normality for regular functionals. However,

the objective function for the standard quantile regression is non-di�erentiable; and therefore, it may be
challenging to estimate the asymptotic variance of the two-step sieve estimator of a functional. On the
other hand, I overcome such practical issues by using the SQLR inference and the bootstrap procedure
developed by Chen and Pouzo (2015).

16We drop u from the parameters for notational simplicity.
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and

mj,t(X,Z;α) ≡ E [ρj,t(Y,D,X,Z;α)|X,Z] .

Finally, de�ne

mt(X,Z;α) ≡

[
m1,t(X,Z;α)

m2,t(X,Z;α)

]
=

[
p0(Xt, Zt)− p(Xt, Zt){

FY ∗
t |Dt=1,X,Z (g(Xt, r(X, p(Xt, Zt)))|X,Z)− u

}
p0(Xt, Zt)

]

for each t = 1, 2, ..., T , and m(X,Z;α) ≡
[
m1(X,Z;α)

′
, .....,mT (X,Z;α)

′
]′
. Then, for any

positive de�nite �nite matrix Σ(X,Z),

E
[
||m(X,Z;α)||2Σ−1

]≥ 0 for any α ∈ A

= 0 if and only if α = α0

under the identi�cation conditions. Let m̂n(X,Z;α) be a nonparametric consistent esti-

mator of m(X,Z;α). Let Σ̂n(·, ·) be a consistent estimator of Σ(·, ·). Then, the PSMD

estimator of α0, α̂n, is de�ned as the solution to the following minimization problem:

min
α∈An

{
Q̂n(α) + λnPen(α)

}
,

where Q̂n(α) ≡ 1
n

∑n
i m̂n(Xi,Zi;α)

′
Σ̂n(Xi,Zi)

−1m̂n(Xi,Zi;α), λnPen(α) is a penalty term

with λn = o(1) and Pen(·) : A → R+, and An is a sieve space of A. In this paper, I use a

series estimator of m(X,Z;α); that is, for each j = 1, 2 and t = 1, 2, ..., T ,

m̂j,t,n(X,Z;α) = ϕJn(X,Z)
′

(
n∑

i=1

ϕJn(Xi,Zi) · ϕJn(Xi,Zi)
′

)−1 n∑
i=1

ϕJn(Xi,Zi)
′
ρj,t(Yi,Di,Xi,Zi;α),

where {ϕj(·, ·)}∞j=1 is a sequence of some basis functions and ϕJn(x, z) ≡ (ϕ1(x, z), ϕ2(x, z), ..., ϕJn(x, z))
′

with Jn → ∞ as n→ ∞. Then, m̂t,n = (m̂1,t,n, m̂2,t,n)
′
is a series estimator of mt(X,Z;α),

and de�ne m̂n(X,Z;α) ≡
[
m̂

′
1,n, ..., m̂

′
T,n

]′
.

We introduce one of the most popular classes of functions, which is called the Hölder

class. Let f : D → R where D ⊆ Rdx for some integer dx ≥ 1. Let ω = (ω1, ..., ωdx)

be a dx-tuple of nonnegative integers, and de�ne the di�erential operator as ∇ωf ≡
∂|ω|

∂x
ω1
1 ∂x

ω2
2 ···∂x

ωdx
dx

f(x), where x = (x1, x2,..., xdx) ∈ D and |ω| ≡
∑dx

i=1 ωi. Let [s] be the

integer part of s ∈ R+, then a function f : X → R is called s-smooth if it is [s] times

continuously di�erentiable on X and for all ω such that |ω| = [s] and for some ν ∈ (0, 1]

and constant c > 0, |∇ωf(x)−∇ωf(y)| ≤ c · ||x− y||νE for all x, y ∈ X . Let C[p](X ) denote

the space of all [p] times continuously di�erentiable real-valued functions on X . A Hölder
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ball with smoothness s is de�ned as follows:

Λs
C(X ) ≡

{
f ∈ C[s](X ) : sup

|ω|≤[s]
sup
x∈X

|∇ωf(x)| ≤ C, sup
|ω|=[s]

sup
x,y∈X ,x ̸=y

|∇ωf(x)−∇ωf(y)|
||x− y||νE

≤ C

}
,

where C is a positive �nite constant.

The choice of sieve spaces depends on the class of functions and support of unknown

function. When an unknown function is in a Hölder ball and its support is the unit interval,

one can use polynomial, trigonometric polynomial, or spline sieve spaces. If the support is

unbounded, then Hermite polynomial sive spaces can be used. For the detailed discussion

on the choice of sieve spaces, one can refer to Chen (2007).

6.2 Asymptotic Theory for PSMD Estimators

6.2.1 Consistency and convergence rates

Assumption 3. (i) The data {Ai = (Ai1, ..., AiT )
′
: i = 1, 2, ...n} are i.i.d across i; (ii) for

any t = 1, 2, ..., T , the conditional distribution of Y ∗
t on X and Zt is absolutely continuous

with respect to the Lebesgue measure ; (iii) for any t = 1, 2, ..., T , E[|Y ∗
t |] and E[|qu(Xi, Zit)|]

are uniformly bounded; (iv) Supp(X,Z) is a compact connected subset of R(dx+dz)T with

Lipscthiz boundary; (v) the density function of (X,Z) is bounded and bounded away from

zero over Supp(X,Z); (vi) p0(x, z) is bounded away from zero and one uniformly over

∪T
t Supp(Xt, Zt).

Assumption 4. (i) g0 ∈ G ≡ Λ
sg
cg (∪T

t Supp(X, p0(Xt, Zt)), r0 ∈ R ≡ Λsr
cr (Supp(X, p0(Xt, Zt))

with sm > 1 and sr > 1, g0(x, γ) and r0(x, p) are continuously di�erentiable with respect

to γ and p, respectively, and the derivatives are uniformly bounded; (ii) log
(

p0
1−p0

)
∈ P ≡

Λ
sp
cp(∪T

t Supp(Xt, Zt)) with sp >
1
2 .

Assumption 5. (i) Let

Gn ≡
{
gn(x, γ) = ϕkg,n(x, γ)

′
βg,n : sup

x,γ
|gn(x, γ)| ≤ cg

}
,

Rn ≡
{
rn(x, p) = ϕkr,n(x, p)

′
βr,n : sup

x,p
|rn(x, p)| ≤ cr

}
,

Pn ≡
{
L
(
ϕkp,n(Xt, Zt)

′
βp,n

)
: βp,n ∈ Rkp,n

}
,

where ϕkg,n , ϕkr,n, and ϕkp,n are some basis functions, kg,n, kr,n, and kp,n are some posi-

tive non-decreasing integer sequences such that kg,n, kr,n, kp.n → ∞ as n → ∞ and kn ≡
max (km,n, kr,n, kp,n) = o(n), L(·) is the standard logistic distribution function; (ii) let

Qg,t,n ≡ E
[
ϕkg,n(xt, rn(X, Pt)) · ϕkg,n(xt, rn(X, Pt))

′
]
, Qr,t,n ≡ E

[
ϕkr,n(X, Pt) · ϕkr,n(X, Pt)

′
]

and Qp,t,n ≡ E
[
ϕkp,n(Xt, Zt) · ϕkp,n(Xt, Zt)

′
]
, then for any t, the eigenvalues of Qg,t,n,

Qr,t,n, and Qp,t,n are bounded above and away from zero uniformly over all n; (iii) there exist
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{
β0g,n

}∞
n=1

,
{
β0r,n

}∞
n=1

, and
{
β0p,n

}∞
n=1

such that sup |g0(x, γ)−ϕkg,n(x, γ)
′
β0g,n| = O

(
k
−σg
g,n

)
,

sup |r0(x, p) − ϕkr,n(x, p)
′
β0r,n| = O

(
k−σr
r,n

)
, and sup

∣∣∣ log ( p0(x,z)
1−p0(x,z)

)
− ϕkp,n(x, z)

′
β0p,n

∣∣∣ =
O
(
k
−σp
p,n

)
for some σg, σr, σp > 0.

