
ONLINE APPENDIX

A Data Appendix

A.1 Data sources and treatment

We use the following data throughout the paper. Our main sample period used for estimation purposes

is the one for which we can get data on all variables simultaneously, which is 1990Q2 to 2018Q4.

Business Dynamics Statistics (BDS): We use the BDS to construct data stratified by firm age. We

use the 2018 release, which is available yearly from 1978 to 2018, and take the national data, split

by firm age. We use data on the number of firms (and total employment in firms) of each age bin

to calibrate our model. We also measure firm entry using this dataset, as the number of firms aged

0 in each year, and firm exit, as given in the dataset. We also use the data on job creation and job

destruction by age, but instead calibrate our model to the quarterly JC and JD data from Davis, et al.

(2012).

Davis, Faberman, and Haltiwanger (2012, DFH): We extensively use the data provided by Davis

et al. (2012) which underlies the analysis in their paper. We are grateful to the authors for sharing the

(updated) data which underlies the plots in their paper. This data set consists of quarterly data from

1990Q2 to 2018Q4. We use their estimates of aggregate job creation and job destruction, as well as

layoffs and quits. We add their measure of “other separations” to layoffs. Their data are given as rates

of total employment. We calibrate our model to match the average of these data over our sample, as

well as the HP-filtered time series. In addition, we use data from this paper to form an estimate of the

fraction of worker quits that firms replace by undertaking a replacement hire. We discuss this further

below.

Bureau of Labor Statistics (BLS): We use monthly aggregate data from the Current Population

Survey. We aggregate these data up to a quarterly frequency by taking the simple average. We use

data on total employment (CE16OV) and unemployment (UNEMPLOY), in levels and seasonally

adjusted. We additionally use data on the total number of people unemployed for less than five weeks

(UEMPLT5) to construct the unemployed worker UE rate, following the approach of Shimer (2005).

Bureau of Economic Analysis (BEA): To construct our measure of labour productivity (output per

worker) we use data on quarterly real GDP (GDPC1) from the BEA. Labour productivity is calculated

as real GDP divided by total employment from the BLS data.

Compustat: Since our model assumes constant returns to scale, we do not allow for permanent

productivity differences across firms, as these would lead to permanent differences in employment

1



growth rates (rather than levels, as would be true in a model with decreasing returns to scale). There-

fore, we calibrate our firm-level productivity process to the within-firm standard deviation of pro-

ductivity shocks, rather than the across firm standard deviation. To compute this measure, we use data

from Compustat. We use data on all US based firms in their sample, and use data only on sales and total

employment. We deflate sales using the GDP deflator (GDPDEF, from the BEA) to create a measure

of real sales, and then define firm-level labour productivity each year as real sales over employment.

We drop firm-year observations with missing or negative sales or employment, and winsorize the data

by dropping the top and bottom 1% of data by both yearly sales growth and employment growth. We

take the log of labour productivity, and regress it on firm and year fixed effects, and take the residual

as our measure of firm-level productivity, corrected for firm-level averages and aggregate changes. We

take the standard deviation of this measure, which yields a value of 28.38%, computed from 291,703

firm-year observations.

A.2 Estimating the fraction of quits which are replaced

To estimate the amount of replacement hiring in the model, we draw information both from gross

flows and from underlying firm-level data. Firstly, we note that the amount of replacement hiring is

not simple to observe from aggregate flows, due to the fact that firms may do replacement hiring for

two reasons: either to replace workers who quit, or to replace workers they lay off for being a bad

match but where the firm wants to keep the job open. Through the lens of the model, the total hiring

rate is equal to

ht = jct + qfrt (qt + λu) (1)

where we define qfrt as the fraction of worker quits (and layoffs due to bad worker match) which

are replaced. Recall that λu is the rate at which workers are fired for being a bad match, but where

the firm’s capital remains intact so the firm has the option to hire to replace them. qfr serves as our

calibration target for the amount of replacement hiring in the model. Notice that three objects in this

equation are observable in the DFH dataset: hiring (ht), job creation (jct), and quits (qt). If we assumed

that all layoffs were due to job destruction (and firms never fired workers with the aim of replacing

them with another worker) then λu = 0, and estimating the degree of replacement hiring would be

simple using this aggregate data alone. In this case, simply rearrange (1) to yield qfrt = (ht− jct)/qt.

However, the data in DFH suggest that firms do indeed replace some of their workers who leave

due to layoff, so this approach is likely not valid. In particular, in their well-known “hockeystick”

plot (their Figure 7(b)) we observe that firms who have positive employment growth, and hence are

expanding, still extensively use worker layoffs. In fact, our calculations below suggest that the average
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layoff rate for non-contracting firms appears to be around 2.73% per quarter. Given that these firms

are expanding their employment on net, it is likely that they are replacing some of the workers who

they have laid off, meaning that λu > 0. Indeed, through the lens of our model, firms which perform

job creation necessarily replace worker quits.

Given that λu > 0 therefore seems like a more reasonable assumption, we can then return to (1)

to understand the impact this has on estimated quit replacement. Expressing the relationship in steady

state gives h = jc + qfr (q + λu), where we take h, jc, and q directly from the average values in

DFH’s data. This gives the implied value of qfr for any assumed λu as qfr = (h − jc)/(q + λu).

Without any further information, λu is constrained to lie within the range 0 (in which case all layoffs

are due to job destruction) and the total layoff rate in the data, l (in which case all layoffs are replaced,

and not due to job destruction) [see equation (3) below]. We plot the implied value of qfr in this range

in the blue line in Figure A.1 below.

Figure A.1: Estimated fraction of quits replaced vs. assumed λu
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This procedure bounds the fraction of quits and layoffs which are replaced to be between around

50%, if all layoffs are assumed to be replaced, and 100%, if only 10% of layoffs are assumed to be

replaced. Notice that for values below 10% the data implies that more than 100% of quits are replaced.

Before going further, we therefore note that our chosen value for the estimation, qfr = 80%, happens

to lie approximately in the middle of the upper and lower bounds implied by the aggregate flow data.

One could potentially use other aggregate flow relationships, such as those between job destruction

and layoffs, might help estimate the fraction of layoffs which are replaced, and hence pin down qfr.

However, we found this challenging as the aggregate relationships are by definition collinear, and more

information is needed. To see this, consider that job destruction is given by

jdt = jdlt + jdqt = jdlt + (1− qfrt)(qt + λu) (2)
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and layoffs by

lt = jdlt + λu (3)

where lt is layoffs in the data, jdlt is job destruction shocks which induce layoffs, and jdqt is job

destruction due to unreplaced quits and layoffs. Taking jc, jd, q, and l as data, (1), (2), and (3) appear

to provide three equations which can solve for the three unknowns qfrt, λ
u, and jdlt. However, the

equations actually contain the same economic content and are collinear. Combining (2) and (3) to

yield

qfrt(qt + λu) = lt − jdt + qt (4)

and rearrange (1) to yield

qfrt(qt + λu) = ht − jct. (5)

As the left hand sides of these equations are identical, the three equations together cannot be solved for

a unique solution for qfrt, λu, and jdlt. Instead, combining these two equations implies an adding-up

condition which should hold in the data in theory: jct − jdt = ht − lt − qt. In practice, the adding up

condition is very slightly violated, meaning that (4) and (5) provide very slightly different estimates

of qfrt for a given assumed λu. The estimate from (4) is given in Figure A.1 as the dashed red line,

which is very similar the the previous estimate.

The discussion above shows that additional data must be included to estimate the fraction of quits

which are replaced, and we investigate two approaches.

As a first approach, note that with knowledge of λu, the value of qfr can be calculated using the

accounting relationship above. λu is the rate at which workers are fired for being a bad match, with

the firm having the option to replace them if desired. Through the lens of the model, this can be

identified as the layoff rate at expanding firms, who perform no job destruction and so any layoffs

must be due to the λu shock. To estimate this in the data, we use the hockeystick and growth rate

distribution plots in DFH.29 We have access only to the growth rate distributions from 2006 and 2008-

9 (as plotted in DFH) and so use data for the distribution and hockeysticks from 2006 to construct

our estimate. Accordingly, this is data from a single year, which corresponds to an estimate for a

typical non-recession year.30 For each growth rate bin i = −200, 199, ..., 200, we have data on the

29The authors very kindly provided us with the data behind these plots, which consists of the hires, layoff, total separa-
tion, and quit rate at each growth rate bin (their Figures 6 and 8), and the (employment weighted) kernal density function
of firms in each bin (their Figure 5). The data are provided on slightly different grids for each plot, and we interpolate the
data onto an integer grid from -200 to 200.

