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1 Introduction

Liquidity is a fundamental property of a well-functioning market, and lack of liquidity is

generally at the heart of many financial crises and disasters. Common ways of measur-

ing liquidity using high-frequency data include bid-ask spreads, effective spreads, realized

spreads, depth, weighted depth, and transaction volume. There is a large literature that

uses such measures to compare market quality across markets, across time, and before and

after interventions of various sorts. For example, it has been a big part of the debate around

high frequency trading, i.e., whether such trading activity has improved or degraded mar-

ket liquidity, see e.g. Brogaard (2010), Hendershott et al. (2011), Beddington et al. (2012),

O’Hara and Ye (2011). There are many complex issues in working with high frequency

trade and quote data in a legally integrated market such as the US, where separate venues

exist without synchronized timestamps so that for example establishing the time priority

of messages across different venues is difficult. There are several methods widely used to

measure liquidity using lower frequency data, i.e., daily data, see Goyenko et al. (2009) for

a review of such measures. We focus on the Amihud illiquidity measure as proposed in

Amihud (2002). This measure has proven to be very popular in the empirical literature. It

is easy to implement and by all accounts relatively robust. It has been shown to influence

the cross-sectional asset returns through the so-called illiquidity premium, see the review

of Amihud and Mendelson (2015).

We propose a dynamic semiparametric model for illiquidity as measured by the daily

component of the Amihud measure. Specifically, we propose a multiplicative error model

(MEM) that contains a nonparametric long-run trend and a parametric short-run autore-

gressive process as in Engle et al. (2012). The trend part is important for many datasets

where liquidity has improved in a secular fashion such as the S&P 500 over the last hundred

years and Bitcoin over the much more recent period of its operation. The nonparametric

trend is comparable with the conventional monthly averaged measure that is widely used

in the literature, except that our measure is available daily and the implicit length of av-

eraging is controlled by a bandwidth parameter to be chosen by the practitioner. Further,

the dynamic component of the model measures the short-run variation in liquidity that

may be of equal interest.

We approach estimation through GMM based on the first conditional moment restric-

tion, which is consistent under minimal conditions, as well as through a semiparametric

likelihood procedure that assumes i.i.d. shocks. In the latter approach we consider two

cases, one where the shock distribution is parametric such as the Burr distribution and a

further case in which the shock distribution is not specified and is treated nonparametri-

cally. In all cases, the nonparametric trend affects the limiting distribution of the estimators
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of the finite dimensional parameters in a non trivial way, and correct standard errors need

to account for that. We develop the distribution theory for the three cases to enable valid

inference. In the cases with i.i.d. shocks we establish the semiparametric efficiency bounds

and show that our estimators achieve those bounds under correct specification.

We also develop methodology for detecting permanent and transitory changes in liq-

uidity that might arise from structural changes in financial markets such as the upgrade

of a stock exchange’s matching engine or from stock specific events such as stock splits.

In our approach, permanent effects are captured by discontinuous changes in the nonpara-

metric trend function, whereas temporary effects are measured by dummy variables in the

dynamic part of the process. We develop the inference tools required to test for the null

hypothesis of no change versus the alternative of permanent or temporary shifts in the

illiquidity process.

In the spirit of Amihud (2002), who studies the effect of expected and unexpected

illiquidity on stock excess returns, we also consider the regression modelling of the market

risk premium driven by the separate components of liquidity from our model. In particular,

we study the link between the stock excess returns and the long-run trend, short-run

dynamics as well as the unexpected shocks of the illiquidity process.

We implement our framework on the five largest US technology company stocks and

the Bitcoin asset. We demonstrate the model performance in terms of fitting the relevant

features of the illiquidity data, and provide various model diagnostics and specification

tests. We show that the efficient semiparametric maximum likelihood estimator, assuming

a parametric Burr distribution for the error term, captures some of the salient features

of the illiquidity process. In addition, we also demonstrate that using a nonparametric

density estimator for the error term can further improve the model estimation in terms of

likelihood.

We study the impact of stock splits on the illiquidity dynamics of the five largest US

technology company stocks. One explanation for why companies split their stock is the

theory that this creates “wider” markets, that is, reducing the price level makes it easier

for a wider pool of retail investors to buy into the stock and allows existing investors more

easily to sell part of their holding to other investors thereby increasing the investor base and

the volume of transactions. This in turn should lead to greater liquidity as measured for

example by the Amihud measure. However, there are other theoretical arguments presented

in Copeland (1979) that may point to a decrease in liquidity following a stock split, and as

he says “liquidity changes following stock splits is an empirical question”. Copeland (1979)

found: nonstationarities in trading behavior, volume increases less than proportionately,

brokerage revenues increased, and increases in proportional bid-ask spreads following stock

splits. He argues that “these results lead to the conclusion that there is a permanent
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decrease in liquidity following the split”. Our results broadly support these findings in

our more recent sample data on a special subset of stocks, the tech stocks. Specifically, we

document that stock splits cause significant shifts in the long-term illiquidity trend while no

significant effects on short-run liquidity dynamics are detected, that is to say there appear

to be permanent jumps in the levels of liquidity that are not accompanied by additional

dynamic adjustment.

We also investigate how the different components of the illiquidity process obtained

from our model relate to the stock market risk premium using data on the S&P 500 stock

market index. We find that the detrended market risk premium is positively affected by the

anticipated short-run illiquidity process and negatively associated with the unanticipated

component of market illiquidity in agreement with the results of Amihud (2002) (which

were based on an AR model fit to monthly illiquidity).

Related Literature. The Multiplicative error model has been applied to many dif-

ferent financial time series including volatility, duration between trades, and transaction

volume, see e.g. Engle (2002). The MEM model and its applications and developments over

the last 20 years is reviewed in Cipollini and Gallo (2022). The VLAB applies this model

and provides regular updates on their website (https://vlab.stern.nyu.edu/liquidity)

for a number of series according to their specific implementation. We next compare our

model with theirs. They fit a parametric model with multiplicative components, the same

dynamic model as ours; they also use a “quadratic spline” to capture trends, that is, they

include a quadratic function of time. They focus on the iid error case with a chi-squared

shock distribution. We treat the trend as a nonparametric function of rescaled time and

use local weighting estimators to estimate the trend, as in Hafner and Linton (2010) in

which case our trend estimators nest the Amihud low frequency estimators as a special

case, whereas the VLAB quadratic spline estimator does not have such a connection. Sec-

ond, we consider the case where the shock is not iid and use a GMM estimation procedure

like Cipollini et al. (2013) except we use only the first moment of the detrended series; this

estimation method is robust to higher moment existence and to time variation in higher

moments of illiquidity. We also consider the iid shock case but we find two issues. First,

the presence of zeros even in the S&P500 series and some individual stocks. We allow

for the shock to have a discrete component that can be estimated by the zero frequency

separately from the estimation of the continuous part. The second issue is that the shock

distribution appears to have heavy tails as quantified by the log rank estimator (tail thick-

ness in the range of four to eight) and so the chi-squared distribution and the Weibull

distributions (that are usually used in MEM applications) would appear not to be good

choices for the continuous part. Therefore, we consider the Burr distribution that nests the

Weibull but allows for Pareto like tails. We also consider a nonparametric shock density for
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the continuous part, which is consistent with heavy tails. We also develop the statistical

theory necessary to implement inference in our more general class of models and present

semiparametric efficiency bounds for the dynamic parameters in the presence of the two

nonparametric nuisance functions the trend and shock density function. In that regard, our

work extends Drost and Werker (2004) who consider efficiency bounds in the autoregressive

conditional duration (ACD) model of Engle and Russell (1998), but without trends. We

also develop additional methodology to detect permanent and temporary shifts in illiq-

uidity. We work with kernel smoothing methods throughout. An alternative estimation

approach is based on the sieve method, Chen (2007). The advantage of the sieve method

is that it only requires a single optimization, albeit one with many parameters to choose.

The remainder of the paper is organized as follows. In Section 2, we discuss the Amihud

illiquidity measure and its time series properties. Section 3 introduces our DArLiQ model

and we discuss in Section 4 estimation via GMM based on the first conditional moment

restriction, as well as through a semiparametric likelihood procedure that assumes i.i.d.

shocks. The large sample properties of our procedures are provided in Section 5. We develop

in Section 6 the methodology to detect permanent and temporary changes in the liquidity

process and in Section 7 the framework to study the effect of illiquidity components on risk

premium. Section 8 presents a detailed empirical application of the model, and Section

9 concludes. The appendices are delegated to a separate file which is available online as

Hafner et al. (2022). Theoretical materials including proofs of the theorems are collected

in Appendix A to Appendix D. Additional tables and figures for the empirical application

are presented in Appendix E.

2 Amihud illiquidity

The Amihud (2002) illiquidity measure of a stock at time t, At, is defined as

At =
1

nt

nt∑
j=1

ℓtj , ℓtj =
|Rtj |
Vtj

, (1)

where Rtj is the stock return and Vtj is the (dollar) trading volume at time ttj . Intuitively,

the Amihud measure captures the fact that a stock is less liquid if a given trading vol-

ume generates a larger move in its price. Typically, the measure is computed over periods

ranging from a day to a year by averaging the daily illiquidity ratio ℓtj over the corre-

sponding period nt. The Amihud illiquidity measure is a good proxy for high-frequency

measures of price impact (Goyenko et al. (2009); Hasbrouck (2009)) with the advantage

of only requiring daily data on stock prices and trading volumes. Barardehi et al. (2021)

proposed to replace the close to close return by the overnight component of that return.
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Fong et al. (2018) proposed a more general class of liquidity measures based on ratios of

functions of volatility to functions of trading volume. Both of these modifications can easily

be accommodated in our framework, but we focus on the original Amihud measure as this

is currently the most popular approach.

Empirical evidence points to the existence of factors driving low-frequency variations

in illiquidity dynamics in addition to higher-frequency variations. To illustrate this point,

we plot in Figure 1 the evolution of the daily log Amihud illiquidity measure for the S&P

500 stock market index over the period of 1950–2021. We observe that the illiquidity series

exhibit a strong downward trend over time, at least up to 2005. Trends in illiquidity series

are not limited to the S&P 500 index used in our illustration. To emphasize how prevalent

this feature is across financial markets and to gain more insights into the conditional dy-

namics of the data, we fit an AR(5) model with a quadratic polynomial trend function to

the scaled illiquidity series yt = ℓt×1010, i.e. yt = α+β(t/T )+γ(t/T )2+
∑5

j=1 ϕjyt−j + εt,

where coefficients β and γ respectively capture the linear and quadratic components of

the polynomial trend. The estimated coefficients with their corresponding t-statistics are

provided in Table 1 in Appendix E.1 of Hafner et al. (2022). The results show that the

coefficient estimates for the trend function are significant. One exception is the quadratic

term for Microsoft, meaning that this stock exhibits a linear trend over the sample period.

Consistent with visual inspection of Figure 1 in Appendix E.1 of Hafner et al. (2022), all es-

timated polynomial trend functions are overall downward trending. In addition, most of the

autoregressive coefficients are statistically significant, indicating some degree of persistence

in the stock illiquidity dynamics. Taken together, these evidence motivate our modelling

approach for the Amihud illiquidity measure which weakens the requirement on stationar-

ity and we develop a new class of dynamic autoregressive liquidity (DArLiQ) models. A

key feature of our framework is that it captures both the slow-varying long-term trend and

short-run autoregressive component relevant for the modelling of illiquidity series.

3 The model

Suppose that ℓt is a non-negative stochastic process that follows a multiplicative process as

in Engle and Gallo (2006) but that possesses a nonparametric multiplicative component to

account for nonstationarity or trend as in Engle and Rangel (2008) and Hafner and Linton

(2010). Let

ℓt = g(t/T )λ∗
t ζt (2)

λ∗
t = ω +

p∑
j=1

βjλ
∗
t−j +

q∑
k=1

γkℓ
∗
t−k, (3)
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Figure 1: S&P 500 index daily log illiquidity – log ℓt.

where g(.) is a positive and smooth but unknown function of rescaled time, ℓ∗t = ℓt/g(t/T ) is

the rescaled liquidity, and ζt is a sequence of non-negative random variables with conditional

mean one and finite unconditional variance denoted σ2
ζ . We present evidence later that the

assumption of finite unconditional variance for the shock process is reasonable. Note that

ω > 0, βj ≥ 0 for j = 1, . . . , p, γk ≥ 0 for k = 1, . . . , q are sufficient conditions for λt > 0

with probability one; see Nelson and Cao (1992) for necessary conditions. Furthermore,

provided
∑p

j=1 βj +
∑q

k=1 γk < 1, the process ℓt is stationary in mean (and perforce strictly

stationary) and follows an ARMA(max(p,q),q) process.

There is an identification issue because we can multiply and divide the two components

g, λ∗ by constants. We suppose that E(λ∗
t ) = 1, which is achieved by setting ω = 1 −∑p

j=1 βj −
∑q

k=1 γk. The series ℓ∗t = λ∗
t ζt possesses the same stationarity properties as ℓt

from the model without a trend. We may suppose that the error process ζt be i.i.d. with

some c.d.f F. Francq and Zaköıan (2006) (Theorems 2 and 3) ensures that the process ℓ∗t

is strictly stationary and geometrically ergodic under our restrictions on β, γ. The i.i.d.

assumption can be helpful for estimation but it may also be important for calculation of

“Liquidity at Risk”, which would require some further assumption about the conditional

quantiles of ζt. Note that in this model, the process ℓt actually depends on T and forms a

triangular array, ℓt,T , but for notational economy we generally suppress this dependency.

The process may be initialized from its stationary distribution or from some fixed values

{ℓ0, . . . , ℓ1−q, λ
∗
0, . . . , λ

∗
1−p}, which will be discussed below. In the sequel, we suppose that

p = 1, q = 1 for simplicity, i.e. λt = ω+ βλt−1 + γℓ∗t−1 and we use an expectation targeting

approach to obtain ω by setting ω = 1 − β − γ. Additionally, we may also consider the

specification with asymmetric effect, that is λt = ω+βλt−1+γℓ∗t−1+γ−ℓ∗t−1IRt−1<0 where Rt

is the return at time t. We further assume that conditional on Ft−1, Rt has a zero median
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and is uncorrelated with ℓ∗t−1. Therefore, it implies that E
[
ℓ∗t−1IRt−1<0 | Ft−1

]
= λt/2 and

we can also use a targeting approach for ω by setting ω = 1− β − γ − γ−/2.

We may wish to consider the effects of interventions at some times t1, . . . , tJ . We model

temporary effects by dummy variables in the dynamic equation, that is, we let

λt = ω + βλt−1 +
J∑

j=1

αjDjt + γℓ∗t−1,

where Djt is one if an intervention occurs in period tj and zero otherwise. In this case the

level of the process λt is affected for all t ≥ t1, with a flexible effect between t1 and tJ , but

after tJ the effect decreases rapidly as t− tJ → ∞. The null hypothesis of interest here is

α1 = · · · = αJ = 0, in which case the model collapses to Equation (3).

We may allow the possibility of permanent effects (structural change) by allowing the

function g to be discontinuous at points u1, . . . , uM ∈ (0, 1), that is, for a given point u∗

lim
u↑u∗

= g−(u∗), lim
u↓u∗

= g+(u∗)

are both well defined but g−(u∗) may not be equal to g+(u∗). The size of the jump is

the magnitude of the permanent effect (that is, the effect that remains permanently in

the absence of further changes). The null hypothesis of interest here is that g−(u) =

g+(u) for all u versus the general alternative. There is a large literature on testing for

structural change in parametric models, Perron (1989), and in nonparametric regression,

Muller (1992). Indeed the popular regression discontinuity literature, Imbens and Lemieux

(2008), draws on some of these ideas.

4 Estimation

We suppose that a sample ℓt, t = 1, . . . , T is observed. Estimation is guided by assumptions

made about the error ζt. The minimalist approach is to assume only that with probability

one

E(ζt − 1|Ft−1) = 0,

and E(ζ2t ) <= C < ∞. In that case, one can estimate the function g(.) by conditional mean

smoothing of ℓt and the identified parameters β, γ by the GMM approach. Provided that

additional high level weak dependence conditions are satisfied, one can ensure a CLT for the

resulting estimators. As in Cipollini et al. (2013), one may wish to additionally specify a

second conditional moment restriction whereby E(ζ2t − (1+ σ2
ζ )|Ft−1) = 0 with probability

one. This additional moment restriction permits more efficient estimation provided this

restriction is true, but if it is not true, using this additional moment restriction will bias

the parameter estimates.
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We may further assume that ζt is a non-negative i.i.d. sequence, which implies the

conditional moment restriction but also many other restrictions. We will consider the

mixed continuous/discrete case where for all x ≥ 0,

Pr (ζt ≤ x) = π1(x = 0) + (1− π)1(x > 0)

∫ x

0

f(u)du, (4)

where f is an absolutely continuous density function with support (0,∞). In some cases

the discrete component (zero returns) is important and in others it is not. For estimation,

we may either assume that f is of unknown functional form or we may assume that f is

parametrically specified, i.e., fφ for some unknown shape parameters φ such as Exponential,

Weibull, Gamma etc. In that case, the enlarged vector (π, β, γ, φ)
⊺
can be estimated

by a likelihood method after taking care of g(.). In the case where the density is not

parametrically specified, one needs to estimate the error density f(.) along with the trend

g(.) and the identified dynamic parameters. For forecasting future values of ℓt, one does not

need the shock distribution, but prediction intervals and LAR (Liquidity at Risk) requires

the estimation of some features of the error distribution.

4.1 Estimation based on conditional moment restriction

We first convert the conditional moment restriction E(ℓt|Ft−1) = g(t/T )λt to the uncondi-

tional moment restriction

E(ℓt) = g(t/T ), t = 1, . . . , T.

We use this condition to obtain an initial consistent estimator of g by the kernel smoothing

method, specifically we let

ĝ(u) =
1

T

T∑
t=1

Kh(t/T − u)ℓt, u ∈ (0, 1) (5)

whereK is a kernel function symmetric about zero supported on [−1, 1] satisfying
∫
K(u)du =

1, while h is a bandwidth sequence. Because of the equally spaced observations in time,

the denominator of the Nadaraya-Watson estimator is unnecessary here for interior points

(this may also be called the Priestley-Chao estimator). In this context the kernel estimator

is Best Linear Minimax (under i.i.d. errors) at any fixed u ∈ (0, 1) according to Fan (1993).

i.e., it is equivalent to the local linear estimator.1 The estimator does suffer from boundary

bias though and in particular ĝ(0), ĝ(1) will not be consistent without modification. A

1Notice that provided K and g are twice differentiable with K(±1) = 0, ĝ(j)(u) exists and consistently

estimates g(j)(u), under some bandwidth conditions, for j = 1, 2 and u ∈ (0, 1).
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standard way to correct for boundary bias is to use boundary kernels that adapt to the es-

timation point as they approach the boundary, Gasser et al. (1985). An alternative method

is local linear kernel regression, which does not require an explicit boundary correction, Fan

and Gijbels (1996). The issue with both these methods is that the estimate of g(u) is not

guaranteed to be nonnegative everywhere, whereas the simple estimator is non-negative

with probability one. In practice, at least for our application, this does not seem to be

much of an issue and we use also the local linear smoothing method. Nevertheless, for our

theoretical results we work with ĝ(u) as above for all u ∈ [h, 1 − h] and in the boundary

region we either renormalize by
∑T

t=1Kh(t/T − u)/T (standard Nadaraya-Watson estima-

tor) or we set ĝ(u) = ĝ(h) if u ≤ h and set ĝ(u) = ĝ(1 − h) if u ≥ 1 − h. In this case,

we guarantee positivity of our estimate but suffer some performance loss at the boundary.

Our estimator of g(0) is consistent provided g is continuous at the boundary because then

g(h) → g(0) as h ↓ 0. Another advantage of the simple estimator is that one can interpret

the widely computed measure At defined in Equation (1) as a special case of ĝ(u) with uni-

form kernel and bandwidth equivalent to a month of data around the point u. We define

the detrended liquidity ℓ̂∗t = ℓt/ĝ(t/T ), t = 1, . . . , T.