Assumption 6. (i) For any α ∈ A, m(X,Z;α) ∈ Λpm
cm (Supp(X,Z)) with pm > T (dx+dz)

2

and some cm > 0; (ii) Mn =
{
mn(x, z;α) = ϕJn(x, z)

′
βm,n : supx,z |mn(x, z)| ≤ cm

}
,

where
{
ϕJn
}∞
n=1

is a sequence of some basis functions; (iii) there exists
{
β0m,n

}∞
n=1

such that

sup(x,z)∈Supp(X,Z) |m(x, z;α)−ϕJn(x, z)′β0m,n| = O (J−σm
n ); (iv) let Qm,n ≡ E

[
ϕJn(X,Z)ϕJn(X,Z)

′
]
,

then the eigenvalues of Qm,n are bounded above and away from zero uniformly over all n;

(v) Jn ≥ c · (kg,n + kr,n + kp,n) for some c ≥ 1.

Assumption 7. (i) Σ(X,Z) = I2T almost surely; (ii) λn = o
(
n−1

)
; (iii) Pen(α) = 0.

Assumption 3 imposes conditions on the data generating process. Note that the �rst

condition of Assumption 3 allows for serial correlation as it only requires the data be i.i.d.

across the individuals. Condition (ii) in Assumption 3 implies that Y ∗
t is a continuous

random variable, which is standard for quantile regression models. Condition (iii) is a

mild condition on moments of the dependent variable and conditional quantile function.

Conditions (iv) and (v) in Assumption 3 are standard in the literature on nonparametric

estimation. Condition (vi) rules out the case where all individuals are selected or not

selected.

Assumption 4 speci�es the parameter spaces for the structural functions g, r, and the

log odds ratio, and their sieve spaces. Assumption 5 de�nes sieve spaces for G, R, and P.
The choice of sieve spaces depends on the parameter spaces and support conditions. We

use linear sieve approximations of g0, r0, and the log odds ratio of the selection probability

p0(x, z). This is to ensure that p0(x, z) ∈ (0, 1) for all possible values of x and z (cf. Hirano

et al. (2003)). Condition (ii) of Assumption 5 is standard in the literature on sieve or

series estimation (cf. Newey (1997) and Chen and Christensen (2018)). Condition (iii) of

Assumption 5 implies that the unknown parameters are well-approximated over their sieve

spaces, and this condition is easily met with an appropriate choice of sieve spaces.

Assumptions 4 and 5 together imply that when the polynomial or spline sieve spaces

are used for g0, r0 and log
(

p0
1−p0

)
, Assumption 4-(i) implies that σg = pg/(dx+1) and σr =

pr/(Tdx + 1) (Newey (1997)). Likewise, under Assumption 4-(ii), one can show that σp =
pp

(dx+dz)
. We denote the sequences of functions

{
ϕkg,n(x, γ)

′
β0g,n

}∞

n=1
,
{
ϕkr,n(x, p)

′
β0r,n

}∞

n=1
,

and
{
L
(
ϕkp,n(Xt, Zt)

′
β0p,n

)}∞

n=1
by {πng0}n , {πnr0}n, and {πnp0}n, respectively. It is also

worth mentioning that Assumption 4-(i) and Assumption 5 together imply that Gn ⊆ Gn+1,

Rn ⊆ Rn+1, and Pn ⊆ Pn+1 for all n ≥ 1 and that ∪∞
n=1Gn = G, ∪∞

n=1Rn = R, and

∪∞
n=1Pn = P where, for a set A, A is the closure of A.

Assumption 6 imposes conditions required for a series estimator of m to perform well.

This assumption is similar to Assumptions 4 and 5. Condition (v) of Assumption 6 ,
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together with Assumption 5 -(i), implies that Jn → ∞ and Jn/n → 0. Assumption 7

speci�es the penalty function that will be used in this paper and the rate of λn.
17

The following theorem demonstrates that the sieve estimator of α0, α̂n, is consistent

with respect to both || · ||∞ and || · ||2 under a set of assumptions.

Theorem 6.1. Suppose that Assumptions 1, 2, and 3�7 hold. Then,

||α̂n − α0||∞ = op(1).

Let Aos be a convex || · ||2-neighborhood of α0 such that

Aos ⊆ {α ∈ A : ||α− α0||∞ < C0, λnPen(h) < λnC0}

for some positive constant C0. For any α ∈ Aos and t ∈ {1, 2, ..., T}, de�ne a pathwise

derivative of mt as

dmt(X,Z;α0)

dα
[α− α0]

≡ dE [ρt(A; (1− τ)α0 + τα)|X,Z]
dτ

∣∣∣
τ=0

=

[
−(p(Xt, Zt)− p0(Xt, Zt))

fY ∗
t |Dt=1,X,Z(Qt,0|X,Z)p0(Xt, Zt) {(g − g0) +B1,t(X,Z;α0) · (r − r0) +B2,t(X,Z;α0) · (p− p0)}

]
,

whereQt,0 ≡ g0(Xt, r0(X, p0(Xt, Zt))), B1,t(X,Z;α0) ≡ g
′
0(Xt, r0(X, p0(Xt, Zt))) andB2,t(X,Z;α0) ≡

g
′
0(Xt, r0(X, p0(Xt, Zt)))r

′
0(X, p0(Xt, Zt)). The corresponding pathwise derivative of m is

dm(X,Z;α0)

dα
[α− α0] ≡

[(
dm1(X,Z;α0)

dα
[α− α0]

)′

, · · · ,
(
dmT (X,Z;α0)

dα
[α− α0]

)′]′

.

Assumption 8. For all t ∈ {1, 2, ..., T}, fY ∗
t |X,Z,Dt=1(QYt|Dt=1,X,Z(u|X,Z)|X,Z) > 0 and

fY ∗
t |X,Z,Dt=1(y|x, z) is uniformly bounded over (y,x, z) ∈ R× Supp(X,Z).

For any α1, α2 ∈ Aos, de�ne

||α1 − α2||2 ≡ E

[(
dm(X,Z;α0)

dα
[α1 − α2]

)′

· Σ(X,Z)−1 ·
(
dm(X,Z;α0)

dα
[α1 − α2]

)]
.

Then, under Assumption 8, ||·|| is a pseudo-metric onAos. I consider additional assumptions

to establish the convergence rate of the sieve estimator of α0, α̂n.

Assumption 9. For any α, α̃ ∈ Aos ,

E[{g(Xit, r(Xi, p(Xit, Zit)))− g̃(Xit, r̃(Xi, p̃(Xit, Zit)))}2] ≍ ||α− α̃||2A,2.
17It is only required that λn = o(1) for consistency of α̂n. Assumption 10-(i) is strongether than the

condition, but this rate condition on λn facilitates deriving the convergence rate of α̂n.
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Assumption 10. Let δ2m,n = max
{

Jn
n , J

−2pm/T ·(dx+dz)
n

}
. Then,

max
{
δ2m,n,

(
k−2σm
g,n + k−2σr

r,n + k
−2σp
p,n

)
, λn

}
= δ2m,n.

