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Abstract. We develop a class of tests for time series models such as multiple

regression with growing dimension, infinite-order autoregression and nonparametric

sieve regression. Examples include the Chow test and general linear restriction

tests of growing rank p. Employing such increasing p asymptotics, we introduce

a new scale correction to conventional test statistics which accounts for a high-

order long-run variance (HLV) that emerges as p grows with sample size. We also

propose a bias correction via a null-imposed bootstrap to alleviate finite sample

bias without sacrificing power unduly. A simulation study shows the importance

of robustifying testing procedures against the HLV even when p is moderate. The

tests are illustrated with an application to the oil regressions in Hamilton (2003).
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1. Introduction

This paper develops asymptotically valid tests for inference on infinite-order and

growing dimensional time series regression models, revealing the presence of an hith-

erto undetected nonlinear serial dependence or high-order long-run variance (HLV)

factor. This factor depends on the model error and regressors in a nonlinear fash-

ion, and can appear in limit distributions when the data exhibit dependence and the

number of restrictions grows. Chow tests and tests for linear restrictions are both

covered. Our theory, simulations and empirical results show the deleterious effect

of ignoring the HLV term, and we propose a testing procedure that is robust to its

presence. This is shown to possess desirable finite sample properties. While the

HLV factor is revealed by our increasing dimension asymptotics, it can contaminate

inference even in multiple regressions with a moderate number of covariates. Such

specifications are ubiquitous in practice. Thus, the findings and recommendations of

this paper are important for practitioners wishing to make correct inferences when

data are dependent.

Models of infinite or growing dimension have been widely studied in the recent

econometric literature, reflecting modern applications with rich sets of variables. For

example, the asset pricing literature has suggested hundreds of potential risk factors

to explain returns, see Feng et al. (2020). With a larger number of observations accu-

mulating over time, it is natural to include more of these variables as covariates even

without resorting to penalized estimation methods. In fact, an attitude that permits

the number of covariates to grow as a function of sample size is tacitly adopted in the

literature. In a survey, Koenker (1988) observed that the number of regressors in em-

pirical work increases as the sample size n increases, roughly like n1/4, suggesting that

practitioners implicitly treat model complexity as a function of sample size. Finally,

nonparametric methods such as series estimation have found wide applications in the

economics and finance literature, see e.g. Jordà (2005), Chen (2007), Chen and Chris-

tensen (2015). These methods involve the approximation of an infinite-order model

with a sequence of growing dimensional models. Taken together, this proliferation
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of models highlights the importance of developing appropriate techniques for their

study.

Our approach is to develop tests for null hypotheses that involve a growing number

of restrictions p in time series regression, with p increasing slower than sample size.

As a leading example, we consider the Chow test, due to Chow (1960), to test for

a structural break at a prescribed time. This has the advantage of being a simple

exclusion restriction test with wide applicability. After examining the key issues in

this simple context, we present results for the testing of general linear restrictions.

This extends specification tests with slowly growing p, see e.g. Hong and White (1995)

and Gupta (2018), to time series regression. However, our testing problem is distinct

from the so-called ‘many restrictions’ setting in e.g. Calhoun (2011), Anatolyev (2012,

2019), Kline et al. (2020), amongst others, where the number of restrictions grows

proportionally to sample size.

We derive the asymptotic distribution of the Chow test Wald statistic centered by

p and normalized by
√

2p. This yields asymptotic normality with an unknown as-

ymptotic variance V , which we term the HLV, provided that p meets certain growth

conditions. The HLV factor V captures high-order autocovariances of the regressors

and disturbances, echoing the long-run variance that appears in fixed dimensional

time series regression, and vanishes under simplifying assumptions that remove these

high-order autocovariances. The new HLV factor V does not appear in fixed p asymp-

totic regimes, nor does it appear in the independent data setting of Hong and White

(1995), who use the same transformation and obtain asymptotic standard normality.

We robustify the Chow test against the HLV by a random scaling because of nu-

merical evidence that asymptotic normal inference based on consistent estimators of

HLV performs poorly in finite samples, reported in Section 6. The random scaling

is motivated by heteroskedasticity autocorrelation robust (HAR) inference, see e.g.

Kiefer and Vogelsang (2002), Sun (2014), and Lazarus et al. (2018), just to name a

few. The resulting asymptotic distribution is pivotal. However, unlike conventional

HAR inference, where the standard Wiener process characterizes mixed normality,
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our limit distribution is represented by two dependent centered Gaussian processes

W (r) and W̄ (r) such that EW (r)2 = r2 and EW̄ (r)2 = (1 − r)2. Although pivotal,

the asymptotic distribution depends on the location of the hypothesized break date

and thus we provide R code to compute the p-values. Similarly, we robustify the

general linear restrictions Wald test to the HLV and provide suitable R code.

Finite sample bias in the Wald statistic, or in quadratic statistics more generally, is

a serious issue when p is large. See e.g. Kline et al. (2020) for more discussion and a

bias correction proposal that works well even when p is proportional to the sample size

but under independent sampling. Our simulations document that the problem is even

worse in time series regression. Thus, we propose a bootstrap bias correction which

imposes the null hypothesis in the resampling so as not to sacrifice power unduly.

Even a small number of bootstrap iterations appear sufficient to reduce the bias,

making computation easily manageable. Based on these findings, we recommend a

bias-corrected and HLV-robust test to practitioners.

In simulations for a range of settings across regression with many covariates, long

AR fits and sieve regression, we demonstrate that our statistic exhibits excellent

size control without sacrificing power excessively. Failure to correct for the HLV

can seriously affect inference, in general leading to over-rejection and often severely

so. Such a pattern is shown to persist for the two types of tests that we provide:

Chow tests and exclusion restrictions. In an empirical example based on Hamilton

(2003, 2009), we show that using our bias-corrected and HLV-robust tests can yield

inferences that lead to new conclusions when considering the relation between oil

prices and economic activity.

The paper is organized as follows. Section 2 introduces the model and the Chow

test, along with some basic assumptions and examples. In Section 3 we provide an

asymptotic theory while Section 4 introduces our HLV-robust and bias-corrected test

statistic. The testing of general linear restrictions is covered in Section 5. Section

6 contains a Monte Carlo study of finite sample performance, and Section 7 demon-

strates our test with real data. All the proofs of theorems and lemmas are collected
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in two further appendices, the second of which is available online. Throughout the

paper, cross-referenced items prefixed with ‘S’ can be found in this online supplemen-

tary appendix. An R-package to reproduce the simulations and empirical example is

available in the replication files.

2. Chow Test in Growing and Infinite-Order Regression

We consider the issue of testing for a structural break at a known point in the con-

ditional mean function of yt given the information available up to t−1, ie E (yt|Ft−1) ,

where Ft−1 denotes the filtration up to time t− 1. In nonparametric regression, Ft−1
typically consists of a finite number of observable covariates zt. In the context of the

infinite order autoregressive AR(∞) model, Ft−1 is the collection of all the lagged

dependent variables, {yt−j}j≥1. Alternatively, it can be viewed as a genuine high-

dimensional regression model which may contain an infinite number of covariates and

their lags. We allow for array structure but we do not introduce further notation to

denote it unless necessary.

Given a sample of size n, we estimate the unknown regression function via a

growing-dimensional (or truncated) linear regression

(2.1) yt = x′ntβn + ent,

where xnt and βn are p-dimensional vectors and p → ∞ as n → ∞ to estimate

E (yt|Ft−1) consistently. To be more precise, let

εt = yt − E (yt|Ft−1) ,

βn be the best linear predictor of yt given xnt, and rnt = E (yt|Ft−1)− x′ntβn. Then,

ent = rnt + εt. Throughout the paper, let C (c) denote a generic positive and finite

constant, arbitrarily large (small) but independent of n, and ‘a.s.’ stand for ‘almost

surely’. Introduce the following assumptions:

Assumption 1. The martingale difference sequence {εt} satisfies σ2
t ≤ C, where

E (ε2t |Ft−1) = σ2
t , and E (ε4t |Ft−1) ≤ C, a.s.
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The theory presented in the paper may not hold if in fact we only have E (xntεt) = 0

as the long run variance of xntεt will then appear in the type of quadratic statistics

that we consider.

Assumption 2. For a = 1, 2,

(2.2) sup
t
E
(
r2ant
)

= o
(
n−1
)
.

We discuss this assumption on the negligibility of the approximation error in more

detail in Section 6, where specific examples are introduced. The subscript n will now

usually be dropped, although we will emphasize this occasionally to remind the reader

of the n-dependence of certain quantities.

Introduce a potential structural break for these models at a given time, say t = [nγ],

γ ∈ Γ ⊂ (0, 1), with Γ compact and [·] denoting the integer part of the argument.

That is, β = β1 if t/n ≤ γ and β = β2 if t/n > γ. We write the model as

(2.3) yt = x′tβ11 {t/n ≤ γ}+ x′tβ21 {t/n > γ}+ et = x′tδ1 + x′tδ21 {t/n > γ}+ et,

where δ1 = β1, δ2 = β2 − β1, and 1 {·} denotes the indicator function. Consider the

Wald test for the exclusion restriction δ2 = 0, namely the Chow test for the presence

of a structural break at a known date.

Let δ̂ (γ) and êt (γ) denote the OLS estimate and the OLS residuals, respectively,

and xt (γ) := (x′t, x
′
t1 {t/n > γ})′. Also, let M̂ (γ) = n−1

∑n
t=1 xt (γ)xt (γ)′ , and

Ω̂ (γ) denote an estimator of Eε2txt (γ)x′t (γ). For instance, Ω̂ (γ) can be set as

n−1
∑n

t=1 xt (γ)xt (γ)′ êt (γ)2 (the Eicker-White formula) or, assuming conditional ho-

moskedasticity, it can be σ̂ (γ)2 M̂ (γ), where σ̂2 (γ) = n−1
∑n

t=1 êt (γ)2. The choice

depends on the case being considered. Then, the Wald statistic for the familiar Chow

test is defined as

(2.4) Wn (γ) := nδ̂2 (γ)′
(
RM̂ (γ)−1 Ω̂ (γ) M̂ (γ)−1R′

)−1
δ̂2 (γ) ,

where R = (0p×p : Ip) is a selection matrix.
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When the dimension p of xt grows with the sample size n, the Wald statistic

diverges as it is approximately chi-squared distributed with p degrees of freedom.

Thus, a conventional approach, as used e.g. by de Jong and Bierens (1994) and Hong

and White (1995) in the cross-sectional (independent data) framework is to introduce

a new centering and scaling to define

(2.5) Qn (γ) := (Wn (γ)− p) /
√

2p,

since the mean and variance of a chi-square distribution with p degrees of freedom

are p and 2p, respectively. Furthermore, it has been established that the standard

normal approximation of Qn is valid in their settings. Subsequent sections investigate

how this conventional approach fails in the context of growing or infinite dimensional

time series models, mirroring the failure of time series inference procedures without

heteroskedasticity and autocorrelation correction or robustification.

3. Asymptotic Distribution of Qn

This section provides the asymptotic distribution of the Chow test statistic under

the null and also shows that the statistic has non-trivial power against local alterna-

tives at an appropriate nonparametric rate.

There has been some recent interest in the so-called many regressor setting where

p is allowed to be proportional to n, see e.g. Cattaneo et al. (2018) and Kline et al.

(2020). We do not permit such a large p as our hypothesis of interest concerns a

p-dimensional restriction and the design matrix of time series data faces more diffi-

culties in satisfying the rank condition. In this regard, Chen and Lockhart (2001)

provide an interesting example from an ANOVA design where the weak convergence

of the empirical distribution of residuals from the linear regression with growing di-

mension fails when the dimension p is of order n1/3. They compare various growth

conditions for p in the literature and conclude that p3 log2 p = o (n) is nearly neces-

sary for a general stochastic design. Heuristically, a hypothesis represented through

the empirical distribution function imposes an infinite number of restrictions, like our
7



structural break testing also does, and valid testing of such a hypothesis demands a

tighter control on the growth rate of p.

3.1. Asymptotic Null Distribution. Define ‖A‖ =
{
λ(A′A)

} 1
2 for a generic ma-

trix A, where λ (respectively λ) denotes the smallest (largest) eigenvalue of a sym-

metric nonnegative definite matrix. Any limit stated as ‘n → ∞’ is taken as both n

and p grow to infinity simultaneously unless specified otherwise. We also introduce

the p× p non-stochastic matrix sequences M and Ω and define

M(γ) =

 M (1− γ)M

(1− γ)M (1− γ)M

 , Ω(γ) =

 Ω (1− γ)Ω

(1− γ)Ω (1− γ)Ω

 .
Assumption 3. (i) supi,tEx

4
ti <∞.

(ii) For r ∈ Γ ∪ {1},∥∥∥∥∥∥n−1
[nr]∑
t=1

xtx
′
t − rM

∥∥∥∥∥∥+

∥∥∥∥∥∥n−1
[nr]∑
t=1

xtx
′
tσ

2
t − rΩ

∥∥∥∥∥∥ = Op (κp) ,

∥∥∥Ω̂ (r)− Ω (r)
∥∥∥ = Op (vp) ,

λ (M) > λn, λ (Ω) > λn,

for some positive sequences of numbers κp, vp and λn satisfying

(3.1) λ−4n
√
p
(
λ−1n κp + vp

)
→ 0 and λ4np→∞.

(iii) limn→∞ λ (M) <∞, limn→∞ λ (Ω) <∞.

Several factors determine the bound κp for nonparametric series regression. It is

proportional to
√
p/n or p/

√
n up to logarithmic factors with iid data, depending

on the choice of basis functions. For dependent data, the mixing decay rate also

contributes to κp. The exact rate vp depends on a particular example. We formally

introduce our examples of multiple linear regression, AR(∞) and nonparametric sieve

regression in Section 6. Primitive conditions and expressions for κp and vp are given

in Propositions B.1 and B.2 in Appendix B, using the results of Peligrad (1982),

Newey (1997), Gonçalves and Kilian (2007) and Chen and Christensen (2015).
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Recall that the eigenvalues of the Kronecker product of two symmetric matrices are

the products of their eigenvalues, and γ is bounded away from zero and one. Thus,

M(γ) and Ω(γ) inherit the eigenvalue restrictions on M and Ω in Assumption 3 (ii)

and (iii), up to positive constants.

To develop the distributional limit of Qn(γ) where both n and p diverge simultane-

ously, we introduce more conditions. Now, for convenience we let ξt = Ω−1/2xtεt, Gt
denote a filtration for ξt, Υt = E (ξtξ

′
t|Gt−1), and Ξs =

∑s−1
t1=1

∑s−1
t2=1 ξt1ξ

′
t2

. The filtra-

tion Gt need not be Ft but a simpler one as long as it makes ξt a mds. Indeed, some

conditions may be easier to verify under simpler filtrations. The next assumption

introduces the HLV factor V formally.

Assumption 4. Suppose that max1≤t≤n λ (Υt) = op (nν), for some ν ∈

[0, 1/3), max1≤t≤nE((ξ′tξt)
2|Gt−1) = op (nω), for some ω ∈ [0, 1 − ν),∑n

t=1

∑t−1
s=1 cov (tr (ΥtΞt) , tr (ΥsΞs)) = o(n4p2), and there exists V such that for l = 0

or [nγ] and for m that is proportional to n

(3.2) lim
n→∞

1

mp
tr

m−1∑
t1=1

m−1∑
t2=1

E
(
ξm+lξ

′
m+lξt1+lξ

′
t2+l

)
= V .

The first condition can be met if moments of λ (Υt) of an order higher than 1/ν are

bounded for all t. The restriction on the summability rate of cov (tr (ΥtΞt) , tr (ΥsΞs))

is related to the dimension p. To gain some insight, consider the case where the

conditional moment Υt is homogeneous, so that Υt = Ip for all t. Then, some tedious

algebra yields that cov (tr (ΥtΞt) , tr (ΥsΞs)) = O(n2p) uniformly over all s, t with

s < t. This implies that the double sum of the covariances is O (n4p) and thus meets

the required condition as p → ∞. Our assumption says that more generally this

double sum over covariances must be o (n4p2) as n, p→∞.

Also, note that under the special case where {xtεt} is an iid sequence, we have

V = limm,p→∞m
−1∑m−1

t=1 p−1trE (ξmξ
′
m)E (ξtξ

′
t) = 1, thus V is an extra factor that

appears in the limit due to nonlinear dependence in the data. In particular, it captures
9



a high-order serial correlation of ξt, while ξt itself does not have serial correlation since

it is a martingale difference sequence.

