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Abstract

We present a framework that jointly determines trading networks and risk al-

location among banks. Banks are ex-ante homogeneous and risk-averse, but their

marginal costs of bearing risks may be diminishing. The optimal trading network

is determined by the tradeo� between risk sharing vs. concentration, which in turn

determines the level of aggregate risk exposures, amount of intermediate trades,

dispersion of transaction prices and distribution of risk exposure across �nancial

institutions. We show that a continuous change in fundamentals or regulations may

lead to a structural change in the market structure, causing discontinuous changes

in these observables.
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1 Introduction

In this paper, we present a framework that jointly determines interbank trading links

and risk allocations through them. Even when bankers are ex ante homogeneous and risk

averse, they could trade not only to share risks but also to concentrate them, creating an

asymmetric interbank network consistent with empirical regularities: a few banks have

large balance sheets, exhibit large gross trading volume, and bear more risks in their asset

positions. Our tractable framework delivers insights into how and when the interbank

network and risk exposure of large banks may change, which is useful for evaluating the

responses of the market structure to regulations and for understanding di�erent market

structures for assets with varied riskiness.

In our model, banks are averse to uncertain asset positions, and their initial asset

positions are subject to idiosyncratic shocks. As is standard, interbank trade serves to

diversify and reallocate banks' risky asset positions. We assume that decentralized trades

are subject to limited information: banks only observe other banks' asset positions after

they decide to match. Such frictions thus prevent banks from perfectly and immediately

sharing their risks, capturing the spirit of search frictions in OTC markets.

Speci�cally, before observing their realized initial asset positions, bankers are commit-

ted to with whom, when, and how they trade through multiple (�nite) rounds of bilateral

trades. We require that at any point in time, bilateral matchings and terms of trade

with their trading counterparties in current and future trading rounds be stable, thus

allowing multiple sequential pairwise deviations. The collection of banks' counterparties

and trades over all trading rounds can thus be interpreted as the ex ante trading network

that banks form to overcome the underlying frictions: limited information and a �nite

number of counterparties.

A bank's �nal payo� depends on the riskiness of its asset position after bilateral trades

in the OTC market. We allow for a general payo� function and analyze how it a�ects the

equilibrium network. When banks' private marginal cost of bearing risks is diminishing in

the risk level, the standard risk-sharing strategies can be suboptimal even though banks

are risk averse and ex ante identical. Instead, banks may concentrate the risk exposure

on one side of bilateral matches. The diminishing marginal cost of bearing risks naturally

arises in many applications, such as when banks have limited liability or have options to
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improve their risk-bearing capacity or trading technologies.

The underlying network is thus generally determined by the tradeo� between risk con-

centration and risk sharing with a diminishing marginal cost of bearing risks. When the

bene�t of risk concentration is strong, the network thus becomes asymmetric, featuring

a few banks that hold a disproportional amount of risks, which we refer to as the core

banks.

We establish that, when banks have a diminishing marginal cost of bearing risks, the

interbank network concentrates risk via positive assortative matching (PAM). That is,

riskier banks, which bear more risks through past transactions, are matched with riskier

banks. Our sequential approach combined with PAM admits a simple and tractable

characterization of network formation (i.e., the joint determination of links and asset

allocations), which allows us to formally analyze how the network response to the under-

lying parameters (such as asset riskiness, taxes or subsidies).

Despite all banks being ex-ante homogeneous, the endogenous market structure in

our model determines the level of the aggregate risk exposure, amount of intermediate

trades, dispersion of transaction prices and banks' risk-bearing capacities. Importantly,

the degree of heterogeneity in transaction prices and banks risk-bearing capacities comove

together and can exhibit a discontinuous change when there is a shift in the trading

structure. This is consistent with the recent �nding in Eisfeldt, Herskovic, and Liu (2022)

that the cross-sectional dispersion of dealers' risk bearing capacity comoves strongly with

interdealer price dispersion, and the heterogeneity varies signi�cantly over time.

We analyze the unique implications associated with structural changes. We �rst show

that a small increase in the balance sheet cost of holding the asset, either because of

tightening regulation or because the asset becomes riskier, can result in a regime shift in

the interbank network, whereupon banks switch from fully symmetric and sharing risks

with each other to concentrating risks in a minimum set of core banks. In other words,

banks systematically change their trading behavior through the interbank network, which

results in a few extremely risky banks and jump increases in aggregate risks. In this sense,

a small shock can trigger systemic risks through the interbank trading network.1

1Endogenous default risks in this application di�er from those in standard theories of �nancial con-
tagion. Standard theories take the interbank network as given and analyze how network ampli�es and
dampens the propagation of default risks ex post. We study equilibrium network formation and highlight
the ex ante aggregate default risks.
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Next, we analyze the e�ect of varying core size on the market structure and apply it

to an environment where banks have the option of investing in better risk management

or faster trading technologies. We establish the property of delayed risk concentration,

which uniquely pins down the time of connections given any size of core banks (i.e.,

those that invest in faster trading technologies). The optimal network is then reduced to

choosing the optimal core size, trading o� the cost of bearing risks versus the entry fee.

Core size as a summary statistic allows us to derive positive and normative impli-

cations of reforms that promote central clearing and/or discourage risk taking (such as

post-2008 banking regulations), while accounting for the equilibrium response of the un-

derlying market structure. Consistent with empirical evidence, our model predicts that

policies that increase balance sheet costs relative to the entry fee could result in disinter-

mediation and a more symmetric market structure. Moreover, we show that the e�ect of

increasing banks' balance sheet costs on transaction costs becomes ambiguous whenever

the underlying structure also changes, highlighting that transaction costs are generally

not su�cient statics for assessing welfare.

Related Literature Methodologically, our dynamic framework with repeated bilateral

matching2 contributes a tractable approach to studying the formation of a trading net-

work. It di�ers from existing approaches in the network formation literature3 because it

breaks down a complex network formation game into a sequence of subgames, each of

which involves one round of bilateral matching together with asset trading, and a sub-

sequent subgame. How an agent traded in the past is summarized by her characteristic,

which becomes the state variable governing how she trades in later periods. By imposing

sequential rationality, we can solve the network formation problem through backward

induction.
2Most works in the matching literature involve a static environment, with only a few exceptions.

Corbae, Temzelides, and Wright (2003) introduced directed matching into the money literature, where
the key state variable is agents' money holding. Because there are no information frictions in Corbae,
Temzelides, and Wright (2003), belief updating is not essential for their analysis, whereas it is a key
component of our theory. With regard to the labor market, Anderson and Smith (2010) analyzed the
dynamic matching pattern for which the public belief about an agent's skill (i.e., her reputation) evolves
according to matching decisions. In our trading environment, the updating process depends endogenously
on both agents' matching decisions and the terms of trade within a match.