Assumption 9 is not very restrictive, in particular when focusing on a neighborhood of

α0, and is standard (see, for example, Van de Geer (2000, Section12.3)). Assumption 10

restricts the rates of Jn and λn.
Jn
n and J

−pm/T ·(dx+dz)
n are the convergence rates of the

variance term and square of bias of m̂n, respectively. Under Assumption 10, the penalty

term does not a�ect the convergence rate of the sieve estimator α̂n.

Theorem 6.2. Suppose that Assumptions 1, 2, and 3�7 hold. If, additionally, Assumptions

8, 9 and 10 hold, then

||α̂n − α0||2 = Op (||α0 − πnα0||2 + δm,n)

= Op

(
max

(
k
−σg
g,n , k−σr

r,n , k
−σp
p,n

)
+ δm,n

)
= Op (δm,n)

Furthermore, if Jn ≍ kn = max{kg,n, kr,n, kp,n}, then

||α̂n − α0||2 = Op

(√
kn
n

+max

(
k
−σg
g,n , k−σr

r,n , k
−σp
p,n , k

− pm
T ·(dx+dz)

n

))
.

The L2 convergence rate of α̂n is decomposed into two parts. The �rst component kn
n

is the convergence rate of the variance term of α̂n, and the other component re�ects the

convergence rates of the bias terms of α̂n and m̂n. Once the sieve spaces for A and M are

appropriately chosen, the convergence rates of the bias terms can be compared. In addition,

since the model does not su�er from an ill-posed inverse problem, this convergence rate is

consistent with (or similar to) the standard one in the literature on series/sieve estimation

(e.g., Newey (1997); Chen (2007)).

6.2.2 Asymptotic distributions

We develop the distributional theory for the PSMD estimator. We establish the asymptotic

normality of the plug-in estimator of a functional of interest and consider the sieve quasi

likelihood ratio (SQLR) inference. One important advantange of the SQLR inference is that

it is not needed to estimate the asymptotic variance of the sieve estimator of the functional,

which is very useful for non-smooth moment conditions. It is also worth noting that the

distributional theory in this section allows the functional of interest to be either regular or

irregular. We then provide the validity of the generalized residual bootstrap procedure for

the SQLR statistic.

Let δ2,n be the L2 convergence rate of the sieve estimator of α0, α̂n, given in Theorem
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6.2. De�ne

Nos ≡ {α ∈ A : ||α− α0||2 ≤Mnδ2,n, λnPen(α) ≤ λnC0} ,

Nosn ≡ Nos ∩ An,

where Mn = log (log(n+ 1)). Then, Theorem 6.2 implies that α̂n ∈ Nosn ⊆ Nos with

probability approaching to 1.

Let α0,n ∈ An be such that ||α0,n − α0|| ≤ ||α − α0|| for any α ∈ An. Denote a

linear span of Aos − {α0} by V. Similarly, let Vn be a linear span of Aosn − {α0.n}. Let

Vn be clsp (Vn), where clsp(·) is the closed linear span under || · ||. Then, Vn is a �nite

dimensional Hilbert space under || · || and dense in V ≡ clsp (V). For simplicity, I assume

that dim(Vn) = dim(An). De�ne an inner product on V× V as

< v1, v2 >≡ E

[(
dm(X,Z;α0)

dα
[v1]

)′

Σ(X,Z)−1

(
dm(X,Z;α0)

dα
[v2]

)]
.

De�ne a pathwise derivative of the functional f(·) at α0 in the direction of v = α−α0 ∈ A
as

df(α0)

dα
[v] =

∂f(α0 + τv)

∂τ

∣∣∣
τ=0

.

Assume that t df(α0)
dα [·] is a linear functional. Since Vn is a �nite-dimensional Hilbert space

under || · ||, there exists v∗n ∈ Vn such that

df(α0)

dα
[v] =< v∗n, v >

for all v ∈ Vn and

||v∗n|| ≡ sup
v∈Vn,||v||̸=0

∣∣∣df(α0)
dα [v]

∣∣∣
||v||

<∞

by the Riesz representation theorem, where v∗n is called the sieve Riesz representer of the

functional df(α0)
dα [·] on Vn.

Let

S∗
n,i ≡

(
dm(Xi,Zi;α0)

dα
[v∗n]

)′

Σ(Xi,Zi)
−1ρ(Ai;α0)

be the sieve score associated with the i-th observcation, and ||v∗n||2sd ≡ V ar(S∗
n,i) denote

the sieve variance. We also de�ne

u∗n ≡ v∗n
||v∗n||sd

32



as the scaled sieve Riesz representer. Denote

Zn ≡ 1

n

n∑
i

S∗
n,i

||v∗n||sd
.

Let f : A → R be a functional continuous in || · ||2. To construct a con�dence set of

f(α0) or perform hypothesis testing of H0 : f(α0) = f0 against H1 : f(α0) ̸= f0, I consider

the SQLR statistic. To this end, de�ne AR
n ≡ {α ∈ An : f(α) = f0} as the restricted sieve

space and let α̂R
n ∈ AR

n be a restricted PSMD estimator; that is,

Q̂n

(
α̂R
n

)
+ λnPen

(
α̂R
n

)
≤ inf

α∈AR
n

{
Q̂n (α) + λnPen(α))

}
+ op

(
n−1

)
. (18)

The SQLR statistic is de�ned as

Q̂LRn(f0) ≡ n
(
Q̂n

(
α̂R
n

)
− Q̂n (α̂n)

)
. (19)

We consider the following assumptions to derive the asymptotic normality for the plug-in

estimator of functional f(α0) and the asymptotic distribution of the SQLR statistic.

Assumption 11. Let Tn ≡ {t ∈ R : |t| ≤ 4M2
nδ2,n}. Then, the following conditions hold:

(i) v 7→ df(α0)
dα [v] is a nonzero linear functional mapping from V to R, {Vn} is an

increasing sequence of �nite-dimensional Hilbert spaces that is dense in (V, ||·||), and ||v∗n||√
n

=

o(1);

(ii)

sup
(α,t)∈Nosn×Tn

√
n
∣∣∣f(α+ tu∗n)− f(α0)− df(α0)

dα [α+ tu∗n − α0]
∣∣∣

||v∗n||
= o(1);

(iii)
√
n
∣∣∣df(α0)

dα [α0,n − α0]
∣∣∣

||v∗n||
= o(1).

Assumption 12. (i) dm(X,Z;α0)
dα [u∗n] ∈ Λsd

cd
(Supp(X,Z)) for some cd > 0 and sd > 0; (ii)

supy,x,z |f
′

Y ∗
t |Dt=1,X,Z(y|x, z)| is bounded; (iii) g0(x, γ) and r0(x, p) are twice continuously

di�erentiable with respect to γ and p, respectively, and the derivatives are uniformly bounded;

Assumption 13. M2
nδ2,n = o(1);Mnδ

2
2,n = o

(
n−1/2

)
; nδ22,n (Mnδ2,n(kg,n + kr,n + kp,n))

1/2 =

o(1);

Assumption 14.
√
nZn

d→ N(0, 1).
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Assumption 15. The following condition holds:∣∣∣∣∣ 1n
n∑
i

(
dm(Xi,Zi;α0)

dα
[u∗n]

)′ (
dm(Xi,Zi;α0)

dα
[u∗n]

)
− E

[(
dm(Xi,Zi;α0)

dα
[u∗n]

)′ (
dm(Xi,Zi;α0)

dα
[u∗n]

)] ∣∣∣∣∣
=op(1)

Assumption 11 is the same to Assumption 3.5 in Chen and Pouzo (2015), which restricts

the local behavior of the functional f(·). Condition (i) restricts how fast kn grows with n.

