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Abstract

Decision making often involves compounding of risks from different sources.

Building on the Herstein-Milnor mixture set axiomatization of expected util-

ity theory, we employ multiple mixture operators each modeling a source of risk

to arrive at the definition of a rich mixture set, elements of which are rich lot-

teries. Our modeling framework enables a source-dependent weakening of the

independence axiom as well as the reduction of compound lottery axiom. This

yields a representation for preference over rich lotteries called source recursive

expected utility (SREU). When there is consistent preference for the “same”

lottery arising from different sources, SREU implies a preference for risk be-

ing resolved more decisively by the preferred source. We further show that an

SREU investor always exhibits home bias when she consistently prefers risks

arising from the domestic stock market over identically distributed risks from

the foreign stock market.
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1 Introduction

The idea that equally distributed risks may be valued differently first appears in a

question posed in Keynes (1921), “If two probabilities are equal in degree, ought we,

in choosing our course of action, to prefer that one which is based on a greater body

of knowledge?”1 Such behavior, referred to as source preference, has been tested in

a growing experimental literature since the early works of Heath and Tversky (1991)

and Fox and Tversky (1995).2 In this regard, Heath and Tversky further suggest that

investors may sometimes be “willing to forego the advantage of diversification and

concentrate on a small number of companies with which they are presumably familiar”.

In modeling a decision maker who is sensitive to sources of risk, it is necessary to

consider the process of uncertainty resolution. When studying two-stage compound

lotteries, Segal (1990) shows that if a model of decision making allows equally dis-

tributed risks arising from different stages to be valued differently, the reduction of

compound lottery axiom (RCLA) fails to hold even under the assumptions of within-

stage independence and recursive evaluation of compounding risks.3 In other words,

the decision maker may no longer be indifferent between two-stage lotteries and their

actuarial reduction to simple lotteries.4

The setting of compound lotteries, defined by multiple stages of uncertainty reso-

lution, including subjective compound lotteries residing on a product state space (such

as those in Nau, 2006 and Ergin and Gul, 2009), is not sufficiently flexible for the anal-

ysis of source-sensitive decision making among lotteries with rich possibilities in the

process of uncertainty resolution. For example, the same source may appear multiple

times as uncertainty resolves in a lottery; two lotteries may differ by how different

sources are ordered in their processes of uncertainty resolution.

In this paper, we offer a new domain for decision making to facilitate the mod-

eling of choice behavior involving compounding of risks from distinct sources. Our

1This quote summarizes what Keynes wrote earlier in his treatise, “... in the first case we know
that the urn contains black and white in equal proportions; in the second case the proportion of each
colour is unknown, and each ball is as likely to be black as white. It is evident that in either case the
probability of drawing a white ball is 1/2,...”; this unknown urn idea reappears in Ellsberg’s (1961)
two-urn thought experiment.

2These include Chew et al. (2008), Abdellaoui et al. (2011), Armantier and Treich (2016), and
Chew et al. (2023), among others.

3Segal (1990) refers to these as mixture independence and compound independence axioms re-
spectively.

4Following Halevy (2007), evidence of non-RCLA behavior has been reported in Abdellaoui et al.
(2015), Chew et al. (2017), Dean and Ortoleva (2019), and Gillen et al. (2019), among others.
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construction relies on Herstein and Milnor (1953) who offer an elegant axiomatization

of expected utility theory based on a mixture set which is traceable to von Neumann

and Morgenstern (1944). A mixture set M is endowed with a single mixture opera-

tion αa ⊕ (1− α)b which models a lottery delivering a with probability α and b with

probability 1 − α. To model source preference, we make use of a collection of mix-

ture operators {⊕s}s∈S to define a rich mixture set with each operator modeling (and

indexed by) a source of risk. Elements of a rich mixture set are referred to as rich

lotteries. Abstracting away the state space, pure consequences, and the number of

stages, rich mixture sets and rich lotteries provide a novel, parsimonious, and flex-

ible structure to model the non-trivial compounding of uncertainty that arises from

multiple sources of risk.