3See the survey in Jackson 2005 for overview. Speci�cally, papers that have studied network formation
in the �nancial market include Hojman and Szeidl (2008), Gale and Kariv (2007), Babus and Hu (2017),
Cabrales, Gottardi, and Vega-Redondo (2017), Farboodi (2014), and Wang (2016)), where the last two
papers in particular focus on the core-periphery structure.
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While we use pairwise stability to characterize the equilibrium matching in a subgame,

a deviating agent in a subgame can change all her future links, not just one link as in the

static setup usually adopted in the literature . This method derives a unique solution.

It is thus in sharp contrast to the standard network formation problem where agents

simultaneously form multiple links, which is often subject to the curse of dimensionality

and prone to multiple equilibria, because pairwise stability allows for the deviation of

only one pair of agents even though agents form multiple links.

A similar approach is used in our previous work, Chang and Zhang (2018), where we

consider a pure bilateral OTC market with risk-neutral agents and an indivisible asset.

This paper allows for risk-averse agents and unrestricted asset holdings, which allows us

to analyze risk concentration within the network.

Popular approaches to modeling OTC markets are based on random matching (e.g.,

Du�e, Gârleanu, and Pedersen 2005) or exogenous networks.4 Relative to the litera-

ture that takes the network as given, our model provides a formal analysis of how the

underlying structure of the OTC market might respond to policies.

One of our applications regards determination of the bilateral trading network and

platform access. Thus, our paper also sheds new light on the literature on the costs and

bene�ts of centralized vs. decentralized markets.5 Instead of focusing on the tradeo�

between these two markets, we allow for nonexclusive participation in both markets and

emphasize how the participation decision in the centralized market interacts with the

structure of the bilateral OTC market. The paper is related to recent works that study

the coexistence of these two venues and market fragmentation, including Dugast, Üslü,

and Weill (2019) and Babus and Parlatore (2017). Our framework is designed to analyze

the network response, and the results can be generalized to environments where agents

can access multiple types of platforms.

4For example, see Gofman (2011), Babus and Kondor (2018), and Malamud and Rostek (2014).
5Speci�cally, existing studies (e.g., Malamud and Rostek (2014), Glode and Opp (2019), and Yoon

(2017)) consider other dimensions such as price impact and asymmetric information. They show that
OTC markets can be bene�cial for certain types of agents. In our model, a centralized platform is
assumed to be a superior trading technology but requires a higher participation cost.
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2 A Model of Trading Network Formation

2.1 Model Setup

The economy lasts N + 1 periods, indexed by t = 1, 2, . . . , N + 1. It is populated by a

continuum of banks of total measure 1, indexed by identity i ∈ I = [0, 1]. Each bank

is managed by a banker whose preferences and choices govern the bank. There are two

types of consumption goods, numeraire goods and dividend goods, and one type of asset.

The asset is a claim to a unit of dividend goods in each period.

A bank i receives a random initial asset position ai,1, which is independently and

identically distributed across banks, drawn from distribution π1(a). The randomness

in the initial asset position can represent a liquidity shock that shifts the bank's asset

position away from its ideal position. This could be the withdrawal of deposits by its

customers. Alternatively, it could be a shock to a bank's valuation over an asset. We

discuss the latter interpretation in greater detail after specifying the bank's preferences.

Banks trade bilaterally from period 1 to period N . They have deep pockets in numeraire

goods. In each period from t = 1 to t = N , there is a marketplace where banks meet

bilaterally and exchange the asset with numeraire goods.

The preference of a bank i is

E1

{
N∑
t=1

[ut(ãi,t)− xi,t] + uN+1(ai,N+1)

}
, (1)

where E1 denotes the expectation at the beginning of period 1, ut : R → R is a concave

utility function, ãi,t denotes the amount of dividend goods bank i consumes in period

t = 1, 2, . . . , N , which equals the bank's posttrade asset position in that period, and xi,t

denotes the amount of numeraire goods the bank pays in exchange for assets.

The curvature in the utility function can be associated with the balance sheet costs

of holding assets, which can be a�ected by regulations or the liquidity preference of a

bank's depositors, for example. The heterogeneity in asset positions is the source of gains

from trade because banks are risk averse. Transfers xi,t are a result of the transaction.

xi,t = pi,t(ãi,t − ai,t), where ai,t denotes the pretrade asset position and pi,t denotes the

price of the asset. The pretrade position in the following period, ai,t+1, for t = 1, 2, . . . , N ,

equals the posttrade asset position in period t, ãi,t. Thus, the consumption of dividend
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goods in period N + 1 equals the posttrade asset position in the penultimate period,

ai,N+1 = ãi,N .

General preferences that depend on both preference shocks and asset endowment

shocks, as in the frontier model in the literature on the OTC market, Üslü (2019),

are allowed in our setup. Agents' �ow utility from asset position ai,t in Üslü (2019)

is −εi,tai,t − a2
i,t, where εi,t is an idiosyncratic preference shock. It is equivalent to

−(ai,t − āi,t)
2 where āi,t = −εi,t/2. Thus, the preference shock, εi,t, is equivalent to a

shock to the ideal asset position, āi,t. Agents receive shocks to their ideal asset positions

rather than their asset holding as in our setting. If we regard the asset position in a

bank's preference (1) as the deviation from the ideal position, the analysis in the rest of

the paper applies to the more general setting.

Formation of Ex Ante Trading Network At the beginning of period 1, banks

choose and commit to bilateral trading counterparties for periods t = 1, 2, . . . , N and their

trading strategies with their counterparties. Denote the trading counterparty of bank i

in period t ji,t. The collection of bank i's counterparties ji,t over N rounds of trade

forms its trading links. We assume that banks form their trading links unconditional

on their realized asset holdings and valuations. Therefore, our setup e�ectively has a

network formation stage ex ante. We can interpret trading links as permanent trading

relationships between banks when we repeat the trading game with a fresh draw of shocks.

The assumption that banks form trading links ex ante that cannot be contingent

on realized trading needs also avoids some technical complications in matching models

under asymmetric information because trading needs can be banks' private information

at the matching stage. Without this assumption and if trading needs were banks' private

information, banks could in theory signal their types through di�erent matching decisions,

and the equilibrium would depend on how we specify o�-equilibrium beliefs and require

heavier notation. One could in theory impose o�-equilibrium beliefs that support a

pooling equilibrium and obtain the same outcome.

Contacting Frictions in Bilateral Trades Because trading counterparties are de-

termined before banks receive shocks to their asset positions, bilateral trading counterpar-

ties are chosen subject to limited information, which prevents banks from locating ideal
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trading counterparties. Banks face uncertainty about their counterparty's asset position

before contacting their counterparties in the corresponding period.

However, information is only limited at the matching stage in the beginning of period

1. Matched banks have complete information about each other's asset positions after they

make contact, upon which they observe their counterparties' pretrade asset positions in

the corresponding period.