For mean zero random variables a1i, a2j, a3k, a4l, let cumijkl (a1i, a2j, a3k, a4l) denote

the fourth cumulant.

Assumption 5. {xtiεt}t∈Z is fourth order stationary for all i = 1, . . . , p. Further-

more, supi,j=1,...,p

∑∞
t=−∞ |cij(t)| <∞, where cij(t) = E (xr,iεrxr+t,jεr+t) for integer r,

and supi,j,k,l=1,...,p

∑n
t1,t2,t3=−n |cumijkl (x0,iε0, xt1,jεt1 , xt2,kεt2 , xt3,lεt3)| = O (n2).

This assumption controls the temporal dependence in {xtεt} and is discussed in

Andrews (1991b), for example, wherein sufficient conditions for it to hold are also

provided. The following theorem establishes distributional convergence for a given γ.

Theorem 3.1. Let Assumptions 1- 5 and H0 hold. Then Qn(γ)
d→ N (0,V), for a

given γ ∈ Γ.

Theorem 3.1 highlights the distinctive feature of testing growing number of restric-

tions in time series regressions. Unlike the independent cross-sectional case, we have

to robustify the test against the HLV term V . The provenance of this term can be

illustrated by some formulae, details of which are contained in the full proofs. These

proofs first establish (Theorem SL.B.6) that

(3.3) Qn (γ) :=
Wn(γ)− p√

2p
=
Rn(γ)− p√

2p
+ op(1),

where

Rn(γ) = [γ (1− γ)n]−1

∥∥∥∥∥∥
[nγ]∑
t=1

ξt − γ
n∑
t=1

ξt

∥∥∥∥∥∥
2

=

∥∥∥∥∥n−1/2
n∑
t=1

ψt(γ)ξt

∥∥∥∥∥
2

,(3.4)

and ψt(γ) = (1 (t/n ≤ γ)− γ) /
√
γ(1− γ). Also note that n−1

∑n
t=1 ψt(γ)2 → 1.

Thus, just as for the familiar Wald statistic, we have a quadratic form structure for

Rn(γ). When p is fixed and there is no approximation error, we note that (3.3) has

also been established by Andrews (1993), Cho and Vogelsang (2017) and Sun and

Wang (2021).
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This then yields the approximation

(3.5)
Rn(γ)− p√

2p
= Sn(γ) + op(1),

where

Sn(γ) =
2√
2p

1

n

n∑
t=2

ψt(γ)ξ′t
∑
s<t

ψs(γ)ξs =

√
2√
n

n∑
t=2

vt(γ),

say, by Lemma SL.B.8. Then V = limn,p→∞ 2n−1
∑n

s,t=2 cov (vs(γ), vt(γ)), i.e. the

limiting variance of Sn(γ). Note that the vt(γ) are defined as products of terms of

the type xtεt and the cumulative sum of their lags, implying that the variances of the

vt(γ) themselves contain high-order covariance terms. This explains why we call V a

HLV despite the mds property of the vt(γ), which implies that {vt(γ)} is uncorrelated.

The next section establishes that the test based on Qn has nontrivial local power

under suitable sequences of local alternatives, following which we study more detailed

characteristics of V and develop a HLV-robust test.

3.2. Local Alternatives. We consider a sequence of local alternatives that converge

to the null at p1/4/
√
n-rate to study the local power properties of the test. This is

slower than the usual 1/
√
n parametric rate and has been employed by a number

of other authors, e.g. de Jong and Bierens (1994), Hong and White (1995), Gupta

(2018). It is a cost of the growing-dimensional nature of the problem. Our sequence

of local alternatives is:

(3.6) H` : δ2` = 21/4τp1/4/
√
n,

where τ is a unit length p× 1 vector.

Theorem 3.2. Suppose that Assumptions 1- 5 and H` hold and let τ∞ =

limn→∞ τ
′MΩ−1Mτ . Then, Qn(γ)

d→ N (τ∞γ(1− γ),V).

Note that the noncentrality term is positive, implying nontrivial power of the test

since the critical region is formed byQn(γ) being greater than equal to a critical value.

Also, |τ ′MΩ−1Mτ | ≤ ‖τ‖ ‖M‖2 ‖Ω−1‖ = λ(M)2/λ(Ω) for any n. As Assumption

3 assumes that the numerator λ̄(M) is bounded but the denominator may not be
11



bounded away from zero, τ∞ = limn→∞ τ
′MΩ−1Mτ may diverge to positive infinity

to imply more power.

4. V Robust Testing

In this section we provide a detailed study of the HLV V that our analysis has

discovered. In particular, we present some alternative representations of V that shed

more light on its structure.

4.1. Discussion. We first examine the relevance of V . Specifically, we analyze the

‘pre-limiting’ quantity Vn = 2var
(
n−1

∑n
t=2 ξ

′
tp
−1/2∑t−1

s=1 ξs
)
. This can be rewritten

as

Vn = 2n−1
n−1∑
i=1

(
γ (i, 0) (n− i)/n+ 2

n−i∑
j=1

γ (i, j) (n− i− j)/n

)
,

where

γ (i, j) = p−1E (ξ′tξt−iξ
′
tξt−i−j) = p−1E

(
x′tΩ

−1xt−ix
′
tΩ
−1xt−i−jε

2
t εt−iεt−i−j

)
.

This is a high-order autocovariance and captures a nonlinear serial dependence in

the sequence xtεt, which disappears entirely for j > 0 in independent cross sectional

data. We encounter Vn → V 6= 1 when n−1
∑n−1

i=1

∑n−i
j=1 γ (i, j) (n − i − j)/n has a

nonzero limit, with terms arising that are fourth-order cross-moments of the εt and

xt. Thus, the behaviour of such cross-moments is the key to obtaining non-unity V .

Robinson (1991), studying time series specification testing, encountered a term of the

form E (ε2t εt−iεt−i−j), somewhat different from ours albeit also of cross-moment type,

but imposed conditions that nullify it when j > 0.

The Wald statistic is a quadratic form in the moment process. To establish the limit

of the Wald statistic when the number of variables (i.e., the number of moments) grows

with the sample size, we need to account for the variance of the quadratic form, hence

the appearance of fourth-order dependence of a certain type in the moment process.

A form of fourth-order dependence has also been encountered in HAR testing, see

e.g. Lobato et al. (2002). In Section 6, we present some figures to show how V can

vary for various designs and deviate significantly from unity.
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4.2. HLV-Robust Test Statistic. This section propose a random scaling approach

to robustify our test statistic against the unknown HLV term V . We opt for this

because our numerical experiments in Section 6 (specifically Figure 5 and its discus-

sion therein) reveal poor finite sample performance of the standard sample variance

of qt = (np)−1/2 x′tΩ̂
−1êt

∑t−1
s=1 xsês. The presence of the cumulative sums

∑t−1
s=1 and

the estimated quantities Ω̂−1 and ês in the construction of qt are likely to contribute

to poor finite sample behavior of its sample variance.

The random scaling approach has been employed when consistent estimators of the

asymptotic variance perform poorly in finite samples. For instance, heteroskedasticity

and autocorrelation consistent (HAC) estimators, e.g. Newey and West (1987), An-

drews (1991b), to name but two examples, have been followed by the fixed-bandwidth

kernel approach to obtain an asymptotically pivotal and mixed-normal test, see e.g.

Kiefer et al. (2000) and Lazarus et al. (2018) for a recent review. In the machine

learning literature, Lee et al. (2022) also employ the random scaling approach for

computationally efficient on-line inference based on the stochastic gradient descent

algorithm.

While a simple random scaling can be implemented by the integral of the square of

the partial sum process of centered qt, that is, n−2
∑n

t=1

∑t
s=1(qt − n−1

∑n
i=1 qi)

2, we

present a class of more general random scaling methods following the heteroskedastic-

ity and autocorrelation robust (HAR) inference literature. We note that the resulting

pivotal distributions differ from the HAR literature, however.

Introduce a kernel function k(·) that meets the following conditions.

Assumption 6. (1) For all x ∈ R, k(x) = k(−x) and |k(x)| ≤ 1; k(0) = 1; k(x)

is continuous at zero and almost everywhere on R;
∫
R |k(x)| dx < ∞. (2) For any

b ∈ (0, 1] and ρ ≥ 1, kb (x) = k (x/b) and kρ (x) are symmetric, continuous, piecewise

monotonic, and piecewise continuously differentiable on [−1, 1]. (3)
∫
[0,∞)

k̄(x) <∞,

where k̄(x) = supy≥x |k(y)|.

Since εt and Ω are not directly observable in practice, we replace them with the

least squares estimates as in Section 2 and introduce qt = (np)−1/2 x′tΩ̂
−1êt

∑t−1
s=1 xsês
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and its demeaned version, q̄t = qt − n−1
∑n

t=2 qt. Then, define a feasible estimate of

V by

(4.1) V̂ =
2

n

n∑
t=2

n∑
s=2

k

(
t− s
nb

)
q̄sq̄t.

Thus, we have a seemingly long-run variance estimate, analogous to traditional

HAC/HAR inference, of a nonlinear transformation of the primitive variables.

The choice of bandwidth b has been a topic of much discussion in the HAC litera-

ture. Since V captures high-order autocovariances in the growing dimensional vector

xtεt, the finite sample variation in the estimate V̂ is generally larger than in more

familiar long-run variances, and the moment condition is more expensive. Motivated

by this, we follow a fixed bandwidth approach, as in Sun (2014).

Our estimator is based on the weighting function Kh (r, s) = k (h (r − s)),

where h = 1/b. We present numerical results in this paper with k (u) =

(1− |u|)h 1 {|u| < 1}, employing the Bartlett kernel case with h = 1. Sun (2014)

terms this the sharp kernel estimator. Other options include the steep quadratic ker-

nel estimator and the orthonormal series estimator with K basis function, of which

Sun (2014) contains a more detailed discussion. Sun (2014) also shows that the cen-

tering in q̄t can be conveniently represented through a centered version of Kh(·), that

is, K∗h (r, s) = Kh (r, s)−
∫ 1

0
Kh (τ, s) dτ −

∫ 1

0
Kh (r, τ) dτ +

∫ 1

0

∫ 1

0
Kh (τ1, τ2) dτ1dτ2.

Building on the representation in Lemma 1 of Sun (2014), where the estimate V̂ is

not consistent, we characterize the joint weak limit of V̂ and Qn(γ). For real numbers

a and b, let a ∨ b (a ∧ b) denote their maximum (minimum), and introduce a process

(4.2) Q(γ) =
W (γ)

γ
+

W̄ (γ)

(1− γ)
−W (1),

where
(
W (r) , W̄ (r)

)′
, r ∈ [0, 1], is a bivariate Gaussian process that does not depend

on any model parameters including the break point γ, and has covariance kernel

(4.3) C (r1, r2) =

 (r1 ∧ r2)2 1 {r1 > r2} (r1 − r2)2

1 {r1 < r2} (r1 − r2)2 (1− (r1 ∨ r2))2

 .
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For any given γ ∈ Γ, the marginal distribution of Q(γ) is standard normal. Thus,

the conclusion of Theorem 3.1 can be expressed as Qn(γ)
d→
√
VQ(γ), pointwise in

γ ∈ Γ. By taking a suitable ratio, we obtain a pivotal variable as in the following

theorem, which is the basis of our test statistic.

Theorem 4.1. Let Assumptions 1-6 hold, together with

(4.4) λ−2n p

(
vp +

p√
n

)
→ 0 as n→∞.

Under H0, we have V̂ d→ V
∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s) and

Tn(γ) :=
Qn(γ)√
V̂

d→ Q(γ)√∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s)

.

The numerator in the limit becomes Q(γ) + τ∞γ(1− γ) under H`.

The asymptotic null distribution is mixed normal and pivotal. The critical values

can be tabulated for each γ via Monte Carlo simulation and the replication files

provide R code. Note that the same Gaussian process W (·) occurs in both the limiting

numerator and denominator, and this process is different from the Brownian motion

in Sun (2014). In fact, it can be represented by the partial sum of
√
t/n times an

iid normal sequence. Since the limit also involves another variable W̄ (·), the critical

values will be different from those previously tabulated in the literature.

4.3. Bias Correction. The degrees of freedom p provide a correct centering for

Wn(γ) in first order asymptotic analysis. However, in the finite sample experiments

given in Section 6, e.g. Figure 2 and Figure 6, we find that the bias in Qn(γ) gets

bigger for typical values of p in nonparametric regression. Therefore, we propose a

bootstrap bias correction of Qn(γ). To estimate the bias, we implement the null-

imposed wild bootstrap by generating

(4.5) y?t = x′tδ̂1(γ) + êt(γ)ut, t = 1, ..., n,

where ut is an iid sequence of centered and normalized variables, e.g. the Rademacher

variables, to compute Q?n(γ). It is worthwhile to note that the bootstrap DGP (4.5)
15



imposes the null hypothesis δ2 = 0, so as not to sacrifice the power of the test. See also

Gonçalves and Kilian (2007) for a thorough discussion on the wild bootstrap for infi-

nite order autoregression. Iterating this B times, we obtain Q̄?n(γ) = B−1
∑B

j Q?,jn (γ),

the bootstrap estimate of the bias. In our experiment, B = 200 suffices and thus the

bootstrap is not computationally expensive. Therefore, we suggest the following bias

corrected test statistic:

(4.6) T bn (γ) :=
Qn(γ)− Q̄?n(γ)√

V̂
.

The numerical experiments in Section 6 show that the bootstrap bias corrected test

controls the type I error reliably without sacrificing power unduly.1 Now, with the

superscript ? indicating the bootstrap analogue, we have the following result.

Theorem 4.2. Under Assumptions 1-3 and H0,

(4.7) |E?W ?
n(γ)− p| = op

(
p1/2

)
,

and

(4.8) T bn (γ)
d→ Q(γ)√∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s)

.

Theorem 4.2 implies that the bootstrap bias correction is first-order correct but does

not imply any higher-order improvement. We demonstrate its merits not analytically

but numerically in Section 6, which is common with the wild bootstrap, see e.g.

Gonçalves and Kilian (2004) and references therein. Details of the components of

W ?
n(γ) are left to Section S.C of the online supplement.

1It is worth noting that the wild bootstrap may not be valid to approximate the quantiles of Qn(γ)
as it does not capture the high-order dependence embodied in V.
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5. Wald test for general linear restrictions of growing rank

For a linear regression model yt = x′tβ + εt, we consider testing linear restrictions

He
0 : Reβ = r, where Re is a matrix of rank p ≤ dim(β). For the usual Wald statistic

(5.1) W e
n := n

(
Reβ̂ − r

)′ (
ReM̂−1Ω̂M̂−1R′e

)−1 (
Reβ̂ − r

)
,

M̂ = n−1
∑

t xtx
′
t and Ω̂ is an estimator of Eε2txtx

′
t, define Qen := (W e

n − p) /
√

2p. Al-

though the test statistic appears to be very similar to the Chow test, the next theorem

shows that the numerator and denominator in our corrected test statistic are related

differently, calling for different critical values. Furthermore, the HLV is now obtained

by replacing Ω−1 in Assumption 4 with L = M−1Re′ (ReM−1ΩM−1Re′)
−1
ReM−1,

and the resulting limit denoted Ve.

To estimate Ve and employ bootstrap bias correction, it is convenient to refor-

mulate the restriction as an exclusion restriction of growing dimension, without loss

of generality. Indeed, let S be the orthogonal complement of Re and Q = (S,Re).

Then, let x̊t = Q′−1xt, δ = Qβ − (0′, r′)′ such that δ = (δ′1, δ
′
2)
′, with x̊t = (̊x′1t, x̊

′
2t)
′

conformably partitioned, δ2 = Reβ − r and ỹt = yt − x̊′2tr. We can now test the null

hypothesis He
0 : δ2 = 0 in the regression of ỹt on x̊t.