Condition (ii) imposes a restriction on the nonlinearity bias of f(·). Note that this condition
is satis�ed when f is a linear functional. Condition (iii) is a undersmoothing condition

which requires that the order of the sieve bias term df(α0)
dα [α0,n − α0] be smaller than that

of the sieve standard deviation term. Similarly, Assumption 12 is imposed to control the

higher order terms in the asymptotic expansion. Assumption 13 further restricts the rates

of kg,n, kr,n, and kp,n. Assumption 14 can be implied by, for example, Lindberg's condition.

Assumption 15 is needed to establish the asymptotic behavior of the SQLR statistic.

Theorem 6.3. Suppose that Assumptions 1, 2, and 3�10 hold. If Assumptions 11�14 are

satis�ed, then
√
n
f(α̂n)− f(α0)

||v∗n||sd
d→ N(0, 1).

If Assumption 15 additionally holds, then under H0 : f(α0) = f0,

||u∗n||2 × Q̂LRn(f0)
d→ χ2(1).

The result of Theorem 6.3 holds for the functional f that may or may not be
√
n-

estimable. However, it is needed to estimate the sieve Riesz representer v∗n and ||v∗n||sd,
which may be challenging. We propose to use a bootstrap procedure to circumvent this

di�culty.

Let (Bi)
n
i=1 be a sequence of i.i.d. nonnegative random variables independent of the

data such that E [B] = 1, V ar(B) = σ2b , and E
[
|B|2+ϵ

]
<∞ for some ϵ > 0. De�ne

m̂B
j,t,n(X,Z;α) = ϕJn(X,Z)

′

(
n∑

i=1

ϕJn(Xi,Zi) · ϕJn(Xi,Zi)
′

)−1 n∑
i=1

ϕJn(Xi,Zi)
′
ρj,t(Yi,Di,Xi,Zi;α)·Bi

for each j = 1, 2 and t = 1, 2, ..., T as a bootstrap version of m̂j,t,n(X,Z;α), and m̂B
n is

de�ned in a similar way to m̂n but with m̂B
j,t,n(X,Z;α). Let

Q̂B
n (α) ≡

1

n

n∑
i

m̂B
n (Xi,Zi;α)

′
Σ̂n(Xi,Zi)

−1m̂B
n (Xi,Zi;α)
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and

α̂B
n ≡ arg min

α∈An

{
Q̂B

n (α) + λnPen(α)
}
.

Denote f̂n ≡ f(α̂n), then we de�ne the bootstrap SQLR test statistic as follows:

Q̂LR
B

n (f̂n) ≡ n

(
inf

α∈An:f(α)=f̂n

Q̂B
n (α)− Q̂B

n

(
α̂B
n

))
.

One can use a standard bootstrap procedure to mimic the asymptotic distribution of

||u∗n||2 × Q̂LRn(f0) and it is easy to test H0 : f(α0) = f0 or construct a con�dence in-

terval for f(α0) without estimating ||v∗n||sd or ||u∗n||. Since, as pointed out by Chen and

Pouzo (2015), the bootstrap validity holds under virtually the same conditions in Theorem

6.3, we do not provide its proof.

7 Simulation

In this section, we present results of Monte-Carlo simulations to examine the �nite-sample

performance of the estimators. We �rst generate (X∗
t , Z

∗
t ) from a bivariate normal distribu-

tion and let Xt = Φ(X∗
t ) and Zt = Φ(Z∗

t ), where Φ(·) is the standard normal distribution

function. We consider several quantile levels (u ∈ {0.25, 0.5, 0.75}) and additively separable
models given below:

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) =g(Xt;u) +X
′
ψ(u) +QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1),

=g(Xt;u) +X
′
ψ(u) + h(Pt;u),

Dt =1(ξ0 +Xtξ1 + Ztξ2 ≥ Vt),

where (Ut, Vt) ∼ BV N

((
0

0

)
,

(
1 0.3

0.3 1

))
, ψ(u) = (ψ1(u), ψ2(u), ..., ψT (u))

′
with ψt(u) =

1 + 0.5× Φ−1(u) for each u ∈ {0.25, 0.5, 0.75}, ξ0 = −0.5, ξ1 = −1, and ξ2 = 1. This data

generating process yields that approximately 67.8% of individuals are selected for each time

period. The number of time periods is set to be 3 (i.e., T = 3) for all simulations. The

number of observations is set to be 500, and all simulation results are obtained from 500

iterations.

The structural function g(·;u) is speci�ed as follows:

g(x;u) = 2× {FB(x;αm(u), βm(u))− FB(0.5;αm(u), βm(u))},

where FB(·;α, β) the beta distribution function with parameters α and β. These parameters

are set to be αm(u) = 4 + Φ−1(u) and βm(u) = 4 − Φ−1(u) for each u ∈ {0.25, 0.5, 0.75}.
This speci�cation of g implies that the location normalization is satis�ed with x̄(u) = 0.5.
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We use B-spline sieve spaces to approximate g and h, and the order of the sieve spaces is

set to be proportional to n1/7 with various combinations between the number of interior

knots and the order of the B-spline function.18 The selection probabilities are estimated

by the series logit estimator of Hirano et al. (2003) with the B-Spline sieve spaces. The

�nite-sample performance of the sieve estimator of g is measured in terms of the integrated

square bias (IBIAS2), the integrated variance (IV AR), and the integrated mean squared

error (IMSE) over [0.1, 0.9].19

Figure 1 reports simulation results for each u ∈ {0.25, 0.5, 0.75} with n = 500. Each

panel show the true function g(x;u) (the solid line), the median of sieve estimators ĝn(x;u)

for each x over 500 Monte-Carlo simulations (the circle-marked line), and 95% pointwise

Monte-Carlo simulation con�dence bands (the dashed lines). The order of spline functions

and the number of interior knots are set to be 4.

Table 1 provides the Monte-Carlo simulation results with various combinations of the

number of interior knots and the order of basis. All results are obtained from 500 simula-

tions. One can �nd that the �nite-sample performance of the sieve estimator ĝn(·;u) is not
sensitive to the choice of k1n and k2n, where k1nis the order of spline functions and k2n is

the number of interior knots, for u = 0.5. The results in Figure 1 and Table 1 con�rm that

the sieve estimator performs well even in �nite samples.

u = 0.25 u = 0.5 u = 0.75

Figure 1: Simulation results for u ∈ {0.25, 0.5, 0.75} with n = 500 and kn = 7. The solid
line is g(·;u), and the dashed line is the (medianl value of) sieve estimator ĝn(·;u). The
dotted lines are 95% pointwise Monte-Carlo con�dence bands. All simulation results are
obtained from 500 iterations

18The complexity of B-spline sieve spaces (kn) is determined by both the number of interior knots and
the order of B-spline basis. Speci�cally, kn = k1n+k2n, where k1n and k2n are the number of interior knots
and the order of basis, respectively.