If all banks could observe each other's realized positions before they chose their

matches, the economy could achieve perfect risk sharing with one round of trade. For

example, if banks' utility has a bliss point at 0, is symmetric around the bliss point, and

the asset distribution is symmetric around 0, banks with position a would be matched

with banks with the opposite position −a, and their posttrade positions would net out to

zero (i.e., there would be perfect negative sorting on asset positions.) Hence, the assumed

contacting frictions are intended to capture the spirit of conventional search frictions that

prevent banks from locating their ideal trading counterparties.

Terms of Trade: Contingent Asset Flows and Prices While the connections

are determined ex ante, trades depend on the realized asset positions of a bank and its

counterparties, because trading takes place after it and its counterparties observe each

other's realized asset positions within the match. Thus, if we regard the economy as a

trading game within a trading day and repeat it over time, banks' realized asset positions

change how they trade (i.e., the asset �ows) within the network from day to day, although

the network remains the same.

Formally, the terms of trade within a match, including both asset allocations and

transfers of numeraire goods, are contingent on the realized positions of a bank i and its

counterparty j, denoted by ai and aj, respectively. Let y(i, j) = {ãk(ai, aj), x̃k(ai, aj), k ∈
{i, j}} be the terms of trade within the match (i, j), where ãk(ai, aj) denotes the posttrade

asset holding of bank k, and x̃k(ai, aj) denotes the transfer to bank k, k ∈ {i, j}. The

within-match transfers sum to zero:

x̃i(ai, aj) + x̃j(ai, aj) = 0. (2)
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The within-match asset allocation is feasible if

ãi(ai, aj) + ãj(ai, aj) = ai + aj. (3)

The allocation of asset positions is associated with the allocation of risks from uncertain

asset positions because given a distribution of banks i and j's pretrade asset positions,

the posttrade positions also follow a distribution, which is the key characteristic that

governs bilateral matching.

While the terms of trade are contingent on the realized positions within a pair, banks

are committed to the contingent terms of trade ex ante. This is a strong assumption.

Sequential Choices of Trading Links and Terms of Trade Banks play a sequen-

tial game at the beginning of period one when they decide trading links and terms of

trade ex ante: they make decisions for earlier trading rounds �rst. All trading links

and terms of trade before a period t are public information when banks decide matching

and within-match terms of trade for the period. They constitute the information set

contingent on which banks' period-t strategies are chosen.

Note that the information set for period-t strategy does not include the realized trading

history contingent on realized asset positions of a bank and its counterparties. This is

consistent with our assumption that both the trading network and trading strategies are

decided ex ante, not contingent on the realized trading history.

Bank i's strategy in period t includes the choice of her counterparty, ji,t, and the terms

of trade with the counterparty, yt(i, j) for j = ji,t conditional on the information set for

that period. Period-t strategies are sequentially optimal given the common information

set.

The common information set for period-t strategies can be summarized by the joint

distribution of banks' asset positions. As we will see later, the gains from trade from

period t onward depend on the trading history only through the joint distribution. We

thus study a dynamic matching model with the joint distribution of banks' asset holdings

and the marginal asset distribution as the evolving characteristics.

Evolving Characteristics Because banks' strategies are contingent on the public be-

lief regarding the joint distribution of asset positions, characterizing its evolution over
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time is essential to our analysis. To understand how a bank's asset holding distribution

evolves over time, consider the following example: suppose that a bank i bears all position

exposures within its match in period 1. That is, its asset position in the next period equals

the sum of it and its counterparty j's current asset positions, ai,2 = ai,1 +aj,1. Denote the

joint distribution of banks' asset holdings at the beginning of period t πt : R[0,1] → [0, 1]

and the marginal distribution of bank i's asset position at the beginning of period

πi,t(a) : R → [0, 1]. Its posttrade asset distribution πi,2(a) now has mean zero and

variance 2v1 when its pretrade position is uncorrelated with its counterparty's. On the

other hand, under this �rst-period strategy, its counterparty's posttrade asset position is

always zero, aj,2 = 0 (i.e., πj,2(a) is degenerate with both its mean and variance being

zero).

The law of motion of the asset distribution of a bank i, πi,t(a), is given by Bayes' rule,

πi,t+1(a) =

ˆ ˆ
I(ãi,t(ai, aj) ≤ a)πi,j,t(dai, daj), for a ∈ R, (4)

where πi,j,t(ai, a−i) denotes the joint distribution of bank i and its counterparty j's period-

t pretrade asset positions. This again highlights the fact that bank i's posttrade asset

distribution, πi,t+1(a), depends on the joint distribution of the pretrade asset positions of

bank i and its optimally chosen counterparty and on how it trades with her counterparty,

ãi.t(ai, aj).

2.2 Equilibrium De�nition

Let Ωt(i, j) denote the expected joint payo� between two matched banks in period t, i

and j, given their equilibrium trading strategies. It maximizes their posttrade joint �ow

utility and continuation value given the pretrade aggregate distribution of asset positions

in period t,

Ωt(i, j) ≡ max
ãi,t,ãj,t

E1

[
ut(ãi,t) + ut(ãj,t);

(
yt, jt

)]
+ Ŵt+1(i) + Ŵt+1(j) (5)

subject to feasibility constraints, which depend on the pretrade joint asset distribution

of banks i and j, πi,j,t(ai, aj). The within-match transfers do not appear in (5) because

they sum to zero.

10



Ŵt+1(i) denotes the bank's maximum payo� in the next period for the posttrade

marginal distribution of bank i's asset holding πi,t+1(a) and the joint distribution with

other banks' posttrade asset holding. Taking the aggregate distribution πt+1 and other

banks' equilibrium payo�s Wt(j) as given, the maximum payo� for a bank given a post-

trade marginal distribution πi,t+1(a),

Ŵt+1(i) ≡ max
j

Ωt+1(i, j)−Wt+1(j) (6)

for t+1 ≤ N , whereWt+1(j) is counterparty j's period-t+1 equilibrium payo�. For bank

i that adopts equilibrium strategies until period t, its marginal asset position distribution

equals its equilibrium marginal distribution, Ŵt+1(i) = Wt+1(i).

The equilibrium in our model can be understood as competitive equilibrium in the

literature on large games (McAfee 1993). Because there is a continuum of banks, a bank's

decisions a�ect its own payo�, taking as given the aggregate distribution of matching and

trading decisions in the market, and have a negligible e�ect on the aggregate distribution.

A bank's deviating decision thus does not a�ect its counterparties' outside option and

their payo� from the deviation. An agent's equilibrium payo� is the value of her outside

option. This is analogous to the equilibrium market price in a competitive market that

agents take as given. Thus, we alternatively call it her market utility.