We next estimate the dynamic parameters θ = (β, γ)⊺ by exploiting the conditional

moment restriction

E(ℓ∗t |Ft−1) = λt,

where ℓ∗t = ℓt/g(t/T ), t = 1, . . . , T. In other words ℓ∗t − λt(θ) is a martingale difference

sequence at the true parameter values β = β0, γ = γ0. In practice, we define for any θ ∈ Θ,

where Θ is a compact set defined below,

λ̂t(θ) = 1− β − γ + βλt−1 + γℓ̂∗t−1

for t = 1, . . . , T, where we take initializations ℓ̂∗0, λ0 = 1 for simplicity. Then we define

ρt(θ, ĝ) = zt−1(ℓ̂
∗
t − λ̂t(θ)), where zt−1 ∈ Ft−1 are instruments, and let

θ̂GMM = argmin
θ∈Θ

∥∥MT (θ, ĝ)
∥∥
W

MT (θ, ĝ) =
1

T

∑
t∈IT

ρt(θ, ĝ),

where W is a weighting matrix and IT ⊂ {1, . . . , T}. In the sequel we suppress the notation

IT , although we discuss this issue in the Appendix. The estimator θ̂GMM is consistent for

θ under our conditions below (and we drop the subscript GMM below). One can improve

the GMM procedure by choosing the instruments and weight matrix optimally, but we

shall not pursue this here, since we will pursue efficiency objectives via semiparametric

likelihood methods.
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We next suggest an improved estimator of g(.). We work from the conditional moment

restriction

E

(
ℓt
λt

|Ft−1

)
= g(t/T ),

which is now feasible given our consistent estimates of θ and hence λt. We take a simple

implementation of local GMM, Gozalo and Linton (2000) and Lewbel (2007), based only

on constant instruments in which case we obtain the closed form

g̃(u) =
1

T

T∑
t=1

Kh̃(t/T − u)
ℓt

λ̂t

, u ∈ (0, 1) (6)

where λ̂t = λ̂t(θ̂, ĝ) are estimated in the previous procedure. Here, the kernel K is as

before but the bandwidth sequence h̃ may be different reflecting the different bias variance

trade-off.

We have outlined a multistep approach to estimation of g(.), θ. Alternatively, one may

use a profile method that links the global and local objective functions. Specifically, for

given θ, we estimate gθ(u) by smoothing ℓt/λt(θ, gθ) against time and optimize the profiled

global GMM objective function with respect to θ, letting ĝP (u) = ĝθ̂(u). We do not pursue

this approach here and focus on multiple step methods.

4.2 Estimation based on i.i.d. assumption

In this case, we assume that the error ζt is i.i.d. with mean one, variance σ2
ζ , and c.d.f. F as

specified above. We consider several cases. First, where the density f is known completely.

Second, where f is known up to a vector of parameters. Third, where f is of unknown

form. Kreiss (1987), Linton (1993), Drost and Klaassen (1997), and Ling and McAleer

(2003) consider estimation in dynamic time series models with unknown error density and

we follow their approach. In the parametric case, we have a semiparametric model with

parameters (π, β, γ, φ⊺)
⊺
and unknown function g(.). In the case where f is of unknown

form, we have a semiparametric model with parameters (π, β, γ)
⊺
and unknown functions

f(.), g(.).

For a given density f, define the so-called Fisher location and scale score functions and

informations:

s1 (ζ) = −f ′ (ζ)

f (ζ)
, s2 (ζ) = −

(
1 + ζ

f ′ (ζ)

f (ζ)

)
(7)

Ij(f) =

∫
s2j(ζ)f(ζ)dζ, j = 1, 2. (8)

For the Burr density with f(x; c, k) = ckxc−1/(1 + xc)k+1, s2 (ζ) = −c+ (k + 1)ζc/(1 + ζc)

is a bounded function of ζ for all parameter values c, k.
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4.2.1 Parametric density case

Suppose that f depends on some unknown parameters φ, denoted as fφ. If g(.) were known,

the log likelihood function of {ℓ1, . . . , ℓT} is, apart from a term to do with g(.) that does

not depend on parameters, equal to

L(θ, φ, π|ℓ1, . . . , ℓT ) =
∑
ℓt=0

log π +
∑
ℓt>0

log(1− π)−
∑
ℓt>0

log λt(θ) +
∑
ℓt>0

log fφ
(
ζt(θ)

)
,

ζt(θ) =
ℓt

λt(θ)g(t/T )
.

From this we can see the separability of π; the parameter π may be estimated by simply

counting the frequency of zeros of ℓt.
2 The remaining quantities are estimated using non-

zero observations only. To avoid complicating the notation we shall assume in the sequel

that π= 0. In practice, given a consistent estimate of g(.), we may maximize an estimated

version of this likelihood L̂(θ, φ), where g(.) is replaced by ĝ(.) or g̃(.). In fact, we avoid

further nonlinear optimization by making use of our initial consistent estimates of θ and

auxiliary initial consistent estimates of φ, φ̂, which may often be obtained through closed

form moment estimators. For example, in the gamma case, parameterized to have mean

one, the parameter φ can be estimated as one over the variance.

We show in Appendix C.2 of Hafner et al. (2022) that the efficient score functions (in

the semiparametric model) for η = (θ⊺, φ)⊺ in the presence of unknown g(.) are:

L∗
θ(η) =

T∑
t=1

ℓ∗θt(η), ℓ∗θt(η) = s2(ζt)

∂ log λt

∂θ
−

E
[
∂ log λt

∂θ
1
λt

]
E
(

1
λ2
t

) 1

λt

 (9)

L∗
φ(η) =

T∑
t=1

ℓ∗φt(η), ℓ∗φt(η) =
∂ log fφ (ζt)

∂φ
−

E
(

∂ log fφ(ζt)

∂φ
s2(ζt)

)
E
(

1
λt

)
I2(fφ)E

(
1
λ2
t

) s2(ζt)
1

λt

. (10)

To obtain fully efficient estimates of η, we use one-step updating from initial root-T consis-

tent estimates, Bickel (1982), Bickel et al. (1993), Linton (1993), Drost and Klaassen (1997),

and Ling and McAleer (2003). Denote η̃ = (θ̃⊺, φ̃)⊺, η̂ = (θ̂⊺, φ̂)⊺, and let ℓ∗ηt = (ℓ∗⊺θt , ℓ
∗
φt)

⊺,

then let

η̃ = η̂ + I∗
ηη(η̂, ĝ)

−1S∗
η(η̂, ĝ), (11)

I∗
ηη(η̂, ĝ) =

1

T

T∑
t=1

ℓ∗ηt(η̂, ĝ)ℓ
∗
ηt(η̂, ĝ)

⊺, S∗
η(η̂, ĝ) =

1

T

T∑
t=1

ℓ∗ηt(η̂, ĝ)

2This is the approach adopted in Appendix E.8 of Hafner et al. (2022) where we investigate the occur-

rence of zero returns in the S&P 500 stock market index over the period 1950-2021. The data contains

125 zero returns in total, corresponding to 0.69% of the sample, and the majority of those occurred before

2000.
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ℓ∗θt(η̂, ĝ) = ŝ2(ζ̂t)

∂ log λ̂t

∂θ
−

1
T

∑T
t=1

∂ log λ̂t

∂θ
1

λ̂t

1
T

∑T
t=1

1

λ̂2
t

1

λ̂t


ℓ∗φt(η̂, ĝ) =

∂ log fφ̂

(
ζ̂t

)
∂φ

−
1
T

∑T
t=1

∂ log fφ̂(ζ̂t)
∂φ

ŝ2(ζ̂t)
1
T

∑T
t=1

1

λ̂t

1
T

∑T
t=1 ŝ

2
2(ζ̂t)

1
T

∑T
t=1

1

λ̂2
t

ŝ2(ζ̂t)
1

λ̂t

ŝ2(ζ) = −

(
1 + ζ

f ′
φ̂(ζ)

fφ̂(ζ)

)
, λ̂t = 1− β̂ − γ̂ + β̂λ̂t−1 + γ̂

ℓt−1

ĝ((t− 1)/T )
.

The i.i.d. structure also permits one to improve the estimation of g by using the local

likelihood method of Tibshirani and Hastie (1987). Suppose that f, θ were known, then

the local likelihood estimator of g(u) based on data ℓt is given by the maximizer of

T∑
t=1

Kh(t/T − u)
(
log f

(
ζt(g)

)
− log g

)
, (12)

ζt(g) =
ℓt
λtg

, t = 1, . . . , T, (13)

with respect to the parameter g ∈ R+. In general this involves nonlinear optimization with

respect to the scalar parameters, instead we will pursue a one-step updating approach.

Following Fan and Chen (1999), we may update the estimator of g by

g̃LocL(u) = ĝ(u)− L̂−1
gg (ĝ(u);u)L̂g(ĝ(u);u), (14)

where L̂g(g;u) = ∂L̂(g;u)/∂g and L̂gg(g;u) = ∂2L̂(g;u)/∂g2 with

L̂(g;u) =
T∑
t=1

Kh∗(t/T − u)

(
log fφ̂

(
ζ̃t(g)

)
− log g

)
(15)

ζ̃t(g) =
ℓt

gλt(θ̂, ĝ)
, t = 1, . . . , T. (16)

Here, h∗ is a bandwidth sequence.

4.2.2 Nonparametric density case

In Appendix C.3 of Hafner et al. (2022), we derive the efficient score function for θ in

the semiparametric model with unknown f, g, thereby extending Drost and Werker (2004).

This is

L∗∗
θ (θ) =

T∑
t=1

ℓ∗∗θt (θ),

12



ℓ∗∗θt (θ) =

(
ζt − 1

σ2
ζ

+ s2(ζt)

)
a+ s2(ζt)

(
∂ log λt(θ)

∂θ
− b

1

λt

)
=

ζt − 1

σ2
ζ

a+ s2(ζt)

(
∂ log λt(θ)

∂θ
− a− b

1

λt

)
for some a, b with:

a = E

(
∂ log λt

∂θ

)
− bE

(
1

λt

)

b =
E
(

1
λt

∂ log λt

∂θ

)
− κE

(
∂ log λt

∂θ

)
E
(

1
λt

)
E
(

1
λ2
t

)
− κE2

(
1
λt

) ,

where κ = 1− 1/I2(f)σ
2
ζ .

Suppose we have initial consistent estimators of θ, g(.). Then, one can estimate the

density function f(ζ) by

f̂(ζ) =
1

T

T∑
t=1

Khf

(
ζ̂t − ζ

)
,

where hf is another bandwidth sequence, and the residuals are defined as

ζ̂t =
ℓt

ĝ(t/T )λ̂t

, t = 1, . . . , T.

This estimator does not impose the restriction that E(ζt) = 1, and instead we also consider

the estimator based on the rescaled residuals ζ̂t/
∑T

t=1 ζ̂t/T. Notationally, we are assuming

the same kernel as in the estimation of the liquidity trend but this need not be the case.

In particular, since ζt ≥ 0 one may wish to use special kernel methods adapted to this

problem, Chen (2000) and Scaillet (2004).

We propose to construct efficient estimators of θ by two step estimation based on initial

consistent estimates of θ, f, g. Specifically, let:

˜̃
θ = θ̂ + I∗∗

θθ (θ̂, f̂ , ĝ)
−1S∗∗

θ (θ̂, f̂ , ĝ) (17)

I∗∗
θθ (θ̂, f̂ , ĝ) =

1

T

T∑
t=1

ℓ∗∗θt (θ̂, f̂ , ĝ)ℓ
∗
θt(θ̂, f̂ , ĝ)

⊺1̂t, S∗∗
θ (θ̂, f̂ , ĝ) =

1

T

T∑
t=1

ℓ∗∗θt (θ̂, f̂ , ĝ)1̂t

ℓ∗∗θt (θ̂, f̂ , ĝ) =
ζ̂t − 1

σ̂2
ζ

â+ ŝ2(ζ̂t)

(
∂ log λ̂t

∂θ
− â− b̂

1

λ̂t

)

where σ̂2
ζ =

∑T
t=1(ζ̂t − ζ̂)2/T with ζ̂ =

∑T
t=1 ζ̂t/T, and λ̂t = λt(θ̂, ĝ), while

â =
1

T

T∑
t=1

∂ log λ̂t

∂θ
− b̂

1

T

T∑
t=1

1

λ̂t
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b̂ =

1
T

∑T
t=1

1

λ̂t

∂ log λ̂t

∂θ
− κ̂ 1

T

∑T
t=1

∂ log λ̂t

∂θ
1
T

∑T
t=1

1

λ̂t

1
T

∑T
t=1

1

λ̂2
t

− κ̂
(

1
T

∑T
t=1

1

λ̂t

)2 ,

where κ̂ = 1 − 1/I2(f̂)σ̂
2
ζ . Here, 1̂t is a trimming function that is needed theoretically

to reduce the effect of small density estimates. In practice, we have found reasonable

performance without trimming. One possible trimming scheme here was considered in

Linton and Xiao (2007). In the literature on “adaptive estimation” a number of other

devices are used primarily to promote simple proofs, these include discretization of the

initial estimator and sample splitting, see for example Kreiss (1987) and Linton (1993).

We may also update the estimator of g in this case by the one-step improvement

˜̃gLocL(u) = ĝ(u)− L̂−1
gg (ĝ(u);u)L̂g(ĝ(u);u),

where L̂g(g;u) = ∂L̂(g;u)/∂g and L̂gg(g;u) = ∂2L̂(g;u)/∂g2 with

L̂(g;u) =
T∑
t=1

Kh†(t/T − u)

(
log f̂

(
ζ̃t(g)

)
− log g

)
, (18)

ζ̃t(g) =
ℓt

gλ̂t(θ̂)
, t = 1, . . . , T, (19)

where h† is another bandwidth sequence.

These procedures can be iterated, that is, given consistent initial estimators of g, θ, we

estimate f. Then we use the estimated f to update our estimate of θ taking the initial

estimator of g, then we update our estimator of g using the estimated f and updated θ. We

can continue this operation until it meets some defined criterion of convergence. Robinson

(1988) establishes some results about the improvements that such iterations can make in

theory.

5 Large sample properties

We make some assumptions to support our limiting distributions. The theoretical analysis

draws on several previous studies already cited.

Definition. A triangular array process {Xt,T , t = 0, 1, 2, . . . , T = 1, 2, . . .} is said to

be alpha mixing if

α(k) = sup
T≥1

sup
A∈Fn

−∞, B∈F∞
n+k

|P (AB)− P (A)P (B)| → 0, (20)

as k → ∞, where Fn,T
−∞ and F∞

n+k,T are two σ–fields generated by {Xt,T , t ≤ n} and

{Xt,T , t ≥ n+ k} respectively. We call α(·) the mixing coefficient.
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We suppose that ℓ∗t is stationary and alpha mixing. This can be shown to hold under the

parameter restrictions provided ζt is i.i.d. It may also hold when ζt itself is only described

as a stationary mixing process although this can be difficult to establish. Instead, one can

work with the more general near epoch dependence condition, see Lu and Linton (2007).

Recently, Wu (2005) has developed an alternative set of weak dependence conditions that

have become very popular and for which many results are available.

We define the long run variance for a stationary mixing process xt as

lrvar(xt) =
∞∑

j=−∞

cov(xt, xt−j).

5.1 Conditional moment restrictions

We first consider the properties of the GMM estimator based on the first conditional mo-

ment restriction. This estimator makes the weakest assumptions about the process ζt and

so it is more robust than the subsequent procedures we analyze. We do not address the

efficient use of this information but it follows from standard arguments.

5.1.1 Nonparametric trend

We first consider the estimator ĝ(u), u ∈ (0, 1), that is based on smoothing of the raw

liquidity. Define the left and right second derivatives of a function g(.) where they exist as

g′′+(u) = lim
δ↓0

g(u+ 2δ)− 2g(u+ δ) + g(u)

δ2
, g′′−(u) = lim

δ↑0

g(u+ 2δ)− 2g(u+ δ) + g(u)

δ2
.

The second derivative g′′(u) is defined if both g′′+(u), g
′′
−(u) are defined and are equal.

Assumption A1. We suppose that g(.) ∈ G, where for c > 0

G =
{
g : g : [0, 1] → R+, g(x) ≥ c,

∣∣g′′(x)∣∣ < ∞ for all x ∈ (0, 1), and g′′+(0), g
′′
−(1) exist

}
.

Define ||g|| =
(∫ 1

0
g(u)2du

)1/2
and ||g||∞ = supu∈[0,1] |g(u)| for all g ∈ G.

Assumption A2. Suppose that {vt}, where vt = λ∗
t ζt−1, is a stationary sequence with

E(vt) = 0 and E(|vt|2+δ) ≤ C < ∞ for some δ > 0. Furthermore, vt is alpha mixing with

for some C < ∞ and ρ > (6 + 2δ)/δ

α(k) ≤ Ck−ρ.

Assumption A3. Suppose that K is symmetric about zero with compact support [−1, 1]

such that K(±1) = 0 and K is thrice differentiable where K ′′′ is Lipschitz continuous on

[−1, 1]. Let ||K||22 =
∫ 1

−1
K(s)2ds, and µj(K) =

∫ 1

−1
sjK(s)ds, j = 0, 1, 2.
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We may rewrite the model (2), (3) as a nonparametric regression model with trend in

mean and variance

ℓt = g(t/T ) + g(t/T )vt,

where vt is a mean zero stationary and alpha mixing series defined in A2. We adapt results

of Francisco-Fernández and Vilar-Fernández (2001) for local polynomial estimators in the

case without trending heteroskedasticity to obtain the following central limit theorem.

Theorem 1. Suppose that assumptions A1-A3 hold and that h = cT−1/5 for some c > 0.

Then for any u ∈ (0, 1)

√
Th
(
ĝ(u)− g(u)− h2b(u)

)
=⇒ N

(
0, V (u)

)
,

b(u) =
1

2
µ2(K)g′′(u) ; V (u) = g2(u)× ||K||2 × lrvar(vt).

The estimator is consistent and asymptotically normal with optimal rate of T−2/5 based

on the smoothness assumption. Bandwidth selection procedures and inference procedures

require the estimation of lrvar(vt), which in general requires further justification. However,

we can exploit the fact that ℓ∗t = ℓt/g(t/T ) = λtζt is an ARMA(1,1) process with A(L)ℓ∗t =

B(L)et for some martingale difference (MDS) shock et and lag polynomials A,B. In this

case, the long run variance of ℓ∗t is σ2
e(B(1)/A(1))2 and it could be estimated by the plug

in of estimated θ from the second step.

Instead, it may be preferable to work with the refined estimator g̃(u) that is based on

the estimator of θ. We have for this estimator the following CLT.

Theorem 2. Suppose that assumptions A1-A3 hold and that θ̂ is
√
T - consistent. Suppose

that h̃ = cT−1/5 for some c > 0 and that Th5 → 0 and Th/ log T → ∞. Then for any

u ∈ (0, 1) √
T h̃
(
g̃(u)− g(u)− h̃2b(u)

)
=⇒ N

(
0, V (u)

)
,

b(u) =
1

2
µ2(K)g′′(u) ; V (u) = g2(u)||K||2 × σ2

ζ .

The bias term is the same as in Theorem 1 by virtue of the undersmoothing of the

first step, see Linton and Xiao (2007). The limiting variance is different though and in

particular it is proportional to the variance of ζt, which is generally smaller and easier to

estimate than the long run variance of vt. When ζt is i.i.d.,

E(λ2
t (ζt − 1)2) = E(λ2

t )× σ2
ζ ≥ σ2

ζ ,

because E(λ2
t ) ≥ 1 by the Cauchy-Schwarz inequality since E(λt) = 1. For this estimator,

consistent standard errors (assuming undersmoothing) can be based on

V̂ (u) = g̃2(u)||K||2 × σ̂2
ζ , (21)
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where σ̂2
ζ is an estimator of σ2

ζ . The omission of the bias effect in the confidence interval has

been subject to criticism and debate and many alternative inference approaches have been

suggested, at least in the i.i.d. case, see for example Schennach (2015) and Calonico et al.