30The results are robust to using the hockeysticks from all years (their Figure 6) integrated using the average of the 2006
and 2008-9 growth rate distributions to roughly attempt to form an estimate for all years. However, since the match of
hockeysticks and growth rate distribution sample is not exact in this case, we prefer to use the data from 2006 only.
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mass of employment at establishments with that growth rate (di) and the construct a layoff rate at that

bin (li). We calculate the average layoff rate in all bins with non-declining employment growth as∑200
i=0 lidi/

∑200
i=0 di = 2.73%. Under the identifying assumption that λu is constant across firms (as it

is in the model), this implies an estimate λu = 2.73%, which is 39% of the average layoff rate of 7.0%

in the DFH data in 2006. Referring back to Figure A.1, we see that 39% of layoffs being potentially

replaceable implies a value of qfr of approximately 80%, which is the value used in our calibration.31

As an alternative, we also directly calculated the fraction of quits replaced from the 2006 hockeystick

data for quits and hires, and found that 79.6% of quits were replaced. Specifically, we assume that

expanding firm bins replace all quits and layoffs (qfri = 1). For contracting bins, we calculated the

fraction of quits replaced as qfri = hi/(qi+λu). Taking the (qi+λu)-weighted average of qfri across

the whole distribution yields 79.6%.

As a second approach, we consider the notion of replacement hiring in Elsby et al. (2021). They

define a broad notion of replacement hiring using JOLTS data as follows. For each establishment, they

consider replacement hires as the minimum of gross hires and quits in a given quarter. They then sum

across establishments, and find that, by this definition, around 45% of all hires are replacement hires.

Doing the same exercise on simulated data from our model finds that 40% of hires are replacement

hires. As mentioned in the text, our model also generates that around 50% of firms have zero net

employment change over 3 months, and since these firms also lose workers to quits, this serves as

another measure of replacement hiring. Elsby et al. (2021) find this number to be around 55% and 65%

in the QCEW and JOLTS data respectively. Finally, their strictest measure of replacement hiring is the

total hiring at firms with zero net employment change as a fraction of total hiring. This number is 7.5%

in their data, and 7.1% in our model. By all these measures our model generates a substantial amount

of replacement hiring, close to the measures in the data. This provides an alternative justification for

our calibrated value of qfr = 0.8, which delivers a sensible amount of replacement hiring by these

alternative measures, and suggests that our results would be robust to instead using these measures as

targets in our estimation.

A.3 Procyclicality of JD: robustness to alternative assumptions and data sources

In this section we discuss the correlations between JD, layoffs, and other variables with unemploy-

ment in more detail. In the Introduction, we argued that the overall JD rate is procyclical (positive

correlation with unemployment) while the layoff rate is countercyclical. Highlighting this difference

is, to our knowledge, is novel. For this reason, we provide extensive robustness showing that this

31If roughly 40% of layoffs are replaceable and the replacement rate is 80%, this implies that 32% of layoffs are actually
replaced.
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difference in cyclicality between JD and layoffs is robust. We first discuss the robustness of the result

in relation to many different data treatments, still using our main DFH (Davis et al. 2012) dataset. We

then show that the procyclicality of JD also holds on a different dataset, the yearly BDS dataset.

Robustness on main DFH dataset We provide an exhaustive battery of checks to show that no

particular data treatment assumptions are driving our results. These are presented in the series of tables

below, which we discuss in turn.

Firstly, our findings are robust to various detrending assumptions. In Table 3 we plot the correlation

of job destruction (jd), layoffs (lo), job destruction net of layoffs (jd− lo), and job creation (jc) with

the level of unemployment. We compute the correlation of unemployment at time t with the labour

market flows between t and t+1 (as we also do in the model) so these correlations show the correlation

between unemployment and how labour market flows then evolve in the next three months. Our base-

line results detrend all variables using the HP-filter with parameter 105, following Shimer (2005), as

shown in the first column. All of the flows are procyclical, apart from layoffs. The remaining columns

apply different detrending methods: HP-filter with parameter 1600, Baxter-King approximate band-

pass filter (frequencies 6 to 32 quarters), linear detrending, and finally the raw data without detrending.

The correlations all maintain the same signs across all different detrending assumptions. The only ex-

ception is layoffs when not detrended, which now also become procyclical. Inspecting the raw data

reveals that this is because layoffs have been trending downwards over time which creates a spurious

correlation with unemployment, which highlights the importance of detrending data to deal with the

well know slowing down of many labour market flows in recent decades.

Table 3: Cyclical correlations of JD, layoffs, and JC with unemployment

HP 105 HP 1600 BK Linear Raw data
jd -0.226 -0.170 -0.135 -0.228 -0.387
lo 0.143 0.156 0.211 0.164 -0.227

jd− lo -0.607 -0.521 -0.700 -0.596 -0.457
jc -0.270 -0.073 -0.068 -0.401 -0.446

Note: Each row gives the correlation of the variable with unemployment. Each column detrends the data with a different
method before computing the correlations, with HP indicating the HP-filter with a given parameter, BK the Baxter-King
approximate bandpass filter (frequencies 6 to 32 quarters), Linear indicating linear detrending, and Raw data the data
without detrending. JC, JD, and layoff rates are from the quarterly data used by Davis, Faberman and Haltiwanger
(2012), updated by these authors. Unemployment is the number of unemployed individuals using quarterly data from the
Current Population Survey. The data are from 1990Q2 to 2018Q4, and we compute the correlation between unemployment
at date t with the flows (e.g. for JD) between t and t+ 1.

Secondly, we stress the important distinction between the correlation of flows with the level of

unemployment and the change in unemployment. The two approaches give different results, as shown

and discussed by Moscarini and Postel-Vinay (2012) and Haltiwanger et al. (2018). Our empirical and

model findings are robust to this distinction, because these correlations measure different concepts,
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which our model helps clarify. In Table 4 we give the correlations with the change in unemployment.

This shows that job destruction is positively correlated with the change in unemployment, despite

being negatively correlated with the level of unemployment. This does not cast doubt on the results

presented in levels, but actually highlights the different cyclical features that the level and change in

unemployment capture.

To understand this further, consider that in our model the change in unemployment is by construc-

tion driven by JC and JD as

U̇t = JDt − JCt (6)

Thus, it is very natural that JD must be positively correlated with the change in unemployment,

because (6) shows that an increase in JD is literally the mechanical driver of an increase in U̇ . In our

model, it is also true that JD and layoffs (JC) are positively (negatively) correlated with the change in

unemployment, and hence our model is simultaneously consistent with the correlations of JD, layoffs,

and JC with both the level and change in unemployment. Specifically, we compute log HP-filtered

data as we did for our main results in Table 2. The correlation of each variable with the first difference

of unemployment in the data (model) is -0.5247 (-0.6789) for JC; 0.7302 (0.4598) for JD; and 0.6611

(0.7536) for layoffs.

Table 4: Cyclical correlations of JD, layoffs, and JC with ∆u

HP 105 HP 1600 BK Linear Raw data
jd 0.759 0.726 0.817 0.742 0.488
lo 0.721 0.699 0.746 0.734 0.459

jd− lo 0.147 0.073 0.045 0.038 -0.005
jc -0.494 -0.417 -0.747 -0.536 -0.056

Note: Each row gives the correlation of the variable with the change in unemployment. Each column detrends the data
with a different method before computing the correlations, with HP indicating the HP-filter with a given parameter, BK
the Baxter-King approximate bandpass filter (frequencies 6 to 32 quarters), Linear indicating linear detrending, and Raw
data the data without detrending. JC, JD, and layoff rates are from the quarterly data used by Davis, Faberman and
Haltiwanger (2012), updated by these authors. Unemployment is the number of unemployed individuals using quarterly
data from the Current Population Survey. The data are from 1990Q2 to 2018Q4, and we compute the correlation between
unemployment change (ut+1 − ut) with the flows (e.g. for JD) between t and t+ 1.