De�nition 1. Given the initial distribution of asset positions π1, an equilibrium consists

of strategies s∗i,t for all i ∈ [0, 1], the market utility of agent i from period t onward Wt(i)

for all i ∈ [0, 1], and joint distribution of asset positions π∗t+1for all 1 ≤ t ≤ N such that

the following properties hold:

1. Bilateral matches are stable. For any period t ≤ N , if bank j is bank i's optimal

counterparty, j ∈ jt(i), it solves (6), where the posttrade position {ãi,t, ãj,t} maxi-

mizes Equation (5) and there is no pro�table deviation when a measure ε of banks

simultaneously deviate.

(a) Feasibility of bilateral matching in any trading round t ≤ N .

(b) Dynamic Bayesian consistency: The joint asset distribution evolves following

Bayes' rule given banks' strategies.
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The equilibrium can be understood as multiple rounds of stable matching and trading.

Our solution concept is stronger than the static pairwise stability solution concept. First,

our sequential setting allows agents to deviate for multiple periods. When an agent

and her counterparty initiate a pairwise deviation in a period t, they can switch their

subsequent trading partners accordingly, provided that they promise their future coun-

terparties at least their market utilities. Their counterparties can deviate. Second, we

allow a simultaneous deviation among a su�ciently small measure ε of agents in period

t. Therefore, the deviation in period t is not constrained by the equilibrium distribution

of πt, so that deviating agents can �exibly create any joint distribution of asset positions

among them. The minimal number of agents in the deviation in period t such that the

deviation is �exible is 2N−t+1. This allows agents in a joint deviation to form matches

�exibly not only in the current period t but also in later periods. Since the measure of any

�nite number of banks is zero, the measure ε can be any positive value. We assume that

the measure ε is su�ciently small that the e�ect of the group deviation on the aggregate

distribution is negligible in our environment with a continuum of agents, and thus agents

can take equilibrium market utility as given.

2.3 Equivalence and Uniqueness

We �rst show that the equilibrium outcome is unique and maximizes the aggregate payo�.

Intuitively, this is because bankers have quasilinear preferences, have deep pockets in the

numeraire goods and there is a continuum of traders. A competitive equilibrium in

the large game is Pareto optimal. Under quasilinear preferences, any Pareto-optimal

allocation maximizes the utilitarian social welfare.

Denote the aggregate payo� of the economy in period t by Πt, which depends on the

joint asset distribution πt. Given a strategy st in period t, the aggregate payo� equals

Πt(πt) = E1

ˆ 1

0

ut(ãi,t)di+ Πt+1(πt+1). (7)

where E1(ut(ãi,t)) =
´ ´

ut(ãi,t)πi,jt(i),t(dai, dajt(i)) and the terminal payo� is given by

ΠN+1(πN+1) = E1

´ 1

0
uN+1 (ãi,N+1) di.

The following proposition shows that the equilibrium strategies � including agents'

bilateral connections and the terms of trade within each match � maximize the aggregate
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payo�s.

Proposition 1. Strategies {si,t}∀i,t are equilibrium strategies if and only if they maximize

Π1(π1).

Proposition 1 has three implications. First, without any deviation between private

and social values, the equilibrium is e�cient.6 Second, when a deviation arises for various

reasons, one can implement the social planner's solution through taxes by simply align-

ing costs. Third, it implies that the equilibrium market structure and asset allocations

through the market structure are payo� unique. The multiplicity that often makes it

di�cult to characterize �nancial networks does not arise in our framework. This provides

the theoretical foundation for numerically solving the trading network.

Although the equilibrium is constrained e�cient when taking traders' preferences as

given, the equilibrium is socially optimal only if traders' private payo� is aligned with

the social payo�. When there is a gap between the private payo� and the social payo�,

we can use our framework to evaluate the divergence of the equilibrium market structure

from the socially optimal structure.

3 Risk Distribution and Network Structure

Henceforth, we focus on more speci�c risk preferences for traders and analyze the resulting

risk distribution and network structure.

Assumption 1. For all trading rounds t ≤ N , the �ow utility is a quadratic function

with bliss point at 0, ut(ai,t) = −κta2
i,t, where κt ≥ 0 is a parameter for the �ow cost in

period t.

Assumption 2. (Risk Aversion) In the �nal period N + 1, the expected payo� of bank i,

denoted by WN+1(vi,N+1), is a decreasing function of posttrade risk exposure, where vi,N+1

is the variance of πi,N+1(a).

Assumption A1 can be understood as mean-variance utility from dividend goods,

where the mean (i.e., ideal asset position of a bank) is normalized to zero.7 Parameter κt
6Because agents have quasilinear preferences, this is equivalent to solving for Pareto optimal alloca-

tions.
7More generally, ut(ai,t) = κ0,tai,t−κ1,ta2i,t for positive κ0,t and κ1,t. Because κ0,t does not contribute

to the heterogeneity in marginal utility, it is without loss of generality to set it to zero.
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then represents the balance sheet cost of holding nonzero asset positions during trading

period t, which can be associated with the riskiness of the asset.

Assumption A2 allows the expected terminal payo� to be a general decreasing func-

tion of the variance of the posttrade asset position. We assume a decreasing function

to avoid trivial risk-taking behaviors. A1 and A2 together imply that holding risks is

fundamentally costly for all banks, which captures the standard risk-sharing incentives.

Diminishing Marginal Costs of Bearing Risks Although all banks are risk averse,

we show below that whether banks would engage in risk sharing crucially depends on

the convexity of WN+1(v) � a convex WN+1(v) represents diminishing marginal costs of

bearing risks. Note that the mean-variance utility for the terminal payo� can be nested as

a special case in which the terminal payo� functionWN+1(v) is linear in v thus represents

a constant marginal cost of bearing risks. Below are two examples, which we discuss

in greater detail in Sections 4 and 5, that naturally result in a convex terminal payo�

function WN+1(v).

Example 1 (Limited Liability): When banks are protected by limited liability, the

marginal cost of taking additional risks can be lower for riskier banks because they are

more likely to default and thereby o�oad the cost of holding low asset positions to such

external creditors as depositors. For example, if the utility from �nal consumption of

dividend goods is a CARA utility function, u(c) = 1− e−c, the expected value given the

variance of asset position v is

WN+1(v) =

ˆ
[1− exp(max(aN+1,−D))] dπ(aN+1) (8)

where D > 0 denotes the face value of debt that the bank owes to depositors. We

normalize the expected value of aN+1 to 0 and assume that the expected position is �xed

due to regulation. One can then verify that WN+1(v) can be decreasing and convex in v

for v ≤ 2Nv0 for some value of debt face value D.