19The grid size is 0.01.
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Table 1: Simulation results for various combinations of (k1n, k2n) and n = 500

u kn (k1n, k2n) IBIAS2 IV AR IMSE

0.25 7 (3,4) 0.0046 0.1620 0.1666
0.5 7 (3,4) 0.0046 0.2077 0.2123
0.75 7 (3,4) 0.0023 0.1787 0.1810
0.25 7 (4,3) 0.0027 0.2891 0.2918
0.5 7 (4,3) 0.0014 0.1151 0.1165
0.75 7 (4,3) 0.0111 0.3162 0.3273
0.25 8 (4,4) 0.0053 0.2499 0.2552
0.5 8 (4,4) 0.0012 0.1016 0.1028
0.75 8 (4,4) 0.0032 0.1593 0.1625

8 Conclusion

In this paper, we develop a nonparametric panel quantile regression model with sample

selection. The model is nonseparable and allows for time-invariant endogeneity in a similar

spirit of the �xed e�ects models. To resolve the time-invariant endogeneity of the regressors

and the sample selection bias, we adopt the CRE and control function approaches. In doing

so, we avoid imposing any parametric or semiparametric restrictions on the distribution of

the unobserved error terms, except for a conditional independence condition. The class

of models is general and �exible enough to be extended to address many empirical issues

about data, such as time-varying endogeneity and censoring. We study identi�cation of the

structural functions of the model. Identi�cation requires that the number of time periods

be greater than or equal to 3 (T ≥ 3) and that there exist excluded variables that a�ect the

selection probability. For practically tractable estimation, some semiparametric models are

suggested, and a set of identi�cation conditions for the semiparametric models is provided.

Based on the identi�cation result, we propose to use the PSMD estimation procedure to

estimate the model parameters. We establish the consistency and convergence rates of the

PSMD estimators under low-level conditions and provide a set of conditions under which

the plug-in estimate of a functional of the parameter is asymptotically normal, regardless

of whether the functional is
√
n-estimable or not. A small Monte-Carlo study con�rms that

the proposed estimators perform well in �nite samples.
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A Proofs of the Results in Section 6

In this section, we provide mathematical proofs of the main results in Section 6. We

introduce notation that will be used in the proofs. For any positive real sequences {an}
and {bn}, an ≲ bn means that there exist a �nite constant C > 0 and N ∈ N such that

an ≤ Cbn for all n ≥ N . If an ≲ bn and bn ≲ an, it is denoted by an ≍ bn. Let (F , || · ||F )
be a metric space of real valued function f : X → R. The covering number N(ϵ,F , || · ||F )
is the minimum number of || · ||F ϵ-balls that cover F . The entropy is the logarithm of

the covering number. An ϵ-bracket in (F , || · ||F ) is a pair of functions l, u ∈ F such that

||l||F , ||u||F <∞ and ||u− l||F ≤ ϵ. The covering number with bracketing N[](ϵ,F , || · ||F )
is the minimum number of || · ||F ϵ-brackets that cover F . The entropy with bracketing is

the logarithm of the covering number with bracketing. The bracketing integral is de�ned as∫ δ
0

√
logN[](ϵ,F , || · ||F )dϵ, and it is denoted by J[](δ,F , || · ||F ). ⊗ denotes the Kronecker

product. Let C denote a generic positive and �nite constant. It can be di�erent across

where it appears.

A.1 Proof of Theorem 6.1

Some empirical processes may not be measurable, and thus the expectation operator cannot

be applied to those processes. In such a case, one can replace the expectation operator with

the outer expectation operator. We use the notation E[·] mainly to indicate the expectation

operator, but it may also stand for the outer expectation if its argument is not measurable.

Lemma A.1. Suppose that Assumptions 1, 2, and 3� 5 hold. Then, Assumption 3.1 in

Chen and Pouzo (2015) is satis�ed.

Proof. We begin with verifying Condition (i) of Assumption 3.1 in Chen and Pouzo (2015).

Suppose that there exists α ∈ A such that E [ρu(Y,D,X,Z;α)|X,Z] = 0 a.s. Then, for

each t = 1, 2, ..., T ,

E [ρ1,t(Y,D,X,Z;α)|X,Z] = E
[
Dt − p(Xt, Zt)

∣∣∣X,Z]
= p0(Xt, Zt)− p(Xt, Zt) = 0

almost surely; and therefore, ||p0(Xt, Zt)− p(Xt, Zt)||2 = 0. Consider

E [ρ2,t(Y,D,X,Z;α)|X,Z]

=E
[
Dt {1 (Yt −m(Xt, r(X, p(Xt, Zt);u);u) ≤ 0)− u}

∣∣∣X,Z]
=p0(Xt, Zt) ·

{
FY ∗

t |X,Z,Dt=1(g(Xt, r(X, p(Xt, Zt);u);u)− FY ∗
t |X,Z,Dt=1(g0(Xt, r0(X, p0(Xt, Zt);u);u)

}
.

43



Since inf(x,z)∈Supp(X,Z) p0(x, z) > 0, one obtains that{
FY ∗

t |X,Z,Dt=1(g(Xt, r(X, p(Xt, Zt);u);u)|X,Z)− FY ∗
t |X,Z,Dt=1(g0(Xt, r0(X, p0(Xt, Zt);u);u)|X,Z)

}
= 0

almost surely. Since FY ∗
t |X,Z,Dt=1 is strictly increasing, it follows that

g(Xt, r(X, p(Xt, Zt);u);u) = g0(Xt, r0(X, p0(Xt, Zt);u);u)

almost surely, which implies that g(Xt, r(X, p(Xt, Zt);u);u) is the u-th conditional quantile

of Yt given Dt = 1, X, and Z. Under Assumptions 1 and 2, the structural parameters are

identi�ed, and thus ||g − g0||∞ = ||r − r0||∞ = ||p − p0||∞ = 0.Therefore, condition (i) of

Assumption 3.1 in Chen and Pouzo (2015) is satis�ed.

Condition (ii) of Assumption 3.1 in Chen and Pouzo (2015) is met by Assumption 5.

Condition (iii) of Assumption 3.1 in Chen and Pouzo (2015) is implied by continuity of

FY ∗
t |Dt=1,X,Z(·|x, z) (Assumption 3). Condition (iv) of Assumption 3.1 in Chen and Pouzo

(2015) holds as we choose the weighting matrix to be the identity matrix. As a result,

Assumption 3.1 in Chen and Pouzo (2015) is satis�ed. ■

Lemma A.2. Suppose that Assumptions 4, 5, and 6 hold. Then, Assumption 3.3 in Chen

and Pouzo (2015) holds.

Proof. It is obvious that Condition (i) of Assumption 3.3 in Chen and Pouzo (2015) is met

under Assumptions 4 and 5. I verify the conditions of Lemma C.2-(iii) in Chen and Pouzo

(2012). Assumption C.1 in Chen and Pouzo (2012) is met under Assumptions 3 and 6.

Note that supα∈An
|ρ(W, α)| ≤ 2, and thus Condition (i) of Assumption C.2 in Chen and

Pouzo (2012) is satis�ed. Assumption 6 implies that condition (ii) of Assumption C.2 in

Chen and Pouzo (2012) is satis�ed with bm,J = J
−pm/T ·(dx+dz)
n (e.g., Newey (1997)).