(2018). One simple approach here is to use the pilot model method used in bandwidth

selection, Silverman (1986). Specifically, suppose that g(u) = exp(a0 + a1u) for some

unknown parameters a0, a1. In that case, g′′(u) = a21 exp(a0 + a1u) and given estimates of

a0, a1 (which can be obtained by the OLS of logarithmic liquidity on a constant and trend

(with some adjustment)) one can include the estimated bias in the inference procedure.

We may further use this pilot model to select the bandwidth. Since g′′(u)/g(u) = a21, a

“rule-of-thumb” optimal bandwidth procedure here would be

h(u) =

(
||K||22σ̂2

ζ

µ2
2(K)â41

)1/5

T−1/5, (22)

which happens in this case to be constant across u ∈ (0, 1). Hart (1991) showed that con-

ventional cross-validation fails in settings that include our estimator ĝ(.), that is, the usual

recipe for selecting h based on minimizing the leave-one-out (or equivalently penalized)

squared residuals will produce h ∼ 0. This arises because the serial correlation in the error

term leads to a bias in the risk estimation. He proposed a modification to address this,

that involved estimating the long run variance essentially. We note here that our refined

estimator g̃(.) is not subject to this criticism, since the error term in that case is a mar-

tingale difference sequence. This suggests (although we have not proven this here) that

standard cross-validation based on the data {ℓt/λ̂t} would produce an asymptotically opti-

mal bandwidth choice for g̃(.). In summary, the estimator g̃(u) has an advantage over ĝ(u)

because of the simplicity of handling inference and bandwidth choice questions. On the

other hand, the estimator ĝ(u) is a simple linear estimator and is robust to the specification

of the process λ∗
t .

5.1.2 Parametric components

Let θ = (β, γ)⊺ ∈ Θ, where

Θ = {θ : ϵ ≤ β, γ, β + γ ≤ 1− ϵ} ⊂ R2

for some ϵ > 0. This guarantees that for example λ∗
t (θ) ≥ ϵ for all θ ∈ Θ. We define for any

θ ∈ Θ and g ∈ G

MT (θ, g) =
1

T

T∑
t=1

ρt(θ, g), ρt(θ, g) = zt−1

(
ℓt

g(t/T )
− λt(θ, g)

)

λt(θ, g) = 1− β − γ + βλt−1 + γ
ℓt−1

g((t− 1)/T )
.
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Assumption A4. Define:

M(θ, g) = lim
T→∞

E
(
MT (θ, g)

)
.

For all δ > 0, there is an ϵ > 0 such that

inf
∥θ−θ0∥>δ

∥∥M(θ, g0)
∥∥ ≥ ϵ.

Uniformly for all θ ∈ Θ, the function M(θ, g) is continuous in g (with respect to the L2

metric) at g = g0. For all sequences of positive numbers δT → 0:

sup
θ∈Θ,∥g−g0∥∞≤δT

∥∥MT (θ, g)−M(θ, g0)
∥∥ = oP (1).

Assumption A5. The ordinary partial derivative and pathwise derivatives:

Γ(θ, g0) =
∂M(θ, g0)

∂θ

Γ2(θ, g0) ◦ (g − g0) =
∂

∂τ
M(θ, g0 + τ(g − g0))

∣∣∣∣
τ=0

,

are assumed to exist in all directions θ ∈ Θϵ ⊂ Θ, g ∈ Gϵ ⊂ G, where Θϵ,Gϵ are small

neighborhoods of θ0, g0 respectively. The matrix Γ(θ, g0) is continuous in θ at θ = θ0 and

Γ(θ0, g0) is of full rank .

Assumption A6. For all positive sequences δT , ωT with δT → 0 and T 1/4ωT → 0

(i) sup
∥θ−θ0∥≤δT ,∥g−g0∥≤ωT

ω−2
T

∥∥M(θ, g)−M(θ, g0)− Γ2(θ, g0) ◦ (g − g0)
∥∥ ≤ C

(ii) sup
∥θ−θ0∥≤δT ,∥g−g0∥≤ωT

ω−1
T

∥∥Γ2(θ, g0) ◦ (g − g0)− Γ2(θ0, g0) ◦ (g − g0)
∥∥ = o(1)

(iii) sup
∥θ−θ0∥≤δT ,∥g−g0∥≤ωT

√
T
∥∥MT (θ, g)−M(θ, g)−MT (θ0, g0)

∥∥ = oP (1).

Assumption A4 is sufficient for consistency of θ̂ given that our estimator ĝ is uniformly

consistent and ĝ ∈ G with probability one. Assumptions A5 and A6 are needed for the

asymptotic normality of θ̂. These conditions have been verified in a number of different

model settings under more primitive conditions, see Chen et al. (2003). We establish in our

treatment of the properties of ĝ that it is uniformly consistent at a rate that can be better

than T−1/4, which is also required for this theory. The term Γ2(θ, g0) ◦ (g− g0) determines

the correction term in the limiting variance and is established in Appendix B of Hafner et

al. (2022). We also establish in the appendix that
√
T
(
MT (θ0, g0) + Γ2(θ0, g0) ◦ (ĝ − g0)

)
satisfies a CLT, and this as usual requires the undersmoothing of the nonparametric esti-

mation part.

Let

wt = λt(ζt − 1)zt−1 +
1− β − γ

1− β
(λtζt − 1)E(zt−1). (23)
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Theorem 3. Suppose that Assumptions A1-A6 hold and that
√
Th2 → 0 and Th/ log T →

∞. Suppose further that wt is a stationary mixing process satisfying the restrictions of A2.

Then as T → ∞ √
T
(
θ̂ − θ

)
=⇒ N(0, V )

V = (Γ⊺WΓ)−1 (Γ⊺WΩWΓ) (Γ⊺WΓ)−1 , where Ω = lim
T→∞

var

 1√
T

T∑
t=1

wt


In general, the asymptotic variance of θ̂ will depend on the long run variance of the

process wt and so inference procedures are complicated by that. Nevertheless, standard

procedures such as Newey-West can be applied to the residual sequence

ŵt = λ̂t(ζ̂t − 1)zt−1 +
1− β̂ − γ̂

1− β̂
(λ̂tζ̂t − 1)

1

T

T∑
t=1

zt.

5.2 Restrictions from i.i.d. shocks

We suppose here that ζt is i.i.d. with mean one and density f. We suppose that we have

initial consistent estimators of g(.), θ available from the GMM procedure described above,

say.

5.2.1 Parametric density

In the case where f is parametrically specified with parameters φ, the model is semipara-

metric with parameters η = (θ⊺, φ)⊺ and unknown function g. We first consider the local

likelihood estimator of the trend function based on the estimated φ̂.

Theorem 4. Suppose that assumptions A1-A3 hold and that η̂ is
√
T - consistent. Suppose

that h∗ = cT−1/5 for some c > 0 and that Th5 → 0 and Th/ log T → ∞. Then for any

u ∈ (0, 1), the local likelihood estimator satisfies for some bias b(u),√
Th∗

(
g̃LocL(u)− g(u)− h2

∗b(u)
)
=⇒ N

(
0, V (u)

)
V (u) = ||K||2I−1

2 (f)g(u)2.

We note that regarding the estimation of g(.) the asymptotic distribution is the same

whether the error density is known or this is estimated parametrically or nonparametri-

cally, Linton and Xiao (2001). This estimator improves on ĝ(u) and g̃(u) when the i.i.d.

assumption is correct by reducing the asymptotic variance, using the standard Cramer-Rao

arguments see Tibshirani (1984).
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To construct pointwise confidence bands we use:

Ṽ (u) = ||K||2I−1
2 (fφ̃)g̃LocL(u)

2,

I2(fφ̃) =
1

T

T∑
t=1

1 + ζ̃t
f ′
φ̃

(
ζ̃t

)
fφ̃

(
ζ̃t

)


2

,

where ζ̃t are the estimated residuals.

We next turn to the properties of the estimated parametric components defined in (11).

We need some further regularity conditions, basically smoothness and moment conditions

about the parametric density function.

Assumption 7. We suppose that Ψk,l(x;φ) =
∂k+l

∂φk∂xl log fφ(x) exists and is continuous

in both its arguments in a small neighborhood of φ0 and in all x ∈ R+ for k, l = 1, . . . , 4

and that supφ:|φ−φ0|≤cT−1/2 |Ψk,l(ζ;φ) − Ψk,l(ζ;φ0)| ≤ R(ζ) for some measurable function

R(.), where E
((

ζ lR(ζ)
)κ)

, E
((

ζ l|Ψk,l(ζ;φ)|
)κ)

< ∞ for some κ ≥ 4 and for l = 0, 1.

Furthermore, the efficient information matrix

I∗
ηη(η) =

 I∗
θθ I∗

θφ

I∗
φθ I∗

φφ

 =

 E
(
ℓ∗θtℓ

∗⊺
θt

)
E
(
ℓ∗θtℓ

∗⊺
φt

)
E
(
ℓ∗φtℓ

∗⊺
θt

)
E
(
ℓ∗φtℓ

∗⊺
φt

)
 ,

is well defined and positive definite at η = η0 and continuous in η in a neighborhood of η0

Theorem 5. Suppose that Assumptions A1-A7 hold and that
√
Th2 → 0 and Th/ log T →

∞. Suppose that η̂ is
√
T -consistent. Then as T → ∞

√
T (η̃ − η) =⇒ N(0, I∗

ηη(η, g)
−1).

Furthermore, the asymptotic variance may be estimated consistently by I∗
ηη(η̃, g̃)

−1, where

I∗
ηη(η̃, g̃) =

1

T

T∑
t=1

ℓ∗ηt(η̃, g̃)ℓ
∗
ηt(η̃, g̃)

⊺.

5.2.2 Nonparametric density case

In the case where f is nonparametrically specified, the model is semiparametric with param-

eters θ and unknown functions g, f. We turn to the properties of the estimated parametric

components defined in (17). We need further regularity conditions and some modifications

to our procedure.

Assumption 8. We suppose that f(.) is three times continuously differentiable in

x ∈ R+. Furthermore, the efficient information matrix

I∗∗
θθ (θ, f, g) = E

(
ℓ∗∗θt ℓ

∗∗⊺
θt

)
.

is well defined and positive definite at θ = θ0 and continuous in θ in a neighborhood of θ0
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Theorem 6. Suppose that Assumptions A1-A6 and A8 hold and that
√
Th2 → 0 and

Th/ log T → ∞ and
√
Th2

f → 0 and Thf/ log T → ∞. Suppose that θ̂ is
√
T -consistent

and that certain additional conditions discussed in Appendix B of Hafner et al. (2022)

prevail. Then as T → ∞
√
T

(˜̃
θ − θ

)
=⇒ N(0, I∗∗

θθ (θ, f, g)
−1).

Furthermore, the asymptotic variance may be estimated consistently by I∗∗
θθ (θ̂, f̂ , ĝ)

−1, where

I∗∗
θθ (θ̂, f̂ , ĝ) =

1

T

T∑
t=1

ℓ∗∗θt (θ̂, f̂ , ĝ)ℓ
∗∗
θt (θ̂, f̂ , ĝ)

⊺1̂t.

6 Testing for temporary and permanent shifts

6.1 Permanent shifts

There is a large literature addressing the question of structural change in nonparametric

settings, Muller (1992), Delgado and Hidalgo (2000), Mercurio and Spokoiny (2004), Su

and Xiao (2008), and Vogt and Dette (2015). We estimate the function g allowing for a

discontinuity at the point u∗ ∈ (0, 1) by considering

ĝ+(u) =
1

T

T∑
t=1

K+
h (t/T − u)ℓt, ĝ−(u) =

1

T

T∑
t=1

K−
h (t/T − u)ℓt,

where K+ is a kernel supported on [0, 1] with
∫
K+(u)du = 1 and K− is a kernel sup-

ported on [−1, 0] with
∫
K−(u)du = 1. We may further require that

∫
K+(u)udu = 0 and∫

K−(u)udu = 0, which improves the magnitude of the bias but has the disadvantage that

the corresponding estimators may be negative with positive probability.

We may test for the presence of a discontinuity by computing

τ(u∗) =
√
Th

ĝ+(u∗)− ĝ−(u∗)√
σ̂2+(u∗)||K+||2 + σ̂2−(u∗)||K−||2

,

where σ̂2±(u∗)||K±||2/Th are estimates of the variance of ĝ±(u∗). In general,

σ̂2±(u∗) = ĝ±(u∗)
2 × l̂rvar(λtζt),

because ℓt − g(t/T ) = g(t/T ) (λtζt − 1) has smoothly varying variance that is proportional

to g2(t/T ) and because the series λtζt is stationary and weakly dependent. On the other

hand if we work with the improved estimator that works with a smooth of ℓt/λ̂t, the variance

of the estimator is proportional to g±(t/T )2σ2
ζ . That is, we may define

g̃+(u) =
1

T

T∑
t=1

K+
h (t/T − u)

ℓt

λ̂t

, g̃−(u) =
1

T

T∑
t=1

K−
h (t/T − u)

ℓt

λ̂t

.
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In this case, we may choose

σ̃2±(u∗) = g̃±(u∗)
2 × σ̂2

ζ .

Likewise for the local likelihood estimator, but this also takes care of the error shape and

heteroskedasticity when this is correctly specified. Given the studentized statistic, τ(u∗)

we compare this with the standard normal distribution as in Delgado and Hidalgo (2000).

Under the null hypothesis this should lie between ±zα/2 with probability 1− α.

In some cases we may be testing for an effect of an event that takes place at the same

time as other structural changes are affecting all stocks. In this case we consider how to

include a control group to eliminate common trends at the change time. This amounts

to a diff in diff test, Angrist and Pischke (2009). Specifically, suppose that we have a

“treatment” stock labelled with an S subscript and a “control” stock labelled with an C

subscript. We suppose that model (2) holds for both stocks and that ζSt and ζCt may be

correlated. We define the diff-in-diff statistic as

τdid(u∗) =
√
Th(g̃+S (u∗)−g̃−S (u∗))−(g̃+C (u∗)−g̃−C (u∗))√

(σ̃2+
S (u∗)+σ̃2+

C (u∗)−2σ̃+
S,C(u∗))||K+||2+(σ̃2−

S (u∗)+σ̃2−
C (u∗)−2σ̃−

S,C(u∗))||K−||2
,

where:

σ̃±
S,C(u) = g̃±S (u∗)g̃

±
C (u∗)× σ̂ζS ,ζC ,

σ̂ζS ,ζC =
1

T

T∑
t=1

(
ζ̂St − ζ̂S

)(
ζ̂Ct − ζ̂C

)
.

This corresponds to a test of the hypothesis that g+S (u∗)−g−S (u∗) = g+C (u∗)−g−C (u∗), which

imposes weaker assumptions than g+S (u∗) − g−S (u∗). We comment that the control group

approach heavily relies on being able to find stock(s) that are not themselves influenced by

the effect on the treatment group, i.e., where spillover effects are not anticipated.

6.2 Temporary effects in the dynamics

We next discuss the estimation of temporary effects in the dynamic equation

λt = 1− β − γ + βλt−1 +
J∑

j=1

αjDjt + γℓ∗t−1,

where J is fixed. Here, Djt are dummy variables indicating times t1, . . . , tJ and we focus

on the case where tj = t1 + j. In this case it is not possible to consistently estimate the

parameters αj, however, it is possible to provide a consistent test of the null hypothesis

that α1 = . . . = αJ = 0 against the general alternative even in the full semiparametric

model. The efficient score function with respect to α in the semiparametric model with
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parametric f is

T∑
t=1

ℓ∗αt =
T∑
t=1

s2(ζt)

∂ log λt

∂α
−

1
T

∑T
t=1E

[
∂ log λt

∂α
1
λt

]
E
(

1
λ2
t

) 1

λt


where

∂λt(θ, α)

∂αj

= β
∂λt−1(θ, α)

∂αj

+Djt =

 βt−tj if t ≥ tj

0 if t < tj.

1

T

T∑
t=1

E

[
∂λt

∂α

1

λ2
t

]
=

1

T

T∑
t=tj

βt−tjE

[
1

λ2
t

]
.

It follows that the efficient score function at α = 0 is

L∗
αj
(θ, σ2

ζ , 0) =
T∑

t=tj

s2(ζt)
1

λt(θ, 0)


βt−tj − 1

T

T∑
t=tj

βt−tj


 ≃

T∑
t=tj

s2(ζt)
βt−tj

λt(θ, 0)
.

In practice we must replace the unknown quantities by estimates. Define the efficient score

function (LM) test statistics (we call this CAR to recognize the event study literature where

this quantity originates):

ĈAR(τ) =
τ∑

j=1

T∑
t=tj

s2(ζ̂t)
β̂t−tj

λt(θ̂, 0)
, τ = 1, . . . , J − 1. (24)

The test statistics do not satisfy a central limit theorem (even when θ, φ, g(.) are known)

because of the summability of
∑T

t=tj
β2(t−tj) (that is, essentially only a finite number of

periods matter). Nevertheless, if the distribution of ζt were known along with the parameter

values θ, g(.), we can calculate the distribution numerically using data prior to the event,

i.e., wr(τ) =
∑τ

j=1

∑T
t=r s2(ζt)β

t−r/λt(θ, 0) for r some time before t1. Let Fw denote the

distribution of the series {wr}. We assume that there is a long sample of data available

before the intervention (i.e., t1 → ∞ is large) so that this distribution can be consistently

estimated from the pre event sample.

We compare ĈAR(τ) with the critical values F̂−1
ŵ (α/2), F̂−1

ŵ (1 − α/2), where F̂ŵ(.) is

estimated using the data

ŵr(τ) =
τ∑

j=1

T∑
t=r

s2(ζ̂t)
β̂t−r

λt(θ̂, 0)
, r = 1, . . . , t1 − J. (25)

We estimate Fw using the empirical distribution of the data {ŵr(τ) r = 1, . . . , t1 − J}.
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7 Risk premium

Amihud (2002) considers an autoregressive model for annual and monthly liquidity and

then relates this to the stock risk premium. Specifically, he writes

E
(
Rmt −Rft|liqet

)
= a+ b× liqet

liqt = c0 + c1 × liqt−1 + ηt,

whereRmt andRft are the market return and risk-free rate respectively. liqet = E(liqt|Ft−1) =

c0 + c1liqt−1 and liqt is the annual or monthly average that we have called At. He also con-

siders a specification with unexpected liquidity as a regressor where liqut = liqt − liqet .

From a time series perspective it seems a bit strange to wait for a whole year to update

ones estimate of liquidity. We consider the following specification for daily stock returns

E
(
Rmt −Rft|Ft−1

)
= a+ b× g(t/T ) + c× λt + d× ζt, (26)

where λt is defined above. This allows the risk premium to depend on long run trend

liquidity on short run predictable dynamic variation and also on unanticipated liquidity

shocks, see Escanciano et al. (2017) for related specifications.

We also consider the alternative regression for the detrended equity premium, that is,

E
(
Rmt −Rft −m(t/T )|Ft−1

)
= α + γ × λt + δ × ζt, (27)

where m(t/T ) = E
(
Rmt −Rft

)
is the time varying unconditional equity premium. In

practice, we can estimatem(.) by kernel smoothing methods. There is a generated regressor

issue here when we replace λt and ζt by their estimated quantities; we discuss this in

Appendix D of Hafner et al. (2022).

8 Empirical study

The ability to accurately model the illiquidity series, and the availability of a framework

to conduct inference on potential structural changes in their dynamics, are useful tools

to investigate liquidity conditions in financial markets and their evolution over time. In

our application, we consider the Fab 5 tech stocks and the Bitcoin asset introduced in

Section 2 to analyze their illiquidity series using our DArLiQ model.3 We use historical

daily return and volume data, retrieved from Yahoo Finance, to compute the Amihud

illiquidity series. The sample period starts from the date of the first available data point

for each asset until October 7th, 2021. The descriptive statistics of the illiquidity series are

summarized in Table 1.4 It can be observed that the Bitcoin asset is less liquid compared

3Sample R code can be found at https://github.com/lw1882/DArLiQ.
4To make it comparable, we use the daily Amihud illiquidity ratios in the common sample period of

September 19, 2014 to October 7th, 2021 to compute the descriptive statistics for all assets.
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to the technology company stocks during this period. In addition, the illiquidity series of

Bitcoin is more volatile, exhibits higher skewness and has thicker tails. We further note

that the five tech companies have comparable levels of liquidity – although Apple stock is

slightly more liquid than the others. Moreover, the illiquidity of Facebook stock has higher

skewness and thicker tails compared to the other four tech companies.