At the same time, how can JD be negatively correlated with U while being positively corre-

lated with ∆U? This is because the two correlations capture different frequencies of the data. The

(JD,∆U) correlation captures the very short term correlation between high JD and rising U which

is driven by layoffs. The (JD,U) correlation instead captures the longer term correlation between

JD and the level of unemployment, which is driven by unreplaced quits. Essentially, JD is made

up by a fast moving component (layoffs) and by a slow moving component (unreplaced quits) with

different correlations with unemployment, and the (JD,∆U) and (JD,U) correlations have opposite
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signs because each picks up a different component respectively.

Thirdly, the correlations are robust to whether data are expressed in levels or logs. In Table 5 we

repeat the correlations this time taking the logs of both the flows and the unemployment level. Since

jd − lo sometimes takes negative values it cannot be logged, and so is excluded from this exercise.

The correlations retain the same signs and properties as the data in levels in Table 3.

Table 5: Cyclical correlations of JD, layoffs, and JC with unemployment (all logged)

HP 105 HP 1600 BK Linear Raw data
log jd -0.254 -0.113 -0.058 -0.262 -0.389
log lo 0.174 0.230 0.301 0.175 -0.211
− 0 0 0 0 0

log jc -0.305 -0.123 -0.159 -0.433 -0.447

Note: Each row gives the correlation of the log of variable with log unemployment. Each column detrends the data
with a different method before computing the correlations, with HP indicating the HP-filter with a given parameter, BK
the Baxter-King approximate bandpass filter (frequencies 6 to 32 quarters), Linear indicating linear detrending, and Raw
data the data without detrending. JC, JD, and layoff rates are from the quarterly data used by Davis, Faberman and
Haltiwanger (2012), updated by these authors. Unemployment is the number of unemployed individuals using quarterly
data from the Current Population Survey. The data are from 1990Q2 to 2018Q4, and we compute the correlation between
unemployment at date t with the flows (e.g. for JD) between t and t+ 1.

Fourthly, an important data issue is how to treat “Other Separations” in the DFH dataset. Sepa-

rations in their dataset are split into layoffs, quits, and other separations. Since other separations are

classified neither as layoffs or quits, which make up the only two types of separation in our model, we

must deal with this extra category somehow. In practice, this does not affect the results because other

separations is a relatively small category. In our main dataset, we add other separations to layoffs and

hence treat them as layoffs rather than quits. In Table 6 we instead add other separations to quits, and

show that the correlations all retain the same signs as in the main specification in Table 3.

Table 6: Cyclical correlations with unemployment (alternative treatment of other separations)

HP 105 HP 1600 BK Linear Raw data
jd -0.226 -0.170 -0.135 -0.228 -0.387
lo 0.205 0.186 0.229 0.240 -0.184

jd− lo -0.637 -0.527 -0.651 -0.652 -0.604
jc -0.270 -0.073 -0.068 -0.401 -0.446

Note: Each row gives the correlation of the variable with unemployment. Each column detrends the data with a different
method before computing the correlations, with HP indicating the HP-filter with a given parameter, BK the Baxter-King
approximate bandpass filter (frequencies 6 to 32 quarters), Linear indicating linear detrending, and Raw data the data
without detrending. JC, JD, and layoff rates are from the quarterly data used by Davis, Faberman and Haltiwanger
(2012), updated by these authors. Unemployment is the number of unemployed individuals using quarterly data from the
Current Population Survey. The data are from 1990Q2 to 2018Q4, and we compute the correlation between unemployment
at date t with the flows (e.g. for JD) between t and t+ 1.

Finally, we consider the robustness our our results to an alternative subsample of the data. Inspect-

ing the time series for JD in Figure 2, we see that the period following the Great Recession exhibits
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the clearest negative correlation between JD and unemployment, and so one might worry that the

post-Great Recession era is driving our results. It could be that the negative correlation is a feature

novel to the Great Recession, which featured a very pronounced collapse in job-to-job quits. To in-

vestigate this, in Table 7 we repeat our correlations but excluding the post-Great Recession period,

computing the correlations only up to 2010Q1. As can be seen in the table, all correlations maintain

their same signs on this smaller subsample.

Overall, these various exercises indicate that the correlations we document are a robust feature of

the data, and are not specific to any specific detrending and sampling assumptions.

Table 7: Cyclical correlations of JD, layoffs, and JC with unemployment (1990Q2 to 2010Q1)

HP 105 HP 1600 BK Linear Raw data
jd -0.075 -0.198 -0.082 -0.005 -0.167
lo 0.278 0.189 0.421 0.290 0.035

jd− lo -0.613 -0.619 -0.750 -0.514 -0.518
jc -0.346 -0.076 -0.320 -0.524 -0.434

Note: Each row gives the correlation of the variable with unemployment. Each column detrends the data with a different
method before computing the correlations, with HP indicating the HP-filter with a given parameter, BK the Baxter-King
approximate bandpass filter (frequencies 6 to 32 quarters), Linear indicating linear detrending, and Raw data the data
without detrending. JC, JD, and layoff rates are from the quarterly data used by Davis, Faberman and Haltiwanger
(2012), updated by these authors. Unemployment is the number of unemployed individuals using quarterly data from the
Current Population Survey. The data are from 1990Q2 to 2010Q1, and we compute the correlation between unemployment
at date t with the flows (e.g. for JD) between t and t+ 1.

Robustness to different dataset: BDS To further check the robustness of the correlation between

JD and unemployment, we show that it holds on a different dataset. We turn to the BDS dataset,

which is the yearly dataset we used for our firm age distribution calculations. This dataset features

three differences from the DFH data. Firstly, it has a longer sample period, from and we use data from

1978 to 2018. Secondly, since it is yearly it measures the yearly JD and JC flows, which may in

principle be different from the quarterly flows in DFH. Finally, it does not measure layoffs, and so we

can only check the correlations of JD and JC with unemployment. Nonetheless, we identify the same

patterns on this dataset.

We compute the correlations of the aggregate JD and JC rates with unemployment, where we

calculate unemployment as the average unemployment within each year from the BLS data. We log

and HP-filter all data with a HP-filter parameter of 100. Given that the dataset is yearly, it is very

important to consider timing, and we correlate unemployment in year t with the JC and JD flows

between year t and t+ 1, to capture the correlation of unemployment with the rates going forward, as

we do in the model. We find that both JC and JD are procyclical, just as in the quarterly DFH data:

their correlations with unemployment in the yearly BDS data are -0.1035 and -0.1952 respectively.

Hence, the procyclicality of JD appears to be a robust feature of both the quarterly and yearly data.
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B Model Appendix

B.1 Proofs

Proof of Lemma 1: For convenience we suppress reference to Ω. It is immediate that q(i) = λu + λ1

for i ≤ ih. Consider now i > ih where equation (16) in the text implies equilibrium quit rate

q(i) = λu +
λ1

λ

∫ 1

i

h(j)[1− U ]G′(j)

α + (1− α)G(j)
dj.

Now λ1 = ϕλ0 and λ = λ0U + λ1(1 − U) implies λ1/λ = ϕ/[U + ϕ(1 − U)] while α ≡ λ0U/λ =

U/[U + ϕ(1− U)]. Substituting out λ1/λ and α in the above yields

q(i) = λu +

∫ 1

i

h(j)G′(j)
U

ϕ(1−U)
+G(j)

dj.

Because h(j) = JC(j) + q(j) for j ≥ i > ih we also have

h′(j) = JC ′(j)− h(j)G′(j)
U

ϕ(1−U)
+G(j)

.

Now define Z(j) = U
ϕ(1−U)

+G(j) and so Z ′(j) = G′(j). Integration by parts establishes:∫ 1

i

Z ′(j)h(j)dj = [Z(j)h(j)]1i −
∫ 1

i

Z(j)

[
JC ′(j)− h(j)G′(j)

U
ϕ(1−U)

+G(j)

]
dj

and simplifying yields:

Z(1)h(1)− Z(i)h(i) =

∫ 1

i

Z(j)JC ′(j)dj.

Integrating by parts then yields:

Z(1)h(1)− Z(i)h(i) = Z(1)JC(1)− Z(i)JC(i)−
∫ 1

i

Z ′(j)JC(j)dj.

Substituting out h(1) = λu + JC(1), h(i) = JC(i) + q(i) implies:

Z(i)q(i) = Z(1)λu +

∫ 1

i

Z ′(j)JC(j)dj

= Z(i)λu +

∫ 1

i

Z ′(j)[λu + JC(j)]dj.

Using Z(i) = U
ϕ(1−U)

+G(i) and Z ′(j) = G′(j) then establishes the Lemma.