Example 2 (Optional Investment in Risk-Sharing Technologies): Banks in practice

have options to improve their risk-bearing capacity by investing in superior but more

costly trading technologies. Whenever there are economies of scale in such an investment

decision, banks with more posttrade risk exposure are more likely to invest and thus in

turn have lowered their marginal cost of bearing risks. For example, assume that banks'
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�nal period payo� is quadratic in their asset holding, uN+1(a) = −κN+1a
2, and the banks

can choose to invest in technology and reduce the marginal cost of bearing risks to ηκN+1

for a fee φ,8 their terminal payo� can be expressed as

WN+1(v) = max{−κN+1v,−φ− ηκN+1v}, (9)

which is convex in v.

3.1 Risk Sharing vs. Risk Concentration in Bilateral Trade

In this section, we study the allocation given any match. Instead of working with asset

allocations, we �rst simplify the analysis by showing that any optimal allocation of assets

can be mapped to an allocation of posttrade variance within the pair and the relevant

state variable can be reduced to the variance of the distribution πi,t(a), which represents

a bank's risk exposure over time.

Variance Representation Within a match (i, j), the posttrade positions ãk(ai, aj)

depend on the realized positions of the two banks (ai, aj). Given any allocation rule,

denote the variance of posttrade positions ṽk ≡ V ar(ãk(ai, aj)). The feasibility constraint

of assets within the trade, Equation (3), can be rewritten as the following constraint that

connects the pretrade and posttrade risks of the two agents within the pair:

ṽi + ṽj + 2ρ̃ij
√
ṽiṽj = Vij, (10)

where Vij ≡ V ar(ai + aj) denotes the variance of the sum of pretrade positions and ρ̃ij

denotes the correlation between the posttrade positions of two banks. Note that ṽk and

ρ̃ij endogenously depend on the asset allocation that banks choose.

Lemma 1. Under Assumptions 1 and 2, the optimal marginal distributions of the post-

trade position for all banks have zero mean, and the posttrade positions for any two

8For example, a bank can access a competitive centralized platform with probably 1 − η, which
allows her to reach the ideal asset position 0 by trading the asset at market price 0. The convexity of the
terminal payo� function WN+1(v) holds more generally when a bank has multiple options for investment
in faster trading technologies and the decision can be contingent on realized asset positions. We provide
such an example in Section A.3 in the Appendix.
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matched banks are perfectly positively correlated (ρ̃ij = 1). Moreover, the pretrade posi-

tions of any two matched banks in the e�cient solution are uncorrelated.

Under A1 and A2, banks' payo� decreases with the variance and mean of their asset

positions; hence, it is optimal to keep the means of their posttrade positions at zero.

Moreover, since increasing the correlation within the match reduces the total posttrade

variance, it is thus optimal to set ρ̃ij = 1.

Moreover, a positive correlation between the pretrade positions of two matched banks

necessarily increases the variance of their total pretrade positions, which is the right-

hand side of the feasibility constraint for variance allocation, Equation (10). Thus, all

else being equal, it is optimal to match banks whose asset positions are not correlated

(negative correlation is not available when banks trade optimally). In other words, it is

not optimal to match two banks twice because the asset positions of any two previously

matched banks are positively correlated.

Given that the asset positions for all agents are uncorrelated on the path, the su�cient

static of an agent's characteristic is her pretrade variance vi,t. In other words, vi,t is the

state variable, and thus, we now use Wt(vi,t) to denote the bank's maximum payo� given

her characteristic vi,t.

Simpli�ed Problem: Allocation of Risks Within Matches The optimal asset/risk

allocation within any match (i, j) can thus be reformulated as optimally choosing the

share of the risks within a pair (i, j), given their pretrade variance Vij, where bank i

holds a share αi ∈ [0, 1] of the total position, so that ãi(ai, aj) = αi(ai + aj), and bank j

holds a share αj = 1− αi. With abuse of notation, we use Ωt(Vij) to represent the joint

payo� between any two agents with pretrade variance Vij in period t. The optimal share

α ∈ [0, 1] maximizes and thus solves the joint expected payo�

Ωt(Vij) = max
α∈[0,1]

{
−κt

(
α2 + (1− α)2

)
Vij +Wt+1(α2Vij) +Wt+1((1− α)2Vij)

}
(11)

Given any match, the optimal risk allocation within the pair must satisfy the FOC

from Equation (11). The share of total asset positions allocated to agent i can be ex-
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pressed as

αi =
κt −W ′

t+1((1− αi)2Vij)[
κt −W ′

t+1((1− αi)2Vij)
]

+
[
κt −W ′

t+1(αi2Vij)
] . (12)

The optimal risk allocation in bilateral trade characterized in (12) illustrates the

tradeo� between risk concentration and risk sharing. Given that agents are risk averse,

they would like to lower the posttrade variance. Any concentration of risks (α 6= 1
2
) is

costly in the sense that it leads to higher posttrade pairwise variance, which is given by

(α2 + (1− α)2)Vij. Such a cost generally increases with banks' balance cost κt. In the

special case when Wt+1(v) is linear in v (or κt →∞), it represents no bene�t (extremely

high cost) of risk concentration; hence, the solution is standard risk sharing (i.e., α = 1
2
).

On the other hand, when Wt+1(v) is su�ciently convex (and low κt), there could exist

an interior solution where α > 1
2
. That is, it might be optimal to allocate more risks to

one of the agents. The degree of concentration thus crucially depends on the property

of Wt+1(v), which endogenously depends on the optimal choice of counterparties in our

framework for any t < N . In this sense, Equation (12) highlights the connection between

the choice of asset allocation and agents' counterparties in our dynamic setup.

3.2 Risk Concentration Through Sorting

We now turn to study to the optimal choice of counterparties for an agent with risk

position vi at period t, which endogenously determines the value of Wt(v) and can be

expressed as

Wt(vi) = max
j

{Ωt(vi + vj)−Wt(vj)} ,∀t ≤ N

where we use the fact that Vij = vi + vj because pretrade positions of any two matched

banks are uncorrelated (Lemma 1). The proposition below �rst establishes the dynamic

matching outcomes given any terminal payo� function WN+1(v).

Proposition 2. (1) Full Risk Sharing and Random Matching: When the terminal payo�

function WN+1(v) is concave in variance v, the unique trading network exhibits full risk

sharing and the matching outcome is equivalent to random matching. (2) Positive Assor-

tative Matching (PAM) on Risk Exposure: When the terminal payo� function WN+1(v) is

convex in variance v, the optimal sorting outcome is PAM on variance vt in any trading
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Figure 1: Risk-concentrating Network with PAM (N = 2)

round t. Within any match in which agents have the same variance vt, the optimal share

maximizes joint payo� Ωt(2vt).

With a concave terminal payo� function WN+1(v), there is no bene�t of risk concen-

tration. Hence, the solution is the standard risk sharing. Formally, one can show that

α = 1
2
is the unique global maximum as the objective function in Equation (11) is concave

in α. Given that agents share their exposure equally with any match over time, the evo-

lution of variance thus yields vi,t = 1
2
vi,t−1 =

(
1
2

)t−1
v1∀i, t. As there is no cross-sectional

dispersion of vi,t, the matching outcome is equivalent to random matching. In this sense,

the trading outcome is the same as in Afonso and Lagos (2015), which can be nested in

our framework as WN+1(v) = −κN+1v.
9,10

We focus on the case in which WN+1(v) is convex throughout the rest of the paper.