Table 1: Summary statistics for daily illiquidity – ℓt × 1010.

Facebook Amazon Apple Google Microsoft Bitcoin

Mean 0.0372 0.0313 0.0187 0.0615 0.0424 1.7013

StdDev 0.0295 0.0389 0.0148 0.0499 0.0398 4.1201

Skewness 1.3673 2.5656 1.1146 1.1921 1.6408 4.0626

Kurtosis 6.2978 10.5467 4.1849 4.5345 6.1514 24.9266

We plot in Figure 3 and Figure 4 (Appendix E.2 in Hafner et al. (2022)) respectively

the illiquidity and log illiquidity series over the corresponding sample period for each of

the six assets. To manage boundary issues, we obtain an initial consistent estimator of the

trend function g(t/T ) using a local linear estimator5. The red curves in the two figures

represent respectively the estimated trend functions and their logarithms. From Figure 3,

we observe that the estimated trend function g(t/T ) serves as a good approximation for

the time-varying mean of the illiquidity series.6 Furthermore, a strong downward trend is

observed in the evolution of most illiquidity series, indicating an overall improvement in

liquidity conditions over time. Lastly, it is worth noticing that a temporary worsening in

liquidity conditions is occurring during significant market events such as the burst of the

dot-com bubble and 2007-2009 Global Financial Crisis.

8.1 Estimation results

We introduce the detrended illiquidity series, ℓ∗t = ℓt/g(t/T ), which are assumed to be

mean stationary. We then estimate the parameters θ of the λt process based on moment

restrictions and an i.i.d. assumption for the shock distributions. We consider two model

specifications for λt, namely the classic specification λt = ω + βλt−1 + γℓ∗t−1 and the speci-

5We opt for a Gaussian kernel and we choose the bandwidth according to the direct plug-in method as

introduced in Ruppert et al. (1995). The magnitude of the bandwidth is in line with the one computed

using Equation (22).
6Note that the trend function g(t/T ) is the mean level of the illiquidity ℓt, i.e. E (ℓt) = g(t/T ), which

is estimated with a local linear estimator. Therefore, g(t/T ) is roughly moving around the mid-level of ℓt

but this is not the case for log illiquidity series as log g(t/T ) is higher than the mean level of log ℓt due to

Jensen’s inequality. In the interest of space, we will focus on the plot of the log illiquidity series hereafter.
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fication with asymmetric effect λt = ω+ βλt−1 + γℓ∗t−1 + γ−ℓ∗t−1IRt−1<0. We use a targeting

approach in both cases.

8.1.1 Estimation based on conditional moment restrictions

Table 2: Estimated parameters of the λt process based on first moment restriction.

Classic Asymmetric

β γ β γ γ(−)

Facebook
0.952 0.024 0.953 0.025 -0.001
(14.96) (1.69) (22.81) (1.07) (-0.05)

Amazon
0.947 0.049 0.950 0.038 0.016
(73.34) (4.72) (67.15) (1.64) (0.62)

Apple
0.912 0.073 0.911 0.058 0.025
(53.15) (6.70) (63.48) (2.56) (0.85)

Google
0.969 0.025 0.966 0.022 0.005
(56.52) (2.84) (63.75) (2.02) (0.59)

Microsoft
0.943 0.052 0.937 0.048 0.012
(78.41) (5.82) (94.82) (4.07) (0.79)

Bitcoin
0.962 0.030 0.948 0.012 0.029
(56.13) (3.23) (5.96) (0.11) (0.15)

Note: The estimated parameters are θ = (β, γ) for the classic spec-

ification and θ = (β, γ, γ(−)) for the asymmetric specification of λt.

The numbers in parentheses are the t-statistics of the correspond-

ing parameter estimates.

We use the GMM approach based on the conditional moment restrictions to acquire an

initial consistent estimators of the λt process parameters θ. We consider the minimalist

case where the model is estimated using only the first conditional moment restriction, i.e.

E
[
ℓ∗t
λt

− 1 | Ft−1

]
= 0. We further improve the estimates of the g(t/T ) function using the

estimated λ̂t = λ̂t

(
θ̂GMM

)
obtained in the previous step. This, in turn, allows us to further

improve the estimates of the θ parameters. We report the obtained estimates with associ-

ated t-statistics in Table 2. It can be observed that the parameter estimates in the classic

specification are almost always statistically significant at the 5% level. However, the γ and

γ− estimates in the asymmetric model specification are in general not significant. The over-

all lack of statistical significance indicates that the asymmetric effect does not contribute

to improving the empirical fit of the model based on the first moment restriction. We will

further investigate whether including an asymmetric term is beneficial in the case where

the models are estimated via the MLE approach under an i.i.d. shock assumption. Finally,

the coefficient β is close to one, indicating high persistence in the short-run dynamics of

the illiquidity series.

We improve the estimates of the trend function based on the estimated λ̂t process. The
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log transforms of the initial and updated estimates of the trend function, i.e. log g(t/T ), are

plotted in Figure 5 (Appendix E.3 of Hafner et al. (2022)) together with the log illiquidity

series. We observe that the updated trend function estimates – under both the classic

model and the asymmetric specification – are different from the initial estimate but only to

a minor extent. This observation indicates that a 2-step approach consisting in first using

a local linear estimator for the trend function and then estimating the λt process and its

associated parameters θ can be a viable option in empirical applications.

8.1.2 Estimation: i.i.d. error term with parametric density

We estimate the model using an alternative approach – the semiparametric MLE approach

– where we assume an i.i.d. error term. The conditional distribution of the error term ζt can

be freely chosen within the class of distributions satisfying the desired requirements, namely

the density having non-negative support with unit mean and variance σ2
ζ . We present

estimation results assuming that the error term follows a Weibull(Γ(1+φ)−1, φ) distribution

with shape parameter φ. Based on the local linear estimator of the g(t/T ) function, we

first obtain a consistent estimator of the λt process parameters via the Quasi-Maximum

Likelihood (QML) estimation approach. We then obtain the fully efficient estimates with a

one-step update approach using the efficient scores based on the initial consistent estimators

as introduced in Section 4.2.1. We report the estimated parameters with the corresponding

t-statistics in Table 3. The estimates for the parameters of the λt process are significant

and all illiquidity series exhibit a high degree of persistence as the estimated β coefficients

are close to one. In addition, the estimated shape parameters of the Weibull error terms

are ranging from 1.14 to 1.40, indicating that the volatility of ζt is ranging from 0.73 to

0.88. This is consistent with the observation that the five tech stocks have comparable

volatility levels while the Bitcoin asset has much higher volatility.

Furthermore, we provide diagnostics on the validity of our assumptions for the error

term ζt. Concerning the i.i.d. assumption, we plot the autocorrelation function (ACF) of

ζt in Figure 6 and Figure 7 of Appendix E.4 in Hafner et al. (2022) respectively for the

classic and asymmetric model specifications of λt. Similarly, we plot the ACF of ζ2t under

the two specifications in Figure 8 and Figure 9 of Appendix E.4 in Hafner et al. (2022).

We observe that in most of the cases, there is no evidence suggesting autocorrelation in

the residual or squared residual series. Moreover, we use the probability integral transform

(PIT) to check how well the assumed Weibull conditional distribution fits the data. The

histogram plots of the PITs shown in Figure 10 and Figure 11 (Appendix E.4 of Hafner

et al. (2022)) are quite close to a uniform distribution. All assets exhibit a common pattern

where the error term has ticker tail on the left-hand side and thinner tail on the right-hand

side compared to a Weibull distribution. We complement this evidence by estimating the
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Table 3: Fully efficient estimates of the parameters for the λt process under the assumption

that the error term ζt follows a Weibull distribution.

Classic Asymmetric

β γ φ σ β γ γ(−) φ σ

Facebook
0.859 0.047 1.378 0.735 0.922 -0.028 0.105 1.383 0.732
(6.39) (5.13) (52.76) (33.83) (-5.75) (9.02) (52.49)

Amazon
0.916 0.079 1.361 0.743 0.929 0.037 0.065 1.372 0.738

(287.28) (27.93) (103.95) (352.02) (13.06) (21.81) (103.13)

Apple
0.879 0.093 1.315 0.768 0.890 0.047 0.077 1.325 0.762

(291.24) (51.45) (950.93) (319.03) (38.19) (27.61) (1004.26)

Google
0.909 0.045 1.283 0.786 0.931 -0.012 0.088 1.292 0.781
(30.88) (7.75) (88.69) (70.45) (-3.44) (12.30) (88.66)

Microsoft
0.924 0.068 1.377 0.735 0.927 0.039 0.052 1.380 0.733

(363.95) (33.80) (117.78) (359.73) (17.89) (20.26) (117.78)

Bitcoin
0.893 0.060 1.137 0.881 0.892 0.040 0.041 1.144 0.876
(37.33) (8.36) (106.49) (36.69) (6.61) (6.65) (95.55)

Note: The estimated parameters are θ = (β, γ, φ) for the classic specification and θ = (β, γ, γ(−), φ) for the asym-

metric specification of λt. φ is the shape parameter of the Weibull distribution which has mean 1 and standard

deviation σζ of

√√√√ Γ
(
1+ 2

φ

)
(
Γ2

(
1+ 1

φ

)) − 1. The numbers in parentheses are the t-statistics of the corresponding parameter

estimates.

tail index of the fitted shock series ζ̂t. Our results suggest that the shocks might have a

thicker tail than the Weibull distribution while exhibiting under dispersion features.7 We

thus also consider fat-tailed distributions in our analysis, such as the Burr – which nests

the Weibull and Lomax distributions as special cases – and Inverse Burr distributions. The

estimation results are reported in Appendix E.9.2 of Hafner et al. (2022). We notice that

the Lomax distribution provides the worst performance as it lacks the ability to capture

the under-dispersion feature with unit mean restriction. The Burr distribution reduces to

the Weibull distribution except for Apple and Bitcoin whose shock terms have thicker tails

than the other stocks. The Inverse Burr distribution outperforms the Weibull and Burr

distributions in terms of log likelihood in most cases but not for Microsoft. No distribution

among the ones considered above consistently provides a better fit and we thus refrain

from searching for more general distributions. Instead, we will focus in the next section on

whether a more flexible nonparametric density can provide a better fit to the data.

Lastly, we further improve the estimation of g(t/T ) by maximizing the local likelihood

based on the estimated λ̂t process and the error density. The log transforms of the initial

and updated estimates of the trend function, i.e. log g(t/T ), are plotted in Figure 12

(Appendix E.4 in Hafner et al. (2022)) together with the log illiquidity series. As in the

GMM case (see Section 8.1.1), we observe that the updated trend function estimates are

different from the initial estimate but only to a minor extent.

7See Hafner et al. (2022) for more details on the tail index analysis in Appendix E.9.1 and on the

magnitude of the error term volatilityTable 5 in Appendix E.9.2.
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8.1.3 Estimation: i.i.d. error term with nonparametric density

We consider whether replacing the parametric assumption for the error density f with

a nonparametric kernel estimator can further improve the fit of our model to empirical

data. We plot, in Figure 13 and Figure 14 of Appendix E.5 in Hafner et al. (2022), the

estimated nonparametric density against the Weibull density using the shape parameter

estimates from Section 8.1.2. We observe that the estimated Weibull density curves do

not fall between the two standard deviation bands of the estimated nonparametric densi-

ties, suggesting that the difference between the estimated parametric and nonparametric

densities is statistically significant.

Table 4: Fully efficient estimates of the parameters for λt process when using the nonpara-

metric estimates of the density of the error term ζt.

Classic Asymmetric

β γ β γ γ(−)

Facebook
0.865 0.050 0.901 -0.017 0.100
(9.28) (6.62) (73.79) (-4.27) (10.91)

Amazon
0.916 0.081 0.929 0.039 0.060

(345.60) (33.84) (399.64) (15.24) (22.13)

Apple
0.896 0.084 0.908 0.038 0.068

(186.18) (29.27) (245.33) (15.14) (21.20)

Google
0.912 0.047 0.926 -0.008 0.084
(53.12) (11.26) (164.03) (-3.62) (14.41)

Microsoft
0.929 0.067 0.932 0.040 0.046

(435.93) (37.34) (452.13) (19.94) (17.98)

Bitcoin
0.906 0.061 0.901 0.047 0.028
(54.12) (10.46) (70.60) (9.25) (4.93)

Note: The estimated parameters are θ = (β, γ) for the classic specifi-

cation and θ = (β, γ, γ(−)) for the asymmetric specification of λt. The

numbers in parentheses are the t-statistics of the corresponding param-

eter estimates.

The estimated nonparametric density allows us to further improve the maximum like-

lihood estimation results for the λt process. We can obtain the fully efficient estimates in

the nonparametric density case using the one-step update approach based on the efficient

scores introduced in Section 4.2.2. The estimates with associated t-statistics are reported

in Table 4 and the parameters are all statistically significant. Comparing the estimated val-

ues for the λt parameters reported in Table 3 and Table 4, we observe that the difference

in the estimated parameter values between the parametric and nonparametric cases are

overall quite small. This indicates that the QML estimation approach, combined with the

one-step update based on the efficient scores to improve efficiency, provides rather accurate

parameter estimates.

We further present the log likelihood computed using the parameter estimates obtained

in the parametric and nonparametric cases in Table 5. We conclude that the ML estimation
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Table 5: Log likelihood comparison between models using the parametric (Weibull) and

nonparametric estimates of the ζt density.

Weibull Nonparametric Difference

classic asymmetric classic asymmetric classic asymmetric

Facebook -2171.38 -2139.04 -2135.05 -2091.73 36.32 47.31

Amazon -4938.91 -4888.77 -4879.22 -4817.83 59.69 70.93

Apple -8843.96 -8773.77 -8612.49 -8527.32 231.47 246.45

Google -4019.61 -3967.50 -3953.75 -3872.98 65.86 94.52

Microsoft -7440.54 -7399.96 -7423.94 -7372.37 16.59 27.59

Bitcoin -2397.26 -2389.27 -2377.02 -2372.38 20.23 16.89

Note: The numbers reported are in terms of logLL. The difference is computed as logLL in

nonparametric density case minus logLL in the parametric Weibull density case.

approach assuming a Weibull distribution for the error term provides good estimation

performance, but using a nonparametric estimator for the error density can further improve

performance in terms of the likelihood.

8.2 Testing for permanent shifts: discontinuity in g function

We test for a potential discontinuity at a given time u0 by estimating the g±(u0) functions

via the local linear approach. We then construct the test statistics τ(u0) to detect whether

there is a permanent shift in the illiquidity level at time u0. To facilitate the computation

of the asymptotic variance of ĝ±(u0), we work with the improved estimator obtained by

smoothing out ℓt, i.e. ℓt/λ̂t. We plot in Figure 2 the test statistics τ(u0) for Apple over its

sample period. The plots of the test statistics for the other four tech stocks and Bitcoin

asset are presented in Figure 16 and Figure 17 (Appendix E.6 in Hafner et al. (2022)).

We focus on a typical stock specific-event, a stock split, and test for permanent shifts

in the liquidity dynamics arising after stock splits. The five tech stocks we consider have

quite different corporate policies regarding shareholders and in particular their propensity

to split their stock differs. In our study, Facebook never split its stock, Amazon split its

stock three times but the last time being before 2000 (perhaps coincidentally these were all

in the pre-decimal era). Microsoft split its stock 9 times in our sample period but the last

time was in 2002. Google split its stock twice in our sample in 2014 and 2015, but not before

that or since. Apple is a regular splitter with 5 splits in our sample fairly evenly spaced in

time. Each split is marked as a red dot on the curves in Figure 2, Figure 16 and Figure 17.

The majority of the statistics on stock split dates is outside of the 5% critical value bands,

suggesting an overall significance of the stock split events. In addition, Table 6 provides

the average test statistics for each stock on their stock split dates together with the average

across all stock split events for the four considered stocks. Firstly, we should note that the
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Figure 2: Test statistics for detecting permanent breaks in the illiquidity series.

average test statistic τ is positive in all cases, indicating an increase in stock illiquidity and

thus a corresponding decrease in stock liquidity after the splits. Secondly, we observe that

the average statistic indicates a significant difference between pre- and post-split long-term

trends of the illiquidity series. This suggests that the decrease in liquidity after stock splits

is permanent and significant.8

Table 6: Average statistics for testing permanent breaks in the liquidity series.

Amazon Apple Google Microsoft Average
τ 6.507 4.075 3.619 3.113 3.955

To test for temporary effects of stock splits on the liquidity level, we need to normalize

the illiquidity series using the estimated one-sided trend functions ĝ± (u). Once the de-

trended illiquidity series are obtained, we use the consistent test developed in Section 6 to

test the null hypothesis that α1 = α2 = . . . = αJ = 0 against the general alternative semi-

parametric model with the assumption that the error terms follow a Weibull distribution.

Here, we consider a five-day window, namely from two days before until two days after the

stock split date. We report in Table 7 and Table 8 the test statistic values for the perma-

nent (τLR) and temporary (τSR) shifts together with the 2.5% and 97.5% quantiles of τSR

which are estimated based on past data.9 We observe that the effect of stock splits on the

short-term dynamics of liquidity is almost always not significant. The only two exceptions

8We also consider the diff-in-diff approach where we use Apple or Microsoft as the “control” stock.

Results can be found in Table 2 and Table 3 (Appendix E.6 of Hafner et al. (2022)). We find inconclusive

evidence for the effect of stock split on illiquidity. This might be due to the fact that the control stock is

influenced by spillover effects of the treatment group.
9Note that for the split events preceded by another one we only consider the period after the first stock

split event for the computation of the τSR quantiles.
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are for Microsoft stock splits in 1991 and 1996 which were associated with a significant

short-term shift in liquidity dynamics. Therefore, our empirical evidence suggests overall

that stock splits of tech companies had a significant permanent effect on the long-run trend

of their illiquidity process but not on the short-run dynamics.

Table 7: Test statistics for detecting permanent and temporary breaks in the liquidity

series of Amazon and Apple stocks.

Amazon

Split 1 Split 2 Split 3
Date 1998-06-02 1999-01-05 1999-09-02
Splits 02:01 03:01 02:01
τLR 3.29 14.67 1.56
∆1

LR 27.71 154.54 13.07
∆2

LR 3.97 22.81 1.10
τSR 17.26 8.09 -20.06
Q2.5%

SR -29.75 -42.82 -38.09
Q97.5%

SR 51.43 57.16 10.15

Apple

Split 1 Split 2 Split 3 Split 4 Split 5
Date 1987-06-16 2000-06-21 2005-02-28 2014-06-09 2020-08-31
Splits 02:01 02:01 02:01 07:01 04:01
τLR 5.06 2.65 9.45 1.06 2.16
∆1

LR 43.15 22.25 85.76 8.83 18.07
∆2

LR 0.10 0.10 0.68 0.04 0.40
τSR 2.97 10.45 -1.54 5.14 13.45
Q2.5%

SR -18.51 -15.74 -11.69 -13.85 -10.77
Q97.5%

SR 24.43 20.54 20.06 14.08 15.95

Note: We report the test statistic for permanent breaks (τLR), the percentage change in the long-run

illiquidity level (∆1
LR) and the variation in the long-run illiquidity level normalized by the change

in the real tick size (∆2
LR × 108). We also report the test statistic values for the temporary shifts

(τSR) together with the 2.5% and 97.5% quantiles of τSR which are estimated based on past data.

We further investigate the economic magnitude of the permanent effect of stock splits

on liquidity conditions. In particular, we consider two statistics: i) the percentage change

in the long-run illiquidity level, i.e. ∆1
LR =

2(g+(u)−g−(u))
g+(u)+g−(u)

; ii) the variation in the long-

run illiquidity level normalized by the change in the real tick size, i.e. ∆2
LR = g+(u)−g−(u)

κ(u)
P (u)

− κ(u)
sP (u)

where κ represents the tick size, P is the stock price and s represents the split factor.