This transformation makes it particularly convenient to impose the null in the boot-

strap resampling at the bias correction stage. Let Q̄?n denote the bootstrap bias cor-

rection factor for W e
n. This yields the bias-corrected statistic T e,bn =

(
Qen − Q̄?n

)
/
√
V̂e,

where V̂e is defined analogously to V̂ , but now with qt = (np)−1/2 x̃′2tΩ̂
e−1êt

∑t−1
s=1 x̃2tês,

where x̃2t denotes the residuals from the regression of x̊2t on x̊1t and Ω̂e =

n−1
∑

t x̃2tx̃
′
2tê

2
t . Then, with W (·) defined in (4.3), we have the following theorem:

Theorem 5.1. Let Assumptions 1-6 hold with the following modifications: (1) L

replacing Ω−1 in Assumption 4 and the resulting limit denoted Ve, (2) The conditions

in Assumption 3(ii) hold for r = 1. Also suppose that (4.4) holds. Then, under He
0,

(5.2) T e,bn =
Qen − Q̄?n√
V̂e

d→ W (1)√∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s)

.
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Under He
` : Reβ − r = 21/4τp1/4/

√
n, the numerator in the limit becomes W (1) + τ e∞,

where τ e∞ = limn→∞ τ
′ (ReM−1ΩM−1Re′)

−1
τ .

The limiting distribution is mixed normal and pivotal but different from the limit

in Theorem 3.1. This is because the Chow test considers a quadratic form in

n−1/2
∑n

t=1 ψt(γ)ξt, which differs from this section by introducing a trend into the

regressors via the factor ψt(γ). Due to this difference, the partial sum processes con-

verge to Gaussian processes with different covariance kernels. An R code to compute

the critical values is available in the replication files.

6. Monte Carlo Experiments

This section examines the finite sample properties of our bias corrected HLV-robust

test T bn compared to the standard chi-square test Wn, which does not account for

growing p, and the unscaled Qn statistic with standard normal critical values, which

does not account for V , in terms of bias, size and power.

We will consider the examples below in our Monte Carlo experiments. In Appendix

B we check our assumptions for these settings.

E1 (Multiple Regression of Growing Dimension). Koenker (1988) found through his

metastudy that it is common practice in econometrics to increase the number of re-

gressors as the sample size n grows, at a rate of roughly O
(
n1/4

)
. In this case, the

approximation error rt is not explicitly modeled and may be set as zero. Practitioners

thus adopt a flexible approach to modelling, where the assumed model becomes richer

with more covariates and with more lagged terms to account for the dynamic effect in

the spirit of the distributed lag model, as illustrated in e.g. Stock and Watson (2015).

E2 (Infinite-Order Autoregression). This model is one of the most fundamental mod-

els in time series analysis, see e.g. Brockwell et al. (1991) or Hamilton (2020).

For the process to be stationary, the coefficients {bj} in the AR(∞) model yt =

b0 +
∑∞

j=1 bjyt−j + εt are assumed to obey a certain decay rate. Specifically, the tail

sum of the coefficients satisfies Assumption 2 if
∑∞

j=p |bj| = o
(
n−1/2

)
. While we take
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p as given in our analysis, for practical purposes various methods based on infor-

mation criteria are available to choose the truncation lag p, see e.g. Shibata (1980)

and references therein. Wang et al. (2007) propose a lasso-based autoregressive order

selection rule while Lee et al. (2018) propose a lag selection rule in an infinite order

panel autoregression. For expositional ease, we assume that the observations begin

from t = 1− p and x1 = (1, y0, ..., y1−p).

E3 (Nonparametric Series Regression). In case of the nonparametric series least

squares estimation of E (yt|zt), there exists a sequence of transformations of the

covariates zt given by xnt := xn (zt) : Rk 7→ Rp, and coefficients βn such that

E (yt|Ft−1) = f (zt) = x′ntβn + rn (zt) , where rnt = rn (zt) meets Assumption 2 for

a broad class of functions f , see e.g. Andrews (1991a), Newey (1997), Chen (2007)

and Lee and Robinson (2016). By Lemma 1 of Lee and Robinson (2016), it is met if

|rt|∞ = O(pα) for some α < 0 and p2α ≤ n−1. Depending on the smoothness of the

nonparametric function f(·), the regressor support dimension k, and the type of basis

functions used, different values of α may be implied, see e.g. Newey (1997), Chen

(2007), p. 5573, for examples and further references. Often, the condition (2.2) holds

under the so-called undersmoothing selection of p. Another closely related example is

the partially linear regression model, e.g. Engle et al. (1986) and Robinson (1988).

Again, while we do not consider data-dependent p, for practical purposes the literature

proposes methods for the choice of p using cross validation or information criteria,

see e.g. p. 5623 of Chen (2007) for a list of references.

The tests are applied to the setting of the Chow test and testing general linear

restrictions. We consider various sample sizes n and dimensions p from the three

examples, E1-E3, with the error generated from a bounded ARCH process

(6.1) εt = σtηt, σ2
t = (1− α) + αφ(εt−1),

where φ(x) = x21{|x| ≤ c} + c21{|x| > c}, ηt = (ut − Eut) /
√
var (ut), and

{ut} is an iid sequence from the Marron and Wand (1992) normal mixture dis-

tributions of type 1-3, which we refer to as error 1, 2 and 3. Their error 1 is
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standard normal. For a standard normal vector (Z1, ..., Zk) and multinomial vec-

tor (d1, ..., dk) with probability (1/5, 1/5, 3/5), error 2 skewed unimodal variate is

ut = Z1d1 + (2Z2/3 + 1/2) d2 + d3 (5Z3/9 + 13/12), while error 3 strongly skewed

variate is ut =
∑7

l=0 dl+1

(
Zl+1 (2/3)l + 3

(
(2/3)l − 1

))
with equally likely di’s. We

report results using (6.1) with α ∈ {0.3, 0.4, 0.5, 0.55, 0.57} and c = 2.5. Results from

c = 3 and ∞ are similar and omitted.

More specifically, for multiple regression, E1, the regressors xt consist of inde-

pendent AR(1) processes with coefficient αx and ARCH innovation as in (6.1) and

their lags of order up to 3. That is, we consider the distributed lag model with

a growing number of variables. The first five elements of β in (2.1) are set as

d0
(
5−1/2, ..., 5−1/2

)
p1/4n−1/2 and the others as zeros. When there is a break, all the

values become zero after the break so that the value d0 controls the magnitude of the

change. We vary p ∈ {5, 9, 13} to examine the effect of the dimension on our tests.

For the infinite order AR regression, E2, we generate the sample from the MA(1)

model yt = εt+θ1 {t ≤ µ} εt−1, with µ = n for the size experiment and µ = [nγ] for the

power evaluation, and estimate the AR(p) model with p = 9 for n = 250 and p = 13 for

n = 500. For the sieve regression, E3, we consider two variables ζ1t and ζ2t and their

lags ζ1,t−1 and ζ2,t−1 as regressors, denoted by z1t, · · · , z4t, after transforming them as

2 arctan (ζit) /π. Each ζit follows an AR(1) process with ARCH error. The regression

function is set as f (z1, · · · , z4) = d0 (1, z1, · · · , z4, z21 , ..., z
p1
4 )
(
1−2, ..., p−22

)′
+
√
|z1| /n

with p1 =
⌊
n1/4

⌋
and p2 = 1 + 4(p1 − 1). To estimate the regression function, we

construct xt from polynomial basis functions and its dimension p = p2.

We first employ these DGPs to simulate pre-limit values of V in (3.2) with

n = m = 500, l = 0 and p as described above for each case, which are plotted in

Figure 1, reporting averages from 10000 iterations. This serves as a useful illustration

to observe visually that pre-limiting V deviates from unity for various specifications.

A broad observation we make is that the deviation is bigger with larger ARCH coeffi-

cients and bigger autocorrelation in xt, although this feature is not always monotone.
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To conclude, we observe that the nonlinear serial autocorrelation factor can induce se-

rious distortion in inference without a suitable robustifying treatment, as we provide

in section 4.2.

Also, Appendix B gives the verification of the high-level conditions in Assumptions

1-4 for these examples.

6.1. Chow Test. We consider three candidate break points as proportions of the

sample sizes, γ ∈ {0.2, 0.3, 0.5}. We begin by examining the bias of Qn(γ), conven-

tionally centered by the degrees of freedom p, under the null hypothesis. Note that

a severe bias in Qn(γ) also implies that the size of the Wald test Wn(γ) can be dis-

torted severely. We report the results in Figure 2, in which the line with dot markers

shows the bias in Qn(γ) for n = 250 and n = 500. For E1, (Figures 2a, 2d), each

vertical partition (marked by a dotted vertical line) corresponds to a specific value of

p. Within each vertical partition the DGP parameters change along the horizontal

axes as (error type, α), in lexicographic order. As p grows, we observe that the Qn (γ)

statistic exhibits severe finite sample bias for all values of the DGP parameters.

A similar visualization of bias inQn(γ) for E2 is presented in Figures 2b, 2e. Rather

than report values for different p, here we focus on the case p = 9 for n = 250 and

p = 13 for n = 500 and allow the values of α and θ to vary along the horizontal axis

lexicographically as (error type, α or θ), as detailed in the caption. A substantial

bias in Qn(γ) is observed for all cases, regardless of n = 250 or n = 500, albeit the

biases are generally smaller in the latter case. Finally, Figures 2c, 2f show the bias in

Qn(γ) for E3, with the same p as for E2, to mimic the asymptotic regime of a sieve

regression, and parameters as in E2. We observe a similar pattern of substantial bias

for both sample sizes.

As discussed above, Figures 2a-2f clearly show that the biases present in Qn (γ) are

severe. In these figures we also plot the bias of the bias-corrected HLV-robust statistic

T bn (γ), shown in black with square markers. The bootstrap bias correction seems to

work well for all the cases, substantially alleviating bias. In Figure 2, we observe

that T bn (γ) can still exhibit some bias for specific cases but for E1 and E3, unlike
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the bias of Qn(γ), this is centered around zero, while for E2 it is generally smaller

in absolute value. Thus we recommend the use of the bootstrap bias correction in

practice especially when faced with large values of p.

We now study the finite sample rejection frequencies of four competing tests:

T bn (γ), Tn(γ),Qn(γ), and Wn(γ), with specific parameter values as given in the re-

spective figure captions. As shown earlier, the unknown HLV scaling factor V varies

along different ARCH parameters. This motivates our approach of experimenting

with different α values and innovations. The Monte Carlo sizes resulting from the

experiment are plotted in Figure 3, wherein we place a horizontal dotted line to mark

the nominal size of 5%. We report results for γ = 0.3. The vertical partitions in each

panel of Figure 3 correspond, as discussed earlier, to increasing values of p from left

to right in E1. We cover multiple regression (Figures 3a, 3d), AR fits (Figures 3b,

3e) and sieve regression (Figures 3c, 3f) for n = 250, 500.

For all DGPs, the usual Wald statistic Wn(γ) (diamond markers) over-rejects. Sim-

ply standardizing the test statistic Wn(γ) to Qn(γ), hence ignoring the HLV V , does

not improve matters. In fact, it usually worsens the problem of over-rejection. This

can be seen in the lines with triangle markers. Our HLV-robust statistic Tn(γ) does

much better, as the lines with dot markers indicate. While this shows the importance

of the correction for V that we stress in the paper, there is still a tendency to over-

reject. On the other hand, applying the bootstrap bias correction and using the bias

corrected HLV-robust statistic T bn (γ) achieves excellent size control, as can be seen in

the line with square markers. The discussion holds regardless of whether n = 250 or

n = 500. Thus the importance of our proposed testing procedure is clearly visible.

We now analyze the power features of the competing test statistics for the proposed

DGPs, allowing for breaks of different magnitudes and setting γ = 0.5. After the

break all the coefficients become zero so that the values of d0 govern the size of the

breaks in E1 and E3, while the values of θ do so for E2. The power performance

is plotted in Figure 4, where to conserve space we report results only for n = 400.

Again, we use p = 9 for E2 and E3, while a range of p is employed for E1. The line
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marker schemes for each of the competing tests are as described earlier. Examining

the figure, the power of our HLV-robust statistics Tn(γ) (dots) and T bn (γ) (squares)

tracks that of the uncorrected ones as the break size increases for both E2 (center

panel) and E3 (right panel). For E1 (left panel), we only report results for d0 = 2

for clarity. We observe that Wn(γ) tends to have the highest power but our statistics

still perform reasonably well with power in excess of 80% even for large p. Recall that

our size experiments earlier indicate that Wn(γ) over-rejects, a phenomenon of which

high power is likely an artefact. Thus we conclude that our test is able to control size

without sacrificing power to an undue extent.

Finally, Figure 5 reports the size distortions when the sample variance of qt mul-

tiplied by 2 is employed instead of V̂ , noting that qt is a martingale difference array.

While we discussed the potential reasons for this severe size distortion in Section 4.2,

the investigation on a more precise approximation to the finite sample distribution

of this statistic is an interesting issue but out of the scope of this paper due to the

complex nature of the statistic. Nevertheless, Figure 5 provides numerical evidence

that the typical scaling by variance is not sufficient to control size. Specifically, define

the test statistic T b,2n (γ) exactly like T bn (γ) but with random scaling replaced by twice

the variance of qt and the standard normal approximation. It is clear that the test

(triangle markers) is oversized relative to our recommended test T bn (γ).

6.2. Testing Linear Restrictions. This section presents the outcomes of bias, size

and power experiments for testing general linear restrictions, analogous to those for

the Chow test in the preceding discussion. We use the reparameterization of the

linear restrictions to the exclusion restrictions δ2 = 0, as discussed in Section 5. We

focus on E1 with n = 400, p = 8, 12, 16, d0 = 1, error 1 and 2 disturbances and

α = 0.4, 0.55. The results are displayed in Figure 6, with the same marking scheme

as before and three test statistics employed: W e
n, Qen and T e,bn . In all three figures,

each vertical partition marks a different value of p, increasing from left to right.

The left panel of Figure 6 shows that the bootstrap bias correction indeed improves

matters, as was the case for the Chow test. The center panel again demonstrates the
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importance of our proposed corrections for size control. W e
n and Qen tend to over-

reject, becoming worse as p increases. T e,bn controls size very well for medium to large

p, while still outperforming W e
n and Qen for smaller p. The right panel shows that

T e,bn sacrifices some power relative to W e
n and Qen, but not unduly so.

7. Empirical example

We revisit structural stability in the Hamilton (2003) study of the effect of oil

shocks on economic activities. The autoregressive distributed lag model, ADL(p, p),

with quarterly time series of outputs and several oil price measures is employed. For

real output, the quarterly growth rate of chain-weighted real GDP is used, while the

oil price is the nominal crude oil producer price index, seasonally unadjusted. As

in Hamilton, three oil price measures were considered: the growth rate ot from the

previous quarter, the rectified linear unit, o+t = ot1 {ot > 0}, and the net oil price

increase, ont , defined as the amount by which log oil prices in quarter t exceed their

peak value over the previous 12 months. If it does not exceed the previous peak, then

ont is taken to be zero. We extend the original sample using the FRED database at

the St. Louis Fed to obtain a sample from January 1949 to October 2019.

First, we re-evaluate structural stability of the GDP dynamics using AR(p) fits, and

that of the regression function of GDP growth on oil price change using an ADL(p, p)

model with the three alternative measures of oil price change. Following Table 4

in Hamilton (2003), we investigate four exogenous disruptions in world petroleum

supply. These are: the Arab–Israel War (November 1973), the Iranian Revolution

(November 1978), the Iran–Iraq War (October 1980) and the Persian Gulf War (Au-

gust 1990).

The p-values of the tests are reported in sub-tables (a) and (b) in Table 1, where

for W (γ) these are computed using the ordinary Chow test. We observe that in

many cases the usual Chow test supports a structural break in both regressions more
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strongly than our recommended T bn (γ) test. Thus, the evidence for structural insta-

bility is often no longer as strong. In fact, the p-values that we calculate using our

test exceed those of the standard Chow test in 22 out of 32 cases.

Stability test Exclusion test
(a) AR(p) (b) ADL(p, p) (c) ADL(p, p)

GDP ot o+t ont all oil NL

lags p 4 6 4 6 4 6 4 6 4 6 4 6

Arab-Israel War, November 1973

T bn (γ) 51.3 43.9 3.5 0.52 1.64 1.33 1.58 0 T e,bn 8.7 26.9 7.6 19
Wn(γ) 52.9 38 0.5 0 0.58 0 0.7 0 W e

n 9 4.4 2.8 4.4

Iranian Revolution, November 1978

T bn (γ) 41.8 52.8 1.04 0.03 7 0.1 0 0
Wn(γ) 48.5 53.2 0.6 0 7.57 0 0.1 0

Iran-Iraq War, October 1980

T bn (γ) 13.1 28.2 0.3 0.4 0.33 0.64 0.33 0
Wn(γ) 10.6 19.7 0 0 0.1 0 0 0

Persian Gulf War, August 1990

T bn (γ) 54.6 53.6 73.3 43.7 17.8 31.2 4.53 4.85
Wn(γ) 56.2 65 39.5 16 17.1 14.4 1.9 1.17

Table 1. 100×p-values of Chow tests and exclusion restriction tests for full sample.
(a) Tests for stability of GDP dynamics via AR(p) fits. (b) Tests for stability of
ADL(p, p) regressions of GDP on ot, o

+
t or ont . (c) Tests for exclusion restrictions

on all oil price measures (ot, o
+
t , ont ) or nonlinear oil price measures (o+t , ont .) in

ADL(p, p) regressions of GDP on oil prices.