With convex WN+1(v), one can show that, for any period t, Ωt(Vij) is also convex in

Vij = vi+vj. Hence, given any distribution of vi,t, agents are matched with counterparties

that hold the same risk exposure; thus, on the equilibrium path, Vij = 2vi. Figure 1

illustrates an example of a network that features risk concentration with N = 2, where

we use an arrow to point toward the agent with higher posttrade variance if asymmetric

allocation arises within the match, and we use a dashed line to represent equal risk sharing.

In this example. Agents 3 and 4 take on more risks from Agents 1 and 2 in period 1.

9Afonso and Lagos (2015) predicts that posttrade exposure is given by akt+1 =
ait+a

j
t

2 , which implies

that the posttrade variance is reduced to half, vit+1 =
vit+v

j
t

4 . Since all agents share the risk equally, their

characteristics remain the same (vit =
(
1
2

)t
v0 ∀i).

10More generally, concavity in WN+1(v) predicts negative assortative matching (NAM). Even if the
economy starts with two di�erent initial values (say half of agents start with low (high) exposure vL0
(vH0 )), all agents again become homogeneous in the subsequent periods under NAM.
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In period 2, PAM implies that Agent 4 (Agent 1) is matched with Agent 3 (Agent 2).

That is, an agent who obtains a higher share of risks from her counterparty in period

t− 1 then matches with another agent who also holds more risks from past transactions.

Through this dynamic matching process, risks can be concentrated in a smaller set of

agents within the network. Speci�cally, relative to random matching, positive sorting

results in a higher level of concentration and a more convex Wt(v).

Tractability of the Sequential Approach Our sequential approach combined ith

PAM admits a simple and tractable characterization of network formation (i.e., the joint

determination of links and asset allocations). The sequential choice of links allows us to

break a network formation game into a sequence of bilateral matchings, where the e�ect

of trading decisions before t is summarized by the characteristics of an agent (i.e., her risk

position at period t, vi,t). Bilateral matching (and trading) in period t determines their

posttrade characteristics vi,t+1, taking into account their future decisions. This e�ect is

summarized by the continuation value.

The problem can thus be solved recursively via backward induction. Given Wt+1(v)

and PAM, the allocation within any pair v, denoted by α∗t (v), is the solution to a one-

dimensional optimization problem that maximizes Ωt(2v) in Eq (11). The fact that

matching is positive associative further simpli�es the problem because the optimal solu-

tion is distribution-free, and the value function must satisfy Wt(v) = 1
2
Ωt(2v) ∀t. Given

the policy functions α∗t (v) and Wt(v), one can then solve for the evolution of variances vit

over time.

Note that even when Wt+1(v) is convex and thus the objective function might not be

concave, the numerical algorithm remains computationally simple, as it still involves only

one-dimensional optimization. Analytically, since there in general could exist multiple

locally optimal solutions that satisfy the �rst-order necessary condition (12), we further

impose conditions on WN+1(v) in Section 4 to provide full analytical characterization.

3.3 Price of Risks

While all agents are ex ante homogeneous, our model predicts dispersion of prices and

risk-bearing capacities whenever the optimal network features asymmetric allocation (i.e.,

when the solution is not fully risk-sharing). Intuitively, since holding risks is costly, an
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agent within the pair that holds more posttrade variance needs to be compensated by

receiving transfers from her counterparty. Through this channel, our model predicts

heterogeneous prices across di�erent trading pairs. In Figure 1, for example, Agent 1 will

be trading with worse terms when trading with Agent 3 than with Agent 2. This holds

even though there is no delay (i.e., κt = 0 for t < N and κN = 1 and thus the environment

is e�ectively static). We thus now formalize the expected transfer and implied transaction

prices within each trading pair.

Expected Transaction Costs within Pair Given the optimal risk allocation within

the match, the agent that holds lower risks post-trade must compensate the agent that

holds more risks so that both agents are indi�erent. Hence, the expected transfer within

a pair of banks with variance v matched in period t, denoted by xt(v), solves

− κtṽlt(v) +Wt+1(ṽlt(v))− xt(v) = −κtṽht (v) +Wt+1(ṽht (v)) + xt(v), (13)

where the RHS (LHS) represents the payo� of the agent with lower (higher) posttrade

variance ṽlt(v) (ṽht (v)).

Implementation with Bid-Ask Spreads. Note that the equilibrium transfer xt(v) within

the pair can be implemented as a constant bid-ask spread times the expected trading

volume. The bank that holds higher posttrade variance within the pair commits to bid

and ask prices regardless of their realized asset positions, denoted PA
t (v) and PB

t (v),

respectively. The bid-ask spread St(v) ≡ PA
t (v)− PB

t (v) then solves(
St(v)

2

)
ϑt(v) = xt(v),

where ϑt(v) ≡ E|α∗t (v)(ai,t + aj,t)− ai,t| represents the expected volume between the pair

of banks i and j.

Comovement in Dispersion of Prices and Risk-bearing Capacities Despite

that all agents are homogeneous, the endogenous market structure determines the dis-

persion of prices and risk-bearing capacities in the market. As shown in Equation 13, a

more asymmetric allocation within the pair vt means that agents would have more het-

erogeneous risk-bearing capacities posttrade vt+1. which then predicts a larger bid-ask
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spread within the pair vt. Moreover, more heterogeneous vt+1 further predicts higher het-

erogeneous prices across pairs at t+1, as transfers generally depend on the characteristic

of the pair.

Through this channel, our model naturally generates comovement in price dispersion

in the interdealer market and the dispersion in dealers' risk bearing capacities, consistent

with Eisfeldt, Herskovic, and Liu (2022). Moreover, Eisfeldt, Herskovic, and Liu (2022)

also has shown that the heterogeneity varies signi�cantly over time. Through the lens of

our model, the degree of heterogeneity can change if the underlying risk-taking incentives

triggers in di�erent market structure, which we discussed in details In Section 4.

3.4 Evolution of Risks and Connections

Our sequential setting further o�ers predictions regarding how assets �ow through the

bilateral network and the evolution of risks across di�erent banks. We now elaborate the

mapping between the solution of our matching dynamic to the underlying network and

establish how the risk evolution of an agent depends on her connections.