Proof of Proposition 2: Note these wage strategies are firm size invariant and have the job ladder prop-

erty. By construction, beliefs B1-B3 are consistent with these equilibrium wage strategies, Bayes Rule

and the restriction to monotone beliefs. Because these wage strategies have the job ladder property,
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the worker quit strategies described in equation (15) in the main text are optimal with the distribution

of wage offers F (.) given by equation (16) in the main text. All that remains is to show is these wage

strategies are indeed optimal. It is easy to verify that firms i < ih (who have v < c0) strictly prefer

to post wage w′ = wmin [paying a higher wage reduces the employee quit rate but the firm’s gain by

doing so v < c0 and this wage deviation is profit reducing]. Conversely each hiring firm is actually

indifferent to posting any wage w′ ∈ [wmin, w] while posting wage w′ > w is strictly profit decreasing

[because quit rates cannot fall further]. Hence each firm’s wage strategy is indeed privately optimal

which completes the proof of Proposition 2.

B.2 Entry with more than one worker

In this section we show how to extend the model in the main text to allow a new firm to start with more

than one employee, but n0 ∈ {1, 2, .., N0 + 1} employees. This version of the model is the one used

in the calibration. The reason for this extension is that in the data we observe that the majority of new

firms have more than one employee in their first year. This extension allows the model to be closer to

the data in this dimension as well for allowing start-up size to be potentially sensitive to the aggregate

state Ωt, while keeping the rest of its formulation as in the main text.

In particular, assume there is a unit measure of entrepreneurs who independently seek business

ventures. At rate µ0 an entrepreneur identifies a possible business venture whose investment cost

cE ≥ 0 is considered an independent random draw from cost distribution HE(.). If the entrepreneur

chooses not to invest, the venture is lost with no recall. If the entrepreneur invests, a start-up is created

with nu ∈ N+ employees drawn randomly from the pool of unemployed workers. Its productivity

i ∼ U [0, 1] is then revealed at which point we refer to the start-up as a new firm. The new firm thus has

nu employees, is in state i, and subsequently pays wages and expands/contracts like all other existing

firms. Each new firm also has N0 immediate potential expansion job opportunities where N0 ∈ N+ is

exogenous. The job creation process is the same as for existing firms: associated with each potential

expansion is an independent cost draw cJC ∼ HJC and recruitment cost c0 to hire a worker. If the new

firm invests its initial size n0 increases by 1. If the new firm does not invest, the expansion opportunity

is lost with no recall. Hence each new firm begins life with initial employment n0 = nu + ñi where

hires ñi are a binomially distributed random variable with N0 independent trials and an [endogenous]

probability of investment which depends on (i,Ω).

Note that by allowing new firms to start with n0 > 1 we need to amend the definition of equilibrium

by adding: PE(Ω) is the probability an entrepreneur invests in a start-up in state Ω and, given realised

i, its starting size n0 = nu + ñ(i,Ω) maximises expected profit. We now turn to derive PE(Ω).
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Firm Optimality [New Firms] Suppose in state Ω, an entrepreneur creates a new firm with

revealed productivity i ∼ U [0, 1]. If i < ic the entrepreneur closes the firm [because v(i,Ω) < 0]. If

i ∈ [ic, ih) the firm survives but the entrepreneur does not invest in new jobs [because v(i,Ω) < c0]

and so initial firm size n0 = nu. For i ≥ ih, the entrepreneur invests in each expansion opportunity if

and only if realised cJC ≤ v(i,Ω) − c0. Thus start-up employment n0 = nu + ñ(i,Ω) where ñ(i,Ω)

is a binomially distributed random variable with expected value N0H
JC(v(i,Ω) − c0). The expected

value of a start-up is therefore

ΠSU(Ω) =

∫ 1

ic

{
nuv(i,Ω) +N0

∫ v(i,Ω)−c0

0

[v(i,Ω)− c0 − c′]dHJC(c′)

}
di.

Hence given the investment opportunity, the entrepreneur proceeds with a new start-up when cE ≤
ΠSU(Ω) and so PE(Ω) = HE(ΠSU(Ω)). Initial firm size [in expectation] is then En0 = nu +

N0H
JC(v(i,Ω) − c0), noting that HJC(v(i,Ω) − c0) = 0 for all i < ih. Further, since for i ≥ ih

it holds that HJC(v(i,Ω)− c0) = jc(i,Ω)/µ1, then for these firms En0 = nu +
N0

µ1
jc(i,Ω).

Job Creation and Aggregate Hires This extension also requires us to amend the expression for

total hires in the main text. In particular, to calculate the total job creation flow in this case, by the

definition of G, [1−U ]G′(i)jc(i,Ω) describes the total job creation flow from all existing i ≥ ih firms.

Similarly the uniform distribution implies gross job creation flows (excluding the initial unemployed

workers) at new i ≥ ih firms is µ0P
E(Ω)N0H

JC(v(i,Ω)− c0). Adding both flows together yields the

total job creation flow (excluding the initial unemployed workers) by firm productivity

JC(i,Ω) =

{
[1− U ]G′(i) +

µ0

µ1

N0P
E(Ω)

}
jc(i,Ω). (7)

Finally, the modification to job creation flows implies that the expression for total hiring flows in the

text is modified, since startups now hire more than one worker. In particular, equation (4) in the main

text is replaced with

H(i,Ω) =

0 if i < ih

[1− U ]G′(i)q(i,Ω) + JC(i,Ω) if i ≥ ih,
(8)

where JC(i,Ω) now includes the hiring flow from incumbent firms and the hiring flow (excluding the

first “free” hires from unemployment) of entrant firms. This modification has an important economic

implication, since productive startup firms may now hire by poaching workers from other firms.

The remainder of the description of the model and its expressions remain unchanged.
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B.3 Finite state space

Suppose finite productivity states so that firm productivity p = pis with i ∈ {1, 2, ..., I}. A very

important property of the model is that the aggregate state now reduces to a finite vector, a result

which holds even in the extended case with endogenous worker reservation wages R = R(Ω) and

ϕ < 1. This property does not arise in the standard Burdett and Mortensen (1998) framework, e.g.

Coles (2001), Moscarini and Postel Vinay (2013) and Audoly (2020), and only holds in Coles and

Mortensen (2016) for the special case ϕ = 1.

The reason for the finite state space result is simple but subtle and reflects the replacement hiring

process. Define Ni as the measure of workers employed in firms in state i, the employment vector N =

(N1, ..., NI) where adding up implies unemployment U = 1−
∑I

i=1Ni. We now show the aggregate

state reduces to vector Ω = (s,N) with corresponding vector of firm values v(Ω) = {vi(Ω)}Ii=1, job

creation rates {jci(Ω)}Ii=1 and so on as previously determined in the main text.

The first step is to extend the notation because firms in the same state i post different wages; i.e.

there is equilibrium wage dispersion within each state i. The cleanest approach is to assume firms

select wage strategies as follows: i) On start-up, a firm is allocated a wage rank χ ∼ U [0, 1). In the

stationary equilibrium, firm (i, χ, n,Ω) posts wage with rank χ in the firm i wage distribution. ii)

On receiving a firm specific productivity shock with updated productivity i′ the firm also updates to a

new wage rank χ′ ∼ U [0, 1). Because all χ-wage strategies yield equal value, such wage selection is

consistent with equilibrium. We choose this wage selection process because it guarantees first order

stochastic dominance in wages, and so a worker will always quit to a higher wage offer.

To match to the notation in the main text, consider the following partition of line [0, 1] into a grid

{x0, x1, .., xI} where x0 = 0, xi = xi−1 + γ0i and xI = 1. A firm in state i ∈ {1, 2, ..., I} with wage

rank χ ∈ [0, 1) is correspondingly defined as being in state x ∈ [0, 1] where x = xi−1 + χ[xi − xi−1].

Each start-up is then equivalently defined as having initial state x ∼ U [0, 1], where ps(x) = pis for

x ∈ [xi−1, xi) ⊂ [0, 1]. The only material difference to the continue productivity case is that firm

productivity ps(x) is increasing in x ∈ [0, 1] but not strictly increasing. The underlying wage structure

described in equation (14) in the main text, however, continues to apply and equation (19) in the main

text describes the equilibrium values vi(Ω).