Second, we explore the relevance of the oil price measures and of the nonlinear

transformations (o+t , ont ) by testing two exclusion restrictions in the ADL(p, p) re-

gression that include all the three oil price measures as covariates. The first exclusion

restriction is to set the coefficients of all the measures as zero and the second is to

set those of the nonlinear transformations (o+t , ont ) to zero. This yields 12 and 8 df,

respectively, when p = 4 and 18 and 12 df, respectively, when p = 6. As shown in

sub-table (c) of Table 1, our recommended test T e,bn produces p-values bigger than 5%

for all cases, suggesting the effect of oil price as measured by these transformations

is not statistically significant, nor are the nonlinear transformations. The standard
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Stability test Exclusion test
(a) AR(p) (b) ADL(p, p) (c) ADL(p, p)

IP ot o+t ont all oil NL

lags p 12 18 12 18 12 18 12 18 12 18 12 18

Arab-Israel War, November 1973

T bn (γ) 20.9 32.9 33.9 28.4 24.9 18.9 10.6 17.8 T e,bn 27 30.9 11.9 18.5
Wn(γ) 8.46 26.4 5.18 1.71 3.93 0.78 1.23 1.65 W e

n 1.7 0.8 0.5 0.5

Iranian Revolution, November 1978

T bn (γ) 11 21.5 1.39 0.74 0.7 0.26 0.15 0.04
Wn(γ) 0.96 4.3 0 0 0 0 0 0

Iran-Iraq War, October 1980

T bn (γ) 3.31 9.34 1.96 1.87 1.15 1.68 0.08 0.46
Wn(γ) 0 0.04 0 0 0 0 0 0

Persian Gulf War, August 1990

T bn (γ) 5.82 14.6 3.95 19.4 2.03 12.8 0.94 8.04
Wn(γ) 0.08 1.13 0.21 2.98 0.23 2.43 0.02 0.22

Table 2. 100×p-values of Chow tests and exclusion restriction tests for full sample.
(a) Tests for stability of IP dynamics via AR(p) fits. (b) Tests for stability of
ADL(p, p) regressions of IP on ot, o

+
t or ont . (c) Tests for exclusion restrictions

on all oil price measures (ot, o
+
t , ont ) or nonlinear oil price measures (o+t , ont .) in

ADL(p, p) regressions of IP on oil prices.

Wald test for the exclusion restrictions is more supportive of their inclusion but may

lack robustness with large df. Overall, our tests produce larger p-values than the

standard Chow or Wald tests in 72% of cases (26 out of 36) cases in Table 1.

As another measure of economic activity we now consider the industrial production

(IP) index. This is available at monthly frequency and thus we consider ADL(12,12)

and ADL(18,18) to include lags of one year and one and a half years, respectively.

With monthly data, the dimensionality becomes more important: the number of

restrictions we test varies from 13 and 25 in the structural break test for the AR(12)

and ADL(12,12) regressions to 36 and 48 for the exclusion tests in the ADL(18,18)

regression.

The results in Table 2 illustrate much stronger differences in the conclusions of our

test versus the standard Chow test, compared to the GDP study in Table 1. The
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rejection of the null of no structural break is now often overturned at reasonable

significance levels. For example, for the Arab-Israel War, the ADL(p, p) model fails

to reject the null of no structural break for any significance level below 10.6% when

using our test T bn (γ), in contrast to the standard Chow test Wn(γ). Conclusions are

likewise overturned for the AR(p) model and the Iranian Revolution and Iran-Iraq

War, and indeed for both the ADL(p, p) and AR(p) in several cases for the Persian

Gulf War.

The results in Tables 1 and 2 are not surprising given our simulation evidence.

Indeed, our Monte Carlo simulation illustrates the effect of the degrees of freedom

(df) on finite sample properties of the two tests, Wn(γ) tends to have larger p values

in the AR case (p+ 1 df) than in the ADL case (2p+ 1 df), while T bn (γ) would be the

opposite. These are exactly the patterns that we also observe. Finally, sub-table (c)

of Table 2 shows even stronger differences than Table 1(c), with all conclusions on the

exclusion restrictions overturned at significance levels below 11.6%. Overall, our tests

produce larger p-values in every single case considered in Table 2 when compared to

the standard Chow or Wald tests.
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Gonçalves, S. and L. Kilian (2007). Asymptotic and bootstrap inference for AR(∞) pro-
cesses with conditional heteroskedasticity. Econometric Reviews 26, 609–641.

Gupta, A. (2018). Nonparametric specification testing via the trinity of tests. Journal of
Econometrics 203, 169–185.

Hall, P. and C. C. Heyde (1980). Martingale Limit Theory and Its Application. Academic
Press.

Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics 113, 363–398.
Hamilton, J. D. (2009). Causes and consequences of the oil shock of 2007-08. Brookings

Papers on Economic Activity SPRING, 215–261.
Hamilton, J. D. (2020). Time Series Analysis. Princeton University Press.
Hong, Y. and H. White (1995). Consistent specification testing via nonparametric series

regression. Econometrica 63, 1133–1159.
Jansson, M. (2002). Consistent covariance matrix estimation for linear processes. Econo-

metric Theory 18, 1449–1459.
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(b) E2 with p = 18, θ = −0.5.
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(c) E3 with p = 21, αx = 0.7

Figure 1. Simulated pre-limit of V for n = m = 500 and l = 0. Error 1: square; Error 2: dot; Error 3: triangle.
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(f) Chow test bias, E3: n = 500.

Figure 2. Bias in Qn(γ) (dot) and T b
n (γ) (square, black). For E1, the vertical partitions in (a) and (d) correspond to p = 5, 9

and p = 5, 9, 13, respectively. Within each vertical partition results are ordered lexicographically as (γ ∈ {0.2, 0.3, 0.5}, error ∈
{1, 2}, α ∈ {0.3, 0.57}). E2 and E3: p = 9 for n = 250 and p = 13 for n = 500. Results horizontally ordered lexicographically
as (γ, error , α or θ).
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(a) Chow test size, E1: n = 250, γ = 0.3.
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(b) Chow test size, E2: n = 250, γ = 0.3.
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(c) Chow test size, E3: n = 250, γ = 0.3.

Size Comparison, Multi , n = 500 , gm = 0.3

variation of DGP (partition: small to large p)

re
je

ct
io

n 
ra

te
s

0 5 10 15 20 25 30

0.
05

0.
10

0.
15

Tb
T1
Qn
Wn

(d) Chow test size, E1: n = 500, γ = 0.3.
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(e) Chow test size, E2: n = 500, γ = 0.3.
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Figure 3. Size of Chow tests with γ = 0.3 : Wn(γ) (diamond), Qn(γ) (triangle), Tn(γ) (dot) and T b
n (γ) (square, black).

Nominal size is 5%. For E1, vertical partitions in (a) correspond to n = 250 and p = 5, 9 and those in (d) correspond to n = 500
and p = 5, 9, 13. Within each vertical partition results are ordered lexicographically as (error ∈ {1, 2}, α ∈ {0.3, 0.57}). For
E2, p = 9 for n = 250 and p = 13 for n = 500. Results horizontally ordered lexicographically as (error ∈ {1, 2}, α ∈
{0.3, 0.57} or θ ∈ {−0.5,−0.1, 0.5}). For E3, p = 9 for n = 250 and p = 13 for n = 500. Results horizontally ordered
lexicographically as (error ∈ {1, 2}, α ∈ {0.3, ..., 0.57}).
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Figure 4. Power of Chow tests, Wn(γ) (diamond), Qn(γ) (triangle), Tn(γ) (dot) and T b
n (γ) (square, black): E1 (left), E2

(center) and E3 (right), n = 400, γ = 0.5. Vertical partitions correspond to p = 5, 9, 13 (left), θ = 0.2, 0.4, 0.6, 0.8 (center) and

δ = 0.5p1/4/n1/2(1, 5, 10) (right). Within each vertical partition results are ordered lexicographically as (error ∈ {1, 2, 3}, α ∈
{0.3, 0.5}) for E1 and (error ∈ {1, 2, 3}, α ∈ {0.3, 0.5} or θ) for E2 and E3.
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Figure 5. Size distortions in the test based on T b,2
n (γ), which is computed exactly like T b

n (γ) except that the scaling
is done by the sample variance of qt along with the standard normal approximation.
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Figure 6. Bias, Size, and Power of Exclusion Tests in E1: Qe
n (dot) and T e,b

n (square, black). Left to right: vertical partitions
correspond to p = 8, 12, 16. Within each vertical partition results are ordered lexicographically as (error ∈ {1, 2}, α ∈
{0.4, 0.55}).
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Appendix A. Proofs of theorems

We begin with some notation. Let

A(γ) = (X∗(γ)′MXX
∗(γ))

−1
X∗(γ)′MX

with X∗(γ) having t-th row x∗t (γ)′ = x′t1 {t/n > γ}, MX is the residual maker for the
matrix X with t-th row x′t, and

B(γ) = RM(γ)−1Ω(γ)M(γ)−1R′.

Also, let Ω̄(γ) = n−1
∑n

t=1 xt(γ)x′t(γ)σ2
t and xt(γ) = (x′t, x

′∗
t (γ))′. It is also convenient

to recall that M̂ = n−1X ′X and define Ŝ(γ) = n−1X ′∗(γ)X(γ). Recall that cross-
referenced items prefixed with ‘S’ can be found in the online supplementary appendix.

A.1. Proofs for Section 3.

Proof of Theorem 3.1 and 3.2. For the convenience of exposition, these are combined
with the proof of Theorem 4.1 in the next section.

A.2. Proof of Theorem 4.1: For the result under the null, Section A.2.1 first
establishes the asymptotic normality for Qn(γ), and then Section A.2.2 proves

V̂ d→
∫ 1

0

∫ 1

0
K∗h (r, s) dW (r) dW (s), where W (r) denotes the same limit Gaussian

process as in Theorem ST.B.2. Then, the claim follows by Theorem ST.B.2 and the
continuous mapping theorem. After completing the proof under the null, we prove
convergence under the local alternative in Section A.2.4.

A.2.1. Asymptotic normality of Qn(γ) under H0.

Proof. This step is quite involved and we delegate proofs of many intermediate steps
to Section S.B. Summarizing these steps, Theorem ST.B.1 therein develops the initial
approximation Qn(γ) = (Rn(γ)− p) /

√
2p + op(1), where Rn(γ) is defined in (3.4).

Then, (SB.45) and Lemma SL.B.8 yield the second approximation

Rn(γ)− p√
2p

= Sn(γ) + op(1),

where

(A.1) Sn(γ) =
n−1

∑
s 6=t gt(γ)′Ω−1gs(γ)εtεs

γ (1− γ)
√

2p
,

and gt(γ) = xt1 {t/n ≤ γ} − γxt. The claim now follows by a CLT for Sn(γ) estab-
lished in Theorem ST.B.2.

A.2.2. Weak convergence of V̂.

Proof. First, we establish tightness of the stochastic process

An(γ) =
1

n
√
p

[nγ]∑
s=2

s−1∑
t=1

ξ′tξs,

with ξt = {ξti}pi=1 = Ω−1/2xtεt being an mds.
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Note that An (γ) is a partial sum process of a heterogeneous martingale difference
array wns = ξ′s

∑s−1
t=1ξt/

√
np, and thus it is sufficient to show

E |An (γ1)−An (γ2)|4 = E

∣∣∣∣∣∣ 1√
n

[nγ2]∑
s=[nγ1]+1

wns

∣∣∣∣∣∣
4

≤ E

(∑
s

E
(
w2
ns|Gs−1

)
/n

)2

+ n−1 max
s
E |wns|4O (|γ2 − γ1|)(A.2)

= O (|γ2 − γ1|) ,
where we apply the Rosenthal inequality, e.g. Hall and Heyde (1980), for the inequal-
ity and a calculation similar to (SB.11) and (SB.14) for the last equality. Specifically,

(A.3) n−1 max
s
E |wns|4 ≤ max

s
E

E((ξ′sξs)
2|Gs−1)

( ∑
t1,t2<s

ξ′t1ξt2

)2
n−3p−2 = o(1),

by Assumption 4 and the same reasoning as for (SB.12) and (SB.14).
Having established tightness, by Lemma 1 (c) of Sun (2014) weak convergence

follows if

(A.4) V̂ − Ṽ = op(1),

where Ṽ = 2
n

∑n
t=2

∑n
s=2 k

(
t−s
n/h

)
q̄?s q̄

?
t , q

?
t = (np)−1/2 x′tΩ

−1εt
∑t−1

s=1 xsεs, q̄
?
t = q?t −

n−1
∑n

t=2 q
?
t . Strictly speaking, Sun’s Lemma 1 (c) is stated for the case where the

partial sums of qt are approximated by the partial sums of et, which is iid normal, but
it also holds when it is approximated by the partial sums of antet for any real bounded
array ant by repeating the same argument in the proof. In our case, ant =

√
t/n.

Let ς = n/h, ζ̂t = ĥ′t
∑

s<t ĥs/
√
p, ĥt = Ω̂−1xtêt,

¯̂
ζ/
√
n = n−1

∑n
t=2 qt =

n−1
∑n

t=2 ζ̂t/
√
n, with analogous definitions using Ω and εt for ζt, ht and ζ̄. Then

V̂ − Ṽ = n−2
n−1∑

j=−(n−1)

k (j/ς)n−1
n−|j∧0|∑
t=1+(j∨0)

{(
ζ̂tζ̂t+|j| − ζtζt+|j|

)
+ 2

¯̂
ζ
(
ζ̂t − ζt

)
+

(
¯̂
ζ − ζ̄

)
ζ̂t +

(
¯̂
ζ2 − ζ̄2

)}
.(A.5)

We obtain a bound for

(A.6) ζ̂tζ̂t+|j| − ζtζt+|j| =
(
ζ̂t − ζt

)
ζ̂t+|j| +

(
ζ̂t+|j| − ζt+|j|

)
ζ̂t,

while omitting similar details for the other three terms. To find a bound for (A.6),

first note that ĥt = Op (‖xt‖) = Op

(√
p
)
, by Assumption 3(ii) and finite fourth

moments of xt components (Assumption 3(i)), and because

(A.7) êt = yt − x′tδ̂1(γ) = x′t

(
δ̂1(γ)− δ1

)
+ x′t1 (t/n > γ) δ2` + rt + εt = Op(1).
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Hence

(A.8) ζ̂t = ĥ′t
∑
s<t

ĥs/
√
p = Op (n

√
p) .

By the same argument, ht = Op(
√
p) and ζt = Op

(
n
√
p
)

as well.

Now recall that êt−εt = x′t

(
δ̂1(γ)− δ1

)
+x′t1 (t/n > γ) δ2`+rt and

∥∥∥δ̂1(γ)− δ1
∥∥∥ =

Op

(∥∥∥δ̂(γ)− δ
∥∥∥) = Op

(
λ−1n
√
p/
√
n
)

implying that

(A.9) êt − εt = Op

(
max

{
λ−1n p/

√
n, p3/4/

√
n
})
.

Thus we obtain
(A.10)

ĥt − ht = Ω−1
(

Ω− Ω̂
)

Ω̂−1xtêt + Ω−1xt (êt − εt) = Op

(
λ−2n
√
pmax

{
vp, p/

√
n
})
,

using Assumption 3(iii). Using (A.10), we get
(A.11)

ζ̂t−ζt =
(
ĥt − ht

)′∑
s<t

ĥs/
√
p+ĥ′t

∑
s<t

(
ĥs − hs

)
/
√
p = Op

(
λ−2n n

√
pmax

{
vp, p/

√
n
})
.