A key assumption on the standard mixture set which may be viewed as a precursor

to RCLA, reflecting the irrelevance of the two-stage composition, is

λ[µa⊕ (1− µ)b]⊕ (1− λ)b = λµa⊕ (1− λµ)b

for each pair of a, b in M and each λ, µ ∈ [0, 1]. Rather than assuming overall RCLA

regardless of different sources of risk, we require irrelevance of two-stage composition

for risks arising only from the same source as part of the definition of source-specific

mixture operators. Chew et al. (2023) provide support for our source-based decom-

position of overall RCLA among their main experimental findings involving over 3000

subjects. Around two thirds of the subjects exhibit a joint non-neutral attitude to-

wards different sources of risk as well as compounding of risks relative to the benchmark

simple lottery.

In our axiomatization, we retain the ordering and continuity axioms of Herstein

and Milnor (1953) and relax the independence axiom in rich mixture sets by requiring

it to hold only for risks arising from the same source. In this way, we are led to an

axiomatization of a source recursive expected utility (SREU) in our main Theorem. In

general, our approach allows for a broad range of source-based process preference and

offers a tool to characterize them. In particular, when there is a consistent preference

for the “same” lottery being resolved by one source (the preferred source) rather than

by another, SREU brings out a preference for risk being resolved more decisively by

the preferred source, where decisiveness is in the sense of “more” uncertainty being

resolved by a particular source (Proposition 1, Section 4). We offer an account of home

bias in international finance (Feldstein and Horioka, 1980; French and Poterba, 1991)
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by drawing on a strict preference for the source of risk arising from the domestic stock

market and and a perception of the internationally diversified portfolio in terms of a

rich lottery (Proposition 2, Section 5).

The rest of the paper is organized as follows. The formal definition of a rich mixture

set is provided in Section 2. Axioms and the representation theorem are provided in

Section 3. Our applications of SREU to model process preference and to account for

home bias are discussed respectively in Sections 4 and 5. Section 6 concludes.

2 Rich Mixture Set

The axioms in Herstein and Milnor’s (1953) characterization of expected utility theory

are based on a single mixture operation αa ⊕ (1 − α)b defined on a mixture set M
which formalizes the earlier construction in von Neumann and Morgenstern (1944).

The preceding discussion concerning source preference in the introduction motivates

us to make use of a collection of such mixture operators {⊕s}s∈S to define a rich

mixture set formally below.

Definition 1. Call (M, {⊕s}s∈S) a rich mixture set if for each s ∈ S, there is a

mixture operator ⊕s : [0, 1] × M × M → M with corresponding mixture operation

µa⊕s (1− µ)b satisfying:

1. 1a⊕s (1− 1)b = a,

2. µa⊕s (1− µ)b = (1− µ)b⊕s µa,

3. λ[µa⊕s (1− µ)b]⊕s (1− λ)b = λµa⊕s (1− λµ)b,

for any a, b ∈ M and any µ, λ ∈ [0, 1].

Figure 1 below illustrates how an element c = αa ⊕s (1 − α)b of the rich mixture

set M can be interpreted as a lottery with α chance to receive a and 1− α chance to

receive b where the risk arises from source s ∈ S. As illustrated, a and b are themselves

elements of M and therefore the mixture c may contain further information about how

uncertainty arises within a and b, i.e., from sources u and v as illustrated in Figure 1.

An element of M is referred to as a rich lottery given the richness of the information

contained.
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Figure 1: Example of Rich Lottery

In Figure 1, should s, u, and v represent the same source, RCLA would apply.

This results in a one-stage lottery which delivers the outcomes x, y, w, and z with

probabilities αµ, α(1−µ), (1−α)λ, and (1−α)(1−λ) respectively all arising from this

source. In general, rich lotteries incorporate and bring out explicitly a new ingredient in

decision making, i.e., the decision maker’s uncertainty perception. That is to say, a rich

lottery specifies how a decision maker perceives the process of uncertainty resolution

from multiple sources of risk.