So why is the state space finite? The critical property is that despite there being wage and quit rate

dispersion across firms x ∈ [xi−1, xi) within a productivity level, all such firms have identical expected

employment dynamics. Why? Because all firms with i ≥ ih immediately replace any worker who quits

and so their expected employment dynamics are independent of χ. Additionally, all firms with i < ih

post the same wage, wmin and so their expected employment dynamics are also independent of χ. Now
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recall that G(x) describes the distribution of employment across firms x ∈ [0, 1]. By definition of the

partition above, firm x = xi has productivity i + 1 and rank 0 and so G(xi) =
∑i

j=1 Ni/(1 − U).

Because firm size is orthogonal to rank we then have

G(x) =

∑i−1
j=1Nj +

x−xi−1

xi−xi−1
Ni

1− U
for all x ∈ [xi−1, xi),

is continuous but N is a sufficient statistic for G(.). Thus with finite productivity states the previous

analysis goes through with the added simplification that the aggregate space is a finite vector Ω =

(s,N).

B.4 Finite productivity model summary

We now briefly summarise the equations of the finite productivity model as we use it in our quantitative

work which include minor additions to the model made relative to the continuous productivity model.

Our calibrated model features ic(Ω) = 1 at all times, and we present the equations for this case of

the model. Recall from the previous section that we specialise to a finite number of productivities

i = 1, ..., I , where within each productivity level firms additionally separate into different wage ranks

χ ∈ [0, 1]. We then define the overall wage rank across all firms as x ∈ [0, 1].

Firm HJB and policy functions: All firms with the same productivity pi achieve the same

value vi, regardless of their wage rank. With aggregate shocks the HJB includes the aggregate state

Ω = (s,N1, ..., NI). If ic(Ω) = 1 at all times, the Ni evolve continuously over time. In this case, the

HJB can be written

(r + δF )vi(Ω) = aspi − cf − wmin − (λ1(Ω) + λu)min[vi(Ω), c0] + µ1Ecmax[vi(Ω)− [c0 + c], 0]

− δDEc min[vi(Ω), c] + αγ

∑
j

γij(vj(Ω)− vi(Ω))

+ αa

∑
s′

γs,s′(vi(s
′, N)− vi(Ω)) +

I∑
j=1

∂vi(Ω)

∂Nj

Ṅj(Ω). (9)

Notice that we extend the model relative to the main text by introducing a flow cost of capital mainte-

nance, cf . This is a cost which must be paid each period to maintain each existing unit of capital. The

introduction of cf does not change the economics of the model, but it is useful as it allows us to more

easily partition the productivity bins into those which do and do not replace quits (see below for more

details), and is also used as the subsidy in our counterfactual calibration with a higher value of c0. The

only aggregate “price” which affects firm value is the scalar λ1(Ω). The expectations over JC and JD

cost draws have closed form solutions under the assumed distributions. The hiring threshold ih(Ω) is

defined as the first i for which vi(Ω) > c0.
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In the finite productivity model, most policy functions – and in particular those which relate to net

employment dynamics – depend only on i and not the wage rank. Specifically, the job creation rate per

employee is jci(Ω) = µ1H
JC(vi(Ω)− c0). The job destruction rate is jdi(Ω) = δD[1−HJD(vi(Ω))]

for firms with i > ih(Ω) and jdi(Ω) = δD[1−HJD(vi(Ω))]+λ1(Ω)+λu otherwise. Entrants who draw

productivity i have average initial employment n̄0,i(Ω) = nu +
N0

µ1
jci(Ω). Here, nu = 2 is the number

of initial workers a firm can draw from unemployment for free upon startup. We found it helpful to

set nu = 2 rather than nu = 1 to ensure that even unproductive (i = 1) entrants start with more than

one employee. This slows down the firm exit process for unproductive entrants, who otherwise exit

as soon as their one and only initial employee is poached or fired. We define n̂0,i(Ω) =
N0

µ1
jci(Ω) as

average entrant size excluding the initial nu free hires from unemployment.

Evolution of employment distribution: The total mass of employment at each productivity bin

evolves according to:

Ṅi(Ω) = µ0P
E(Ω)γ0in̄0,i(Ω) +Ni

[
jci(Ω)− jdi(Ω)− δF − αγ

∑
j ̸=i

γij

]
+ αγ

∑
j ̸=i

γjiNj. (10)

The first term on the right hand side is the inflow of employment from firm entry. The term in square

brackets gives net job creation accounting for job creation and destruction including the firm exit shock.

The terms proceeded by αγ gives the transition of firms across productivity bins. Total unemployment

is U = 1 −
∑

i Ni. The distribution across firm wage ranks can then be calculated from our closed

form solution:

G(x,Ω) =

∑i−1
j=1 Nj +

x−xi−1

xi−xi−1
Ni

1− U
for all x ∈ [xi−1, xi). (11)

Recall that we define the boundaries x0 = 0, xi = xi−1 + γ0i and xI = 1. A firm in state i ∈
{1, 2, ..., I} with wage rank χ ∈ [0, 1) is correspondingly defined as being in state x ∈ [0, 1] where

x = xi−1 + χ[xi − xi−1].

Quits and hires across the x distribution: To close the model, we need to calculate the offer

arrival rate λ1(Ω). To do this, we must solve the quit rates across the wage rank distribution. As in

the continuous productivity model, the quit rate for incumbent firms at any wage rank x is given by

equation (8) in the main text, which we rewrite in our x notation as

q(x,Ω) =

λu + λ1(Ω) if x ∈ [0, xh(Ω))

λu +
ϕ
∫ 1
x {JC(y,.)+λu[1−U ]G′(y)}dy

U+ϕ[1−U ]G(y)
if x ≥ xh(Ω)

(12)

where xh(Ω) = xih(Ω)−1 corresponds to the lowest ranked hiring firm, who has i = ih(Ω) and χ = 0.

The total job creation flow at each x is JC(x,Ω) =
{
[1− U ]G′(x) + µ0

µ1
N0P

E(Ω)
}
jci(Ω). The
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closed form solution for G(x) similarly defines a closed form solution for G′(x), which is well defined

except at the xi boundaries where G(x) is non-differentiable. Performing the integration in (12) yields

a closed form solution for q(x,Ω) for any x ≥ xh(Ω):

q(x,Ω) = λu+
(1− χ)

[
(jci + λu)Ni + µ0P

E(Ω)γ0,in̂0,i

]
+
∑I

j=i+1

[
(jcj + λu)Nj + µ0P

E(Ω)γ0,jn̂0,j

]
U/ϕ+

∑i−1
j=1Nj + χNi

(13)

This equation uses the reverse mapping χ(x) to find the χ associated with the current x from χ =
x−xi−1

γ0i
, and similarly the productivity level i(x) associated with the current x. The hiring rate for

incumbent firms can then be simply computed as h(x,Ω) = jci(Ω) + 1(i ≥ ih(Ω))q(x,Ω). Finally,

λ1(Ω) is just q(x,Ω) evaluated at x = xh(Ω) and then subtracting λu, which gives

λ1(Ω) =

∑I
j=ih(Ω)

[
(jcj(Ω) + λu)Nj + µ0P

E(Ω)γ0,jn̂0,j(Ω)
]

U/ϕ+
∑ih(Ω)−1

j=1 Nj

(14)

This closes the model, and provides sufficient information to simulate the model keeping track only of

the finite employment vector N . In particular, the model can be solved and simulated using only the

HJB (9), the evolution of total employment by productivity bin (10), and the closed-form solution for

the job offer arrival rate (14).

C Numerical Methods Appendix

Steady state: For given parameter values, solving the core equations of the model in steady state

reduces to solving for a vector of I values vi and employment stocks Ni, as well as the arrival rate λ1.

This is a simple problem to solve using the steady state versions of (9), (10), and (14). Intuitively, one

can guess a value of λ1, solve the HJB for the values vi, use the implied policy functions to calculate the

employment stocks Ni, and use these to update your guess for λ1. In practice, we solve the model in

steady state at the same time as calibrating our parameters, which involves calculating other statistics,

which we detail further below.

Calculating average quit and hiring rates involves integrating over the wage rank distribution, x.

To do this, we build an uniform grid over χ ∈ [0, 1] with 1,000 nodes. This is then combined with the

xi to build a grid over x with I × 1, 000 nodes. We calculate all integrals on this grid using trapezoid

integration.