Using (A.8) and (A.11) in (A.6), we obtain ζ̂tζ̂t+|j| − ζtζt+|j| =
Op (λ−2n n2pmax {vp, p/

√
n}). This, along with similarly obtained bounds for

the remaining terms in (A.5) and Lemma 1 of Jansson (2002), yield

V̂ − Ṽ = Op

(
ς

(∫
R
|k(x)| dx

)
λ−2n pmax

{
vp, p/

√
n
})

= Op

(
λ−2n max

{
pvp, p

2/
√
n
})
,

which is negligible by (4.4).

A.2.3. Characterize the relationship between the numerator and denominator. For
this, we derive the covariance kernel of

(
An (γ) , Ān (γ)

)′
, where

Ān(γ) =
1

n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′tξs.

Note that E (An (γ2)−An (γ1))An (γ1) = 0 for any γ1 < γ2. From the proof of
Theorem ST.B.2 in the supplementary material, we have

E |An (γ)|2 =
γ2V

2
+ o (1) ,

E
∣∣Ān (γ)

∣∣2 =
(1− γ)2 V

2
+ o (1) ,

where V is given in (3.2). Thus

E (An (γ1)An (γ2))→
(γ1 ∧ γ2)2

2
V ,
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and, similarly noting that E
(
Ān (γ2)− Ān (γ1)

)
Ān (γ1) = 0 for any γ1 > γ2, we have

E
(
Ān (γ1) Ān (γ2)

)
→ (1− (γ1 ∨ γ2))2

2
V .

Finally

E
(
An (γ1) Ān (γ2)

)
=

1 {γ1 > γ2}
n2p

[nγ1]∑
s=[nγ2]+1

trE

ξsξ′s s−1∑
t=1

s−1∑
u=[nγ2]+1

ξtξ
′
u


=

1 {γ1 > γ2}
n2

[nγ1]∑
s=[nγ2]+1

(s− 1− [nγ2])V + o (1)

=
1 {γ1 > γ2}

2
(γ1 − γ2)2 V + o (1) ,

A.2.4. Under the alternative.

Proof. Under H`, we have δ̂2(γ) = A(γ)X∗ (γ0) δ2` + A(γ)ε+ A(γ)r, so that, writing

D (γ, γ0) = A(γ)X∗ (γ0) and B̂(γ) = RM̂(γ)−1Ω̂(γ)M̂(γ)−1R′, similar algebra to that
used in the online appendix and Lemmas SL.B.6-SL.B.10 yields

Qn(γ) = Sn(γ) +
2nδ′2`D (γ, γ0)

′ B̂(γ)−1A(γ)ε√
2p

+
2nδ′2`D (γ, γ0)

′ B̂(γ)−1A(γ)r√
2p

+
nδ′2`D (γ, γ0)

′
(
B̂(γ)−1 −B(γ)−1

)
D (γ, γ0) δ2`

√
2p

(A.12)

+
nδ′2`D (γ, γ0)

′ B̂(γ)−1D (γ, γ0) δ2`√
2p

+ op(1).

For the second term on the RHS of (A.12), note that this equals

2nδ′2`D (γ, γ0)
′B(γ)−1A(γ)ε√
2p

+
2nδ′2`D (γ, γ0)

′
(
B̂(γ)−1 −B(γ)−1

)
A(γ)ε

√
2p

=
2nδ′2`D (γ, γ0)B(γ)−1A(γ)ε√

2p
+Op

(
λ−2n n ‖δ2`‖

∥∥n−1X ′ε∥∥∥∥∥B̂(γ)−B(γ)
∥∥∥ /√p)

=
2nδ′2`D (γ, γ0)

′B(γ)−1A(γ)ε√
2p

+Op

(
λ−4n p1/4 max

{
λ−1n κp, vp

})
,

proceeding like (SB.39), the second stochastic order above being negligible by (3.1).
By Assumption 1, the first term has mean zero and variance equal to a constant times

τ ′D (γ, γ0)
′B(γ)−1A(γ)A(γ)′B(γ)−1D (γ, γ0) τ√

p
= Op(1/

√
p),

uniformly in γ by Lemmas SL.B.4 and SL.B.5 and the calculations therein.
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By Assumption 2, the third term on the RHS of (A.12) is

Op

(
n ‖δ2`‖

∥∥n−1X ′r∥∥ /√p) = Op

(
p−1/4

)
.

The fourth term on the RHS of (A.12) is readily seen to be

Op

(∥∥∥B̂(γ)−1 −B(γ)−1
∥∥∥) = Op (λ−4n max {λ−1n κp, vp}), which is negligible by

(3.1). Thus, by (SB.29), (A.12) becomes

Qn(γ) = Sn(γ) +
nδ′2`D (γ, γ0)

′B(γ)−1D (γ, γ0) δ2`√
2p

+ op(1)

= Sn(γ) + γ(1− γ)τ ′D (γ, γ0)
′MΩ−1MD (γ, γ0) τ + op(1).

Now, by the definition of its components and steps similar to those elsewhere in the
paper, it is readily seen that ‖D (γ, γ0)− {(γ + γ0(1− γ)− (γ ∨ γ0))/γ(1− γ)} Ip‖ =
op(1), uniformly on Γ and that γ+ γ0(1− γ)− (γ ∨ γ0) = −γγ0 + (γ ∧ γ0) as γ+ γ0−
(γ ∨ γ0) = (γ ∧ γ0) . Thus,

(A.13) Qn(γ)
d→ Q(γ) +

(γγ0 − (γ ∧ γ0))2

γ(1− γ)
lim
n→∞

τ ′MΩ−1Mτ,

by Theorem ST.B.2, which gives the distribution of Qn(γ) under H`.

Proof of Theorem 4.2. In Section S.C of the online supplement.

A.3. Proofs for Section 5.

Proof of Theorem 5.1. The proof proceeds exactly as that of Theorem 4.1, but with-
out γ. We give a brief summary and omit the details. Because Reβ̂ − r =
Rn−1M̂−1∑n

t=1 xtεt under He
0, we can obtain the approximation

Qen =
n−1 (

∑n
t=1 xtεt)

′
L (
∑n

t=1 xtεt)− p√
2p

+ op(1).

Then, the proof of asymptotic normality follows with wns = ξ′s
∑s−1

t=1 ξt/
√
np as in

Theorem ST.B.2, but now defining ξt = (ReM−1ΩM−1Re′)
−1/2

ReM−1xtεt. From

this it is readily seen that E (
∑n

s=1wns)
2

= Ve + o(1).

Appendix B. Verification of high-level conditions for Examples E1,
E2, and E3

This section verifies some of the high level conditions for our examples analytically,
while others are verified numerically.

First, we show that Assumptions 1 and 2 are satisfied for all the examples. For
this, note that the innovations ηt in the DGPs are mixed-normal with finite moments
of all order. Recall that an AR(1) or MA(1) process with bounded ARCH innovations
whose AR or MA coefficients satisfy |α| < 1 and |αx| < 1 (as in our DGP for xit)
is strictly stationary and β-mixing, see e.g. Theorem 15.0.1 of Meyn and Tweedie
(1993). Thus, xit is strictly stationary and β-mixing with a finite moment generating
function. This implies that Assumptions 1 and 2 are met for all the examples.
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V_n from various Multiple Regression (with growing n)
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V_n from various Autoregression (with growing n)

n = 2000 to 10^5

V
_n

2 4 6 8 10

0.
9

1.
0

1.
1

1.
2

V_n from various Sieve Regression (with growing n)
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Figure 7. Simulated Vn for various DGPs with increasing n = m = 2000, . . . , 105

on horizontal axis

E1: Multivariate Regression. The regressor xt is a collection of independent cen-
tered stationary AR(1) processes xit and their lags up to order 3. Thus, Assumption
3 (i) is trivially satisfied. For (ii), we note that M and Ω are block diagonal, implying
that the minimum eigenvalues are bounded away from zero. As for Assumption 3
(iii), the usual maximal inequality for mixing, as in e.g. Lemma 7 in Linton et al.

(2022), holds to yield the bounds Op

(
pn−1/2 log n

)
on
∥∥∥n−1∑[nr]

t=1 xtx
′
t − rM

∥∥∥ and∥∥∥n−1∑[nr]
t=1 xtx

′
tσ

2
t − rΩ

∥∥∥.

Turning to Assumption 4, first recall that the maximum of n random variables is
Op(log n) if the moment generating function of each random variable exists. Thus,

E max
1≤t≤n

λ̄(ξtξ
′
t) ≤ E max

1≤t≤n
(ξ′tξt) ≤

p∑
i=1

E max
1≤t≤n

ξ2it = pO(log n),(B.1)

as desired for p = o
(
n1/3/ log n

)
and similarly we can duduce the bound for

E |E (max1≤t≤n(ξ′tξt)
2|Gt−1)|, which equals E (max1≤t≤n(ξ′tξt)

2) = p2O(log n), due to
the non-negativity of the square and the law of iterated expectations.

Next, the two conditions on convergence in Assumption 4 are difficult to derive
analytically, so we present some numerical evidence in Figure 7 and Table S.Tab.D.1
in the online appendix. The coefficient α is chosen from 0.3, 0.55 or 0.8 for the
experiments. The AR coefficient in E1 is set as −0.5 or −0.5, the MA coefficient in
E2 as −0.5 or −0.1, and the AR coefficient in E3 as 0.3, 0.5, or 0.7. The expectations
in (3.2) are approximated by the average of 10000 iterations. For each coefficient
combination, we experiment with growing sample sizes from n = m = 2000 to 105,
l = 0, and p = n1/3 for E1 and E2 and p = 2n1/4 for E3. The results are plotted
as lines in the figure. We note that the values do not diverge even for the most
persistent case of α = 0.8 and tend to stabilize for larger n. On the other hand, the
degeneracy of (n4p2)−1

∑n
t=1

∑t−1
s=1 cov (tr (ΥtΞt) , tr (ΥsΞs)) in Assumption 4 is given

in Table S.Tab.D.1 for various parameter vales and error types. The table shows clear
evidence of decaying covariances.

Finally, Assumption 5 is rather trivially met given that εt is mds and all the mo-
ments exist for εt and xit for all i = 1, ..., p.

38



E2: Infinite-order AR. A set of primitive conditions is given in the next Proposi-
tion. Gonçalves and Kilian (2007) has emphasized the empirical relevance of allowing
for conditional heteroskedasticity in autoregressive models, which is allowed below
by relaxing Berk (1974)’s condition of an iid error to an mds process. Let L be the
lag operator and b (L) =

∑∞
j=1 bjL

j denote the lag polynomial. The MA(1) with
the coefficient less than the unity in modulus satisfies the conditions in the next
Proposition.

Proposition B.1. Suppose that (1) b (z) 6= 0 for any |z| ≤ 1 and b−1(eiλ) exists and
is nonzero for −π < λ ≤ π. (2) {εt} is a stationary mds that possesses a density
of bounded variation, Eεt = 0 and E |εt|κ < C for some κ ≥ 4 and E(ε2t |Ft−1) is
bounded and bounded away from zero. (3) p3 = o (n). (4)

∑∞
j=p |bj| = o

(
n−1/2

)
. (5)

(σt, yt−1) is ρ-mixing with
∑∞

j=1 ρ(2j) < ∞. Then, Assumptions 1 - 3 are satisfied

with κp = vp = o(p−1/2).

Proof. Berk (1974) established that the minimum eigenvalue of the limiting auto-
covariance matrix M is bounded away from zero, see its equation (2.7), and the
deviation bound for its sample autocovariance is o(p−1/2) in its Lemma 3. As for Ω,
note that for some c > 0, which is an a.s. lower bound of E (ε2t |Ft−1), and any |a| = 1

a′Ωa = E (a′xt)
2
ε2t = E (a′xt)

2
E
(
ε2t |Ft−1

)
≥ cE (a′xt)

2
,

to conclude that the minimum eigenvalue of Ω is also bounded away from zero.
Lemma 3.4 of Peligrad (1982) yields E|

∑n
t (z2t − Ez2t )| ≤ n

∑
i ρ(2i)Ez4t for a ρ-

mixing sequence zt. Since zt = σtyt−j for j = 1, ..., p in the current case and (σt, yt−1) is
ρ-mixing, the bound may be set as n

∑
i ρ(0∨(2i−p))Ez4t ≤ n(

∑
i ρ(2i)+log p)Eσ4

t y
4
t−j

for any j ≤ p Then, ‖Ω̄(γ)− Ω(γ)‖ = Op(n
−1p2 log p). The rest of the proof is given

in Lemma SL.B.1.

The same comments as in E1 apply for Assumptions 4 and 5.

E3: Sieve regression. Let Z ⊆ Rk denote the support of zt in E3. The following
proposition provides some more primitive conditions for E3 as given by Chen and
Christensen (2015) and the dgp in our Monte Carlo simulation satisfies them with
a bounded support by construction and geometric mixing rate due to Meyn and
Tweedie (1993) as discussed above.

Proposition B.2. Suppose that the following hold: (1) The sequence {zt} is strictly
stationary and β-mixing with β-mixing coefficient β(·). Let q = q (n) be a sequence
of integers satisfying β(q)n/q → 0 as n → ∞ and q ≤ n/2; (2) Z is compact and
rectangular, and supz∈Z ‖xnt(z)‖ = O (ϑp); (3) The xt are tensor-products of power
series, univariate polynomial spline, trigonometric polynomial wavelet or orthogonal
polynomial bases. Then, Assumptions 1 -3 are met with κp = ϑp

√
q(log p)/n and

vp = min
{
p3/n, ϑ2

pp/n
}

.

Proof. We prove that Assumption 3 is met for the partial sum only, with the result
for the full sum following from Corollary 4.2 of Chen and Christensen (2015). By
Assumption 3, we can normalize the xt so that E (xtx

′
t) = Ip without loss of generality.
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The result then follows by Corollary SC.A.1 by taking Ξt,n = n−1 (xtx
′
t − Ip), which

implies that the terms in Theorem ST.A.1 have bounds: Rn ≤ n−1
(
Cϑ2

p + 1
)

and

s2n ≤ n−2
(
Cϑ2

p + 1
)
. The second claim follows similarly. The rest of the proof is given

in Lemma SL.B.1.

The permissible mixing decay rate depends on the dimension p of xt: larger p re-
quires faster mixing decay. Both exponential and geometric decays are allowed. See
the discussions of Assumption 4 and Remark 2.3 in Chen and Christensen (2015)
for more detailed discussion in relation to the sieve basis functions. The sequence q
depends on the mixing decay rate. For instance, if β (q) decays at an exponential
rate, q can be set as log n. If all elements of xt (·) are bounded, then ϑp = p1/2. Under
suitable conditions, it can be shown that ϑp = p for power series or orthogonal poly-
nomials and ϑp = p1/2 for univariate polynomial splines, trigonometric polynomials
or wavelets, see Newey (1997); Chen and Christensen (2015).

The same comments as in E1 apply for Assumptions 4 and 5.
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Online supplement to “Robust Inference on Infinite and Growing
Dimensional Time Series Regression”

Abhimanyu Gupta and Myung Hwan Seo

S.A. An exponential inequality for partial sums of weakly dependent
random matrices

We develop a stochastic order for a matrix partial sum. Closely related results can
be found in Theorems 4.1 and 4.2 of Chen and Christensen (2015), who establish
such bounds for full matrix sums as opposed to partial sums. Our first theorem is
a Fuk-Nagaev type inequality, using a coupling approach similar to Dedecker and
Prieur (2004), Chen and Christensen (2015) and Rio (2017).

Theorem ST.A.1. Let {ξi}i∈Z be a β-mixing sequence with support X and r-th mix-
ing coefficient β(r) and let Ξi,n = Ξn (ξi), for each i, where Ξn : X → Rd1×d2 is a
sequence of measurable d1 × d2 matrix-valued functions. Assume E (Ξi,n) = 0 and
‖Ξi,n‖ ≤ Rn, for each i, set

s2
n = max

1≤i,j≤n
max

{∥∥E (Ξi,nΞ′j,n
)∥∥ , ∥∥E (Ξ′i,nΞj,n

∥∥)} ,
and define Sk =

∑k
l=1 Ξl,n. Then, for any integer q such that 1 < q ≤ n/2 and

% ≥ qRn,

P

(
sup

1≤k≤n
‖Sk‖ > 4%

)
≤
([

n

q

]
+ 1

)
β(q) + 2 (d1 + d2) exp

(
−%2/2

nqs2
n + qRn%/3

)
.