3 Source Recursive Expected Utility

We impose the following axioms on ≿ starting with the standard axioms of ordering

and continuity.

Axiom 1. (Ordering) The preference ordering ≿ is complete and transitive.5

Axiom 2. (Continuity) For any a, b, c ∈ M and for any s ∈ S, {α : αa⊕s(1−α)b ≿ c}
and {α : c ≿ αa⊕s (1− α)b} are closed.

The following axiom is a relaxation of Herstein and Milnor’s (1953) independence

axiom.

Axiom 3. (Source Independence) For any a, b, c ∈ M and for any s ∈ S, a ∼ b

implies 1
2
a⊕s

1
2
c ∼ 1

2
b⊕s

1
2
c

5We say ≿ is complete if a ≿ b or b ≿ a for all a, b ∈ M. We say ≿ is transitive if a ≿ b and b ≿ c
implies a ≿ c for all a, b, c ∈ M.
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To facilitate comparison with an expected utility (EU) maximizer, observe that

the standard independence axiom may be stated as follows: for any a, b, c ∈ M and

for any s, t ∈ S, a ∼ b implies 1
2
a ⊕s

1
2
c ∼ 1

2
b ⊕t

1
2
c. This is weakened by source

independence which requires independence only for risks arising from the same source.

Source independence enables our departure from RCLA while the standard indepen-

dence subsumes RCLA.

The specification for SREU is formally stated below.

Definition 2. We say the preference ordering ≿ has a source recursive expected utility

representation if there exists a utility function U : M → R representing ≿, i.e.,

U(a) ≥ U(b) if and only if a ≿ b for each a, b ∈ M, with its range containing 0 and a

strictly increasing continuous transformation function Ts : R → R with Ts(0) = 0 for

each s ∈ S such that

U(αa⊕s (1− α)b) = T−1
s (αTs ◦ U(a) + (1− α)Ts ◦ U(b))

for all a, b ∈ M and all 0 ≤ α ≤ 1.

An SREU representation of ≿ refers to a system of utility function and transfor-

mation functions (U, {Ts}s∈S). To understand the recursive nature of SREU, consider

c = αa⊕s (1−α)b with a = µx⊕u (1−µ)y and b = λw⊕v (1−λ)z mentioned in Figure

1 earlier. Given utilities U(x), U(y), U(w), and U(z), the utility of c can be arrived at

recursively by deriving U(a) and U(b) followed by U(c):

U(a) = T−1
u (µTu ◦ U(x) + (1− µ)Tu ◦ U(y)),

U(b) = T−1
v (λTv ◦ U(w) + (1− λ)Tv ◦ U(z)),

U(c) = T−1
s (αTs ◦ U(a) + (1− α)Ts ◦ U(b)).

We now present our representation theorem together with its proof for expository

fluency.

Theorem. A preference ordering ≿ on a rich mixture set M satisfies axioms 1-3 if

and only if it has a SREU representation.

Proof. For each s ∈ S, (M,⊕s) is a mixture set and the preference ordering ≿ satisfies

Herstein and Milnor’s (1953) three axioms on (M,⊕s). This yields a von Neumann-
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Morgenstern utility function Us : M → R representing ≿ such that

Us(αa⊕s (1− α)b) = αUs(a) + (1− α)Us(b)

for all a, b ∈ M and all 0 ≤ α ≤ 1. Fix an arbitrary s∗ ∈ S and choose Us∗ such that

there exists an element a∗ ∈ M with Us∗(a
∗) = 0. Let U = Us∗ be the utility function

in the SREU representation with the transformation function for source s∗ being the

identity function Ts∗(x) = x. For each s ∈ S, choose Us such that Us(a
∗) = 0. For

each s ∈ S, we can define Ts to be a function such that Ts ◦ U(a) = Us(a) for each

a ∈ M. Ts is uniquely defined on the image set of U(·), i.e., the interval I = U(M)

with Ts(0) = 0 and strictly increasing on this range since each Us represents the

same preference ordering as U . Furthermore, Ts is also continuous on I. To see

why, consider a, b, c, d ∈ M such that a ≿ b, c ≿ d, b ∼ α∗a ⊕s (1 − α∗)d, and

c ∼ α∗a ⊕s∗ (1 − α∗)d for the same α∗ ∈ [0, 1]. Let {αn} be any sequence of real

numbers in [0, 1] converging to α∗. Under Axiom 2, {Us(αna⊕s (1− αn)d)} converges

to Us(b) and {U(αna ⊕s∗ (1 − αn)d)} converges to U(c). Since a, b, c, d are chosen

arbitrarily, Ts is continuous on I.