To calculate the firm age and size distribution we solve for the densities of firms on grids for age

and size. This is thus reminiscent of the non-stochastic simulation approach of Young (2010), or the

methods of Achdou et al. (2021). To calculate the size distribution, we build a grid over firm sizes.

Recalling that the number of employees in a given firm is an integer, we define a size grid as integer
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values from 0 to 20,000 employees. We solve for the mass of firms at each size s and productivity i.

We use the firm dynamics processes (job creation, destruction, entry, exit, and so on) to construct flow

rates across these joint size-productivity bins, which we use to build a matrix of transitions. We can

then solve for the steady-state density of the number of firms at each size-productivity bin by inverting

this matrix.

To calculate the age distribution we follow a similar process. However, since age is a continuous

number, we discretise the age grid on a uniform grid from age 0 to age 26 years old (since this is the

maximum age bin recorded in the BDS data) with 1,000 nodes. We solve for the mass of firms and

employment at each age-productivity bin. Finally, to compute the mass of active firms at each age,

we actually need to compute the joint age-size distribution, since we define firms with 0 employees as

having exited. To do this, we must solve for the joint age-size-productivity distribution, which we do

using the same methods. Given the high dimension of this object, we solve for this distribution using

a reduced firm size grid from 0 to 1,000 employees, and confirm that raising this maximum has no

impact on the moments for which this distribution is used.

To compute the growth rate density and hockeystick plots (Figure 6 in the main text) we simulate

a panel of firms for one quarter, with their initial states drawn from the steady-state size-productivity

distribution. We simulate a panel of one million firms and calculate net employment growth and gross

flows from the beginning to the end of the quarter.

Business cycle: For given parameter values, solving the core equations of the model over the

business cycle reduces to solving for the functions vi(Ω), Ṅi(Ω), and λ1(Ω) over the state space Ω =

(s,N1, ..., NI), using the equations (9), (10), and (14). In terms of approximation, it actually suffices to

approximate only the function vi(Ω), as the values of Ṅi(Ω), and λ1(Ω) can then be calculated exactly

using (10) and (14) at any grid point or point in a simulation.

We approximate vi(Ω) using second order polynomials in N1, ..., NI , with different coefficients for

each of the discrete productivity level pairs i, s. In particular, first adjust the value function notation to

vi(Ω) = vi,s(N1, ..., NI) to acknowledge that aggregate productivity s is also a discrete state. Then for

each i, s we approximate vi,s(N1, ..., NI) as

vi,s(N1, ..., NI) ≃ h0
i,s +

I∑
j=1

(
h1
i,s,jNj + h2

i,s,jN
2
j

)
(15)

where h0
i,s h

1
i,s,j and h2

i,s,j are scalar coefficients to be estimated. h0
i,s is the intercept, and h1

i,s,j and h2
i,s,j

capture the first and second order effect on the value of firms with state i of changing total employment

of firms with productivity j . Notice that we exclude cross terms in the second-order approximation,

since these are known to typically be unstable given that the N1, ..., NI tend to be highly correlated.
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For each i, s this approximation uses 1 + 2 × I = 1 + 2 × 5 = 11 coefficients. Since we use I = 5

idiosyncratic and S = 3 aggregate productivity nodes, this gives 5 × 3 × 11 = 165 coefficients to

estimate.

To solve the HJB, we need to know both the level of value and its derivative with respect to the

aggregate employment bins. The derivatives are easy to compute given our approximation, as

∂vi,s(N1, ..., NI)

∂Nj

= h1
i,s,j + 2h2

i,s,jNj (16)

In order to solve the full business-cycle version of the model, we use the following procedure:

1. We need a grid of values for (N1, ..., NI) to approximate our second-order polynomial on. To

generate this, we use a Sobol set, which generates values of the (N1, ..., NI) vector which are

roughly equally spaced between a minimum and maximum value for each Ni. We generate 50

of such vectors, denoting the values of (N1, ..., NI) at each candidate z as N z = (N1,z, ..., NI,z)

for z = 1, ..., 50. Note that the aggregate state at any grid point is now denoted s, z, where s

corresponds to aggregate productivity and z to the vector of N̄ values.

2. Generate initial guesses for the parameters h0
i,s h1

i,s,j and h2
i,s,j . Generate an initial guess for

λ1(Ω) = λ1,s,z at each aggregate state. Generate an initial guess for Ṅi(Ω) = Ṅi,s,z at each

aggregate state.

3. Given these guesses, solve the value function (9) for values vi,s(Ω) = vi,s,z at each idiosyncratic

productivity node and aggregate state node. In solving (9), replace λ1(Ω) with the current guess

λ1,s,z, and the drift term,
∑I

j=1
∂vi(Ω)
∂Nj

Ṅj(Ω), using i) the current guesses for the value function

derivative implied by h1
i,s,j and h2

i,s,j and ii) the current guess for the drifts Ṅi,s,z.

4. Using the new values of vi,s,z, perform OLS regressions on (15) to update the parameters h0
i,s

h1
i,s,j and h2

i,s,j with dampening.

5. Using the new values of vi,s,z, calculate the new policy functions for job creation and destruction.

Use these to update the drifts Ṅi,s,z using (10) and the offer arrival rates λ1,s,z using (14), both

with dampening.

6. Return to step 3 and iterate to convergence.

As a measure of the accuracy of our second-order approximation, the R2 of the regressions used to fit

the polynomial is 99% on average across the I×S = 15 regressions. This R2 is a measure of the error

between the predicted value from the second-order polynomial and the exactly computed value from

the HJB of the vi,s,z on the nodes where the HJB is evaluated.
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With our approximated policy function parameters h0
i,s, h

1
i,s,j , and h2

i,s,j in hand, we can simulate

the aggregate model, calculating all other objects exactly using the true nonlinear equations of the

model. When estimating the model, we simulate using a one month aggregate time step ∆t = 1, but

finer grids do not affect the results. For most data comparisons, we aggregate up to quarterly data via

averaging and HP-filter the model data as in the data.

Post estimation, we also simulate our impulse response to a typical recession using the same pro-

cedure. We additionally simulate the age and size distributions over time, by first solving for the

aggregate dynamics, and then extending our age and size distribution codes to allow for aggregate

dynamics.

Overview of estimation procedure: We pre-set six parameters, and our estimation procedure

then chooses 23 parameters to minimize the distance to a large number of moments. To speed up the

estimation, we split the estimation into two layers: an inner loop and an outer loop. Conditional on

outer loop parameter values, in the inner loop we solve for the values of 11 parameters to exactly hit

11 moments. Intuitively, each of these 11 parameters has a tight link to a particular moment, which

we are able to exploit to quickly solve for the value of these parameters. In the outer loop, we use

the remaining 12 parameters to minimize the average distance to a set of 18 moments using a global

minimization routine, every time repeating the inner loop procedure.

A key step in speeding up our estimation is that we calibrate many parameters in the non-stochastic

steady state of the model (i.e. a version of the model without aggregate shocks) as is standard in

heterogeneous agent modelling. In brief, the procedure operates as follows:

1. Guess values for the 12 outer loop parameters.

2. Given the current guess for the outer loop parameters, use the inner loop to exactly solve for the

11 inner loop parameters, to exactly hit the inner loop moments. These moments are calculated

in the non-stochastic steady state of the model.

3. Given the values of the inner and outer loop parameters, now solve the full model (out of steady

state), and simulate to construct aggregate time series.

4. Calculate the moments used in the outer loop. The moments related to the firm age distribution

are calculated from the non-stochastic steady state, and the moments related to the business cycle

are calculated from the business cycle simulation.

5. Calculate the distance measure of the outer loop moments to the moments in the data. Update

the outer loop parameters using the global minimization routine, and return to step 2. Repeat

until the global minimization routine completes.

19



For our global minimization routine in the outer loop, we program a simplification of the “TikTak”

algorithm of Arnoud et al. (2019). Specifically, we draw 12,000 initial guesses of the outer loop

parameters from a Sobol set, and calculate the outer loop moments at each guess. We then choose the

five best performing guesses and run a local optimizer (pattern search) at each to find the local minima,

and choose the lowest error among these as our final estimate.

C.1 Further details of estimation and parameterization

As we impose a relatively small number of productivity states, we use parameter choices to impose

the key behaviour (perform JC or not, perform JD or not, replacing quits or not) of each state, rather

than letting the estimation decide. The estimation is allowed to affect behaviour within each node (for

example the level of JC in the node, if it is positive) and the probabilities that nodes are drawn.