Finally, note that

sup
α̃∈AM0

n :||α−α̃||∞≤δ

∣∣∣ρ(A, α)− ρ(A, α̃)
∣∣∣2

≤ sup
α̃∈AM0

n :||α−α̃||∞≤δ

Dt {1 (Yt ≤ g(Xt, r(X, p(Xt, Zt)))− δ)− 1 (Yt ≤ g(Xt, r(X, p(Xt, Zt))) + δ)}

by the same logic to Chen et al. (2003, p.1600). Therefore, under Assumptions 4 and 6, it
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follows that

max
j≤Jn

E

[ϕJnj (X,Z)
]2

· sup
α̃∈AM0

n :||α−α̃||∞≤δ

∣∣∣ρ(A, α)− ρ(A, α̃)
∣∣∣2


≲ max
j≤Jn

E
[[
ϕJnj (X,Z)

]2
·
{
FY ∗

t |X,Z,Dt=1(g(Xt, r(X, p(Xt, Zt)))− δ)− FY ∗
t |X,Z,Dt=1(g(Xt, r(X, p(Xt, Zt))) + δ)

}]
≲ max

j≤Jn
E
[[
ϕJnj (X,Z)

]2
· δ
]
≤ K2δ

for some positiveK. By Remark C.1 in Chen and Pouzo (2012), Assumption C.2-(iv) is also

satis�ed. In all, there exist �nite constant K > 0 and δ2m,n = max
{

Jn
n , J

−2pm/T ·(dx+dz)
n

}
such that

KE
[
||m(X,Z;α)||2E

]
−Op(δ

2
m,n) ≤

1

n

n∑
i

||m̂n(Xi,Zi;α)||2E ≤ KE
[
||m(X,Z;α)||2E

]
+Op(δ

2
m,n)

uniformly over α ∈ Aosn. Under Assumption 6, δ2g,n = o(1); and therefore, Assumption

3.3-(ii) in Chen and Pouzo (2015) is satis�ed. ■

Proof of Theorem 6.1

Proof. Under the set of conditions imposed in Theorem 6.1, Lemma A.1 shows that As-

sumption 3.1 in Chen and Pouzo (2015) is satis�ed. Assumption 3.2 in Chen and Pouzo

(2015) is directly imposed by Assumption 7. Assumption 3.3 in Chen and Pouzo (2015) is

implied by Lemma 6. Therefore, applying Lemma 3.1 in Chen and Pouzo (2015) establishes

the result of Theorem 6.1. ■

A.2 Proof of Theorem 6.2

Proof. Since the conditional density of Y ∗
t on Dt = 1, X, and Z is uniformly bounded for

any t = 1, 2, ..., T under Assumption 8, it is straightforward to see that

||α1 − α2||2 ≍ ||α1 − α2||22. (20)

This implies that the sieve measure of local ill-posedness is constant (cf. Chen and Pouzo

(2015, p.1030)) and that Assumption 3.4-(i) in Chen and Pouzo (2015) is satis�ed. As-

sumption 9 implies that

E
[
||m(X,Z;α)||2E

]
≍ ||α− α0||2

for all α ∈ Aos; and therefore, condition (ii) of Assumption 3.4 in Chen and Pouzo (2015)

is also met.

De�ne Q0(α) ≡ E
[
||m(X,Z;α)||2E

]
. Then, one obtains that, under Assumptions 5 and
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8,

Q0(πnα0)

≲
T∑
t=1

{
|πnp0(Xt, Zt)− p0(Xt, Zt)|2 + |{FY ∗

t |Dt=1,X,Z (πng0(Xt, πnr0(X, πnp0(Xt, Zt)))|X,Z)− u}p0(Xt, Zt)|2
}

=O
(
k
−2σp
p,n

)
+O

(
||πnα0 − α0||22

)
≲ O

(
k
−2σg
g,n + k−2σr

r,n + k
−2σp
p,n

)
since |p0(x, z)| ≤ 1 and u = FY ∗

t |Dt=1,X,Z (g0(Xt, r0(X, p0(Xt, Zt)))|X,Z). In addition,

Lemma A.2 shows that Q̂n(α) ≥ cQ(α)−Op

(
δ2m,n

)
for some constant c > 0 uniformly over

Aosn. This, together with Assumption 10-(i), results in that condition (iii) of Assumption

3.4 in Chen and Pouzo (2015) holds. Lastly, Assumptions 7-(i) directly implies condition

(iv) of Assumption 3.4 in Chen and Pouzo (2015).

In all, the conditions of Lemma 3.2 Chen and Pouzo (2015) are satis�ed, and thus the

result of Theorem 6.2 follows from Lemma 3.2 in Chen and Pouzo (2015). ■

A.3 Proof of Theorem 6.3

Let AC0
n ≡ {α ∈ An : λnPen(α) ≤ λnC0} and Oon ≡ {ρ(·, α)− ρ(·, α0) : α ∈ Nosn}. Before

proving Theorem 6.3, we provide a lemma that will be used in the proof.

Lemma A.3. Let F be a class of function of a random vector X and G ≡ {1(Y ≤ f) : f ∈
F} with a random variable Y . Suppose that FY |X is absolutely continuous with respect to

the Lebesgue measure with its density function fY |X uniformly bounded by a �nite constant

Cf . Then,

N[](
√
Cf ϵ,G, || · ||2) ≤ N[](ϵ,F , || · ||2).

Proof. Let ϵ > 0 be given and {(li, ui) : i = 1, 2, ..., N[](ϵ,F , || · ||2)} be a set of ϵ-brackets

for F . De�ne {(1(Y ≤ li),1(Y ≤ ui)) : i = 1, 2, ..., N[](ϵ,F , || · ||2)}, and it will be

shown that it is a set of Cϵ-brackets for G. It is straightforward to see that, for any

f ∈ F , there exists (li, ui) such that li ≤ f ≤ ui and ||ui − li||2 ≤ ϵ, and thus that

1(Y ≤ li) ≤ 1(Y ≤ f) ≤ 1(Y ≤ ui). In addition, it follows that

||1(Y ≤ ui)− 1(Y ≤ li)||22 = E[1(Y ≤ ui)− 1(Y ≤ li)]

= E[FY |X(ui|X)− FY |X(li)]

≤ Cf · ||ui − li||2 ≤ Cf ϵ

by the de�nition of (li, ui) and a property of indicator functions. Therefore, {(1(Y ≤
li),1(Y ≤ ui)) : i = 1, 2, ..., N[](ϵ,F , || · ||2)} is a set of

√
Cf · ϵ-brackets for G. By the

minimality of the bracketing number, one obtains the inequality. ■

The following lemma shows that Assumption 3.6-(i) in Chen and Pouzo (2015), which
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is a su�cient condition for the result in Theorem 6.3, holds under the conditions imposed

in Theorem 6.3.

Lemma A.4. Suppose the conditions of Theorem 6.3 hold. Then, Assumption 3.6-(i) in

Chen and Pouzo (2015) holds.

Proof. We verify the conditions in Lemma 5.1 in Chen and Pouzo (2015). Note that As-

sumptions 1, 2, and 3�10 imply Assumptions 3.1 � 3.4 in Chen and Pouzo (2015). Therefore,

it is enough to show that Assumption 3.6 in Chen and Pouzo (2015) is satis�ed. Since As-

sumption 3.6-(i) in Chen and Pouzo (2015) is implied by Assumptions A.4 � A.7 in Chen

and Pouzo (2015), we verify these su�cient conditions.

Assumptions 3 and 6 imply that Assumption A.4 in Chen and Pouzo (2015) is satis�ed

with sup
(x,z)∈Supp(X,Z),α∈AM0

n
|m(x, z;α)− ϕJn(x, z)

′
β0m,n| = O (J−σm

n ) = o(1).