The converse is straightforward.

Observing that our SREU representation given by (U, {Ts}s∈S) generalizes EU

in accommodating the additional mixture operations, it is instructive to discuss its

uniqueness property in relation to the uniqueness class of EU defined by positive affine

transformations. Fixing the utility function U , it is clear that the transformation func-

tions of an SREU representation are unique up to multiplication by a positive scalar

on the effective domain of U(M). Considering another utility function Ũ = T ◦U also

representing ≿ transformed by an arbitrary strictly increasing continuous function, it

is clear that (Ũ , {Ts ◦T−1}s∈S) is also an SREU representation of ≿. Notice that Ts ◦U
captures the cardinal information of risk attitude for source s.

4 Process Preference

When lotteries arising from source s are consistently preferred to identically distributed

risks from source t, e.g., s may be more familiar than t, we say that source s is preferred

to source t. This partial ordering over sources of risk is formally stated below.

Definition 3. For any two sources s, t ∈ S, we say source s is weakly preferred to
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source t if it is the case that

αa⊕s (1− α)b ≿ αa⊕t (1− α)b

for any a, b ∈ M and any α ∈ [0, 1].

We can also define a strict preference for s over t by requiring a strict preference

αa ⊕s (1 − α)b ≻ αa ⊕t (1 − α)b in the range of α ∈ (0, 1) for any two rich lotteries

a, b ∈ M between which decision maker is not indifferent.

Maintaining the assumptions of our Theorem, we could restrict α = 1
2
in Definition

3 to provide an equivalent definition of preference over sources. In light of this defi-

nition, the standard independence axiom mentioned in Section 3 is a combination of

our source independence axiom and indifference between any pair of sources and will

return us to an expected utility representation as in Herstein and Milnor (1953).

The preference among sources of risk can be captured by the relative curvature of

their transformation functions under SREU. This sets the stage for our derivation of

its implications on the decision maker’s attitude towards the process of uncertainty

resolution when risks are compounded. Notably, SREU embodies a preference for

decisiveness of the preferred source (PDPS) in Statement B of the proposition below.

Proposition 1. Under SREU, for any two sources of risk s, t ∈ S, the following

statements are equivalent:

A. Source s is weakly preferred to source t.

B. It is the case that

paa⊕s (1− pa)

[
pb

1− pa
b⊕t

pc
1− pa

c

]
≿ (1− pc)

[
pa

1− pc
a⊕s

pb
1− pc

b

]
⊕t pcc

for any a, b, c ∈ M such that a ≿ b ≿ c or c ≿ b ≿ a, and for any pa, pb, pc ∈ (0, 1)

with pa + pb + pc = 1.

C. The composite function Tt ◦ T−1
s is weakly concave.

In the proof of Proposition 1, the equivalence between statements A and C follows

from observing that source s is preferred to source t if and only if

Tt ◦ T−1
s (αTs ◦ U(a) + (1− α)Ts ◦ U(b)) ≥ αTt ◦ U(a) + (1− α)Tt ◦ U(b)
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for any a, b ∈ M and α ∈ [0, 1]. That Statement B implies Statement A follows

directly from observing that the former reduces to the latter in the limiting case of

pb = 0. To complete the proof, we demonstrate, in the appendix, that Statement C

implies Statement B.