Based on the statistics reported in Table 7 and Table 8, the 1999 Amazon stock split has

the largest impact on liquidity in terms of percentage change in the long-run illiquidity

level (∆1
LR) and changes in the long-run illiquidity level normalized by the real tick size.

However, the 2014 Google stock split has the largest impact when considering the measure

normalized by the change in real tick size (∆2
LR). In addition, we notice that despite

Apple and Microsoft having larger amount of stock splits compared to the other companies

analyzed, the majority of them did not have an economically significant impact on liquidity

– especially when normalizing by the real tick size.
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Table 8: Test statistics for detecting permanent and temporary breaks in the liquidity

series of Google and Microsoft stocks.

Google

Split 1
Date 2014-03-27
Splits 2002:1000
τLR 7.04
∆1

LR 69.78
∆2

LR 57.24
τSR -1.05
Q2.5%

SR -22.15
Q97.5%

SR 23.75

Microsoft

Split 1 Split 2 Split 3 Split 4 Split 5
Date 1987-09-21 1990-04-16 1991-06-27 1992-06-15 1994-05-23
Splits 02:01 02:01 03:02 03:02 02:01
τLR 9.71 4.33 2.08 2.14 1.59
∆1

LR 67.19 28.71 13.67 14.06 10.43
∆2

LR 0.82 0.15 0.10 0.11 0.04
τSR 10.71 1.42 31.73 8.08 -3.29
Q2.5%

SR -31.86 -21.37 -14.26 -16.86 -17.32
Q97.5%

SR 27.56 26.12 26.22 18.78 22.34
Split 6 Split 7 Split 8 Split 9

Date 1996-12-09 1998-02-23 1999-03-29 2003-02-18
Splits 02:01 02:01 02:01 02:01
τLR 2.13 3.32 2.46 0.25
∆1

LR 14.03 21.88 16.18 1.62
∆2

LR 0.00 0.21 0.23 0.07
τSR 28.48 6.04 9.88 13.95
Q2.5%

SR -15.23 -14.65 -15.80 -19.89
Q97.5%

SR 19.38 18.26 16.32 27.54

Note: We report the test statistic for permanent breaks (τLR), the percentage change in the long-run

illiquidity level (∆1
LR) and the variation in the long-run illiquidity level normalized by the change in

the real tick size (∆2
LR × 108). We also report the test statistic values for the temporary shifts (τSR)

together with the 2.5% and 97.5% quantiles of τSR which are estimated based on past data.

8.3 Risk premium

Amihud (2002) studies how illiquidity, captured by his illiquidity measure At introduced

in Section 2, relates to stock excess returns in both the time series and cross-sectional

dimensions. We build on this analysis to investigate the effect of each component of the

S&P 500 index illiquidity process – i.e. the expected long-term and short-term components

(respectively g(t/T ) and λt) and illiquidty shocks (ζt) – on the stock market index excess

returns (the market “risk premium”). We consider three frequencies in our analysis –

daily, weekly and monthly. The S&P 500 index illiquidity and log illiquidity series together

with the stock market index return data for the three considered frequencies are plotted

respectively in Figure 18, Figure 19 and Figure 20 of Appendix E.7 in Hafner et al. (2022).

We note that there exists a strong downward trend in the illiquidity process while the

return series is somewhat stationary. This suggests that the relationship between the
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long-run trend of market liquidity and the stock excess return would be less significant.10

Therefore, we focus on detrended illiquidity and market excess return series to study the

effect of expected short-run illiquidity variations and unexpected illiquidity shocks on the

market risk premium.

Table 9: Coefficient estimates for regressions using daily, weekly and monthly observations.

Daily Weekly Monthly
α −0.0007 −0.0043 −0.0505∗∗

(0.0005) (0.0032) (0.0168)
γ 0.0017∗∗∗ 0.0065∗ 0.0556∗∗

(0.0004) (0.0031) (0.0168)
δ −0.0010∗∗∗ −0.0023∗∗∗ −0.0046∗

(0.0001) (0.0006) (0.0022)
R2 0.0068 0.0074 0.0200

Adj. R2 0.0066 0.0067 0.0174
Num. obs. 15387 2893 741

Note: We estimate the regression based on Equation (27):

Rmt−Rft−m(t/T ) = α+γ×λt+ δ× ζt+ εt, where m(t/T )

is the time-varying unconditional equity premium. The sig-

nificance level is indicated by ∗∗∗p < 0.001; ∗∗p < 0.01;
∗p < 0.05.

We consider the specification from Equation (27) in Section 7 for the regression of

detrended risk premium on illiquidity components.11 The estimation results for the three

sampling frequencies considered are provided in Table 9. We observe that the estimated γ

coefficients for the short-run expected illiquidity component λt are positive and significant

which indicates that the expected market excess return is an increasing function of the

short-run expected illiquidity process. This observation is consistent with the intuition

that higher expected market illiquidity would make investors demand higher excess returns

on stocks as a compensation for gaining exposure to this source of risk. Moreover, the

estimated δ coefficients for the shock term ζt are negative and significant, suggesting that

the unexpected market illiquidity has a negative effect on the stock excess return. This can

be explained by the fact that stock prices would likely fall when illiquidity unexpectedly

rises, thus decreasing expected returns.

9 Concluding remarks

The motivation for this paper stems from the observation that financial market illiquidity

dynamics across various asset classes are driven by both low-frequency and higher-frequency

10This is confirmed by regression results based on Equation (26) introduced in Section 7. The coefficient

estimates for the parameter b associated with the long-run trend illiquidity component are not significant.
11The time-varying unconditional equity premium m(t/T ) is obtained via a local linear estimator.
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variations, which makes the stationarity assumption unreasonable for illiquidity modelling.

We developed a class of dynamic semiparametric models that captures long-term trend in

a flexible way and short-run variations with an autoregressive component. Our application

– using the five largest US technology stocks and the Bitcoin asset – demonstrates the good

performance of our framework in capturing the salient features of illiquidity dynamics. The

assumption of multiplicative trend is consistent with the general modelling strategy we

have adopted but we may also consider a more general model in which everything changes

over time, the so-called TV-MEM model. The TV-GARCH model has been investigated

in Rohan and Ramanathan (2013) following Dahlhaus and Rao (2006). We also plan to

extend our work to cover the multiviarate case.

We further developed a methodology to detect the occurrence of permanent and tem-

porary shifts in the illiquidity process at a given point in time. We applied this framework

to study how stock splits affect liquidity. Clearly stock splits are only one of many events

that seem to permanently shift the stock price, quarterly earnings announcements, new

product releases, and macroeconomic news are all known to have big effects on the prices

and trading volumes of these stocks in particular. Nevertheless, we do find a significant

negative effect of stock splits on the long-run trend level of liquidity around the time of

the stock splits themselves, while the effect on the short-run illiquidity dynamics is not

significant. Our results are broadly consistent with Copeland (1979).

We also investigated the link between stock market excess returns and the different

components of illiquidity for the S&P 500 stock market index. We show that, while excess

returns are an increasing function of the expected illiquidity component, unexpected illiq-

uidity shocks decrease stock prices and returns. Our finding is consistent with the findings

of Amihud (2002) based on his cruder methodology.

Acknowledgements

We are grateful for discussions with seminar participants at NYU Abu Dhabi, University of

York, Humboldt-Universität zu Berlin, the Janeway Institute Cambridge and the conference

participants at the 2022 QFFE in Marseille. We would also like to thank Andrew Harvey for

helpful comments. The first author acknowledges financial support of the ARC research

contract 18/23-089 of the Belgian Federal Science Policy Office. The second and third

authors acknowledge financial support from the Janeway Institute.

35



References

Amihud, Y. (2002): “Illiquidity and stock returns: Cross-section and time-series effects”. Journal

of Financial Markets 5.1, pp. 31–56.

Amihud, Y. and Mendelson, H. (2015): “The pricing of illiquidity as a characteristic and as

risk”. Multinational Finance Journal 19.3, pp. 149–168.

Angrist, J. D. and Pischke, J.-S. (2009): Mostly harmless econometrics: An empiricist’s com-

panion. Princeton university press.

Barardehi, Y. H., Bernhardt, D., Ruchti, T. G. and Weidenmier, M. (2021): “The night

and day of Amihud’s (2002) liquidity measure”. The Review of Asset Pricing Studies 11.2,

pp. 269–308.

Beddington, J., Furse, C., Bond, P., Cliff, D., Goodhart, C., Houstoun, K., Linton,

O. B., Zigrand, J.-P., et al. (2012): Foresight: The future of computer trading in financial

markets: Final project report. Tech. rep. London School of Economics and Political Science,

LSE Library.

Bickel, P. J. (1982): “On adaptive estimation”. The Annals of Statistics 10.3, pp. 647–671.

Bickel, P. J., Klaassen, C. A., Ritov, Y. and Wellner, J. A. (1993): Efficient and adaptive

estimation for semiparametric models. Vol. 4. Springer.

Brogaard, J. (2010): “High frequency trading and its impact on market quality”. Northwestern

University Kellogg School of Management Working Paper 66.

Calonico, S., Cattaneo, M. D. and Farrell, M. H. (2018): “On the effect of bias estima-

tion on coverage accuracy in nonparametric inference”. Journal of the American Statistical

Association 113.522, pp. 767–779.

Chen, S. X. (2000): “Probability density function estimation using gamma kernels”. Annals of

the Institute of Statistical Mathematics 52.3, pp. 471–480.

Chen, X. (2007): “Large sample sieve estimation of semi-nonparametric models”. Handbook of

Econometrics 6, pp. 5549–5632.

Chen, X., Linton, O. B. and Van Keilegom, I. (2003): “Estimation of semiparametric models

when the criterion function is not smooth”. Econometrica 71.5, pp. 1591–1608.

Cipollini, F., Engle,R. F. and Gallo,G. M. (2013): “Semiparametric vector MEM”. Journal

of Applied Econometrics 28.7, pp. 1067–1086.

Cipollini, F. and Gallo, G. M. (2022): “Multiplicative Error Models: 20 years on”. Econo-

metrics and Statistics, forthcoming.

Copeland, T. E. (1979): “Liquidity changes following stock splits”. The Journal of Finance

34.1, pp. 115–141.

Dahlhaus, R. and Rao, S. S. (2006): “Statistical inference for time-varying ARCH processes”.

The Annals of Statistics 34.3, pp. 1075–1114.

Delgado, M. A. and Hidalgo, J. (2000): “Nonparametric inference on structural breaks”.

Journal of Econometrics 96.1, pp. 113–144.

Drost, F. C. and Klaassen, C. A. (1997): “Efficient estimation in semiparametric GARCH

models”. Journal of Econometrics 81.1, pp. 193–221.

Drost, F. C. and Werker, B. J. M. (2004): “Semiparametric duration models”. Journal of

Business & Economic Statistics 22.1, pp. 40–50.

Engle, R. (2002): “New frontiers for ARCH models”. Journal of Applied Econometrics 17.5,

pp. 425–446.

36



Engle, R. F. and Gallo, G. M. (2006): “A multiple indicators model for volatility using

intra-daily data”. Journal of Econometrics 131.1-2, pp. 3–27.

Engle, R. F., Gallo, G. M. and Velucchi, M. (2012): “Volatility spillovers in East Asian

financial markets: A MEM-based approach”. The Review of Economics and Statistics 94.1,

pp. 222–223.

Engle, R. F. and Rangel, J. G. (2008): “The spline-GARCH model for low-frequency volatility

and its global macroeconomic causes”. The Review of Financial Studies 21.3, pp. 1187–1222.

Engle, R. F. and Russell, J. R. (1998): “Autoregressive conditional duration: A new model

for irregularly spaced transaction data”. Econometrica 66.5, pp. 1127–1162.

Escanciano, J. C., Pardo-Fernández, J. C. and Van Keilegom, I. (2017): “Semiparamet-

ric estimation of risk-return relationships”. Journal of Business & Economic Statistics 35.1,

pp. 40–52.

Fan, J and Gijbels, I. (1996): Local polynomial modelling and its applications. Chapman and

Hall.

Fan, J. (1993): “Local linear regression smoothers and their minimax efficiencies”. The Annals

of Statistics 21.1, pp. 196–216.

Fan, J. and Chen, J. (1999): “One-step local quasi-likelihood estimation”. Journal of the Royal

Statistical Society: Series B 61.4, pp. 927–943.

Fong, K. Y., Holden, C. W. and Tobek, O. (2018): “Are volatility over volume liquidity

proxies useful for global or US research?” Kelley School of Business Research Paper 17-49.

Francisco-Fernández, M. and Vilar-Fernández, J. M. (2001): “Local polynomial regres-

sion estimation with correlated errors”. Communications in Statistics-Theory and Methods

30.7, pp. 1271–1293.
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Appendices

A Lemmas

Lemma 1. Suppose that Assumptions A1-A3 hold. Then, we have for any u

ĝ(u)− g(u) = VT (u) +BT (u) +RT (u),

where BT (u) is deterministic and

VT (u) = g(u)
1

T

T∑
t=1

Kh(t/T − u)vt,

where:

sup
u∈[0,1]

∣∣VT (u)∣∣ = OP

(√
log T

Th

)
, sup

u∈[h,1−h]

∣∣BT (u)
∣∣ = O(h2)

sup
u∈[h,1−h]

∣∣RT (u)
∣∣ = oP (h

2).
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sup
u∈[0,h]∪[1−h,1]

∣∣BT (u)
∣∣ = O(h), sup

u∈[0,h]∪[1−h,1]

∣∣RT (u)
∣∣ = oP (h).

Proof of Lemma 1. We write

ĝ(u)− g(u) =
1

T

T∑
t=1

Kh(t/T − u)g(t/T )vt +
1

T

T∑
t=1

Kh(t/T − u)g(t/T )− g(u). (1)

Write

1

T

T∑
t=1

Kh(t/T − u)g(t/T )vt = g(u)
1

T

T∑
t=1

Kh(t/T − u)vt +
1

T

T∑
t=1

Kh(t/T − u)
(
g(t/T )− g(u)

)
vt

= VT1(u) + VT2(u).

Furthermore,

sup
u∈[0,1]

∣∣VT1(u)
∣∣ ≤ sup

u∈[0,1]
g(u)× sup

u∈[0,1]

∣∣∣∣∣∣ 1T
T∑
t=1

Kh(t/T − u)vt

∣∣∣∣∣∣ = OP

(√
log T

Th

)
,

by standard arguments applied to
∑T

t=1Kh(t/T −u)vt since vt is assumed to be stationary

and mixing, Francisco-Fernández et al. (2003). We have by Taylor expansion

VT2(u) = hg′(u)
1

T

T∑
t=1

L1h(t/T − u)vt + h2g′′(u)
1

2T

T∑
t=1

L2h(t/T − u)vt

+ h2
1

2T

T∑
t=1

L2h(t/T − u)
(
g′′(q∗(t/T, u))− g′′(u)

)
vt,

where Lj(v) = K(v)vj, j = 1, 2 and q∗(t/T, u) is an intermediate point. By the same

type of arguments
∑T

t=1 Ljh(t/T − u)vt/T = OP

(√
log T
Th

)
. The last term is oP (h

2) by the

continuity of g′′(.) and the fact that

sup
u∈[0,1]

1

T

T∑
t=1

∣∣L2h(t/T − u)vt
∣∣ = OP (1).

The bias approximation is valid over [h, 1 − h] by standard Taylor series argument. Fur-

thermore, since g(h)−g(θh) = (1−θ)hg′(θh)+O(h2) the approximation over [0, h] is valid,

likewise for [1− h, 1].

Futhermore,

Pr

(
min
1≤t≤T

ĝ(t/T ) < c/2

)
−→ 0.

This follows becauseA =
{
min1≤t≤T ĝ(t/T ) < c/2

}
⊂ B =

{
max1≤t≤T

∣∣ĝ(t/T )− g(t/T )
∣∣ > c/2

}
,

where Pr(B) → 0 by the uniform expansion in Lemma 1.
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Define the infeasible estimators based on the iid sequence ζt whose density is f supported

on R+,

f̃(ζ) =
1

T

T∑
t=1

Khf
(ζt − ζ) , s̃2(ζ) = −

(
ζ
f̃ ′(ζ)

f̃(ζ)
+ 1

)
.

We have the standard result under our conditions.

Lemma 2. We have

sup
ζ∈R+

∣∣∣f̃(ζ)− E(f̃(ζ))
∣∣∣ = OP

√ log T

Thf



sup
ζ∈R+

∣∣∣f̃ ′(ζ)− E(f̃ ′(ζ))
∣∣∣ = OP

√ log T

Th3f

 .

Furthermore, for some sequences c1T → 0 and c2T → ∞

sup
c1T≤ζ≤c2T

∣∣s̃2(ζ)− s2(ζ)
∣∣ = OP

√ log T

Th3f
+ h2f

 .

The sequence c2T is needed because f(ζ) → 0 as ζ → ∞, the sequence c1T is needed

because of boundary issues for the bias terms. The proofs of these results are standard and

ommitted. We also have the following result for the feasible density estimator.

Lemma 3. For some sequences c1T → 0 and c2T → ∞, we have

sup
c1T≤ζ≤c2T

∣∣∣f̂(ζ)− f(ζ)
∣∣∣ = OP

√ log T

Thf
+ h2f + h2



sup
c1T≤ζ≤c2T

∣∣∣f̂ ′(ζ)− f(ζ)
∣∣∣ = OP

√ log T

Th3f
+ h2f + h2

 .

sup
c1T≤ζ≤c2T

∣∣ŝ2(ζ)− s2(ζ)
∣∣ = OP

√ log T

Th3f
+ h2f + h2

 .

Proof of Lemma 3. We have

f̂(ζ)− f̃(ζ) =
1

Th2f

T∑
t=1

K ′

(
ζt − ζ

hf

)(
ζ̂t − ζt

)
+

1

2Th3f

T∑
t=1

K ′′

(
ζt − ζ

hf

)(
ζ̂t − ζt

)2
1

2Th3f

T∑
t=1

K ′′

(
ζt − ζ

hf

)
−K ′′

(
ζt − ζ

hf

)(ζ̂t − ζt

)2
,
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f̂ ′(ζ)− f̃ ′(ζ) =
1

Th2f

T∑
t=1

K ′′

(
ζt − ζ

hf

)(
ζ̂t − ζt

)
+

1

2Th3f

T∑
t=1

K ′′′

(
ζt − ζ

hf

)(
ζ̂t − ζt

)2
1

2Th3f

T∑
t=1

K ′′′

(
ζt − ζ

hf

)
−K ′′′

(
ζt − ζ

hf

)(ζ̂t − ζt

)2
,

where ζt is an intermediate point. We next substitute in the expansion (5) for ζ̂t − ζt

and work term by term. The remainder term uses the Lipschitz continuity of K ′′′ and the

uniform convergence rate of ζ̂t − ζt.

B Proof of main results

Proof of Theorem 1. From the expansion in Equation (1), we have VT (u) = g(u)
∑T

t=1Kh(t/T−
u)vt/T, and we may show that

√
ThVT (u) =⇒ N(0, ||K||22g(u)2lrvar(vt)),

by the arguments of Francisco-Fernández and Vilar-Fernández (2001) based on the CLT

for mixing random variables.

Proof of Theorem 2. First, note that

1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

− g(u) =
1

T

T∑
t=1

Kh̃(t/T − u)g(t/T )ζt − g(u)

= g(u)
1

T

T∑
t=1

Kh̃(t/T − u) (ζt − 1)

+
1

T

T∑
t=1

Kh̃(t/T − u)g(t/T )− g(u)

+
1

T

T∑
t=1

Kh̃(t/T − u)
(
g(t/T )− g(u)

)
(ζt − 1)

= V +
T (u) +B+

T (u) +R+
T (u),

where V +
T (u) is a mean zero stochastic term, whereas B+

T (u) = BT (u) is the deterministic

bias term, while R+
T (u) = oP (h̃

2). The term V +
T (u) has a MDS error term and satisfies the

CLT √
T h̃V +

T (u) =⇒ N
(
0, ||K||22g(u)2σ2

ζ

)
.

We next show that this is the leading term.

We have

λt(θ̂, ĝ)− λt = λt(θ̂, g0)− λt + λt(θ0, ĝ)− λt +Remt,T ,
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where the remainder term Remt,T is of smaller order. We focus on the two “linear” terms.