The required stochastic order now follows by a choice of % in Theorem ST.A.1:

Corollary SC.A.1. Under the conditions of Theorem ST.A.1, if q is chosen as a
function of n such that (n/q) β(q) = o(1) and Rn

√
q log (d1 + d2) = o (sn

√
n) then

sup
1≤k≤n

‖Sk‖ = Op

(
sn
√
nq log (d1 + d2)

)
Proof of Theorem ST.A.1. For i = 1, . . . , [n/q], define Ui =

∑iq
j=iq−q+1 Ξj,n and U[n/q]+1 =∑n

j=[n/q]q Ξj,n. Now, for an integer j that differs from an integer multiple of q by at

most [q/2], we have sup1≤k≤n ‖Sk‖ ≤ 2[q/2]Rn + supj>0

∥∥∥∑j
i=1 Ui

∥∥∥ . If q is even (re-

spectively odd) then q = 2k (resp. q = 2k + 1) for some positive integer k, implying
[q/2] = [2k/2] = k (resp. [q/2] = [(2k + 1)/2] = k) whence 2[q/2]Rn ≤ qRn (resp.
2[q/2]Rn ≤ (q − 1)Rn). Thus, because % ≥ qRn,

P

(
sup

1≤k≤n
‖Sk‖ > 4%

)
≤ P (2[q/2]Rn > %) + P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≥ 3%

)

= P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≥ 3%

)
,(SA.1)
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so it suffices to prove that

P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≥ 3%

)
≤
([

n

q

]
+ 1

)
β(q) + 2 (d1 + d2) exp

(
−%2/2

nqs2
n + qRn%/3

)
.

Enlarging the probability space as needed, by Lemma 5.1 (Berbee’s Lemma) of Rio
(2017) there is a sequence ξ∗i , 1 ≤ i ≤ [n/q] + 1, such that

(a) The random variable x∗i is distributed as xi for each 1 ≤ i ≤ [n/q] + 1.
(b) The sequences ξ∗2i, 1 ≤ 2i ≤ [n/q] + 1, and ξ∗2i−1, 1 ≤ 2i− 1 ≤ [n/q] + 1, comprise

of independent random variables.
(c) P (ξi 6= ξ∗i ) ≤ β(q + p) for 1 ≤ i ≤ [n/q] + 1.

Denote Ξ∗i,n = Ξn (ξ∗i ), and define U∗i in the obvious manner. Then, we have

(SA.2) sup
j>0

∥∥∥∥∥
j∑
i=1

Ui

∥∥∥∥∥ ≤
[n/q]+1∑
i=1

‖Ui − U∗i ‖+ sup
j>0

∥∥∥∥∥
j∑
i=1

U∗2i

∥∥∥∥∥+ sup
j>0

∥∥∥∥∥
j∑
i=1

U∗2i−1

∥∥∥∥∥ .
Now, by (c), we have

P

[n/q]+1∑
i=1

‖Ui − U∗i ‖ ≥ %

 = P

[n/q]+1∑
i=1

‖Ui − U∗i ‖ ≥

[n/q]+1∑
i=1

%/ ([n/q] + 1)


≤

[n/q]+1∑
i=1

P (‖Ui − U∗i ‖ ≥ %/ ([n/q] + 1))

≤ ([n/q] + 1) β(q + p),

while for all 1 ≤ i ≤ [n/q] + 1 the matrices U∗i =
∑iq

j=iq−q+1 Ξ∗j,n satisfy ‖U∗i ‖ ≤ qRn

and

max
1≤j≤n

max

{∥∥∥∥∥E
(

j∑
i=1

UiU
∗′
i

)∥∥∥∥∥ ,
∥∥∥∥∥E
(

j∑
i=1

U∗
′

i U
∗
i

)∥∥∥∥∥
}
≤ nqs2

n.

Furthermore, the sequence Uj =
∑j

i=1 U
∗
2i is a matrix martingale (because U∗2i is an

independent sequence and EUj = 0) with difference sequence Uj −Uj−1 = U∗2j. Thus,
by Corollary 1.3 of Tropp (2011),

(SA.3) P

(
sup
j>0

∥∥∥∥∥
j∑
i=1

U∗2i

∥∥∥∥∥ ≥ %

)
≤ (d1 + d2) exp

(
−%2/2

nqs2
n + qRn%/3

)
.

The third term on the RHS of (SA.2) is bounded similarly, whence the claim follows.

Proof of Corollary SC.A.1. In Theorem ST.A.1, take % = Csn
√
nq log (d1 + d2) for a

sufficiently large constant C. Then the claim follows by the condition (n/q) β(q) =

o(1) and because Rn

√
q log (d1 + d2) = o (sn

√
n). To verify that % satisfies that

requirement of Theorem ST.A.1, note that the latter condition implies Csn
√
n ≥

2



Rn

√
q log (d1 + d2) for sufficiently large n, so % ≥ qRn log(d1 + d2) ≥ qRn for suffi-

ciently large n, assuming d1 + d2 ≥ e ≈ 2.72. The latter condition fails only if the
Ξi,n are scalar.

S.B. For Section 3

We first present an initial approximation of Qn(γ).

Theorem ST.B.1. Let Assumptions 1-3 hold, and

(SB.1) λ−4
n

√
p
(
λ−1
n κp + vp

)
+ λ−4

n p−1 → 0 as n→∞,
Then, Qn(γ)− (Rn(γ)− p) /

√
2p = op(1).

Proof. Much of the details are delegated to Lemmas SL.B.2-SL.B.10. In particular,
we show in Lemma SL.B.6 that

(SB.2) Qn(γ) =
nε′A(γ)′B(γ)−1A(γ)ε− p√

2p
+ op(1).

Then, note that

(SB.3) (X∗(γ)′MXX
∗(γ))

−1
= n−1

(
I − M̂−1Ŝ(γ)

)−1

Ŝ(γ)−1,

and

(SB.4) X∗(γ)′MXε = X∗(γ)′ε− Ŝ(γ)M̂−1X ′ε,

because n−1X∗(γ)′X = Ŝ(γ). Using (SB.3) and (SB.4), we may write nε′A(γ)′B(γ)−1A(γ)ε/
√

2p
as

(SB.5)
n−1R1(γ)′R2(γ)′B(γ)−1R2(γ)R1(γ)√

2p

where R1(γ) = Ŝ(γ)−1X ′∗(γ)ε− γ(1− γ)−1M̂−1X ′ε and R2(γ) =
(
I − M̂−1Ŝ(γ)

)−1

.

By adding and subtracting terms we can decompose (SB.5) as
∑4

i=1 ∆i(γ) +Rn(γ),
with

∆1(γ) =

(
R1(γ)−R1(γ)

)′
R2(γ)′B(γ)−1R2(γ)R1(γ)

n
√

2p
,

∆2(γ) =
R1(γ)′R2(γ)′B(γ)−1R2(γ)

(
R1(γ)−R1(γ)

)
n
√

2p
,

∆3(γ) =
R1(γ)′ (R2(γ)− γ−1I)

′
B(γ)−1R2(γ)R1(γ)

n
√

2p
,

∆4(γ) =
R1(γ)′B(γ)−1 (R2(γ)− γ−1I)R1(γ)

γn
√

2p
,

3



where we write R1(γ) = (1− γ)−1M̂−1
(
γ
∑n

t=1 εtxt −
∑[nγ]

t=1 εtxt

)
and

(SB.6)

Rn(γ) =

(∑[nγ]
t=1 εtxt − γ

∑n
t=1 εtxt

)′
M̂−1B(γ)−1M̂−1

(∑[nγ]
t=1 εtxt − γ

∑n
t=1 εtxt

)
γ2 (1− γ)2 n

√
2p

.

By (SB.29), the term sandwiched between the parentheses in the numerator of
(SB.6) is

(SB.7)
(
M̂−1 −M−1

)
B(γ)−1M̂−1 +M−1B(γ)−1

(
M̂−1 −M−1

)
+ γ(1− γ)Ω−1.

Substituting (SB.7) into (SB.6) yields three terms corresponding to the three terms
in (SB.7). The first of these, multiplied by the outside terms in the sandwich formula
in (SB.6), has modulus bounded by a constant times

n−1
(
‖X ′ε‖2 + ‖X∗(γ)′ε‖2) ∥∥∥M̂ −M∥∥∥ ‖B(γ)−1‖ ‖M−1‖

∥∥∥M̂−1
∥∥∥2

√
p

= Op

(
λ−4
n

√
pκp
)
,

by Assumption 3 and Lemmas SL.B.2, SL.B.4, and also (SB.25), while the second is
similarly shown to be Op

(√
pκp
)

also. By (SB.1), we conclude that

Rn(γ) = Rn(γ) + op(1),

indicating that the theorem is proved if ∆i(γ) = op(1), i = 1, 2, 3, 4. But by previously
used techniques and Lemmas SL.B.9 and SL.B.10, we readily conclude that

(∆1(γ),∆2(γ),∆3(γ),∆4(γ)) = Op

(
λ−5
n

√
pκp
)

which are all negligible by (SB.1), proving the theorem.

Write Ω̃(γ) = n−1
∑n

t=1 xt(γ)x′t(γ)ε2
t .

Lemma SL.B.1. Under Assumptions 1-3, and the conditions of Propositions B.2 or
B.1 as applicable,

sup
γ∈Γ

∥∥∥Ω̂(γ)− Ω̃(γ)
∥∥∥ = Op

(
λ−2
n min

{
p3

n
,
ϑ2
pp

n

})
,(SB.8)

sup
γ∈Γ

∥∥∥Ω̃(γ)− Ω̄(γ)
∥∥∥ = Op

(
p√
n

)
.(SB.9)

Proof of Lemma SL.B.1. The matrix inside the norm on the LHS of (SB.8) can be
decomposed as

∑5
i=1 Ui(γ), with

U1(γ) = n−1

n∑
t=1

xt(γ)x′t(γ)
[
x′t(γ)

(
δ − δ̂(γ)

)]2

,

U2(γ) = n−1

n∑
t=1

xt(γ)x′t(γ)r2
t ,

4



U3(γ) = 2n−1

n∑
t=1

xt(γ)x′t(γ)
[
x′t(γ)

(
δ − δ̂(γ)

)]
εt,

U4(γ) = 2n−1

n∑
t=1

xt(γ)x′t(γ)
[
x′t(γ)

(
δ − δ̂(γ)

)]
rt,

U5(γ) = n−1

n∑
t=1

xt(γ)x′t(γ)rtεt.

Recall Lemma SL.B.3 for supγ∈Γ

∥∥∥δ − δ̂(γ)
∥∥∥ = Op

(
λ−1
n

√
p/n
)
. Now, since the

maximum eigenvalue of a non-negative definite symmetric matrix is less than equal
to the trace,

‖U1(γ)‖ ≤ n−1

n∑
t=1

(x′t(γ)xt(γ))
2
(
δ − δ̂(γ)

)′ (
δ − δ̂(γ)

)
≤ 2pn−1

n∑
t=1

p∑
j=1

x4
tj

∥∥∥δ − δ̂(γ)
∥∥∥2

= Op

(
λ−2
n p2

)
Op (p/n) ,

uniformly in γ, by the fact that supt,j Ex
4
tj <∞ and (SB.27). In a similar fashion,

E sup
γ∈Γ
‖U2(γ)‖ ≤ 2En−1

n∑
t=1

x′txtr
2
t ≤ 2

(
E (x′txt)

2
Er4

t

)1/2

= O
(
λ−2
n p/
√
n
)
.

Similarly and using the fact that E (|εt| |xt) ≤
√
E (ε2

t |xt) = O (1) , we obtain

‖U3(γ)‖ ≤ 4n−1

n∑
t=1

(x′txt)
2 |εt|

∥∥∥δ − δ̂(γ)
∥∥∥2

= Op

(
λ−2
n p3/n

)
,

‖U4(γ)‖ ≤ 4n−1

n∑
t=1

(x′txt)
3/2
∥∥∥δ − δ̂(γ)

∥∥∥ |rt|
≤ 4

∥∥∥δ − δ̂(γ)
∥∥∥(n−1

n∑
t=1

(x′txt)
2

)3/4(
n−1

n∑
t=1

r4
t

)1/4

≤ O

(√
p

n
p3/2 λ

−1
n

n1/4

)
,

‖U5(γ)‖ = 2n−1

n∑
t=1

(x′txt) |rtεt| = Op

(
p/
√
n
)
,

all uniformly in Γ. Thus (SB.8) is established.
To show (SB.9), let xit, i = 1, . . . , p, be a typical element of xt. Then any ele-

ment of Ω̃(γ) − Ω̄(γ) is of the form n−1
∑n

t=1 xit(γ)xjt(γ) (ε2
t − σ2

t ), i, j = 1, . . . , p,
and ε2

t − σ2
t is an MDS by construction. Thus, it has mean zero and variance

n−2
∑n

t=1 Ex
2
it(γ)x2

jt(γ)E
(

(ε2
t − σ2

t )
2 |Ft−1

)
= Op (n−1), by Assumption 1 and the

boundedness of Ex4
it. Thus, E

∥∥∥Ω̃(γ)− Ω̄(γ)
∥∥∥2

= O (p2/n) , and the claim in (SB.9)

follows by Markov’s inequality.
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We establish asymptotic normality of

(SB.10) Sn(γ) =
n−1

∑
s 6=t gt(γ)′Ω−1gs(γ)εtεs

γ (1− γ)
√

2p
,

recalling that gt(γ) = xt1 {t/n ≤ γ} − γxt.

Theorem ST.B.2. Under Assumptions 1-5 and (SB.1), Sn(γ)
d→
√
VQ(γ), as n→

∞, pointwise in γ.

Proof of Theorem ST.B.2. First, note that Sn(γ) equals
[
γ (1− γ)

√
2p
]−1

times

1

n

[nγ]∑
s,t=1

s 6=t

x′tΩ
−1xsεtεs −

2γ

n

n∑
s=1

[nγ]∑
t=1

s6=t

x′tΩ
−1xsεtεs +

γ2

n

n∑
s,t=1

s 6=t

x′tΩ
−1xsεtεs

and thus

Sn(γ) =

√
2

γ (1− γ)

[
An(γ)− γ

[
An(1) +An(γ)− Ān(γ)

]
+ γ2An(1)

]
,

=
√

2

(
An(γ)

γ
+
Ān (γ)

(1− γ)
−An(1)

)
,

where

An(γ) =
1

n
√
p

[nγ]∑
s=2

s−1∑
t=1

ξ′tξs,

Ān(γ) =
1

n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′tξs,

and ξt = {ξti}pi=1 = Ω−1/2xtεt being an mds.
Next, we check the conditions of Corollary 3.1 in Hall and Heyde (1980) for An(γ),

with similar steps holding for Ān(γ) due to the symmetric nature of the processes.
Writing wns = ξ′s

∑s−1
t=1ξt/

√
np (a heterogeneous martingale difference array), we first

check the second condition therein, viz.

(SB.11)
∑
s

E
(
w2
ns|Gs−1

)
/n− V/2 p→ 0.

Let ∆s = ΥsΞs. Then we want to show n−2p−1
∑

s tr∆s − V/2
p→ 0 but, because

n−2p−1
∑

sEtr∆s → V/2, it suffices to show

(SB.12) n−2p−1
∑
s

(tr∆s − Etr∆s)
p→ 0.

By Assumption 4, P {Zn ≤ nν} → 1, where Zn = max1≤t≤n λ (Υt). Then, to prove
(SB.12), let dn = I {Zn ≤ nν} andKn denote the LHS in (SB.12). WriteKn = Kndn+
Kn (1− dn) and note that Kn (1− dn) = op (1) since P {‖ZnKn (1− dn)‖ > 0} ≤
P {dn 6= 1} → 0.
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Thus it suffices to show (SB.12) for dn = 1. The LHS of (SB.12) has variance
(SB.13)

n−4p−2
∑
s

E (tr∆s − Etr∆s)
2+2n−4p−2

∑
s1<s2

E ((tr∆s1 − Etr∆s1) (tr∆s2 − Etr∆s2)) .

The first term in (SB.13) is bounded by n−4p−2
∑

sE (tr2∆s), and observe that∑
s

E
(
tr2∆s

)
=
∑
s

E
(
tr2 (ΥsΞs)

)
≤

∑
s

E
{
λ

2
(Υs) tr2 (Ξs)

}
≤ Cn2νE

(∑
s

tr2 (Ξs)

)
.(SB.14)

The above inequalities are obtained as follows: first, the matrix Ξs =
∑

t1,t2<s
ξt1ξ

′
t2

is

symmetric and positive semidefinite as it equals
(∑

t<s Ω−1/2xtεt
) (∑

t<s Ω−1/2xtεt
)′

.
Because Υs is also symmetric psd, Theorem 1 of Fang et al. (1994) yields tr (ΥsΞs) ≤
λ (Υs) tr(Ξs), whence the remaining inequality follows by Assumption 4.