Let ρn(X,Z) ≡ 1T ⊗

[
2

2

]
, then sup

α∈AC0
n

|ρ(X,Z;α)| ≤ ρn(X,Z) almost surely and

E [ρn(X,Z)] < ∞. Therefore, condition (i) of Assumption A.5 in Chen and Pouzo (2015)

is met. Since, for any α, α̃ ∈ Nosn, ||α − α̃||2 ≤ δ implies that ||α − α̃||∞ ≤ Cδ for some

C > 0 by the compact embedding theorem in Freyberger and Masten (2019) (i.e., Theorem

1 in Freyberger and Masten (2019)), it follows that

E

[
sup

α∈Nosn:||α−α̃||2≤δ
||ρ(A, α)− ρ(A, α0)||2E

∣∣∣X,Z] ≤ K(X,Z) · δ,

and this implies that Assumption A.5-(ii) in Chen and Pouzo (2015) is satis�ed with κ =

1/2.

Let Qn ≡ {g(·, r(·, p(·, ·))) : α ∈ Aosn}. Then, by Lemma A.3, it follows that

N[] (ω (Mnδ2,n)
κ ,Oon, || · ||2) ≤ N[]

(
ω2 (Mnδ2,n)

2κ

C
,Qn, || · ||2

)

under Assumption 6 -(iii). Since the class of functions, Qn, is Lipschitz with respect to

α ∈ An with a �nite Lipschitz constant, applying Theorem 2.7.11 in Van der Vaart andWell-

ner (1996) results in that N[]

(
ω2(Mnδ2,n)

2κ

C ,Qn, || · ||2
)
≤ N

(
ω2(Mnδ2,n)

2κ

C′ ,An, || · ||2
)
. Since

An = Gn × Rn × Pn, the covering number N
(
ω2(Mnδ2,n)

2κ

C′ ,An, || · ||2
)
is bounded by the

product ofN
(
ω2(Mnδ2,n)

2κ

CG
,Mn, || · ||2

)
, N

(
ω2(Mnδ2,n)

2κ

CR
,Rn, || · ||2

)
, andN

(
ω2(Mnδ2,n)

2κ

CP
,Pn, || · ||2

)
for some �nite constants CG,CR, and CP . In all, it follows from Lemma 2.5 in Van de Geer

(2000) that

N[] (ω (Mnδ2,n)
κ ,Oon, || · ||2) ≲

(
1 +

C

ω2 (Mnδ2,n)
2κ

)kg,n+kr,n+kp,n
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for some constant C and κ = 1/2. Therefore,∫ 1

0

√
1 + log

(
N[] (ω (Mnδ2,n)

κ ,Oon, || · ||2)
)
dω

≲
∫ 1

0

√√√√1 + (kg,n + kr,n + kp,n) log

(
1 +

C

ω2 (Mnδ2,n)
2κ

)
dω

≲
√
(kg,n + kr,n + kp,n) ·

1

(Mnδ2,n)
κ

∫ 1

0

√
1

ω
dω

=O

(√
(kg,n + kr,n + kp,n) ·

1

(Mnδ2,n)
κ

)
,

where the second inequality holds as log(1+t) ≤
√
t for all t ≥ 0. Let

√
Dn ≡

√
(kg,n + kr,n + kp,n)·

1
(Mnδ2,n)

κ . Then,

nδ22,n (Mnδ2,n)
1/2

√
Dnmax

{
(Mnδ2,n)

1/2
√
Dn,Mn

}
=nδ22,n (Mnδ2,n)

1/2 ·
√

(kg,n + kr,n + kp,n)

=o(1)

under Assumption 13; and thus, condition (iii) of Assumption A.5 in Chen and Pouzo

(2015) is satis�ed. Condition (iv) of Assumption A.5 in Chen and Pouzo (2015) is trivial

under Assumption 13.

Let

B1,t(X,Z;α0) ≡ g
′
0(Xt, r0(X, p0(Xt, Zt))),

B2,t(X,Z;α0) ≡ g
′
0(Xt, r0(X, p0(Xt, Zt)))r

′
0(X, p0(Xt, Zt)),

where g
′
0(x, r) ≡

∂g0(x,r)
∂r and r

′
0(x, p) ≡

∂r0(x,p)
∂p . Then,

dmt(X,Z;α0)

dα
[u∗n] =

[
−u∗p.n

fY ∗
t |Dt=1,X,Z(q0|X,Z) · p0(Xt, Zt)

{
u∗g,n +B1,t(X,Z;α0) · u∗r,n +B2,t(X,Z;α0) · u∗p,n

}]

for each t = 1, 2, ..., T .

De�ne

m̃(Xi,Zi;α0) ≡ ϕJn(Xi,Zi)
′

(
n∑
i

ϕJn(X,Z)ϕJn(X,Z)
′

)− n∑
i

ϕJn(Xi,Zi)m(Xi,Zi;α0)

and

dm̃t(Xi,Zi;α0)

dα
[u∗n] ≡ ϕJn(Xi,Zi)

′

(
n∑
i

ϕJn(X,Z)ϕJn(X,Z)
′

)− n∑
i

ϕJn(Xi,Zi)
dmt(Xi,Zi;α0)

dα
[u∗n]
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for each t = 1, 2, ..., T .

Conditions (i) and (ii) of Assumption A.6 in Chen and Pouzo (2015) are satis�ed by

Assumptions 7-(i), 12-(i), and 13.

For condition (iii) of Assumption A.6 in Chen and Pouzo (2015), I verify the conditions

of Lemma 1 in Chen et al. (2003). Let

Fn ≡
{
||m(X,Z;α)||2E : α ∈ Aosn

}
.

Note that

||m(X,Z;α)||2E =

T∑
t=1

||mt(X,Z;α)||2E

=

T∑
t=1

{{
p0(Xt, Zt)

(
FY ∗

t |Dt=1,X,Z(q|X,Z)− u
)}2

+ (p(Xt, Zt)− p0(Xt, Zt))
2

}
,

and this leads to that

E
[(
||m(X,Z;α)||2E − ||m(X,Z;α0)||2E

)2]
=E

[
||m(X,Z;α)||4E

]
≲E

[{
p0(Xt, Zt)

(
FY ∗

t |Dt=1,X,Z(q|X,Z)− u
)}4

+ (p(Xt, Zt)− p0(Xt, Zt))
4

]
≲E

[(
FY ∗

t |Dt=1,X,Z(q|X,Z)− u
)2

+ (p(Xt, Zt)− p0(Xt, Zt))
2

]
≲||α− α0||22

by the fact that FY ∗
t |Dt=1,X,Z(q0|X,Z) = u and Assumptions 4 and 6-(v). This implies that

||m(X,Z;α)||2E is L2-continuous at α = α0. By using a similar argument and Theorem

2.7.11 in Van der Vaart and Wellner (1996), one obtains that∫ ∞

0
logN[] (ϵ,Fn, || · ||2) ≤

∫ ∞

0
logN[]

( ϵ
C
,An, || · ||2

)
= O

(√
(kg,n + kr,n + kp,n)

)
<∞.