We have

λt(θ̂, g0)− λt =
∂λt(θ0, g0)

∂θ⊺

(
θ̂ − θ0

)
+
(
θ̂ − θ0

)⊺ ∂2λt(θ0, g0)
∂θ∂θ⊺

(
θ̂ − θ0

)
(2)

+
(
θ̂ − θ0

)⊺(∂2λt(θ, g0)
∂θ∂θ⊺

− ∂2λt(θ, g0)

∂θ∂θ⊺

)(
θ̂ − θ0

)
,

where
∥∥∥θ − θ0

∥∥∥ ≤
∥∥∥θ̂ − θ0

∥∥∥ . We have, ignoring initial conditions

λt(θ0, ĝ)− λt = γ0

t∑
j=1

βj−1
0

(
ℓt−j

ĝ((t− j)/T )
− ℓt−j

g((t− j)/T )

)

= −γ0
t∑

j=1

βj−1
0

ℓt−j

g((t− j)/T )

ĝ((t− j)/T )− g((t− j)/T )

g((t− j)/T )

+
γ0
2

t∑
j=1

βj−1
0

ℓt−j

g((t− j)/T )

(
ĝ((t− j)/T )− g((t− j)/T )

g((t− j)/T )

)2

+Remt,T ,

where the remainder term Remt,T is of smaller order.

We have

R∗
T =

∣∣∣∣∣∣ 1T
T∑
t=1

Kh̃(t/T − u)
ℓt

λ̂t
− 1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

∣∣∣∣∣∣
=

∣∣∣∣∣∣− 1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

λt(θ̂, ĝ)− λt

λt(θ̂, ĝ)

∣∣∣∣∣∣
≤ max

1≤t≤T

∣∣∣∣∣ 1

λt(θ̂, ĝ)

∣∣∣∣∣
∣∣∣∣∣∣ 1T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

(
λt(θ̂, ĝ)− λt

)∣∣∣∣∣∣
≤ OP (1)×

∣∣∣∣∣∣ 1T
T∑
t=1

Kh̃(t/T − u)
ℓt
λt

(
λt(θ̂, ĝ)− λt

)∣∣∣∣∣∣ ,
because λt(θ, g) ≥ ϵ for all θ ∈ Θ and g ∈ G, and indeed

λt(θ̂, ĝ) = λt(θ0, g0)−
∣∣∣λt(θ̂, ĝ)− λt(θ0, g0)

∣∣∣ ≥ λt(θ0, g0)− oP (1),

by the triangle inequality and the uniform convergence of ĝ given in Lemma 1.

We have
1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

∂λt(θ0, g0)

∂θ⊺

(
θ̂ − θ0

)
= OP (T

−1/2).
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We next consider the nonparametric part:

ST =
1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

t∑
j=1

βj−1
0

ℓt−j

g((t− j)/T )

ĝ((t− j)/T )− g((t− j)/T )

g((t− j)/T )

=
1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

t∑
j=1

βj−1
0

ℓt−j

g((t− j)/T )

VT ((t− j)/T )

g((t− j)/T )

+
1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

t∑
j=1

βj−1
0

ℓt−j

g((t− j)/T )

BT ((t− j)/T )

g((t− j)/T )

+
1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

t∑
j=1

βj−1
0

ℓt−j

g((t− j)/T )

RT ((t− j)/T )

g((t− j)/T )

= ST1 + ST2 + ST3.

Clearly, ST2 = OP (h
2) = oP (h̃

2), ST3 = oP (h
2) = oP (h̃

2) by the undermsoothing, so we

consider ST1, which is

ST1 =
1

T

T∑
t=1

Kh̃(t/T−u) ℓt
λt

t∑
j=1

βj−1
0

ℓt−j

g((t− j)/T )

g(u)

g((t− j)/T )

1

T

T∑
s=1

Kh(s/T−(t−j)/T )vs.

Consider

1

T

T∑
t=1

Kh̃(t/T − u)
ℓt
λt

ℓt−1

g((t− 1)/T )

g(u)

g((t− 1)/T )

1

T

T∑
s=1

Kh(s/T − (t− 1)/T )vs

≃ g(u)
1

T

T∑
t=1

Kh̃(t/T − u)ζtλt−1ζt−1
1

T

T∑
s=1

Kh(s/T − (t− 1)/T )vs

= g(u)E (ζtλt−1ζt−1)
1

T

T∑
t=1

Kh̃(t/T − u)
1

T

T∑
s=1

Kh(s/T − (t− 1)/T )vs

+ g(u)
1

T

T∑
t=1

Kh̃(t/T − u)
(
ζtλt−1ζt−1 − E (ζtλt−1ζt−1)

) 1

T

T∑
s=1

Kh(s/T − (t− 1)/T )vs.

We have

1

T

T∑
t=1

Kh̃(t/T − u)
1

T

T∑
s=1

Kh(s/T − (t− 1)/T )vs

≃ 1

T 2

T∑
s=1

 T∑
t=1

Kh̃(t/T − u)Kh(s/T − t/T )

 vs,

which is mean zero and has variance

1

T 4

T∑
s=1

T∑
s′=1

κTsκTs′E (vsvs′) ,
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where κTs =
∑T

t=1Kh̃(t/T − u)Kh(s/T − t/T ). We have

1

T 4

T∑
s=1

κ2Ts =
1

T 4

1

h̃2h2

T∑
s=1

 T∑
t=1

K

(
t/T − u

h̃

)
K

(
s/T − t/T

h

)2

=
1

T 4

1

h̃2h2

T∑
s=1

T∑
t=1

K

(
t/T − u

h̃

)2

K

(
s/T − t/T

h

)2

+

+
1

T 4

1

h̃2h2

T∑
s=1

T∑
t=1

T∑
t′=1

K

(
t/T − u

h̃

)
K

(
s/T − t/T

h

)
K

(
t′/T − u

h̃

)
K

(
s/T − t′/T

h

)
We have {

(t, s) ∈ {1, . . . , T}2 :
∣∣∣∣ tT − u

∣∣∣∣ ≤ h̃,

∣∣∣∣ sT − t

T

∣∣∣∣ ≤ h

}
= O(Th) +O(T h̃)

{
(t′, t, s) ∈ {1, . . . , T}3 :

∣∣∣∣ tT − u

∣∣∣∣ ≤ h̃,

∣∣∣∣ t′T − u

∣∣∣∣ ≤ h̃,

∣∣∣∣ sT − t

T

∣∣∣∣ ≤ h,

∣∣∣∣ sT − t′

T

∣∣∣∣ ≤ h

}
= O((Th)2) +O((T h̃)2)

Therefore
1

T 4

1

h̃2h2
×
(
O((Th)2) +O((T h̃)2)

)
= O

(
1

T 2h2
+

1

T 2h̃2

)
.

It follows that

ST1 = OP

(
T−1h̃−1

)
= oP (T

−1/2h−1/2)

R∗
T = oP (T

−1/2h−1/2) + oP (h
2).

Proof of Theorem 3. We apply Theorem 1 and 2 of Chen et al. (2003). We note that

Lemma 1 establishes that

sup
u∈[h,1−h]

∣∣ĝ(u)− g(u)
∣∣ = oP (T

−1/4).

We note that this is all that is required since one can drop from the calculation of MT

the observations t = 1, . . . , Th and t = T − Th, . . . , T, that is, by taking IT = {t :

Th+ 1, . . . , T − Th}.
We next establish that

√
T
(
MT (θ0, g0) + Γ2(θ0, g0) ◦ (ĝ − g0)

)
=⇒ N (0,Ω) .

In the sequel we proceed to infinity to simplify the presentation. We consider

MT (θ, g) =
1

T

T∑
t=1

ρt(θ, g), ρt(θ, g) = zt−1

(
ℓt

g(t/T )
− λt(θ, g)

)
7



ρt(θ0, g0) = zt−1λt (ζt − 1)

λt(θ, g) = 1− β − γ + βλt−1 + γ
ℓt−1

g((t− 1)/T )
=

1− β − γ

1− β
+ γ

∞∑
j=1

βj−1 ℓt−j

g((t− j)/T )
.

We next calculate
∂

∂τ
M(θ, g0 + τ(g − g0)). (3)

We have for any τ

λt(θ, g0 + τ(g − g0))− λt(θ, g0)

τ
≃ −γ

∞∑
j=1

βj−1 ℓt−j

g0((t− j)/T )

g((t− j)/T )− g0((t− j)/T )

g0((t− j)/T )
,

and so

lim
τ→0

E

[
λt(θ, g0 + τ(g − g0))− λt(θ, g0)

τ

]
= −γ

∞∑
j=1

βj−1 g((t− j)/T )− g0((t− j)/T )

g0((t− j)/T )

≃ −g(t/T )− g0(t/T )

g0(t/T )

γ

1− β
.

Furthermore, for

ℓt
g0+τ(g−g0)(t/T )

− ℓt
g0(t/T )

τ
≃ − ℓt

g0(t/T )

g(t/T )− g0(t/T )

g0(t/T )

E

 ℓt
g0+τ(g−g0)

− ℓt
g0(t/T )

τ

 ≃ −g(t/T )− g0(t/T )

g0(t/T )
.

Therefore,

MT (θ, ĝ) =MT (θ, g0) + Γ2(θ0, g0) ◦ (ĝ − g0)

=
1

T

T∑
t=1

(
ρt(θ0, g0) +

1− β − γ

1− β
zt−1

ĝ(t/T )− g0(t/T )

g0(t/T )

)
.

We have

1

T

T∑
t=1

zt−1
ĝ(t/T )− g0(t/T )

g0(t/T )
=

1

T

T∑
t=1

zt−1
1

T

T∑
s=1

Kh(s/T − t/T ) (λsζs − 1) +O(h2)

=
1

T

T∑
s=1

(λsζs − 1)
1

T

T∑
t=1

zt−1Kh(s/T − t/T )

≃ 1

T

T∑
s=1

(λsζs − 1)E(zs−1).

It follows that

MT (θ, ĝ) =
1

T

T∑
t=1

wt + oP (T
−1/2),

where wt is mean zero and is a stationary and mixing process. The CLT follows.
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Proof of Theorem 4. Let ℓ∗∗t = ℓt/λt then

ℓ∗∗t = g(t/T )ζt.

The local likelihood is apart from a constant

L(g;u) =
T∑
t=1

Kh(t/T − u)

(
− log g + log f

(
ℓ∗∗t
g

))
.

We have in general

∂L(g;u)

∂g
=

1

T

T∑
t=1

Kh(t/T − u)

−1

g
− 1

g

f ′
(

ℓ∗∗t
g

)
f
(

ℓ∗∗t
g

) ℓ∗∗t
g

 =
1

T

T∑
t=1

Kh(t/T − u)
1

g
s2

(
ℓ∗∗t
g

)

∂2L(g;u)

∂g2
=

1

T

T∑
t=1

Kh(t/T − u)

(
−1

g2
s2

(
ℓ∗∗t
g

)
− 1

g2
s′2

(
ℓ∗∗t
g

)
ℓ∗∗t
g

)
.

At the true parameter values

∂L(g0(u);u)

∂g
=

1

T

T∑
t=1

Kh(t/T − u)
1

g(u)
s2 (ζt)

∂2L(g0(u);u)

∂g2
≃ 1

T

T∑
t=1

Kh(t/T − u)
1

g(u)2
s′2 (ζt) ζt.

We have by integration by parts

E
(
s′2 (ζt) ζt

)
=

∫
s′2 (ζ) ζf(ζ)dζ

= −
∫
s2 (ζ) ζf

′(ζ)dζ −
∫
s2 (ζ) f(ζ)dζ

= −
∫
s22 (ζ) f(ζ)dζ

= −I2(f).

This guarantees that E(∂2L(g0(u);u)/∂g
2) = −I2(f)/g(u)2. The argument for the case

with estimated L is similar to Fan and Chen (1999).

Proof of Theorem 5. We show that

η̃ − η0 = −I∗
T (η0, g0)

−1S∗
T (η0, g0) + oP (T

−1/2), (4)

I∗
T (η0, g0) =

1

T

T∑
t=1

ℓ∗t (η, g0)ℓ
∗
ηt(η, g0)

⊺, S∗
T (η0, g0) =

1

T

T∑
t=1

ℓ∗ηt(η0, g0),

9



where ℓ∗ηt(η0, g0) is an MDS, and the result follows by LLN and CLT for stationary mixing

processes. The approximation (4) follows by Tayor series expansions using the smoothness

and moment conditions. By construction of the efficient score function, the contribution

from ĝ is not present.

Specifically, we show that for any sequence ηT = η0 + T−1/2w for w ∈ R3

S∗
T (ηT , ĝ)− S∗

T (ηT , g0) = oP (T
−1/2)

I∗
T (η̂, ĝ)− I∗

T (η0, g0) = oP (1)

and then apply standard arguments from Kreiss (1987) and Linton (1993).

In this argument we use second order expansions, in particular,

ζ̂t − ζt =
ℓt

ĝ(t/T )λ̂t
− ℓt
g(t/T )λt

(5)

= −ζt

(
λ̂t − λt
λt

)
+ ζt

(
λ̂t − λt
λt

)2

− ζt

(
ĝ(t/T )− g(t/T )

g(t/T )

)
+ ζt

(
ĝ(t/T )− g(t/T )

g(t/T )

)2

+ ζt

(
λ̂t − λt
λt

)(
ĝ(t/T )− g(t/T )

g(t/T )

)
+Remt,T ,

where Remt,T is a remainder term that is of smaller order. We then further replace λ̂t −λt

by the leading terms of (2). The quadratic terms are all bounded using the uniform rate of

convergence of ĝ(u) − g(u) and the root-n consistency of θ̂. We likewise expand φ̂ around

its limit and obtain terms of the form

ŝ2(ζ)− s2(ζ) = ζ

(
∂ log fφ̂
∂ζ

(ζ)− ∂ log fφ
∂ζ

(ζ)

)
= ζ

∂

∂φ

(
∂ log fφ
∂ζ

)
(ζ) (φ̂− φ) +

1

2
ζ
∂2

∂φ2

(
∂ log fφ
∂ζ

)
(ζ) (φ̂− φ)2

+
1

2
ζ
∂2

∂φ2

(
∂ log fφ
∂ζ

)
(ζ) (φ̂− φ)2 − 1

2
ζ
∂2

∂φ2

(
∂ log fφ
∂ζ

)
(ζ) (φ̂− φ)2

for some φ such that |φ−φ| ≤ |φ̂−φ| = OP (T
−1/2). It follows that when |φ̂−φ| ≤ CT−1/2

sup
|ζ|≤QT

∣∣∣∣∣ŝ2(ζ)− s2(ζ)− ζ
∂

∂φ

(
∂ log fφ
∂ζ

)
(ζ) (φ̂− φ)− 1

2
ζ
∂2

∂φ2

(
∂ log fφ
∂ζ

)
(ζ) (φ̂− φ)2

∣∣∣∣∣
=

1

2
QT × CT−1.

The leading terms fit into sample averages and can be analyzed by laws of large numbers.

Regarding the remainder term, we have by the Bonferroni and Markov inequalities

Pr

(
max
1≤t≤T

ζtR(ζt) > QT

)
≤ T Pr

(
ζtR(ζt) > QT

)
≤ T

E(
(
ζtR(ζt)

)κ
)

Qκ
T

= o(1)

10



provided QT = T 1/κ/ log T. Therefore, with κ = 4, QTT
−1/2 → 0 and the remainder term

is oP (T
−1/2).

Proof of Theorem 6. We show that˜̃
θ − θ0 = −I∗∗

T (θ0, f0, g0)
−1S∗∗

T (θ0, f0, g0) + oP (T
−1/2)

I∗∗
T (θ0, f0, g0) =

1

T

T∑
t=1

ℓ∗∗θt (θ0, f, g)ℓ
∗∗
θt (θ0, f, g)

⊺, S∗∗
T (θ0, f0, g0) =

1

T

T∑
t=1

ℓ∗∗θt (θ0, f, g).

The arguments are lengthy and repeated in many places in the literature. Furthermore,

they often use additional devices like sample splitting and discretization. We first discuss

the trimming issue. Since the density f has unbounded support on the right side, it

is necessary to trim out the contributions where f is small; this argument is presented

in Linton and Xiao (2007) using “smooth trimming”. Specifically, let τ(·) be a density

function that has support [0, 1], τ(0) = τ(1) = 0, and let

τb(x) =
1

b
τ

(
x

b
− 1

)
,

where b is the trimming parameter; then τb(x) has support on [b, 2b]. Letting Υb(x) =∫ x

0
τb(z)dz, we have

Υb(x) =


0, x < b∫ x

−∞ τb(z)dz, b ≤ x ≤ 2b

1, x > 2b.

For example, consider the following Beta density τ(z) = B(a+1)−1za(1−z)a, 0 ≤ z ≤ 1,

for some positive integer a, where B(a) is the beta function defined by B(a) = Γ(a)2/Γ(2a),

and Γ(a) is the Euler gamma function. Then, it can be verified that the function Υb(x) is

(a+1)−times continuously differentiable on [0, 1]. This property allows us to use standard

Taylor series arguments, whereas indicator function trimming would preclude this. We will

assume that a ≥ 3. with some function Υb. Then let 1̂t = Υb(f̂(ζ̂t)), and define

I∗∗
T (θ, f̂ , ĝ) =

1

T

T∑
t=1

ℓ∗∗θt (θ, f̂ , ĝ)ℓ
∗∗
θt (θ, f̂ , ĝ)

⊺1̂t, S∗∗
T (θ, f̂ , ĝ) =

1

T

T∑
t=1

ℓ∗∗θt (θ, f̂ , ĝ)1̂t

for any θ ∈ Θ.

C Semiparametric efficiency

C.1 Known f

Suppose that

ℓt = gδ(t/T )λt(θ)ζt

11



λt = 1− β − γ + βλt−1 + γλt−1ζt−1

where ζt is i.i.d. with mean one and density f supported on R+, so that E(λt) = 1 and

E(ζt) = 1. We suppose that g is unknown but we consider the parameterization by δ. We

first suppose that f is known. Consider the log likelihood

L(θ, δ|ℓ1, . . . , ℓT ) = −
T∑
t=1

log λt(θ, δ)−
T∑
t=1

log gδ(t/T ) +
T∑
t=1

log f
(
ζt(θ, δ)

)
λt(θ, δ) = 1− β − γ + βλt−1(θ, δ) + γ

ℓt−1

gδ((t− 1)/T )
, (6)

ζt(θ, δ) =
ℓt

λt(θ, δ)gδ(t/T )
. (7)

Note that λt depends implicitly on δ. We have (at the true values)

∂ζt(θ, δ)

∂θ
=

−ℓt
λt(θ, δ)gδ(t/T )

∂ log λt
∂θ

= −ζt
∂ log λt
∂θ

.

∂ζt(θ, δ)

∂δ
=

−ℓt
λt(θ, δ)gδ(t/T )

(
∂ log λt
∂δ

+
∂ log gδ(t/T )

∂δ

)
= −ζt

(
∂ log λt
∂δ

+
∂ log gδ(t/T )

∂δ

)
.

The score functions are

∂L

∂θ
=

T∑
t=1

f ′

f
(ζt)

∂ζt
∂θ

− ∂ log λt
∂θ

=
T∑
t=1

s2(ζt)
∂ log λt
∂θ

.

Furthermore,
∂λt(θ, δ)

∂β
= β

∂λt−1(θ, δ)

∂β
+ λt(θ, δ)− 1

(1− βL)
∂λt(θ, δ)

∂β
= λt − 1 = β(λt−1 − 1) + γut−1, ut−1 = λt−1ζt−1 − 1,

and so
∂ log λt(θ, δ)

∂β
=

(1− βL)−1 β(λt−1 − 1) + γ (1− βL)−1 ut−1

λt
.

Likewise,
∂λt(θ, δ)

∂γ
= β

∂λt−1(θ, δ)

∂γ
+ ut−1

(1− βL)
∂λt(θ, δ)

∂γ
= ut−1

and so
∂ log λt(θ, δ)

∂γ
=

(1− βL)−1 ut−1

λt
.
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Here, L is the lag operator. We next consider the score wrt δ,

∂λt(θ, δ)

∂δ
= β

∂λt−1(θ, δ)

∂δ
− γ

ℓt−1

gδ((t− 1)/T )

∂gδ((t− 1)/T )/∂δ

gδ((t− 1)/T )
.