Because tr
(
Ω−1/2xt1x

′
t2

Ω−1/2
)

= x′t1Ω
−1xt2 , the right side of (SB.14) is

(SB.15) Cn2ν
∑
s

∑
t1,t2<s;t3,t4<s

E
(
x′t1Ω

−1xt2εt1εt2x
′
t3

Ω−1xt4εt3εt4
)
.

The contribution to (SB.15) when t1 = t2 = t3 = t4 is

Cn2ν
∑
s

∑
t<s

E
((
x′tΩ

−1xt
)2
ε4
t

)
≤ Cn2ν

∑
s

∑
t<s

p∑
i,j=1

E
(
x2
itx

2
jt

)
= O

(
n2ν+2p2

)
,

by Assumptions 1 and 3. Thus, this case contributes O (n2ν−2) = o(1) to (SB.13).
Next, the contribution to (SB.15) from the case (t1 = t2) 6= (t3 = t4) is

Cn2ν
∑
s

∑
t1<t2<s

E
(
x′t1Ω

−1xt1ε
2
t1
E
(
x′t2Ω

−1xt2ε
2
t2

∣∣Gt2−1

))
≤ Cn2ν

∑
s

∑
t1<s

E

(
x′t1Ω

−1xt1ε
2
t1

∑
t2<s

trΥt2

)

≤ Cn2ν+1p
∑
t1≤n

E

(
x′t1Ω

−1xt1ε
2
t1

∑
t2≤n

λ (Υt2)

)
≤ Cn3ν+2p

∑
t1≤n

tr
(
E
(
xt1x

′
t1
ε2
t1

)
Ω−1

)
= O

(
n3ν+3p2

)
,

by Assumption 4, and because trΥt2 ≤ pλ (Υt2). Thus, this case contributesO (n3ν+3p2)
to SB.14, and therefore O (n3ν−1) to (SB.13).
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The cases (t1 = t3) 6= (t2 = t4) and (t1 = t4) 6= (t2 = t3) similarly contribute a
constant times

n2ν
∑
s

∑
t1 6=t2

E
(
x′t1Ω

−1xt2εt1εt2
)2

≤ n2ν
∑
s

∑
t1 6=t2

(
E
(
x′t1Ω

−1xt1ε
2
t1

)2
)1/2 (

E
(
x′t2Ω

−1xt2ε
2
t2

)2
)1/2

= O
(
n2ν+3p2

)
,(SB.16)

to (SB.15), using the Cauchy Schwarz inequality. This ensures a negligible contribu-
tion of O (n2ν−1) to (SB.13). Finally,

Cn2ν
∑
s

6=∑
t1,t2<s;t3,t4<s

E
(
x′t1Ω

−1xt2εt1εt2x
′
t3

Ω−1xt4εt3εt4
)

= O

(
n2ν
∑
s

6=∑
t1,t2<s;t3,t4<s

p∑
i,j=1

|E (xt1,iεt1xt2,iεt2xt3,jεt3xt4,jεt4)|

)

= O

(
n2ν+1p2 max

s

6=∑
t1,t2<s;t3,t4<s

max
i,j=1,...,p

|E (xt1,iεt1xt2,iεt2xt3,jεt3xt4,jεt4)|

)
,

(SB.17)

where
∑ 6=

t1,t2<s;t3,t4<s
excludes all cases which were considered before. Therefore, in

view of (SB.14) and (SB.17), to establish negligibility of the first term in (SB.13) it
suffices to show

(SB.18) n2ν−3 max
s

max
i,j=1,...,p

6=∑
t1,t2<s;t3,t4<s

|E (xt1,iεt1xt2,jεt2xt3,kεt3xt4,lεt4)| = o(1).

The summand on the LHS abve is bounded by

|E (xt1,iεt1xt2,iεt2)| |E (xt3,jεt3xt4,jεt4)|+ |E (xt1,iεt1xt3,jεt3)| |E (xt2,iεt2xt4,jεt4)|
+ |E (xt1,iεt1xt4,jεt4)| |E (xt2,iεt2xt3,jεt3)|
+ |cumiijj (xt1,iεt1 , xt2,iεt2 , xt3,jεt3 , xt4,jεt4)|
= |cii (t1 − t2)| |cjj (t3 − t4)|+ |cij (t1 − t3)| |cij (t2 − t4)|
+ |cij (t1 − t4)| |cji (t2 − t3)|
+ |cumiijj (x0,iε0, xt2−t1,iεt2−t1 , xt3−t1,jεt3−t1 , xt4−t1,jεt4−t1)| .

(SB.19)

Because
∑

t1,t2
|cij (t1 − t2)| ≤ n

∑∞
t=−∞ |cij (t)|, by Assumption 5 and (SB.19) the

LHS of (SB.18) is O
(
n2(ν+1)−3

)
= O (n2ν−1) = o(1), as desired. Thus the first term

in (SB.13) is negligible, and by Assumption 4 we conclude the proof of (SB.12).
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We now check the conditional Lindeberg condition

(SB.20) For all η > 0,
∑
s

E
((
wns/
√
n
)2

1 (|wns| > η)
∣∣∣Gs−1

)
p→ 0,

in Hall and Heyde (1980), Corollary 3.1, for which we verify the sufficient Lyapunov
condition

(SB.21)
∑
s

E
((
wns/
√
n
)4
∣∣∣Gs−1

)
p→ 0.

The LHS of (SB.21) is positive and, by law of iterated expectations, has mean

n−2
∑
s

Ew4
ns ≤ n−1 max

s
Ew4

ns = o (1) ,

the final bound coming due to a calculation similar to (SB.11) and (SB.14). Specifi-
cally,
(SB.22)

n−1 max
s
E |wns|4 ≤ max

s
E

E((ξ′sξs)
2|Gs−1)

( ∑
t1,t2<s

ξ′t1ξt2

)2
n−3p−2 = O

(
nω+ν−1

)
,

by Assumption 4 and because the steps involved in showing (SB.12) imply that

E
(∑

t1,t2<s
ξ′t1ξt2

)2

= O (nν+2p2). Thus, because Assumption 4 also implies that

O (nω+ν−1) = o(1), (SB.20) is established. A similar proof holds for the asymptotic
normality of Ān (γ).

We finally derive the limiting covariance of
(
An (γ) , Ān (γ)

)′
. Using Assumption

4, we first compute

E |An (γ)|2 =
1

n

[nγ]∑
s=1

Ew2
s

=
1

n2

[nγ]∑
s=1

s

(
1

sp
tr

s−1∑
t1,t2=1

E
(
ξsξ
′
sξt1ξ

′
t2

))

=
([nγ] + 1) [nγ]

2n2
lim

s,p→∞

(
1

sp
tr

s−1∑
t1,t2=1

E
(
ξsξ
′
sξt1ξ

′
t2

))
+ o (1)

=
γ2V

2
+ o (1) ,

where V is given in (3.2). Next,

E
∣∣Ān (γ)

∣∣2 = E

∣∣∣∣∣∣ 1

n
√
p

n∑
s=[nγ]+1

s−1∑
t=[nγ]+1

ξ′tξs

∣∣∣∣∣∣
2
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= E

∣∣∣∣∣∣ 1

n
√
p

n−[nγ]∑
s=1

s−1∑
t=1

ξ′t+[nγ]ξs+[nγ]

∣∣∣∣∣∣
2

=
(1− γ)2 V

2
+ o (1) .

Finally,
E
(
An (γ) Ān (γ)

)
= 0.

Therefore, we conclude that(
An (γ)
Ān (γ)

)
d→
√
V
2

(
W (γ)
W̄ (γ)

)
.

Finally, apply the continuous mapping theorem to get

Sn(γ) =
√

2

(
An(γ)

γ
+
Ān (γ)

(1− γ)
−An(1)

)
d→
√
V
(
W (γ)

γ
+

W̄ (γ)

(1− γ)
−W (1)

)
=
√
VQ(γ).

We note some preliminary calculations useful for the sequel. Note that

δ̂2(γ) = A(γ)y = δ2 + A(γ)e = δ2 + A(γ)ε+ A(γ)r.

Because δ2 = 0 under H0, we have

(SB.23) Wn(γ) = n (ε+ r)′A′(γ)B̂(γ)−1A(γ) (ε+ r) ,

where we recall that B̂(γ) = RM̂(γ)−1Ω̂(γ)M̂(γ)−1R′.

Lemma SL.B.2. Under the conditions of Theorem ST.B.1, for all sufficiently large
n,

sup
γ∈Γ

∥∥∥M̂(γ)
∥∥∥ = Op(1), sup

γ∈Γ

∥∥∥M̂(γ)−1
∥∥∥ = Op(λ

−1
n ).

Proof. Note that, by the triangle inequality,∥∥∥M̂(γ)−1
∥∥∥ ≤ ∥∥∥M̂(γ)−1

∥∥∥∥∥∥M̂(γ)−M(γ)
∥∥∥∥∥M(γ)−1

∥∥+
∥∥M(γ)−1

∥∥ ,
so ∥∥∥M̂(γ)−1

∥∥∥(1−
∥∥∥M̂(γ)−M(γ)

∥∥∥∥∥M(γ)−1
∥∥) ≤ ∥∥M(γ)−1

∥∥ ,
using the triangle inequality. Taking limits of the last displayed expression as n→∞
and using Assumption 3, the rate condition (SB.1) yields

∥∥∥M̂(γ)−1
∥∥∥ = Op(λ

−1
n ). Next,

noting that ∥∥∥M̂(γ)
∥∥∥ ≤ ∥∥∥M̂(γ)−M(γ)

∥∥∥+ ‖M(γ)‖ ,
the lemma follows by using Assumption 3.

It is useful to first establish the stochastic order of
∥∥∥δ − δ̂(γ)

∥∥∥.

10



Lemma SL.B.3. Under the conditions of Theorem ST.B.1, supγ∈Γ

∥∥∥δ − δ̂(γ)
∥∥∥ =

Op

(
λ−1
n

√
p/n
)
.

Proof. Note that δ − δ̂(γ) = M̂(γ)−1n−1
∑n

t=1 xt(γ)et and that∥∥∥δ − δ̂(γ)
∥∥∥2

= Op

∥∥∥M̂(γ)−1
∥∥∥2

n−2

∥∥∥∥∥
n∑
t=1

xt(γ)et

∥∥∥∥∥
2
 = λ−2

n Op

n−2

∥∥∥∥∥
n∑
t=1

xt(γ)et

∥∥∥∥∥
2


= λ−2
n Op

n−2

∥∥∥∥∥
n∑
t=1

xt(γ)εt

∥∥∥∥∥
2

+ n−2 ‖X(γ)′r‖2

 ,

uniformly in γ, by Lemma SL.B.2. Next, E
(
n−2 ‖

∑n
t=1 xt(γ)εt‖2

)
equals

(SB.24) E

(
n−2

n∑
s,t=1

x′t(γ)xs(γ)εsεt

)
,

which is
(SB.25)

n−2

n∑
t=1

E ‖xt(γ)‖2 σ2
t + 2n−2

∑
s<t

E (x′t(γ)xs(γ)E (εsE (εt|εr, r < t))) = Op (p/n) ,

by Assumptions 1 and Ex′t(γ)xt(γ) = O (p). Finally,

(SB.26) n−2 ‖X(γ)′r‖2 ≤ n−2 ‖X(γ)‖2 ‖r‖2 = λ
(
M̂(γ)

)
n−1 ‖r‖2 = Op (1/n) ,

by (2.2) and Lemma SL.B.2. Therefore,

(SB.27) sup
γ∈Γ

∥∥∥δ − δ̂(γ)
∥∥∥ = λ−1

n Op

(√
p/
√
n
)
,

by Markov’s inequality.

Observe that because

(SB.28) M(γ)−1 =

[
(1− γ)−1M−1 (1− γ)−1M−1

(1− γ)−1M−1 [γ(1− γ)]−1M−1

]
,

we have

(SB.29) B(γ)−1 = γ(1− γ)MΩ−1M.

Lemma SL.B.4. Under the conditions of Theorem ST.B.1,

sup
γ∈Γ
{λ (B(γ))}−1 = O(λ−1

n ) and sup
γ∈Γ

λ (B(γ)) = O(λ−2
n ).

Proof. {λ (B(γ))}−1 = λ (B(γ)−1), which, using (SB.29), is bounded by

Cλ
(
MΩ−1M

)
= C

∥∥MΩ−1M
∥∥ ≤ Cλ (M)2 λ (Ω)−1 = O(λ−1

n ),
11



uniformly on the compact Γ, using Assumption 3(ii). For the second part of the
claim, because (SB.29) implies B(γ) = [γ(1− γ)]−1M−1ΩM−1, it follows similarly
that λ (B(γ)) is uniformly bounded by a constant times 1

λ
(
M−1ΩM−1

)
=
∥∥M−1ΩM−1

∥∥ ≤ λ (M)−2 λ (Ω) = O(λ−2
n ).

Lemma SL.B.5. Under the conditions of Theorem ST.B.2,

sup
γ∈Γ

∥∥∥B̂(γ)
∥∥∥ = Op(λ

−2
n ), sup

γ∈Γ

∥∥∥B̂(γ)−1
∥∥∥ = Op(λ

−1
n ).

Proof. First, define B̃(γ) = RM̂(γ)−1Ω(γ)M̂(γ)−1R′. We will use uniform bounds in
the calculations without explicitly mentioning this in each step to simplify notation.
Proceeding as in the proof of Lemma SL.B.2, we can write∥∥∥B̂(γ)−1

∥∥∥(1−
∥∥∥B̂(γ)− B̃(γ)

∥∥∥) ≤ ∥∥∥B̃(γ)−1
∥∥∥ ,(SB.30) ∥∥∥B̃(γ)−1

∥∥∥(1−
∥∥∥B̃(γ)−B(γ)

∥∥∥) ≤ ∥∥B(γ)−1
∥∥ .(SB.31)

Next, Lemma SL.B.2 implies

(SB.32)
∥∥∥B̂(γ)− B̃(γ)

∥∥∥ ≤ ‖R‖2
∥∥∥M̂(γ)−1

∥∥∥2 ∥∥∥Ω̂(γ)− Ω(γ)
∥∥∥ = Op

(
λ−2
n vp

)
.

On the other hand, B̃(γ)−B(γ) equals

R
[
M̂(γ)−1Ω(γ)M̂(γ)−1 −M(γ)−1Ω(γ)M(γ)−1

]
R′.

By adding and subtracting terms inside the square brackets, this can be written as

R
[
M(γ)−1

(
M̂(γ)−M(γ)

)
M̂(γ)−1Ω(γ)M̂(γ)−1

]
R′

+RM(γ)−1Ω(γ)M(γ)−1
(
M̂(γ)−M(γ)

)
M̂(γ)−1R′.(SB.33)

By this fact, Assumption 3, Lemmas SL.B.1 and SL.B.2, and (SB.1), we deduce from
(SB.33) that

(SB.34)
∥∥∥B̃(γ)−B(γ)

∥∥∥ = Op

(
λ−3
n κp + λ−2

n vp
)

= op(1).

The lemma now follows by taking limits of (SB.30) and (SB.31), and using (SB.32),
(SB.34) and Lemma SL.B.4.

Lemma SL.B.6. Under the conditions of Theorem ST.B.2 and H0,

Wn(γ)√
2p

=
nε′A(γ)′B(γ)−1A(γ)ε√

2p
+ op(1).

1If λ(MΩ−1M) ≥ λn, the bound in this lemma becomes O(λ−1
n ).

12



Proof. Recall the notation M̂ = n−1X ′X and Ŝ(γ) = n−1X ′∗(γ)X(γ). Notice that
from (SB.23) we obtain
(SB.35)

Wn(γ)√
2p

=
nε′A(γ)′B̂(γ)−1A(γ)ε√

2p
+

2nε′A(γ)′B̂(γ)−1A(γ)r√
2p

+
nr′A(γ)′B̂(γ)−1A(γ)r√

2p
,

with r the n× 1 vector with elements rt. Begin with the modulus of the last term on
the RHS of (SB.35). Recalling the relation in (SB.3) and (SB.4) for A(γ)r, we bound
it by Cn/

√
2p times∥∥n−1X ′r

∥∥2
∥∥∥I − Ŝ(γ)M̂−1

∥∥∥2 ∥∥∥(n−1X∗(γ)′MXX
∗(γ)

)−1
∥∥∥2 ∥∥∥B̂(γ)−1

∥∥∥ .(SB.36)

= Op(λ
−5
n κ2

pn
−1),

where Assumption 2 bounds the first term, Lemma SL.B.9 yields a bound for the
second and third terms after expanding the third term by (SB.3), and the last term
is Op (λ−1

n ) Lemma SL.B.5. Thus (SB.36) implies that the third term on the RHS of
(SB.35) is op (1).