The choice behavior in Statement B of Proposition 1, exemplifying a kind of PDPS,

is illustrated using the figure below where p¬i = 1 − pi and pi|¬j = pi/(1 − pj) for

i, j ∈ {a, b, c}. When b is intermediate in preference between a and c, or equivalently

the utility distance between a and c is larger, uncertainty being resolved between a and

c serves a more “decisive” role. The decision maker prefers to resolve this uncertainty

in the first stage by the preferred source with the rich lottery on the left, rather than

the rich lottery to the right associated with resolving more decisively with the less

preferred source. Observe that a comparison between these two rich lotteries, differing

only in the ordering of the two sources, cannot be modeled in the classical setting of

two-stage compound lotteries.

⊕s

⊕t

a

b

c

pa

p¬a pb|¬a

pc|¬a
⊕t

⊕s

a

b

c

p¬c

pc

pa|¬c

pb|¬c

Figure 2: Preference for decisiveness of the preferred source

Statement B is also suggestive of the following assumption of (across-source) as-

sociativity: for any s, t ∈ S, any a, b, c ∈ M, and for any pa, pb, pc ∈ (0, 1) with

pa + pb + pc = 1, it is the case that

paa⊕s (1− pa)

[
pb

1− pa
b⊕t

pc
1− pa

c

]
∼ (1− pc)

[
pa

1− pc
a⊕s

pb
1− pc

b

]
⊕t pcc (1)

As with the independence assumption or the assumption of indifference among all

sources, imposing the above assumption on SREU also returns us to an EU representa-

tion. This observation pinpoints how we have relaxed RCLA in light of Rommeswinkel

(2020) who, in a standard mixture set where there is only one source of risk, decom-

poses it into reducibility, i.e, αa ⊕ (1 − α)a = a for any α ∈ [0, 1] and a ∈ M, and

associativity, which is in the form of Expression (1) with a single mixture operation.
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5 Home Bias

An investor faces a portfolio choice problem in allocating her total assets between the

domestic stock market (D) and the foreign stock market (F). These are two sources

of risk. A portfolio consisting of θ proportion of domestic stock is denoted by Pθ. For

simplicity, suppose the returns of the two markets are independent and they yield the

same return of $1 or else $0 with probability 1
2
.

P1 = ⊕D

$0

$11/2

1/2 P0 = ⊕F

$0

$11/2

1/2

Figure 3: Domestic and foreign investments

If an SREU investor is indifferent between the two sources of risk, RCLA applies

to the compounding of risks when diversifying between domestic and foreign stocks.

Consequently, the utility of holding θ proportion of domestic stock is given by

U(Pθ) = 0.25u(1) + 0.25u(θ) + 0.25u(1− θ) + 0.25u(0)

in which u : [0, 1] → R refers to the utility from investment returns. In this case,

the transformation functions for both sources D and F can be fixed as the identity

function T (x) = x and omitted from the expression. Suppose u is strictly increasing

and strictly concave, capturing investor’s monotonicity towards investment returns and

risk aversion, then her utility is maximized when she perfectly diversifies her portfolio,

i.e., θ∗ = 1
2
. In other words, the investor does not exhibit home bias when she is

indifferent between sources D and F .

Suppose otherwise that the SREU investor strictly prefers the domestic source of

risk to the foreign source of risk. To proceed, let us further assume that the investor

entertains the perception of the order of uncertainty resolution in the portfolio of

holding θ proportion of domestic stock in terms of the following rich lottery.6

The utility U(Pθ) of the diversified portfolio for the SREU investor, as illustrated

in Figure 4, can be derived as if the investor evaluates the perceived rich lottery

recursively. The investor will first arrive at the certainty equivalents for the two 50-50

6The investor could also perceive the source of risk in the foreign stock market to be at the first
stage. Under this alternative perception, we can derive the same Proposition 2.
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Pθ = ⊕D

⊕F

⊕F

$(1− θ)

$0

$1

$θ

1/2

1/2
1/2

1/2

1/2

1/2

Figure 4: Perceived diversified portfolio

lotteries at the second stage, both of which arise from source F , with one delivering

either $1 or $θ and the other delivering either $(1−θ) or $0. Their certainty equivalents

cθ and dθ are given by u(cθ) = T−1(0.5T ◦ u(1) + 0.5T ◦ u(θ)) and u(dθ) = T−1(0.5T ◦
u(1− θ) + 0.5T ◦ u(0)) respectively, where T is the transformation function for source

F . The investor then evaluates the diversified portfolio as a 50-50 lottery based on

source D delivering cθ and dθ as outcomes:

U(Pθ) = 0.5u(cθ) + 0.5u(dθ).