Therefore,

(1− βL)
∂λt(θ, δ)

∂δ
= −γλt−1ζt−1

∂ log gδ((t− 1)/T )

∂δ

∂λt(θ, δ)

∂δ
= −γλt−1ζt−1

∂ log gδ((t− 1)/T )

∂δ
− βγλt−2ζt−2

∂ log gδ((t− 2)/T )

∂δ

− β2γλt−3ζt−3
∂ log gδ((t− 3)/T )

∂δ
− . . .

Then we expand

∂ log λt(θ, δ)

∂δ
≃ −γ ∂ log gδ(t/T )

∂δ

(1− βL)−1 λt−1ζt−1

λt
.

The latter argument follows essentially because for a summable sequence {ψj} and smooth

function g we have

T∑
j=1

ψjg

(
t− j

T

)
= g

(
t

T

) T∑
j=1

ψj − g′
(
t

T

)
1

T

T∑
j=1

ψjj −
1

2T

T∑
j=1

ψjj
2g′′
(
s∗(t, j)

T

)

≃ g

(
t

T

) T∑
j=1

ψj.

Therefore,

∂L

∂δ
=

T∑
t=1

f ′

f
(ζt)

∂ζt
∂δ

− ∂ log λt
∂δ

− ∂ log gδ(t/T )

∂δ

=
T∑
t=1

s2(ζt)

(
∂ log λt
∂δ

+
∂ log gδ(t/T )

∂δ

)
(8)

=
T∑
t=1

s2(ζt)
∂ log gδ(t/T )

∂δ

(
1− γ

(1− βL)−1 λt−1ζt−1

λt

)

=
1− β − γ

1− β

T∑
t=1

s2(ζt)
1

λt

∂ log gδ(t/T )

∂δ
, (9)

since

1− γ
(1− βL)−1 λt−1ζt−1

λt
=
λt − γ (1− βL)−1 λt−1ζt−1

λt

=
λt − γ

1−β
− γ (1− βL)−1 ut−1

λt

=
1

λt
× 1− β − γ

1− β

13



(1− βL)λt = 1− β − γ + γλt−1ζt−1 = 1− β + γut−1

λt = 1 + γ (1− βL)−1 ut−1.

In conclusion, the tangent space for g consists of functions of the form

Tg =


T∑
t=1

s2(ζt)
1

λt
h(t/T ) : h ∈ L2[0, 1]

 . (10)

That is, the score w.r.t. g is of the form

T∑
t=1

s2(ζt)
1

λt
h(t/T )

for some function h(.) and the information is of the form

1

T

T∑
t=1

I2(f)E

(
1

λt

)
h(t/T )2 ∼ I2(f)E

(
1

λt

)∫
h(u)2du

The efficient score function L∗
θ for θ in the presence of unknown g is the residual from

the projection of Lθ onto the tangent space Tg, this is

L∗
θ =

T∑
t=1

s2(ζt)

∂ log λt
∂θ

−
E
[
∂ log λt

∂θ
1
λt

]
E
(

1
λ2
t

) 1

λt

 (11)

=
T∑
t=1

s2(ζt)
1

λt

∂λt
∂θ

−
E
[
∂λt

∂θ
1
λ2
t

]
E
(

1
λ2
t

)
 .

Note the term involving h(t/T ) drops out as this is arbitrary. This can be verified, as for

any element of Tg (indexed by h(.)) we have

T∑
t=1

E

s2(ζt) 1λt
∂λt
∂θ

−
E
[
∂λt

∂θ
1
λ2
t

]
E
(

1
λ2
t

)
× s2(ζt)

1

λt
h(t/T )



=
T∑
t=1

E
[
s22(ζt)

]
E

 1

λ2t

∂λt
∂θ

−
E
[
∂λt

∂θ
1
λ2
t

]
E
(

1
λ2
t

)

h(t/T )

= I2(f)
T∑
t=1

E ( 1

λ2t

∂λt
∂θ

)
−
E
[
∂λt

∂θ
1
λ2
t

]
E
(

1
λ2
t

) E

(
1

λ2t

)h(t/T )
= 0.
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C.2 Parametric f

Now suppose that f = fφ, where φ is unknown. The full parametric likelihood is now

L(θ, φ, δ|ℓ1, . . . , ℓT ) = −
T∑
t=1

log λt(θ, δ)−
T∑
t=1

log gδ(t/T ) +
T∑
t=1

log fφ
(
ζt(θ, δ)

)
,

where fφ is a density function that imposes through its parameterization the unit mean

assumption. We have

∂L

∂φ
=

T∑
t=1

∂ log fφ (ζt)

∂φ
.

These score functions satisfy the two moment conditions:∫
∂ log fφ (ζt)

∂φ
fφ (ζ) dζ =

∫
∂fφ (ζ)

∂φ
dζ =

∂

∂φ

∫
fφ (ζ) dζ =

∂

∂φ
1 = 0.∫

ζ
∂ log fφ (ζt)

∂φ
fφ (ζ) dζ =

∫
ζ
∂fφ (ζ)

∂φ
dζ =

∂

∂φ

∫
ζfφ (ζ) dζ =

∂

∂φ
1 = 0.

Furthermore,

E

(
∂L

∂φ

∂L

∂δ

)
=

T∑
t=1

E

(
∂ log fφ (ζt)

∂φ
s2(ζt)

)
E

(
1

λt

)
h(t/T ).

We have

E

(
∂ log fφ (ζt)

∂φ
s2(ζt)

)
=

∫
∂fφ (ζ) /∂φ

fφ (ζ)
s2(ζ)fφ (ζ) dζ

=

∫
s2(ζ)

∂fφ (ζ)

∂φ
dζ

= −
∫ (

1 + ζ
f ′
φ

fφ
(ζ)

)
∂fφ (ζ)

∂φ
dζ

= −
∫
ζ
f ′
φ

fφ
(ζ)

∂fφ (ζ)

∂φ
dζ.

We have
∂

∂φ

∫
ζ
f ′
φ

fφ
(ζ)fφ (ζ) dζ =

∂

∂φ

∫
ζf ′

φ(ζ)dζ = 0,

and by the Chain rule∫
ζ
∂

∂φ

(
f ′
φ

fφ
(ζ)fφ (ζ)

)
dζ =

∫
ζ
∂

∂φ

(
f ′
φ

fφ
(ζ)

)
fφ (ζ) dζ +

∫
ζ
f ′
φ

fφ
(ζ)

∂fφ (ζ)

∂φ
dζ

so that ∫
ζ
f ′
φ

fφ
(ζ)

∂fφ (ζ)

∂φ
dζ = −E

ζ ∂
∂φ

(
f ′
φ

fφ
(ζ)

) .

15



Therefore,

E

(
∂L

∂φ

∂L

∂δ

)
=

T∑
t=1

E

(
∂ log fφ (ζt)

∂φ
s2(ζt)

)
E

(
1

λt

)
h(t/T ) ̸= 0

for any parameterization of g. We conjecture that the efficient score function for φ in the

presence of unknown g is

L∗
φ =

T∑
t=1

∂ log fφ (ζt)
∂φ

−
E
(

∂ log fφ(ζt)

∂φ
s2(ζt)

)
I2(f)

E
(

1
λt

)
E
(

1
λ2
t

)s2(ζt) 1
λt

 . (12)

This can be verified since

T∑
t=1

E


∂ log fφ (ζt)

∂φ
−
E
(

∂ log fφ(ζt)

∂φ
s2(ζt)

)
I2(f)

E
(

1
λt

)
E
(

1
λ2
t

)s2(ζt) 1
λt

 s2(ζt)
1

λt
h(t/T )


=

T∑
t=1

E

(
∂ log fφ (ζt)

∂φ
s2(ζt)

1

λt
h(t/T )

)
− E

E
(

∂ log fφ(ζt)

∂φ
s2(ζt)

)
I2(f)

E
(

1
λt

)
E
(

1
λ2
t

)s2(ζt) 1
λt
s2(ζt)

1

λt
h(t/T )


=

T∑
t=1

E

(
∂ log fφ (ζt)

∂φ
s2(ζt)

)
E

(
1

λt

)
h(t/T )−

T∑
t=1

E

(
E

(
∂ log fφ (ζt)

∂φ
s2(ζt)

)
E

(
1

λt

))
h(t/T )

= 0

for any h.

C.3 Unknown f

We next consider the semiparametric case where f is of unknown form but has unit mean.

According to Drost and Werker (2004), the tangent space for f consists of functions τ that

satisfy

Tf =


T∑
t=1

τ(ζt) :

∫
ζjτ(ζ)f(ζ)dζ = 0, j = 0, 1.


Recall that the tangent space for g consists of functions of the form

Tg =


T∑
t=1

s2(ζt)
1

λt
h(t/T ) : h ∈ L2[0, 1]

 ,

and these two spaces are not orthogonal. We must project

Lθ =
T∑
t=1

s2(ζt)
∂ log λt
∂θ
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orthogonally to their union. Formally, one may write

L∗∗
θ = Lθ − ACE

(
Lθ

∣∣Tg + Tf

)
,

where ACE(.|.) is the alternating conditional expectation operator, see Bickel et al. (1993)

(Proposition 1).

According to Drost and Werker (2004) (Example 3, iid errors) the projection of Lθ

orthogonal to the tangent space Tf is

T∑
t=1

ζt − 1

σ2
ζ

E

(
∂ log λt
∂θ

)
+

T∑
t=1

s2(ζt)

(
∂ log λt
∂θ

− E

(
∂ log λt
∂θ

))
.

This score function is not orthogonal to Tg so it is not a candidate here.

In the sequel we make use of the fact that

E
(
(ζt − 1) s2(ζt)

)
= E

(
ζts2(ζt)

)
= 1

∫
ζs2(ζ)f(ζ)dζ = −

∫
ζf(ζ)dζ −

∫
ζ2
f ′(ζ)

f(ζ)
f(ζ)dζ

= −1−
∫
ζ2f ′(ζ)dζ

= −1 + 2

∫
ζf(ζ)dζ

= 1

by integration by parts.

We claim that the projection of Lθ onto Tf + Tg is of the form

T∑
t=1

(
−ζt − 1

σ2
ζ

+ s2(ζt)

)
a+

T∑
t=1

s2(ζt)b
1

λt
≡ T ∗

f + T ∗
g ,

for some a, b since the first component T ∗
f is in Tf and the second component T ∗

g is in Tg.

It follows that the efficient score function is of the form

L∗∗
θ = Lθ − (T ∗

f + T ∗
g ) =

T∑
t=1

ζt − 1

σ2
ζ

a+
T∑
t=1

s2(ζt)

(
∂ log λt
∂θ

− a− b
1

λt

)
. (13)

This is orthogonal to both Tg and Tf if and only if:

E

(
∂ log λt
∂θ

− a− b
1

λt

)
= 0 (14)

E

(
1

σ2
ζ

a
1

λt
+ I2(f)

(
1

λt

∂ log λt
∂θ

− a
1

λt
− b

1

λ2t

))
= 0. (15)
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The first condition arises because we need the second term in L∗∗
θ to be orthogonal to Tf

(the first term is automatically so), while the second condition arises because we need L∗∗
θ

to be orthogonal to Tg. We rewrite the second condition as

E

( 1

λt

(
∂ log λt
∂θ

− aκ− b
1

λt

)) = 0, (16)

where κ = 1− 1/I2(f)σ
2
ζ . Using (14) we must have

a = E

(
∂ log λt
∂θ

)
− bE

(
1

λt

)
.

We then substitute into (16) to obtain

E

(
1

λt

∂ log λt
∂θ

)
− κE

(
∂ log λt
∂θ

)
E

(
1

λt

)
= b

(
E

(
1

λ2t

)
− κE2

(
1

λt

))
or

b =
E
(

1
λt

∂ log λt

∂θ

)
− κE

(
∂ log λt

∂θ

)
E
(

1
λt

)
E
(

1
λ2
t

)
− κE2

(
1
λt

) .

In conclusion, for these a, b the efficient score in (13) satisfies the orthogonality condition.

Note that under only the MDS assumption, Drost and Werker (2004) (Example 3) the

projection of Lθ orthogonal to the tangent space Tf is

T∑
t=1

ζt − 1

var
(
ζt|Ft−1

) ∂ log λt
∂θ

.

This score function is not orthogonal to Tg. The projection orthogonal to Tg is

T∑
t=1

ζt − 1

var
(
ζt|Ft−1

) (∂ log λt
∂θ

− b
1

λt

)
,

where b is the slope of the best linear no intercept predictor,

b =
E
(

∂ log λt

∂θ
1
λt

)
E
(

1
λ2
t

) .

This is the efficient score function in the model where only the conditional moment restric-

tion is made.
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D Risk premium regressions

We consider the population regression model

Rmt −m(t/T ) = a+ bλt + cζt + εt,

where in practice we replace m(.) by m̂(.) and λt, ζt by λt(θ̂), ζt(θ̂). This does not affect

consistency but does affect the limiting distribution and hence standard errors. The depen-

dent variable effect takes care of itself, the main issue is around the estimated covariate.

We argue as follows. Suppose that

yt = β⊺xt(θ0) + εt.

By a Taylor expansion we have

xt(θ̂) ≃ xt(θ0) +
∂xt(θ0)

∂θ

(
θ̂ − θ0

)
.

We also have an expansion for our estimators of the form

θ̂ − θ0 =
1

T

T∑
t=1

ψt(θ0) + et,

where ψt(θ0) are mean zero and the sum satisfies a CLT, while et is of smaller order. Let

x∗t = xt(θ̂)−
∂xt(θ̂)

∂θ

1

T

T∑
t=1

ψt(θ̂).

Then we regress ŷt on x
∗
t and use the linear regression standard errors.

E Other tables and figures

E.1 Amihud illiquidity

We show in Figure 1 the daily stock log illiquidity series for the five largest US information

technology companies (the “Fab 5”) – Amazon, Apple, Facebook, Google, and Microsoft –

over the period from May 2012 to October 2021. Note that there is a spike in the illiquidity

series for Google around end-March 2014 which is caused by a stock split on March 27,

2014.1 As this event caused irregularity in the trading activities for a few days, we replace

the volume data on those dates using the average volume level of the day before and the

day after that period. The daily log illiquidity series using the adjusted data are shown

in Figure 1b. The illiquidity time series appear broadly stationary during this period,

although a slight downward trend can be observed.
1The two-for-one stock split was associated with the introduction of a new non-voting share class (Class

C shares). See press release.
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(a) Original data.
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(b) Data of Google stock processed.

Figure 1: Fab 5 daily log illiquidity – log ℓt.
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Table 1: Estimated parameters of an AR(5) with trend.

Facebook Amazon Apple Google Microsoft

AR(1)
0.055 0.004 0.025 0.002 0.028

(2.683) (0.175) (1.222) (0.095) (1.339)

AR(2)
0.196 0.003 0.019 0.102 0.029

(9.720) (0.136) (0.929) (4.961) (1.398)

AR(3)
0.146 0.088 0.106 0.168 0.025

(7.182) (4.295) (5.218) (8.306) (1.235)

AR(4)
0.170 0.097 0.027 0.113 0.075

(8.426) (4.730) (1.316) (5.506) (3.647)

AR(5)
0.122 0.061 0.097 0.063 0.053

(5.971) (2.953) (4.723) (3.053) (2.592)

Con
0.059 0.131 0.010 0.029 0.072

(8.946) (16.206) (9.969) (8.235) (15.583)

t/T
-0.169 -0.297 0.027 0.049 -0.062

(-7.263) (-13.433) (6.405) (3.539) (-5.076)

(t/T)2
0.131 0.178 -0.031 -0.060 -0.001

(6.346) (10.402) (-7.482) (-4.411) (-0.118)

Adj. R2 0.475 0.499 0.086 0.104 0.245

Note: Models are fitted on yt = ℓt × 1010. The numbers in parentheses are

the t-statistics of the corresponding parameter estimates.
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Figure 2: Daily log illiquidity – log ℓt.
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E.2 Estimation of long-run trend function
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Figure 3: Fab 5 and Bitcoin illiquidity series and trend functions (×1010).
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Figure 4: Fab 5 and Bitcoin log illiquidity series and trend functions.
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E.3 Estimation based on conditional moment restrictions
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Figure 5: Fab 5 and Bitcoin log illiquidity and updated trend function based on the

GMM estimator of λt parameters. The red curve corresponds to the initial estimate of the

trend function and the yellow and green curves correspond to the updated estimates in,

respectively, the symmetric and asymmetric specifications of λt.
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E.4 Estimation: i.i.d. error term with parametric density
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Figure 6: ACF of ζt under the symmetric specification for λt.
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Figure 7: ACF of ζt under the asymmetric specification for λt.
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Figure 8: ACF of ζ2t under the symmetric specification for λt.
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Figure 9: ACF of ζ2t under the asymmetric specification for λt.

29



Facebook

PIT

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Amazon

PIT

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Apple

PIT

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0
12

0

Google

PIT

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Microsoft

PIT

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0
12

0

Bitcoin

PIT

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Figure 10: Probability integral transform (PIT) of ζt under the symmetric specification

for λt.
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for λt.
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Figure 12: Fab 5 and Bitcoin log illiquidity and updated trend function based on the

semiparametric ML estimator of λt parameters where the error term ζt follows a Weibull

distribution. The red curve corresponds to the initial estimate of the trend function and the

yellow and green curves correspond to the updated estimates in, respectively, the symmetric

and asymmetric specifications of λt.
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E.5 Estimation: i.i.d. error term with nonparametric density
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Figure 13: Comparison between the kernel density estimate of ζt (solid line) and the

Weibull density (dashed line) under the symmetric specification for λt.
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Figure 14: Comparison between the kernel density estimate of ζt (solid line) and the

Weibull density (dashed line) under the asymmetric specification for λt.
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Figure 15: Fab 5 and Bitcoin log illiquidity and updated trend function based on the

semiparametric ML estimator of λt parameters where the density of the error term ζt is

estimated nonparametrically. The red curve corresponds to the initial estimate of the

trend function and the yellow and green curves correspond to the updated estimates in,

respectively, the symmetric and asymmetric specifications of λt.
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E.6 Testing for permanent shifts: discontinuity in g function
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Figure 16: Test statistics for detecting permanent breaks in the illiquidity series.
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Figure 17: Test statistics for detecting permanent breaks in the illiquidity series.
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Table 2: Test statistics for detecting permanent and temporary breaks in the liquidity

series of Amazon and Apple stocks.

Amazon

Split 1 Split 2 Split 3
Date 1998-06-02 1999-01-05 1999-09-02
Splits 02:01 03:01 02:01
τLR 3.29 14.67 1.56
τAAPL
LR 2.92 1.33 1.71
∆3

LR -4.18 10.73 -3.38

Apple

Split 1 Split 2 Split 3 Split 4 Split 5
Date 1987-06-16 2000-06-21 2005-02-28 2014-06-09 2020-08-31
Splits 02:01 02:01 02:01 07:01 04:01
τLR 5.06 2.65 9.45 1.06 2.16

τMSFT
LR -16.16 1.53 7.64 1.34 -1.95
∆3

LR -0.04 -0.15 0.11 -2.20 -4.23

Note: We report the test statistic values for the permanent breaks (τLR), the diff-in-diff test statistics

and the change in the long-run illiquidity level normalized by the real tick size ∆3
LR × 108 where

∆3
LR = g+(u)

κ(u)
P (u)

− g−(u)
κ(u)
sP (u)

.

Table 3: Test statistics for detecting permanent and temporary breaks in the liquidity

series of Google and Microsoft stocks.