Mapping to Ex Ante Trading Network While all matching agents start with same

pretrade variance, their risk positions could di�er whenever α∗t (v) 6= 1
2
. Since there could

be two di�erent values of posttrade variance for each period and for any vt, there are thus

at most 2N di�erent paths of variance from period 1 to period N . The type of agents

can thus be de�ned as a vector {θi,τ}1≤τ≤N , where θi,τ ∈ {h, l} indicates whether agent i
takes on higher (θi,t = h) or lower variance (θi,t = l) within her match in period τ. Since

we assume one unit measure of agents, the measure of each type is thus 1
2N
.11

The collection of an agent's trading links over N rounds as {jt(i)}∀t≤N thus represents

the ex ante network graph among 2N types of agents, where jt(i) denotes the counterparty

(direct link) for agent i in round t. The bilateral links among 2N types of agents jt(i)

∀i ∈ {1, 2..., 2N} must satisfy PAM. For example, in Figure 1, since Agents 3 and 4 hold

more risks in period 1 (i.e., θ3,1 = θ4,1 = h), PAM thus implies that j2(3) = 4.

11Note that variance ṽht (v) is only weakly greater than variance ṽlt(vt). Hence, while there are 2N

types of agents, this de�nition also allows for agents to have the same realization. For example, in Figure
1, since Agents 1 and 2 share risk equally at period 2, these two agents will have the same path of vt.
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Time-varying Connections and Asset Flows One key di�erence of our sequential

formulation from the standard network setting is that the set of agents that Agent i is

�connected� with must be shrinking over time, since agents cannot use past links. For

example, in Figure 1: Agent 1 is indirectly connected to Agent 4 in period 1, but she is

no longer connected to Agent 3 nor Agent 4 at period 2.

Using the fact that the optimal allocations within the pair must take into account

agents' future connections, Lemma 2 establishes a key property between these two. Under

the optimal allocations, the risk-bearing cost of agent i in period t is one half of the

harmonic mean of the posttrade risk-bearing cost of agent i and her counterparty.12

Lemma 2. The marginal cost of holding risks for an agent with position v in period t is

given by

W ′
t(v) = −1

2
H
(
κt −W ′

t+1

(
ṽht (vt)

)
, κt −W ′

t+1(ṽlt(v))
)
∀t ≤ N. (14)

Consider again the example in Figure 1: Suppose that we refer to Agent 4 � who holds

most risks at the end- - as the core agent. Equation (14) means that Agent 3 has a lower

marginal cost of holding risk than Agent 1 in period 2, since she is connected to the core.

Nevertheless, in period 1, Agents 1 and 3 must have the same risk-bearing capacity, as

they will allocate the risks jointly accounting for both of their future connections.

This example also illustrates that agents' risk-bearing capacity will change over time.

From the perspective of Agent 1, she has a lower marginal risk-bearing cost in period 1

since she is still indirectly connected to the core through Agent 3; however, after period

1, she loses this indirect access and thus will have a higher marginal risk-bearing cost in

period 2.

Time-Varying Core Access As explained later in Section 4, whether an agent is

connected to the core is often the su�cient static of an agent's risk-bearing capacity in

period t. We thus now de�ne the notion of connected agents in any period t and the

concept of core access in our framework.

Formally, in any period t, an agent i is directly connected to counterparty jt(i), and

thus is also indirectly to future counterparties of agent jt(i). Denote a set of agents I and

their counterparties in period t Jt(I), where Jt(I) = ∪i∈I{i, jt(i)} is a list of period-t links
12The harmonic mean of any two variables γj and γj is

2
γ−1
i +γ−1

j

.
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of agents in set I. The set of agents that agent i is connected to from period t onward

can be understood as a tree with its root at the current match Jt(i) = {i, jt(i)}.13

We thus let Ψt(i) ≡ JN(JN−1(. . . (Jt+1(Jt(i))) . . .)) denote the set of agents who are

directly or indirectly connected to agent i in period t. By de�nition, an agent i is con-

nected to at most 2N−t+1 agents from trading round t onward. In general, we regard the

core agents as those whose �nal risk position vi,N+1 is relatively high (i.e., above a certain

percentile). Let ci,N+1 = 1 i� agent i is the core agent and ci,N+1 = 0 otherwise.

De�nition 2. (Core Access) The core access of an agent in period t is given by

ci,t ≡ Σk∈Ψt(i)ck,N+1. (15)

That is, in the example in Figure 1, where we refer to Agent 4 as the core, we thus

have ci,1 = 1 and ci,2 = 0 for Agents 1 and 2. That is, these two agents no longer have

core access in period 2. On the other hand, ci,1 = 1 and ci,2 = 1 for Agents 3 and 4.

Note that, by de�nition, ci,t must be (weakly) decreasing over time because the set of

agents connected to agent i from period t + 1 onward, Ψt+1(i), is a subset of the set of

agents connected to agent i from period t onward, Ψt(i). As we will show later, agents

with core access for a longer period will collect more risks over time, relative to the agents

that lose core access earlier.

4 Structural Shifts

We now study how the underlying parameters a�ect the network and the implications

of such changes. In Section 4.1, we start with an extreme case of structural shift, where

banks switch from the standard full risk sharing (i.e., completely symmetric trades) to

the maximum concentration with minimal core size. We use this result to show that such

structural shift can trigger discontinuous increases in aggregate risks and prices despite

having a rather smooth payo� function. In Section 4.2, we further consider a structural

shift that changes core sizes.

13Due to the dynamic nature of our framework, future links are the speci�c factor that matters for
current trading decisions. Thus, the relevant connections for an agent can be understood as a tree
spanned from the current match. Nevertheless, the actual network does not need to be a tree. For
example, according to Figure 1, the network graph contains loops.
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4.1 From Risk Sharing to Risk Concentration

We now establish that a continuous change in the underlying parameters could trigger

discontinuous change in aggregate risks and prices when agents move from full risk shar-

ing to risk concentration. As discussed earlier, since the objective functions may not

be concave, the full analytical characterization of the global optimum is not generally

possible. We thus now show this result in two ways. First, to establish the comparative

statics on the network analytically, we proceed by imposing additional assumptions on

the payo� functions. Second, we provide an numerical illustration where the convexity

of the payo� is driven by limited liability

Full Characterization We consider the environment where if risk concentration is

optimal, it is without loss of generality to concentrate on at most one of the 2N connected

agents. In this sense, this is an extreme form of risk concentration. Moreover, to highlight

the unique e�ect of interconnectedness, we further focus on the payo� function so that

the corresponding policy function is continuous if there is only one round of bilateral

trade. The su�cient conditions for these are formally stated in Assumption A3.

Assumption 3. (1) The terminal payo� function WN+1(v) is k−times continuously dif-

ferentiable with bounded derivatives, has a marginal cost of bearing risk converging to

0 at in�nite variance, limv→∞W
′
N+1(v) → 0, and is strictly convex, W ′′

N+1(v) > 0; (2)

function χ(v) ≡ 1
2
W ′
N+1(v) + W ′′

N+1(v)v increases in v and is concave for all variance

v ∈ [0, 2Nv1].