Under the assumption of a strict preference for domestic stock market, we have a

strictly concave T . To arrive at the following proposition showing that such an investor

always exhibits home bias, we further assume that u and T are differentiable.

Proposition 2. Suppose the risk averse SREU investor facing the portfolio choice

problem strictly prefers the domestic source of risk over the foreign source of risk.

Then she exhibits home bias, i.e., only portfolio allocations such that θ∗ ∈ (0.5, 1) can

maximize U(Pθ).

The proof of Proposition 2 is provided in the appendix.

6 Conclusion

In our approach to modeling choice behavior allowing for source preference under

compounding of uncertainty, we make use of Herstein and Milnor’s (1953) mixture set

axiomatization to characterize SREU in which RCLA and independence applies within

a single source of risk. Our approach allows for non-RCLA and non-independence
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behavior across sources due to the failure of associativity or non-indifference over

sources when rich lotteries involve two or more sources. The setting of a rich mixture

set provides a parsimonious and flexible analytical tool to model a broad range of

choice phenomena involving multiple sources of risks.

Most theoretical treatments of source preference do not consider source-based pro-

cess preference as is done in this paper. These include Chew and Sagi (2008), Gul and

Pesendorfer (2015), and Cappelli et al. (2020). Both Chew and Sagi (2008) and Gul

and Pesendorfer (2015) take, as primitive, a preference over Savagian acts and identify

sources of risk in terms of collections of events. Cappelli et al. (2020) share with us

the assumption of an exogenous set of sources. Unlike our approach, Cappelli et al.

(2020) admit the possibility that the same sure outcome arising from different sources

can be valued differently to capture “subjective prices”.

A number of papers investigate the decision maker’s preference over compound

lotteries or other related domains without explicitly interpreting stages as different

sources of uncertainty. Notably, Dillenberger (2010) captures a preference for imme-

diate resolution of uncertainty based on a stage-invariant risk preference confining to

negative certainty independence.7 In the setting of temporal decision making, Kreps

and Porteus (1978) captures a preference for early or late resolution of uncertainty with

expected utilities potentially sensitive to different stages.8 In this aspect, our model

enables a characterization of preference over sources (in Definition 3) and the im-

plied source-based process preference—a preference for decisiveness of preferred source

(PDPS in Proposition 1).

In contrast with our approach, Rommeswinkel (2020) weakens RCLA by dropping

reducibility while retaining associativity in order to characterize an entropy-based rep-

resentation of procedural value. These developments set the stage for further theoret-

ical development of process preference and further investigate the idea of recreational

utility including a utility for gambling per se (von Neumann and Morgenstern, 1944).9

In the area of international finance, a satisfactory account of home bias has re-

mained elusive.10 Following Coval and Moskowitz (1999) and Huberman (2001), one

7Stage-invariance of risk preference is referred to as time neutrality in Dillenberger’s paper.
8Moreover, many papers in this category attempt to explain ambiguity aversion by second-order

belief, i.e., a belief over prior beliefs, and especially by decision maker’s greater aversion to uncertainty
arising from second-order belief (Segal, 1987; Nau, 2006; Klibanoff et al., 2005; Seo, 2009; Ergin and
Gul, 2009; Evren, 2019)

9In their algebra of combining, von Neumann and Morgenstern highlight the role of the reduction
property as in the opening paragraph of the Introduction in excluding a “utility of gambling”.