Google

Split 1
Date 2014-03-27
Splits 2002:1000
τLR 7.04

τSMFT
LR -0.30
∆3

LR 1.87

Microsoft

Split 1 Split 2 Split 3 Split 4 Split 5
Date 1987-09-21 1990-04-16 1991-06-27 1992-06-15 1994-05-23
Splits 02:01 02:01 03:02 03:02 02:01
τLR 9.71 4.33 2.08 2.14 1.59
τAAPL
LR 7.01 6.55 0.03 -4.02 -4.01
∆3

LR 0.00 -0.15 -0.08 -0.08 -0.16
Split 6 Split 7 Split 8 Split 9

Date 1996-12-09 1998-02-23 1999-03-29 2003-02-18
Splits 02:01 02:01 02:01 02:01
τLR 2.13 3.32 2.46 0.25
τAAPL
LR 1.76 4.04 -0.83 1.86
∆3

LR -0.00 -0.33 -0.55 -2.12

Note: We report the test statistic values for the permanent breaks (τLR), the diff-in-diff test statistics

and the change in the long-run illiquidity level normalized by the real tick size ∆3
LR × 108 where

∆3
LR = g+(u)

κ(u)
P (u)

− g−(u)
κ(u)
sP (u)

.
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E.7 Risk premium
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Figure 18: S&P 500 index daily (log) illiquidity series and return data.
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Figure 19: S&P 500 index weekly (log) illiquidity series and return data.
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Figure 20: S&P 500 index monthly (log) illiquidity series and return data.
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E.8 The occurrence of exact zeros

We consider the daily return data of the S&P 500 stock market index for the period ranging

from January 03, 1950 until October 07, 2021. The data contains 125 zero returns in total,

which corresponds to 0.69% of the entire sample. To further investigate this issue, we

construct a dummy variable which takes a value of one on days where the observed return

is zero and plot the resulting series in Figure 21, where we have smoothed the series using

a local linear estimator2. We denote the smoothed series as π(t/T ), which is a function of

rescaled time representing the unconditional probability of observing a zero at time t. We

observe that the zeros series exhibits a strong downward trend over time and the majority

of the zeros occurred before 2000. This higher incidence of zero returns in the earlier

part of the sample might be linked to low index level (below 100) and restrictions on two

decimals for reporting. We further plot in Figure 22 the illiquidity trend function g(t/T )

and the corresponding series adjusted for the presence of zero return observations, which

we compute as g(t/T )
1−π(t/T )

. It can be observed that there is a small difference between the

original estimated trend series and the adjusted one at the beginning of the sample period

but the two curves become indistinguishable after 1960.

Jan 04
1950

Jan 03
1955

Jan 04
1960

Jan 04
1965

Jan 02
1970

Jan 02
1975

Jan 02
1980

Jan 02
1985

Jan 02
1990

Jan 03
1995

Jan 03
2000

Jan 03
2005

Jan 04
2010

Jan 02
2015

Jan 02
2020

1950−01−04 / 2021−10−07

0.01

0.02

0.03

0.01

0.02

0.03

Figure 21: Smoothed series for the occurrence of exact zero returns in the S&P 500 index.

We also compute the ACF of the dummy variable series and plot it in Figure 23 for

2We opt for a Gaussian kernel and we choose the bandwidth according to the direct plug-in method as

introduced in Ruppert et al. (1995).
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Figure 22: Illiquidity trend function g(t/T ) and its corresponding series adjusted for the

presence of zero return observations for the S&P 500 index.
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Figure 23: ACF of the series measuring the occurrence of zero return observations in the

S&P 500 index.
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lags up to 30. The majority of the autocorrelations are positive, with a significant peak

at lag 23, and only two of them are negative (lags 17 and 28). In addition, the magnitude

of almost all autocorrelations is quite small which might be explained by the relatively

infrequent incidence of zero return observations.
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E.9 Tail index and fat-tailed distribution

E.9.1 Tail index estimation

We consider the improved tail index estimator b̂ proposed by Gabaix and Ibragimov (2011),

which is estimated from the regression log(Rank − 1/2) = a − b log(Size) using the 5% of

largest observations in the distribution. We report in Table 4 the tail index estimates for

the illiquidity ℓt, rescaled illiquidity ℓ∗t , error term ζt and its reciprocal 1
ζt
. We observe that

the estimated tail index of the error term ζt is between three and four for Apple and Bitcoin

while it is between four and five for the S&P 500 index. For Facebook, Amazon, Google and

Microsoft, the estimated tail index is between six and eight. This suggests that the shocks

have a thicker tail than the Weibull distribution. We therefore also consider fat-tailed

distributions in our analysis, such as the Lomax, Burr and Inverse Burr distribution.

Table 4: Estimated tail index.

ℓt ℓ∗t ζSym ζAsym 1
ζSym

1
ζAsym

S&P500
2.989 4.378 4.902 4.584 1.253 1.244

(0.14) (0.21) (0.23) (0.22) (0.06) (0.06)

Facebook
2.716 7.148 7.906 8.093 1.509 1.543

(0.35) (0.93) (1.03) (1.05) (0.20) (0.20)

Amazon
1.016 5.111 6.293 6.278 1.330 1.355

(0.08) (0.41) (0.51) (0.51) (0.11) (0.11)

Apple
1.331 3.573 3.804 3.836 1.294 1.313

(0.08) (0.22) (0.24) (0.24) (0.08) (0.08)

Google
3.016 6.025 6.450 6.452 1.086 1.086

(0.29) (0.58) (0.62) (0.62) (0.10) (0.10)

Microsoft
0.912 5.141 6.060 6.141 1.738 1.734

(0.06) (0.34) (0.40) (0.41) (0.12) (0.12)

Bitcoin
2.760 4.291 3.695 3.862 0.981 0.983

(0.35) (0.54) (0.46) (0.48) (0.12) (0.12)

Note: The numbers in the parenthesis are the estimated asymptotic

standard errors (2/n)1/2b̂ where b̂ is the estimated tail index from the

regression log(Rank − 1/2) = a − b log(Size). Sym and Asym indicate

respectively the symmetric and asymmetric model specifications for λt.

The regression is based on the 5% percent of largest observations in the

distribution.
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Figure 24: Log(Size) v.s. log((Rank - 1/2)/(n - 1/2)). The slope of the graph corresponds to the estimate of the slope in regression

log(Rank− 1/2) = a− b log(Size).
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Figure 25: Log(Size) v.s. log((Rank - 1/2)/(n - 1/2)). The slope of the graph corresponds to the estimate of the slope in regression

log(Rank− 1/2) = a− b log(Size).
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E.9.2 Maximum likelihood estimation (Weibull, Lomax, Burr and Inverse

Burr distributions)

We define the Lomax density function for the random variable x > 0, with parameters

α > 0 and λ > 0 as

fL(x) =
α

λ

[
1 +

x

λ

]−(α+1)

Its uncentered moments of order p are given by

µL
p =

λpΓ(α− p)Γ(1 + p)

Γ(α)
, for α > p

so that if λ is chosen as λ = α− 1 then the random variable x has unit mean, i.e. µL
1 = 1

for α > 1. The corresponding variance is equal to

σ2
L =

α

α− 2
, α > 2

We define the Burr density function for the random variable x > 0, with parameters γ > 0,

λ > 0, and c > 0 as

fB(x) =
γ

c

(
x

c

)γ−1
[
1 + λ

(
x

c

)γ
]−(1+λ−1)

i.e. x ∼ Burr(γ, λ, c). Its uncentered moments of order p are given by

µB
p = cp

Γ
(
1 + pγ−1

)
Γ
(
λ−1 − pγ−1

)
λ1+pγ−1Γ (1 + λ−1)

, for γ/λ > p

so that if c is chosen as

c =
λ1+γ−1

Γ
(
1 + λ−1

)
Γ (1 + γ−1) Γ (λ−1 − γ−1)

then the random variable x has unit mean, i.e. µB
1 = 1 for γ > λ. The corresponding

variance is equal to

σ2
B = λΓ

(
1 + λ−1

) Γ (1 + 2γ−1
)
Γ
(
λ−1 − 2γ−1

)[
Γ (1 + γ−1) Γ (λ−1 − γ−1)

]2 − 1

• λ→ 0, the Burr density tends to the Weibull density W (γ, c). We note that γ is the

shape parameter which we denoted as φ in the main text.

• γ = 1, the Burr distribution reduces to the Lomax distribution L( 1
λ
, c
λ
).

We define the Inverse Burr density function for the random variable x > 0, with parameters

α > 0, θ > 0, and τ > 0 as

fIB(x) =
ατ(x/θ)τα

x
[
1 + (x/θ)τ

]α+1
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i.e. x ∼ InvBurr(α, θ, τ). Its uncentered moments of order p are given by

µB
p =

θpΓ(1− p/τ)Γ(α + p/τ)

Γ(α)
, for τ > p

so that if θ is chosen as

θ =
Γ(α)

Γ(1− 1/τ)Γ(α + 1/τ)

then the random variable x has unit mean, i.e. µIB
1 = 1 for τ > 1. The corresponding

variance is equal to

σ2
IB =

Γ(α)Γ(1− 2/τ)Γ(α + 2/τ)

[Γ(1− 1/τ)Γ(α + 1/τ)]2
− 1

Results summary

We first observe in Table 5 that the Lomax distribution provides an inferior fit compared

to the Weibull and Burr distributions. This is due to the fact that when restricting the

distribution to have unit mean, the corresponding variance is a/(a− 2) > 1. However, our

data suggests under dispersion with a standard deviation ranging from 0.7 to 0.9.

Secondly, when comparing the results for the Weibull and Burr distributions, we observe

that there is a difference in log likelihood of around 170 for Apple and 2 for Bitcoin. For

Facebook, Amazon, Google and Microsoft, there is almost no difference in terms of log

likelihood. Additionally, the estimated λB parameter for the Burr distribution is around

0.09 for Apple, 0.045 for Bitcoin and almost zero for the rest of the stocks which suggests

that the estimated Burr distribution reduces to a Weibull distribution (see Table 8). This

observation is further confirmed by Figure 26 where we can see that there is a visible

difference between the Weibull and Burr distributions for Apple and Bitcoin while for the

others the Burr and Weibull densities align with each other.

Lastly, when comparing the results for the Inverse Burr and Burr distributions in the

symmetric case, we observe that the Inverse Burr distribution provides a better fit with an

increase in log log likelihood ranging from 5 to 50, except in the case of Microsoft whose

log likelihood under the Burr distribution is around 30 units larger. From Figure 26, we

can observe that the estimated densities for the Inverse Burr distribution depart noticeably

from the results obtained with the other distributions. In particular, their behavior around

zero requires further investigations.
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Table 5: Log likelihood comparison between models using different parametric density

(Weibull, Lomax, Burr, Inverse Burr) for the error term ζt.

Symmetric specification

Facebook Amazon Apple Google Microsoft Bitcoin

Weibull -2171.33 -4938.89 -8843.88 -4019.47 -7440.53 -2397.16

Lomax -2328.83 -5335.91 -9472.04 -4203.41 -8078.96 -2432.13

Burr -2171.34 -4938.89 -8674.00 -4019.50 -7440.54 -2394.87

Inv Burr -2139.68 -4895.35 -8668.71 -3960.89 -7467.99 -2388.48

Asymmetric specification

Weibull -2136.45 -4885.79 -8772.52 -3962.31 -7397.12 -2389.26

Lomax -2309.55 -5309.45 -9430.14 -4165.72 -8051.92 -2426.08

Burr -2136.49 -4885.93 -8591.43 -3962.33 -7397.13 -2388.32

Inv Burr -2097.45 -4836.34 -8591.44 -3888.15 -7430.00 -2383.52

Note: The numbers reported are in terms of logLL.
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Table 6: Maximum likelihood estimates of the parameters for the λt process under the

assumption that the error term ζt follows a Weibull distribution.

Classic Asymmetric

β γ φ σζ β γ γ(−) φ σζ

Facebook
0.864 0.047 1.374 0.737 0.904 -0.021 0.098 1.391 0.728

(38.19) (5.01) (73.59) (86.28) (-2.36) (8.94) (65.46)

Amazon
0.917 0.079 1.361 0.743 0.928 0.037 0.062 1.372 0.737

(165.81) (16.30) (95.10) (169.32) (7.30) (54.38) (98.68)

Apple
0.878 0.095 1.316 0.767 0.891 0.046 0.072 1.321 0.764

(130.85) (22.00) (144.86) (128.45) (10.68) (12.78) (244.81)

Google
0.910 0.047 1.279 0.787 0.920 -0.006 0.080 1.296 0.778

(61.00) (6.24) (85.22) (286.46) (-2.23) (28.03) (460.15)

Microsoft
0.924 0.068 1.377 0.735 0.926 0.042 0.046 1.381 0.733

(377.29) (23.33) (459.68) (192.81) (10.38) (9.12) (138.09)

Bitcoin
0.892 0.063 1.139 0.880 0.893 0.040 0.042 1.144 0.876

(60.09) (6.73) (64.46) (61.46) (5.36) (4.59) (98.96)

Note: The estimated parameters are θ = (β, γ, φ) for the classic specification and θ = (β, γ, γ(−), φ) for the

asymmetric specification of λt. φ is the shape parameter of the Weibull distribution which has mean 1 and standard

deviation σζ of

√√√√ Γ
(
1+ 2

φ

)
(
Γ2

(
1+ 1

φ

)) − 1. The numbers in parentheses are the t-statistics of the corresponding parameter

estimates. We note that the standard errors are under estimated as they do not account for the estimation error

associated with the smoothed liquidity process in the first step of the estimation.
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Table 7: Maximum likelihood estimates of the parameters for the λt process under the

assumption that the error term ζt follows a Lomax distribution.

Classic Asymmetric

β γ α σζ β γ γ(−) α σζ

Facebook
0.865 0.047 248.251 1.004 0.905 -0.023 0.098 370.274 1.003

(8.34) (0.61) (1.44) (33.89) (-1.74) (5.17) (95.48)

Amazon
0.917 0.078 392.950 1.003 0.927 0.037 0.063 219.623 1.005

(107.91) (9.98) (18.55) (142.29) (6.21) (8.05) (252.68)

Apple
0.886 0.090 252.559 1.004 0.899 0.039 0.074 160.438 1.006

(86.71) (12.25) (65.17) (83.82) (4.96) (10.37) (11.64)

Google
0.908 0.047 138.007 1.007 0.918 -0.005 0.079 390.310 1.003

(49.48) (5.47) (10.03) (63.55) (-0.72) (6.28) (27.89)

Microsoft
0.924 0.069 223.278 1.005 0.927 0.043 0.044 531.198 1.002

(282.61) (27.03) (751482.18) (139.58) (7.07) (7.10) (12.86)

Bitcoin
0.898 0.063 145.770 1.007 0.895 0.043 0.039 299.187 1.003

(64.23) (7.01) (4.45) (58.99) (4.29) (3.20) (3.36)

Note: The estimated parameters are θ = (β, γ, α) for the classic specification and θ = (β, γ, γ(−), α)

for the asymmetric specification of λt. α is the shape parameter of the Lomax distribution which has

mean 1 and standard deviation σζ of
√

α
α−2

, α > 2. The numbers in parentheses are the t-statistics

of the corresponding parameter estimates. We note that the standard errors are under estimated as

they do not account for the estimation error associated with the smoothed liquidity process in the

first step of the estimation.
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Table 8: Maximum likelihood estimates of the parameters for the λt process under the

assumption that the error term ζt follows a Burr distribution.

Classic Asymmetric

β γ γB λB σζ β γ γ(−) γB λB σζ

Facebook
0.865 0.047 1.373 0.000 0.737 0.905 -0.023 0.100 1.389 0.000 0.729

(0.95) (0.33) (19.23) (0.00) (0.57) (-0.01) (0.12) (9.47) (0.00)

Amazon
0.917 0.079 1.361 0.000 0.743 0.928 0.037 0.062 1.376 0.000 0.736

(0.31) (0.02) (0.60) (0.00) (5.46) (0.63) (0.45) (1.93) (0.00)

Apple
0.891 0.088 1.465 0.092 0.745 0.903 0.040 0.070 1.472 0.087 0.738

(123.83) (15.96) (169.37) (36.35) (132.24) (7.67) (11.62) (59.23) (3.46)

Google
0.910 0.047 1.281 0.000 0.787 0.920 -0.006 0.079 1.296 0.000 0.778

(0.05) (0.01) (0.11) (0.00) (2.33) (-0.00) (0.04) (0.18) (0.00)

Microsoft
0.924 0.068 1.377 0.000 0.735 0.925 0.042 0.046 1.381 0.000 0.733

(7.81) (0.35) (19.62) (0.00) (0.69) (0.05) (0.14) (0.47) (0.00)

Bitcoin
0.895 0.064 1.174 0.045 0.890 0.895 0.042 0.039 1.167 0.029 0.882

(57.22) (6.72) (53.07) (2.52) (58.47) (4.28) (3.53) (55.80) (1.57)

Note: The estimated parameters are θ = (β, γ, γB, λB) for the classic specification and θ = (β, γ, γ(−), γB, λB)

for the asymmetric specification of λt. (γB, λB) are the parameters of the Burr distribution which has mean

1 and standard deviation σζ of

√√√√√λBΓ
(
1 + 1

λB

) Γ

(
1+ 2

γB

)
Γ

(
1

λB
− 2

γB

)
[
Γ

(
1+ 1

γB

)
Γ

(
1

λB
− 1

γB

)]2 − 1. The numbers in parentheses are the

t-statistics of the corresponding parameter estimates. We note that the standard errors are under estimated as

they do not account for the estimation error associated with the smoothed liquidity process in the first step of the

estimation.
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Table 9: Maximum likelihood estimates of the parameters for the λt process under the

assumption that the error term ζt follows an Inverse Burr distribution.

Classic Asymmetric

β γ τ α σζ β γ γ(−) τ α σζ

Facebook
0.866 0.049 6.348 0.146 0.696 0.893 -0.012 0.094 6.658 0.138 0.693

(29.64) (5.70) (30.65) (25.50) (68.40) (-1.57) (8.74) (21.29) (16.89)

Amazon
0.919 0.076 5.293 0.182 0.723 0.929 0.038 0.058 5.481 0.175 0.715

(551.23) (34.23) (30.91) (23.97) (193.85) (8.43) (11.14) (32.21) (25.75)

Apple
0.893 0.086 4.177 0.266 0.760 0.901 0.044 0.064 4.290 0.258 0.749

(124.90) (16.49) (51.92) (35.24) (138.86) (8.77) (12.14) (41.40) (29.94)

Google
0.913 0.046 5.348 0.167 0.749 0.920 -0.003 0.078 5.803 0.150 0.740

(75.27) (7.70) (17.42) (13.68) (89.90) (-0.59) (8.58) (24.51) (19.17)

Microsoft
0.927 0.066 4.615 0.224 0.741 0.927 0.044 0.040 4.747 0.215 0.736

(53.00) (4.82) (23.73) (16.44) (195.94) (12.38) (11.63) (87.81) (101.75)

Bitcoin
0.904 0.063 3.601 0.251 0.922 0.903 0.046 0.030 3.678 0.243 0.910

(67.69) (7.80) (27.24) (21.01) (62.71) (5.10) (3.03) (42.28) (25.12)

Note: The estimated parameters are θ = (β, γ, τ, α) for the classic specification and θ = (β, γ, γ(−), τ, α) for the

asymmetric specification of λt. (τ, α) are the parameters of the Inverse Burr distribution which has mean 1 and

standard deviation σζ of
√

θ2Γ(1−2/τ)Γ(α+2/τ)
Γ(α)

− 1 with θ = Γ(α)
Γ(1−1/τ)Γ(α+1/τ)

. The numbers in parentheses are the

t-statistics of the corresponding parameter estimates. We note that the standard errors are under estimated as

they do not account for the estimation error associated with the smoothed liquidity process in the first step of the

estimation.
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Figure 26: Comparison between the estimated Weibull, Lomax, Burr and Inverse Burr

densities under the symmetric specification for λt.
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Figure 27: Comparison between the kernel density estimate of ζt (solid line) and the Weibull

density (dashed line) under the symmetric specification for λt.
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Figure 28: Comparison between the kernel density estimate of ζt (solid line) and the Lomax

density (dashed line) under the symmetric specification for λt.
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Figure 29: Comparison between the kernel density estimate of ζt (solid line) and the Burr

density (dashed line) under the symmetric specification for λt.
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Figure 30: Comparison between the kernel density estimate of ζt (solid line) and the Inverse

Burr density (dashed line) under the symmetric specification for λt.
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