Additional flow cost of capital maintenance: In the estimation we impose that ih = 3 in steady

state, which requires that v2 < c0 < v3. This could be imposed using a penalty function approach,

which penalises the SMD error whenever either of these inequalities is violated. We take a simpler

approach, which speeds up the estimation (by allowing more parameters to be chosen in the inner

loop) at the cost of introducing one new parameter, the flow cost of capital maintenance. Specifically,

we firstly impose p2 < p3 in the estimation, which ensures that v2 < v3. Secondly, we then choose cf

in the inner loop to ensure that c0 = 0.5(v2 + v3), which guarantees that v2 < c0 < v3. Intuitively,

we thus introduce the flow cost of capital to shift the average value to ensure that c0 lies exactly in the

middle of v2 and v3 in steady state. We force this parameter to be small by imposing penalties if it falls

below 0 or above 0.1. The estimated value of this cost is small, at 0.078, which is a small fraction of

average productivity (which is one) and small compared to the hiring cost c0. This flow cost cf is also

used as the flow subsidy (allowing cf < 0) in our counterfactual calibration with a higher value of c0.

We also impose that ih should not move over the business cycle, so that ih(Ω) = 3 almost always

during a simulation. We do this by computing the fraction of periods where ih(Ω) ̸= 3 during our

business cycle simulation and adding this as a penalty in the SMD function if it exceeds 1% of the

simulation. At the estimated parameters, ih(Ω) ̸= 3 only 0.77% of the time during our long business

cycle simulation, and ih(Ω) = 3 at all times in our typical recession impulse response function plots.

Placement of cost function support parameters: We place the lower support of HJC and upper

support of HJD so that (in steady state) i) firms with i = 1, 2, 3 perform JD in response to the HJD

shock, but never JC in response to the HJC shock, and ii) firms with i = 4, 5 perform JC but not JD.

To do this requires that i) v3 < c̄JD < v4, so that firms with i = 4 have high enough value to survive

any draw of cJD, and ii) v3 < cJC +c0 < v4, so that firms with i = 3 have low enough value so that the
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minimum cost of performing JC is too high. In order to not introduce additional degrees of freedom

into the model, we simply set c̄JD = 0.5(v3 + v4) and cJC = 0.5(v3 + v4)− c0, which we can impose

simply at every iteration of the inner loop.

Definitions of aggregate flows: The formulas below give the aggregate flows (per unit of time)

used in Table 2. These can be expressed as rates by dividing by an appropriate denominator, and are

constructed to be comparable with their data counterparts.

Note that we treat the λu shock as layoffs into unemployment, not quits into unemployment. This

means that in the model, the EU flow and layoffs are identical, as all EU moves are involuntary.

Similarly, this means that all quits are job-to-job quits, so the EE flow and quit flow are identical.

Total JC flow: JCt =
∑I

i=1

[
µ0P

E(Ω)γ0in̄0,i(Ω) +Ni,tjci(Ω)
]

Total JD flow: JDt =
∑I

i=1 [jdi(Ω) + δF ]Ni,t

Total EU flow: EUt =
∑I

i=1

[
δD[1−HJD(vi(Ω))] + δF + λu

]
Ni,t.

Total UE flow: UEt = λ0(Ω)Ut + nuµ0P
E(Ω)

Total EE flow: EEt =
∫ 1

0
(q(x,Ω)− λu)dG(x,Ω)×Nt

Total hiring flow: Ht = UEt + EEt

Firm entry flow: ENt = µ0P
E(Ω)

Firm exit flow: EXt = δFMt +
∑I

i=1 jdi(Ω)m
1
i,t, where Mt is the total mass of firms with at least

one employee, and m1
i,t is the mass of firms with productivity i and exactly one employee.

JC and JD definition in the model vs. the data: The definitions of JC and JD in the model are

built to correspond as closely as possible to their notions in the data. However, practical computational

limitations mean that their definitions are not identical. In particular, in the data JC is defined as the

sum of employment increases across firms which saw an increase in employment between two dates,

and JD is defined as the sum of employment falls at firms which saw a decrease in employment (see,

e.g., DFH). Computing these measures exactly therefore would require simulating a panel of firms

over the business cycle, which slows down the estimation and simulation of the model.

Instead, we are careful to segment our model so that firms in states i = 1, 2, 3 have declining

employment at any instant of time, and firms in states i = 4, 5 have increasing employment at any

instant in time. Abstracting for the moment from entry and exit, JC can therefore be measured as

the employment change at state i = 4, 5 firms, which corresponds exactly to the job creation flow∑5
i=1 jci(Ω)Ni,t in the model, since jci(Ω) = 0 for i = 1, 2, 3. Similarly, JD can be measured as the

employment change at state i = 1, 2, 3 firms, which corresponds to
∑5

i=1 jdi(Ω)Ni,t since jdi(Ω) = 0

for i = 4, 5. This is complicated slightly by two factors. Firstly, firms may switch from being in

state i = 1, 2, 3 to i = 4, 5 within the same quarter, which is the period over which JC and JD are
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measured in the DFH data. This means that measured and theoretical measures may differ, as a firm

might receive a JC and JD shock in the same quarter. However, this is a rare occurrence, as our

productivity shocks occur on average only once per quarter. Secondly, we must account for entry and

exit. Entry is simple, as all entrants create jobs and therefore can simply be added to the job creation

flow. Exit complicates the analysis somewhat, as even firms with i = 4, 5 might receive the δF exit

shock. However, this shock is calibrated to be very rare so this does not matter much in practice.

In order to check the applicability of our JC and JD measures, we simulate a large panel of firms

after estimating the model. We focus on the steady state, and simulate the firms for one quarter of

data, with the firms drawn from the ergodic productivity and size distribution. We compute the job

destruction rate exactly as is done on the data, and find a quarterly rate of 6.2%, while the theoretical

rate as calculated by jd =
∑I

i=1 [jdi + δF ]Ni/N exactly equals the targeted value of 7.0%. While not

identical, this difference of roughly 10% is in line with the average error of the other moments in the

outer loop of our SMD routine.

Comparison of firm-level autocorrelation to data: Our parameter values generate an autocor-

relation of 0.21 for yearly productivity in a year-averaged simulated firm-level productivity series, or

0.53 for quarterly productivity (within mature firms). Elsby et al. (2017) discuss empirical estimates of

the persistence of idiosyncratic productivity, and find a wide range of values. Our estimate lies within

this range. Specifically, Cooper, Haltiwanger, and Willis (2015) imply a quarterly autocorrelation of

0.4, which is below our value, while Abraham and White (2008) imply 0.68 which is above our value.

While our productivity process has relatively low persistence, our constant returns to scale structure

means that current productivity controls the growth rate of employment, not the level. Hence, even

temporary productivity shocks will generate permanent effects on a firm’s employment.

Further details of the Inner loop: We present below a list of the 11 parameters (plus the additional

parameter cf ) chosen in the inner loop, and how the moment used to choose the parameter is calculated.

The inner loop is terminated when the error in all moments is below 10−8. All moments are computed

in the non-stochastic steady state of the model.

The parameter p4 is chosen to normalise aggregate labor productivity to one. The parameter p3

is chosen to generate a standard deviation of idiosyncratic productivity of 30%. The parameter γ2

is chosen to match that 80% of quits (and replaceable layoffs) are replaced, calculated as qfr =∫ 1

xh q(x)dG(x)/
∫ 1

0
q(x)dG(x).

Parameters cJC , c̄JD, and cf are set as discussed above. The firm entry flow µ0 is set to hit the

average size of firms, measured as N/M , where M is the mass of firms with at least one employee.

Parameters µ1, δD, λu, and ϕ are set to match the theoretically computed JC, JD, layoff, and EE
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quit rates. Finally, wmin is set to match the labor share, defined as LS = Ew × N/Y , where Ew =∫ 1

0
w(x)dG(x).

Further details of the Outer loop: The 12 parameters chosen in the outer loop fall into two broad

categories: those relating to the firm age distribution (p1, p2, p5, γ11, γ55, γ01, γ05, N0) and those relating

to business cycle moments (ξe, ξJC , ξJD, c0). The 12 age distribution moments are computed using the

non-stochastic simulation of the age distribution in steady state. The six business cycle moments

are computed by simulating the model for 1,000 years. The simulated data are then aggregated to

a quarterly frequency and HP-filtered, as in the data. We apply a simple diagonal weighting to the

moments, with the total weight given to business cycle moments slightly overweighted to ensure the

model performs well on both business cycle and steady state dimensions.