10In his extensive comments as a discussant on Obstfeld and Rogoff (2001), Charles Engels views
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direction involves seeking a preference-based explanation involving familiarity (see,

e.g., Boyle et al., 2012; Solnik and Zuo, 2012; Asano and Osaki, 2020). Using SREU,

we offer such an explanation for home bias in Proposition 2 of Section 5. By specifying

the investor’s uncertainty perception of the compounding risk in a diversified portfolio

in terms of a rich lottery, our model enables the use of distinct utility functions captur-

ing different risk attitudes towards assets across financial markets. In future research,

an SREU-based approach may be added to the toolkit in addressing additional puz-

zles in financial markets that involve multiple sources of risk, e.g., non-participation,

under-diversification, and excessive equity premium.
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Appendix

The proof of Proposition 1 makes use of the following lemma which is stated without
proof.

Lemma 1. Let g : R → R denote a strictly increasing, weakly concave function with
g(0) = 0. If x1x2 ≤ 0, then g(x1 + x2) ≥ g(x1) + g(x2).
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Proof of Proposition 1: (C =⇒ B) To simplify exposition, we only prove that the
preference ordering holds when U(b) = 0. Apply the main Theorem to Statement B,
yielding the following inequality to be shown based on Statement C.

T−1
s

(
paTs ◦ U(a) + (1− pa)Ts ◦ T−1

t

(
pc

1− pa
Tt ◦ U (c)

))
≥

T−1
t

(
pcTt ◦ U(c) + (1− pc)Tt ◦ T−1

s

(
pa

1− pc
Ts ◦ U (a)

))
Letting x, and y, and f(·) denote Ts ◦U(a), Tt ◦U(c), and Tt ◦ T−1

s (·) respectively, the
above inequality simplifies to:

f

(
(1− pa)f

−1

(
pc

1− pa
y

)
︸ ︷︷ ︸

Y

+ pax︸︷︷︸
X

)
≥ pcy︸︷︷︸

Y’

+(1− pc)f

(
pa

1− pc
x

)
︸ ︷︷ ︸

X’

(2)

By concavity of f , we have f(Y) ≥ (1 − pa)f ◦ f−1( pc
1−pa

y) = Y’ and f(X) ≥ X’.

Adding the two inequalities yields f(Y)+ f(X) ≥ Y’+X’, so that f(Y+X) ≥ Y’+X’
by Lemma 1, as required to complete the proof.

The lemma below, also stated without proof, is useful in the proof of Proposition
2.

Lemma 2. Let g : R → R be strictly increasing and strictly convex. If x1+y1 = x2+y2
and x1 − y1 > x2 − y2 ≥ 0, then g(x1) + g(y1) > g(x2) + g(y2).

Proof of Proposition 2: Observe that cθ and dθ, defined in Section 5, satisfy θ < cθ < 1
and 0 < dθ < 1−θ for each θ. Notice that T ◦u(cθ)+T ◦u(dθ) = T ◦u(c1−θ)+T ◦u(d1−θ)
for each θ ∈ [0, 1] and that the function T ◦ u(cθ)− T ◦ u(dθ) of θ is strictly increasing
with T ◦ u(c0) − T ◦ u(d0) = 0. Applying Lemma 2 for the strictly convex inverse
transformation function T−1, we have U(Pθ) > U(P1−θ) for each 0.5 < θ ≤ 1. Thus,
any utility maximizing θ∗ satisfies 0.5 ≤ θ∗ ≤ 1.

The derivative for Uθ is given by

U ′(θ) =
T ′ ◦ u(θ)u′(θ)

4T ′ ◦ u(cθ)
− T ′ ◦ u(1− θ)u′(1− θ)

4T ′ ◦ u(dθ)
.

Due to the strict concavity of T and u, the following inequalities hold:

U ′(0.5) =
T ′ ◦ u(0.5)u′(0.5)

4

(
1

T ′ ◦ u(c0.5)
− 1

T ′ ◦ u(d0.5)

)
> 0;

U ′(1) = 0.25(u′(1)− u′(0)) < 0.

Thus, θ∗ cannot be 0.5 nor 1. This completes the proof.
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