Applying Lemma 1 in Chen et al. (2003) results in that

sup
Nosn

1

n

n∑
i

{
||m(X,Z;α)||2E − E

[
||m(X,Z;α)||2E

]}
= op

(
n−1/2

)
,

and thus, condition (iii) of Assumption A.6 in Chen and Pouzo (2015) is met. De�ne Fn ≡{
dm(X,Z;α0)

dα [u∗n]
′{m(X,Z;α)−m(X,Z;α0)} : α ∈ Nosn

}
. By using the same argument to

that of the proof of Proposition 6.1 in Chen and Pouzo (2015), it is enough to show that

under Assumption 6,

||Fn(X,Z)||2 = o(1),
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where Fn(x, z) ≡ supf∈Fn
|f(x, z)|. Observe that

||Fn||22 = E

[(
dm(X,Z;α0)

dα
[u∗n]

′
sup

α∈Nosn

|m(X,Z;α)−m(X,Z;α0)|
)2
]

≤ E
[
dm(X,Z;α0)

dα
[u∗n]

′ dm(X,Z;α0)

dα
[u∗n]

]
· E
[

sup
α∈Nosn

(m(X,Z;α)−m(X,Z;α0))
2

]
≲ E

[
dm(X,Z;α0)

dα
[u∗n]

′ dm(X,Z;α0)

dα
[u∗n]

]
· sup
α∈Nosn

||α− α0||22

≲M2
nδ

2κ
2,n = o(1).

Then, one obatins that

sup
α∈Nosn

1

n

n∑
i

{
dm(X,Z;α0)

dα
[u∗n]

′
m(X,Z;α)− E

[
dm(X,Z;α0)

dα
[u∗n]

′{m(X,Z;α)

]}
= op

(
n−1/2

)
.

In all, all conditions of Assumptions A.6 in Chen and Pouzo (2015) are satis�ed.

Condition (i) of Assumption A.7 in Chen and Pouzo (2015) is implied by Assumption

12-(ii).

Note that under Assumption 12-(ii), we have for each t = 1, 2, ..., T ,

d2m1,t(X,Z;α)

dα2
[u∗n, u

∗
n] = 0

and

d2m2,t(X,Z;α)

dα2
[u∗n, u

∗
n]

=f
′

Y ∗
t |Dt=1,X,Z(Q|X,Z)p(Xt, Zt)

{
u∗g,n +B1,t(X,Z;α) · u∗r,n +B2,t(X,Z;α) · u∗p,n

}
· u∗g,n

+ f
′

Y ∗
t |Dt=1,X,Z(Q|X,Z)p(Xt, Zt)

{
u∗g,n +B1,t(X,Z;α) · u∗r,n +B2,t(X,Z;α) · u∗p,n

}
g
′
(Xt, r(X, p(Xt, Zt)))u

∗
r,n

+ fY ∗
t |Dt=1,X,Z(Q|X,Z) · p(Xt, Zt)

{
∂rB1,t(X,Z;α)u

∗
r,n + ∂rB2,t(X,Z;α)u

∗
p,n

}
u∗r,n

+
{
u∗g,n +B1,t(X,Z;α) · u∗r,n +B2,t(X,Z;α) · u∗p,n

}
· Ct(X,Z;α) · u∗p,n

+ fY ∗
t |Dt=1,X,Z(Q0|X,Z) · p(Xt, Zt) ·

{
∂pB1,t(X,Z;α)u

∗
r,n + ∂pB2,t(X,Z;α)u

∗
p,n

}
u∗p,n,

where Ct(X,Z;α) ≡ f
′

Y ∗
t |Dt=1,X,Z(Q0|X,Z)p0(Xt, Zt)g

′
(Xt, r(X, p(Xt, Zt)))·r

′
(X, p(Xt, Zt))+

fY ∗
t |Dt=1,X,Z(Q0|X,Z). Therefore, for any α ∈ Nosn, it follows from the mean value theorem

that ∣∣∣∣∣∣dm(X,Z, α)

dα
[u∗n]−

dm(X,Z, α0)

dα
[u∗n]

∣∣∣∣∣∣2
E
≤ ||d

2m(X,Z; α̃)

dα2
[α− α0, u

∗
n]||2E

≲ ||u∗n||22 · ||α− α0||2E
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by conditions (ii) and (iii) of Assumption 12. Thus,

E
[

sup
α∈Nosn

∣∣∣dm(X,Z, α)

dα
[u∗n]−

dm(X,Z, α0)

dα
[u∗n]

∣∣∣∣∣∣2
E

]
(Mnδ2,n)

2 ≲ ||α− α0||22 (Mnδ2,n)
2

≲ (Mnδ2,n)
4 = o

(
n−1

)
by Assumption 13, which implies that condition (ii) of Assumption A.7 in Chen and Pouzo

(2015).

Condition (iii) of Assumption A.7 in Chen and Pouzo (2015) is satis�ed under Assump-

tions 12 and 13 since

E
[

sup
α∈Nosn

∣∣∣∣∣∣d2m(X,Z;α)

dα2
[u∗n, u

∗
n]
∣∣∣∣∣∣
E

]
≲ ||u∗g,n||22 + ||u∗r,n||22 + ||u∗p,n||22 <∞.

Lastly, note that one can show that for any α1 ∈ Nos and α2 ∈ Nosn,∣∣∣∣∣∣dm(X,Z, α1)

dα
[α2 − α0]−

dm(X,Z, α0)

dα
[α2 − α0]

∣∣∣∣∣∣
E

≲||α2 − α0||E · ||α1 − α0||E

by using a similar argument to before. In addition,

E

[(
dm(X,Z;α0)

dα
[u∗n]

)′ (
dm(X,Z, α1)

dα
[α2 − α0]−

dm(X,Z, α0)

dα
[α2 − α0]

)]

≤

√√√√√E

∣∣∣∣∣
∣∣∣∣∣dm(X,Z;α0)

dα
[u∗n]

∣∣∣∣∣
∣∣∣∣∣
2

E

 ·

√√√√√E

∣∣∣∣∣
∣∣∣∣∣
(
dm(X,Z, α1)

dα
[α2 − α0]−

dm(X,Z, α0)

dα
[α2 − α0]

) ∣∣∣∣∣
∣∣∣∣∣
2

E



≲

√√√√√E

∣∣∣∣∣
∣∣∣∣∣dm(X,Z;α0)

dα
[u∗n]

∣∣∣∣∣
∣∣∣∣∣
2

E

 · ||α2 − α0||2 · ||α1 − α0||2 ≲ (Mnδ2,n)
2 = o

(
n−1/2

)

by Assumptions 7-(i), 13, and 12-(iii). Thus, condition (iv) of Assumption A.7 in Chen and

Pouzo (2015) is satis�ed.

In all, it follows from Lemma 5.1 in Chen and Pouzo (2015) that Assumption 3.6(i) in

Chen and Pouzo (2015) is satis�ed. ■

Proof of the Theorem

Proof. Assumption 11 is identical to Assumption 3.5 in Chen and Pouzo (2015). Assump-

tion 3.6(ii) in Chen and Pouzo (2015) is directly imposed by Assumption 14. By Lemma

A.4, Assumptino 3.6(i) in Chen and Pouzo (2015) is satis�ed. Therefore, applying Theorem

4.1 in Chen and Pouzo (2015) yields the result.

For the second result, Assumption B in Chen and Pouzo (2015) is imposed by As-
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sumption 15. By Lemma 5.1 in Chen and Pouzo (2015) and the proof of Theorem 6.3,

we conclude that conditions of Theorem 4.3 in Chen and Pouzo (2015) are all met. Since

the PSMD estimator α̂n under Assumption 10 is not optimally weighted, the �rst part of

Theorem 4.3 in Chen and Pouzo (2015) completes the proof. ■
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