We perform several parameter swaps in the outer loop estimation, searching over some hyper-

parameters instead as these ensure that the estimation searches over sensible regions of the parameter

space. Specifically, instead of searching over values of p1, p2, and p5, we search over steady state

values of JD1, JD2, and JC5. Instead of searching over values of N0, we search over values of the

average number of employees of firms at the moment of entry.

The estimation finds that the productivity grid is non-monotone, as p1 > p2 and p5 < p4. Nonethe-

less, firm values remain monotone, with vi < vi+1 for all i, which is sufficient for the job ladder to

be directed monotonically by i, and hence for our notion of equilibrium to remain well defined. The

disconnect between the ordering of productivities and values occurs simply because the entrant states

i = 1, 5 are more persistent than the mature states.

Simulated Minimum Distance (SMD) results The weighted average error of model moments to

data moments in the outer loop SMD estimation is 7.5% across 18 moments. The average error for

the six business cycle moments is 8.0%, where the quarterly data and model moments can be seen in

Table 2, and the yearly standard deviation of firm entry is 0.0688 in the model and 0.0701 in the data.

The average error for the 12 firm age moments is 6.4%, where the data and model moments can be

seen in Figure 3, and the firm exit rate is 9.6% in the model and 8.3% in the data. The errors for the

11 moments in the inner loop are zero by construction.

Identification All parameters in the inner loop are adjusted to match one assigned moment to

the data, and hence we know these parameters are identified by the moments because individually

adjusting their values successfully sets the errors in those moments to zero.

To check the identification of parameters in the outer loops we perform three experiments. First,

we vary the values of our outer loop parameters one by one in a grid of values around their estimated

values. The other parameters are held at their estimated values. We compute the sum of squared errors
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from the SMD at the new values, and plot them in Figure C.1. Each panel gives the effect of varying

one parameter on the (square root of) the sum of squared errors from the outer loop. The blue line gives

the sum of squared errors, and the red led the sum of squared errors plus the penalties imposed in the

estimation for parameter values which lead to the model violating certain required conditions. As can

be seen in the figure, the parameters are well identified with most sitting near the bottom of “U” shapes

in the sum of squared error. The penalty function penalises the estimation if either: (i) the condition

v2(Ω) < c0 < v3(Ω) is violated more than 1% of the time during a simulation. This would imply that

the degree of replacement hiring experienced extreme counterfactual changes as entire groups of firms

started or stopped replacement hiring, or (ii) matching v2 < c0 < v3 in steady state required a value

of cf outside of the allowed small range. Some parameters are also partly identified because changing

them would violate these penalties. This stresses that matching the degree of replacement hiring in the

data is not something that our model can do “for free” and that it imposes constraints on the estimation.

We highlight that the fact that the model can match the moments that it does while matching the degree

of replacement hiring over the business cycle is not automatic, and is a success of the model.

Secondly, we verify that the parameters that we informally associate with affecting the steady state

moments (firm age distribution) versus the business cycle moments actually affect these moments more

than the others. In Figure C.2 we split the sum of squared errors into the part coming from firm age

moment errors and the part from business cycle errors. We plot these, subtracting the true estimated

errors so that the values of each line is zero at the estimated parameter values. In blue we plot the

steady state moment errors, and in red the business cycle errors. The parameters associated more with

the steady state are in the top two rows, and the business cycle in the bottom row. We can see that the

parameters in the top two rows affect the steady state moments (blue line) much more than the business

cycle moments (red line), while the opposite is true for the parameters in the bottom row. Hence, our

intuitions about the role of these parameters appears to be justified.32

Finally, in our estimation we informally associated certain parameters with certain business cycle

moments. We argued that ξJC , ξJD, and ξe controlled the standard deviations of job creation, job de-

struction, and entry respectively. In the top row of Figure C.3 we show that varying these parameters

monotonically affects the associated moment in the expected way, with higher values increasing the

associated elasticity and hence standard deviation. We argued that raising c0 lowered the autocorrela-

tion, by increasing the feedback from unemployment into firm value and hence job creation and layoff

policies. In the bottom row we show how varying c0 affects the autocorrelation of JC, JD, and layoffs

32We actually perform a few parameter swaps in the estimation which helps keep the parameter choices in sensible
ranges. For example, rather than directly searching over p1, we search over values of jd1, which are used to back out the
required value of p1. This explains why adjusting the parameter values in the bottom row has exactly zero effect on the
steady state moments, since these parameter swaps hold the realised firm age distribution constant by construction.
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Figure C.1: Identification test: effect on sum of squared errors of varying each parameter
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Note: Effect on sum of squared errors of varying one parameter at a time around their estimated value. Blue line gives the
sum of squared errors and red line also include the penalty functions from the estimation. The vertical dashed line indicates
the estimated parameter value.

respectively. This shows that, as expected, raising c0 lowers the autocorrelation of JC and layoffs. In

isolation, raising c0 actually raises the autocorrelation of JD, contrary to expectations. This is because

total JD includes both layoffs and JD from unreplaced quits, and raising c0 also affects the dynamics

of unreplaced quits by making the overall volatility of unemployment lower. However, when recali-

brating ξJC , ξJD, and ξe to maintain the same volatilities as in the baseline estimation, raising c0 also

lowers the autocorrelation of total JD (see the counterfactual experiment in the “The importance of

c0” section of the main text).

For the parameters we informally associated with the moments of the firm age distribution, we did

not informally associate each individual parameter with a specific moment of the firm age distribution.

Instead, we envisaged choosing the parameters as a whole to match the whole distribution. Hence we

do not repeat the exercises of Figure C.3 for the firm age distribution, but note that these parameters

do indeed affect the firm age distribution and are well identified, as we showed in our discussion of

Figure C.2.
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Figure C.2: Identification test: steady state versus business cycle errors
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The vertical dashed line indicates the estimated parameter value.

Counterfactual calibration with higher c0 In Section 7.3 we discussed a counterfactual calibra-

tion where we raised c0 by 50%. This counterfactual is constructed as follows. Firstly, we fix c0 at 50%

higher than its estimated value. Secondly, we adjust the outer-loop parameters ξJC , ξJD, and ξe to hold

the simulated standard deviations of JC, JD, and entry at the same values from our estimated model.

We do not adjust the remaining outer-loop parameters and hyper-parameters from their original val-

ues, which holds the firm age distribution exactly at the original estimated distribution. Finally, given

these outer-loop parameters, we re-run the inner loop, which adjusts the inner loop parameters to the

values needed to continue exactly hitting the original inner loop moments. With this new calibration,

we repeat our original business cycle simulation in order to compute the new moments discussed in

the text.
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Figure C.3: Identification test: business cycle moments
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informally associated with business cycle moments. The vertical dashed line indicates the estimated parameter value.

D Additional Tables and Figures

Table 8: Equilibrium policies and values in steady state

i = 1 i = 2 i = 3 i = 4 i = 5

vi 0.7242 0.7244 0.8226 2.6328 2.6561
pi 0.9342 0.6732 0.7127 1.3085 1.0735
jci 0 0 0 0.0446 0.0458
jdi 0.0995 0.0995 0.0294 0 0
njci -0.0996 -0.0996 -0.0295 0.0445 0.0457

Ni/N 0.0031 0.1208 0.3841 0.4848 0.0072
Mi/M 0.0498 0.1423 0.3968 0.4035 0.0076

Note: Table summarizes the value and policy functions in steady state across productivity levels i = 1, ..., I . vi is firm
value, and pi productivity. Value is monotonically increasing across states. jci and jdi are job creation and destruction
rates per employee for incumbent firms, excluding the δF exit shock. njci is net job creation: njci = jci − jdi − δF . The
final two rows give the fraction of employment and active firms (with at least one employee) repectively at each i in the
ergodic distribution.
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Figure D.1: Impulse Response Function - Cyclical behaviour of key aggregates
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Note: Figure plots additional aggregates from our typical recession impulse response function. See Section 7.1 for further
details of the experiment.

Figure D.2: Model Impulse Response: Net JC by age
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Note: Figure plots Net JC rates by firm age for our typical recession experiment. See Section 7.1 for further details of the
experiment. JC and JD flows are yearly, and computed as 1 − e−12r, where r are the average theoretical monthly rates
within each bin.
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