We now show that the first term on the RHS of (SB.35) is

(SB.37)
nε′A(γ)′B(γ)−1A(γ)ε√

2p
+ op(1).

Indeed, as above,

nε′A(γ)′
(
B̂(γ)−1 −B(γ)−1

)
A(γ)ε

√
2p

=
n
√
p
Op

(∥∥n−1X ′ε
∥∥2
∥∥∥B̂(γ)−1 −B(γ)−1

∥∥∥)
=
√
pOp

(
B(γ)−1

∥∥∥B(γ)− B̂(γ)
∥∥∥ B̂(γ)−1

)
= λ−4

n

√
pOp

(
λ−1
n

∥∥∥M̂(γ)−M(γ)
∥∥∥+(SB.38) ∥∥∥Ω̂(γ)− Ω(γ)

∥∥∥)
= Op

(
λ−4
n

√
p
(
λ−1
n κp + vp

))
,(SB.39)

by Lemma SL.B.5, using equations (SB.25), (SB.32) and (SB.34)) in the proofs
thereof. This is negligible by (SB.1).

For the second term on the RHS of (SB.35), apply the Cauchy-Schwarz inequality
and the preceding two results. Then, the second term becomes op(1), establishing the
lemma.

Denote, for convenience, C(γ) = [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1G(γ)Σ

1
2 , where Σ =

diag [σ2
1, . . . , σ

2
n].

Lemma SL.B.7. Under the conditions of Theorem ST.B.2, any eigenvalue λ of C(γ)
satisfies

P (|λ(λ− 1)| < η)→ 1,

as n→∞, for any η > 0.
13



Proof. We have

C(γ)2 = [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1 [γ (1− γ)]−1 n−1G(γ)′ΣG(γ)Ω−1G(γ)′Σ

1
2

= [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1ΩΩ−1G(γ)′Σ

1
2

+ [γ (1− γ)]−1 n−1Σ
1
2G(γ)Ω−1

{
[γ (1− γ)]−1 n−1G(γ)′ΣG(γ)− Ω

}
× Ω−1G(γ)′Σ

1
2

= C(γ) +D(γ),

say. We now prove that

(SB.40) ‖D(γ)‖ = op(1) as n→∞.
In view of Assumptions 1 and 3(i), to prove (SB.40) it suffices to show that

(SB.41)
∥∥[γ (1− γ)]−1 n−1G(γ)′ΣG(γ)− Ω

∥∥ = op(1).

But

n−1G(γ)′ΣG(γ) = n−1(1− 2γ)

[nγ]∑
t=1

xtx
′
tσ

2
t + γ2Ω

= (1− 2γ)

n−1

[nγ]∑
t=1

xtx
′
tσ

2
t − γΩ

+ [γ(1− γ)] Ω,

so (SB.41) follows if
∥∥∥n−1

∑[nγ]
t=1 xtx

′
tσ

2
t − γΩ

∥∥∥ = op(1), which is true by Assumption

3. Thus (SB.40) is established.
Let λ be any eigenvalue of C(γ) and w be the corresponding eigenvector, normalised

to ‖w‖ = 1. Because λw = C(γ)w, we have λC(γ)w = C(γ)2w = [C(γ) +D(γ)]w =
λw +D(γ)w, implying λ(λ− 1)w = D(γ)w. Thus

(SB.42) |λ(λ− 1)| = ‖D(γ)w‖ ≤ ‖D(γ)‖ .
Then, for arbitrary η > 0,

P (|λ(λ− 1)| < η) = P (‖D(γ)w‖ < η) ≥ P (‖D(γ)‖ < η)→ 1, as n→∞,
by (SB.40). This completes the proof.

We have Rn(γ) = [γ (1− γ)]−1 n−1ε′G(γ)′Ω−1G(γ)′ε, which in turn equals

(SB.43) [γ (1− γ)]−1 n−1

n∑
t,s=1

gt(γ)′Ω−1gs(γ)εtεs.

Note that tr {C(γ)} is the sum of the eigenvalues of C(γ), which is a symmetric matrix
with rank p. Thus, in view of Lemma SL.B.7 it has p eigenvalues that approach 1 in
probability, with the remainder approaching 0. Thus,

(SB.44)
Rn(γ)− tr (C(γ))√

2p
=
Rn(γ)− p√

2p
+ op(1),

14



whence using (SB.43) we deduce that (SB.44) equals

(SB.45)
n−1

∑n
t=1 gt(γ)′Ω−1gt(γ) (ε2

t − σ2
t ) + n−1

∑
s 6=t gt(γ)′Ω−1gs(γ)εtεs

γ (1− γ)
√

2p
.

Lemma SL.B.8. Under the conditions of Theorem ST.B.2,

(SB.46) sup
γ∈Γ

n−1

n∑
t=1

gt(γ)′Ω−1gt(γ)
(
ε2
t − σ2

t

)
= op(1) as n→∞.

Proof. Conditional on xt, the LHS of (SB.46) has mean zero and variance

n−2

n∑
t=1

(
gt(γ)′Ω−1gt(γ)

)2
E
[(
ε2
t − σ2

t

)2
]

(SB.47)

+ 2n−2
∑
s<t

gs(γ)′Ω−1gs(γ)gt(γ)′Ω−1gt(γ)E
[(
ε2
t − σ2

t

) (
ε2
s − σ2

s

)]
.(SB.48)

The expectation in (SB.48) equals E [(ε2
t − σ2

t )E ((ε2
s − σ2

s) |εs)] = 0, by Assumption
1. Also by Assumption 1, (SB.47) is bounded by a constant times

n−2
∥∥Ω−1

∥∥2
n∑
t=1

‖gt(γ)‖4 ≤ n−2
∥∥Ω−1

∥∥2
n∑
t=1

(
‖xt(γ)‖4 + γ4 ‖xt‖4) = Op

(
λ−2
n

p2

n

)
,

uniformly in γ, the last equality following by Assumption 3(i).

Lemma SL.B.9. Under the conditions of Theorem ST.B.2, as n→∞,∥∥∥∥(I − M̂−1Ŝ(γ)
)−1

− γ−1I

∥∥∥∥ = Op

(
λ−1
n κp

)
.

Proof. First note that
∥∥∥(I − M̂−1Ŝ(γ)

)
− γI

∥∥∥ equals∥∥∥(1− γ)I − M̂−1
(
Ŝ(γ)− (1− γ)M

)
− (1− γ)M̂−1M

∥∥∥
≤ (1− γ)

∥∥∥M̂−1
∥∥∥(∥∥∥M̂ −M∥∥∥+

∥∥∥Ŝ(γ)− (1− γ)M
∥∥∥)

= Op

(
λ−1
n κp

)
,

by Assumptions 3. Since(
I − M̂−1Ŝ(γ)

)−1

− γ−1I = −γ−1
(
I − M̂−1Ŝ(γ)

)−1 {(
I − M̂−1Ŝ(γ)

)
− γI

}
and

∥∥∥∥(I − M̂−1Ŝ(γ)
)−1
∥∥∥∥ ≤ ∥∥∥M̂∥∥∥∥∥∥∥(n−1

∑[nγ]
t=1 xtx

′
t

)−1
∥∥∥∥ = Op (λ−2

n κp), by Assump-

tion 3, the lemma is established.

Lemma SL.B.10. Under the conditions of Theorem ST.B.2, as n→∞,∥∥∥∥∥∥
(
Ŝ(γ)−1X ′∗(γ)ε− γ(1− γ)−1M̂−1X ′ε

)
− M̂−1

(∑[nγ]
t=1 εtxt − γ

∑n
t=1 εtxt

)
1− γ

∥∥∥∥∥∥
15



= Op

(
λ−2
n

√
npκp

)
.

(SB.49)

Proof. First note that

(1− γ)−1

 [nγ]∑
t=1

εtxt − γ
n∑
t=1

εtxt

 = (1− γ)−1X ′∗(γ)ε− γ(1− γ)−1X ′ε,

so the term inside the norm in (SB.49) equals
(SB.50)(
Ŝ(γ)−1 − (1− γ)−1M̂−1

)
X ′∗(γ)ε = (1−γ)−1M̂−1

(
(1− γ)M̂ − Ŝ(γ)

)
Ŝ(γ)−1X ′∗(γ)ε.

The norm of the RHS of (SB.50) is bounded by a constant times∥∥∥M̂−1
∥∥∥∥∥∥Ŝ(γ)−1

∥∥∥
∥∥∥∥∥∥n−1

[nγ]∑
t=1

xtx
′
t − γM

∥∥∥∥∥∥+
∥∥∥M̂ −M∥∥∥

 ‖X ′∗(γ)ε‖ = Op

(
λ−2
n

√
npκp

)
,

the last equality following from Assumptions 3, Lemma SL.B.2, and also (SB.25).

S.C. Proof of Theorem 4.2

Proof. It is sufficient to check (4.7), whence (4.8) follows. Let ε? denote the vector
collecting ε?t = êt(γ)ξt, where ξt is an iid sequence of Rademacher variables. Then,

δ̂?2(γ) = A(γ)ε?,

since δ2 = 0 under H0. Also, we have

(SC.1) W ?
n(γ) = n (ε?)′A′(γ)B̂?(γ)−1A(γ)ε?,

where B̂?(γ) = RM̂(γ)−1Ω̂?(γ)M̂(γ)−1R′ and Ω̂?(γ) is constructed as Ω̂(γ) with the
bootstrap sample.

We begin with

E?W̄ ?
n(γ) = ntrA′(γ)B̂(γ)−1A(γ)E?ε?(ε?)′,

= ntrA′(γ)B̂(γ)−1A(γ)diag
[
ê1(γ)2, ..., ên(γ)2

]
,(SC.2)

where W̄ ?
n(γ) = n (ε?)′A′(γ)B(γ)−1A(γ)ε?. Note that the term in (SC.2) subtracted

by p is op(p
1/2) uniformly in γ due to Lemma SL.B.7, Lemma SL.B.8, and Lemma

SL.B.3.
Next, we show that the order of the difference between E?W̄ ?

n(γ) and E?W ?
n(γ) is

op(p
1/2). Following (SB.39), write

E?|W̄ ?
n(γ)−W ?

n(γ)| ≤ E?
(∥∥n−1/2A′(γ)ε?

∥∥2
∥∥∥B̂(γ)−1 − B̂?(γ)−1

∥∥∥) .
To apply the Cauchy-Schwarz inequality, and to bound E?

∥∥∥B̂(γ)−1 − B̂?(γ)−1
∥∥∥2

, we

derive bounds for E?
∥∥∥B̂?(γ)−1

∥∥∥4

and E?
∥∥∥B̂(γ)− B̂?(γ)

∥∥∥4

. Since both are similar to

the derivations for the sample counterparts in Lemmas SL.B.1 and SL.B.5, we only
16



illustrate the latter. Recall B̂(γ)− B̂?(γ) = R′M̂(γ)−1
(

Ω̂(γ)− Ω̂?(γ)
)
M̂(γ)−1R and

supγ∈Γ

∥∥∥M̂(γ)−1
∥∥∥ = Op(λ

−1
n ) by Lemma SL.B.2. Following the steps in the proof

of Lemma SL.B.1, the term Ω̂(γ) − Ω̂?(γ) is given by the sum of U?
1 (γ) and U?

3 (γ)

therein. Due to the triangle inequality and cr inequality, we only show E?
∥∥U?

j (γ)
∥∥4

=

Op(λ
−8
n p12/n4), for j = 1, 3. Note that by the independence of the sequence ξt

E? ‖U?
1 (γ)‖4 ≤

(
n−1

n∑
t=1

(x′t(γ)xt(γ))
2

)4

E?

((
δ? − δ̂?(γ)

)′ (
δ? − δ̂?(γ)

))4

≤ Op(p
8)
∥∥∥M̂(γ)−1

∥∥∥8

n−8
∑

t1,t2,t3,t4

ê2
t1
x′t1xt1 · · · ê

2
t4
x′t4xt4 ,

to yield the desired result and the bound for U?
3 is similarly obtained. Putting these

together yields E?
∥∥∥B̂(γ)−1 − B̂?(γ)−1

∥∥∥2

= Op(λ
−10
n p12/n4).

Next, similar to the preceding bound,

E?
∥∥n−1/2A′(γ)ε?

∥∥4
= Op(λ

−4
n )

(
n−1

n∑
t=1

x′txtê
2
t

)2

= Op(λ
−4
n p2),

as ξt is an iid Rademacher sequence. Then, under the condition (3.1), λ−14
n p14/n4 =

o(p) and this completes the proof.
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S.D. Verification of covariance decay in Assumption 4

Table S.Tab.D.1. (n4p2)−1
∑n

t=1

∑t−1
s=1 cov (tr (ΥtΞt) , tr (ΥsΞs)) with n =

999, ..., 9999 for multiple regression.

type αx α 999 3249 5499 7749 9999
1 0.1 0.3 0.0082 0.0058 0.0047 0.0043 0.0043
1 0.1 0.4 0.0086 0.0053 0.0044 0.0043 0.0038
1 0.1 0.5 0.0086 0.0055 0.0046 0.0041 0.0037
1 0.1 0.55 0.008 0.0054 0.0042 0.0037 0.0034
1 0.5 0.3 0.0377 0.0264 0.0233 0.0219 0.0212
1 0.5 0.4 0.0405 0.0251 0.0225 0.0197 0.0191
1 0.5 0.5 0.0357 0.0217 0.0174 0.0147 0.0138
1 0.5 0.55 0.038 0.0221 0.0171 0.0155 0.0138
1 0.7 0.3 0.2278 0.1735 0.1388 0.137 0.1354
1 0.7 0.4 0.2615 0.1858 0.1544 0.1413 0.1375
1 0.7 0.5 0.2757 0.1561 0.1416 0.1359 0.1313
1 0.7 0.55 0.2062 0.1484 0.1352 0.1149 0.1002
2 0.1 0.3 0.0155 0.0075 0.0054 0.0047 0.0044
2 0.1 0.4 0.011 0.0061 0.0054 0.0046 0.0042
2 0.1 0.5 0.0202 0.0108 0.0122 0.0069 0.006
2 0.1 0.55 0.0355 0.095 0.0199 0.0091 0.006
2 0.5 0.3 0.0518 0.0334 0.0265 0.0241 0.0219
2 0.5 0.4 0.0614 0.0307 0.0255 0.0241 0.0223
2 0.5 0.5 0.0703 0.0498 0.0302 0.0256 0.0238
2 0.5 0.55 1.6204 0.0992 0.0373 0.0313 0.0326
2 0.7 0.3 0.3164 0.203 0.188 0.1722 0.1536
2 0.7 0.4 0.3501 0.2266 0.2175 0.1972 0.183
2 0.7 0.5 0.9339 0.2196 0.8319 0.3447 0.3014
2 0.7 0.55 1.4368 0.5232 0.2518 0.1936 0.167
3 0.1 0.3 0.0078 0.0039 0.0035 0.0032 0.0028
3 0.1 0.4 0.0061 0.0035 0.0028 0.0024 0.0021
3 0.1 0.5 0.004 0.0023 0.0019 0.0018 0.0017
3 0.1 0.55 0.0035 0.0019 0.0014 0.0013 0.0012
3 0.5 0.3 0.0363 0.0232 0.0161 0.0141 0.0135
3 0.5 0.4 0.0229 0.0169 0.0134 0.0122 0.0108
3 0.5 0.5 0.0202 0.0122 0.0119 0.0099 0.0092
3 0.5 0.55 0.0172 0.01 0.0075 0.0067 0.006
3 0.7 0.3 0.2202 0.1438 0.1218 0.1062 0.0963
3 0.7 0.4 0.1665 0.107 0.0919 0.0849 0.0789
3 0.7 0.5 0.1273 0.0807 0.077 0.0696 0.062
3 0.7 0.55 0.1106 0.0556 0.0522 0.0453 0.0438
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