The �rst part of A3 guarantees that the solution is interior and convexity is bounded.

Given that the bene�t of concentration increases with the convexity W ′′
N+1(v), and the

cost of holding risks is captured by W ′
N+1(v), one can interpret the function χ(v) ≡

1
2
W ′
N+1(v)+W ′′

N+1(v)v as the relative bene�t of risk concentration. Intuitively, the second

part of A3 means that the bene�t of concentration increases in v. As a result, it is optimal

to have one core agent to continuously accumulate risks from others. Hence, having two

core agents that have a moderate value of variance is dominated by having one core agent

with a high value of variance. A concave χ(v) is a su�cient condition to guarantee that the

objective function of Equation (11) for period N is single-peaked, and the corresponding

solution αN(v) is continuous.
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Given A3 and κt = 0, we show that it is without loss of generality to concentrate on

at most one of the 2N connected agents. The allocation problem among 2N agents can be

greatly reduced to a one-dimensional problem, where the optimal risk allocation solves

Π(v1) =
1

2N
max
αs≥ 1

2N

{
WN+1

(
α2
s

(
2Nv1

))
+
(
2N − 1

)
WN+1

((
1− αs
2N − 1

)2 (
2Nv1

))}
.

(16)

That is, the aggregate payo� can be understood as 2N agents sharing a total risk

of V = 2Nv1 in a static environment. If all agents share risks equally, this means that

αs = 1
2N
, and thus the posttrade position for all agents yields viN+1 =

(
1

2N

)2
V = v1

2N
∀i.

That is, the posttrade variance for all agents decreases by a factor of 1
2N

after N rounds

of risk sharing. On the other hand, αs > 1
2N

represents the case where there could exist

one core agent who hold more risks than the remaining 2N − 1 agents.

Proposition 3. Under Assumption A3 and κt = 0 for all t ≤ N , there exists a cuto�

v∗ such that the equilibrium features full risk sharing when banks' initial risk exposure

is below the cuto�, v1 ≤ v∗, and features risk concentration in one core bank among the

connected banks when their initial risk exposure is above the cuto�, v1 ≥ v∗. When there

are multiple rounds of trade (N > 1), the aggregate posttrade risk exposure,
´
vi,N+1di,

and the prices of risk increases discontinuously at v∗.

The proposition highlights that for small initial risk exposure v1 ≤ v∗, it is optimal

for banks to use their network to share risks; consequently, we have less aggregate risk

exposure. For higher initial risk exposure v1 ≥ v∗, it is privately optimal for banks to

shift to a concentrated structure, where 1
2N

fraction of banks (i.e., the only core agent

among 2N interconnected banks) bears disproportionately large risks, resulting in greater

aggregate risks. Importantly, only when N > 1 does the solution to Equation (16) exhibit

discontinuous jumps at v∗.

Numerical Illustration: Application with Limited Liability We only impose

Assumption A3 in order to establish the result analytically. We now relax A3 and apply

our model to an environment where the risk-taking incentive results from limited liability.

The Figure 2 illustrates an example of regime shift using the speci�cation in Equation

8 with a normal distribution. Our result implies that banks might collectively use their
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Figure 2: Regime Shift: WN+1(v) = −1 + e−cv, c = 1.0196, v0L = 1.02 and v0H = 1.03.

network to concentrate risks instead of sharing risks. Moreover, this result holds despite

banks being risk averse (i.e., under Assumption 2).14

The red line represents the outcome where banks choose to share risks when v0L =

1.02. Hence, each of them has low �nal risk exposure and default probability. The blue

line, on the other hand, represents the case when banks collectively switch to concentrate

risks on the core when v0H = 1.03. As shown in the top �gure, a small increase in the

underlying uncertainty results in a jump increase in the aggregate probability of default

(which is proportional to the total variance). In this sense, our model endogenously

generates a �crisis� period. The bottom �gure illustrates the risk positions of the core

banks. As expected, since they start collecting risks from others during the crisis, their

risk position increases over time instead of decreasing.

4.1.1 Flow of Risks Among Banks

We now elobarate how banks' risk positions invovle overtime when risk concentration

arises (i.e., αs > 1
2N
). Note that even though all non-core agents have the same terminal

posttrade variance at the end, they could have have di�erent evolution of risks positions

14Note that the standard risk-taking behavior arises when banks' payo�s are convex in their asset
positions, and thus banks might prefer higher variance, which gives higher upsides. Our result here goes
beyond this channel because we assume that WN+1(v) decreases in v.
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over time, depending on their connections to the core. Hence, unlike a static model, our

model gives predictions on how the asset �ows within the network.

We now show that, given the optimal policy αs that solves Equation 16, how each bank

accumulates and/or unload risks from her counterparties over times can be characterized

by the core access of an agent ci,t in period t. Formally, according to Lemma 2, when the

�ow utility in all trading rounds is zero, the risk capacity of an agent in period t is further

reduced toW ′
t(vi,t) =

{
Σk∈Ψt(i)

[
W ′
N+1(vk,N+1)

]−1
}−1

. That is, the risk capacity of Agent

i at period t is simply the harmonic mean of her connected counterparties' risk capacity

in the terminal period W ′
N+1(vk,N+1). Speci�cally, vk,N+1 could be two di�erent values in

this case, where vcN+1 = α2
s

(
2Nv1

)
for the core agent, and vncN+1 =

(
1−αs

2N−1

)2 (
2Nv1

)
for the

non-core agents.

This thus shows that, if an Agent i is connected to the core in period t (i.e., ci,t = 1),

then her risk capacity, denoted by γt(ci,t) ≡ −Wt(vi,t), is given by

γt(1) =
([
−W ′

N+1(vcN+1)
]−1

+
(
2N−t+1 − 1

) [
W ′
N+1

(
vncN+1

)]−1
)−1

.

On the other hand, if an agent is not connected to a core, then

γt(0) =
1

2N−t+1

[
−W ′

N+1

(
vncN+1

)]
.

Proposition 4. Under Assumption A3 and κt = 0 for all t ≤ N , an agent with core

access ci,t = 1 within the pair collects γt+1(0)
γt+1(1)+γt+1(0)

> 1
2
share of the risks from her

counterparties in period t. If neither of the agents within a pair has core access, they

share risks equally.

Recall that ci,t must be weakly decreasing over time, as Ψt+1(i) is a subset of Ψt(i).

Each agent can be characterized by the period in which she loss core access, denoted

by τi ≡ sup{N + 1 ≥ t ≥ 1 :ci,t = 1}. Intuitively, an agent holds more risks from her

counterparty until she loses her core access, as formally established below.

Corollary 1. An agent with core access until period τi collects risks for τi − 1 periods,

unloads her risks to her counterparty in period τi and then shares risks equally with her

counterparties thereafter. An agent's expected trading volume increases with τi.

In other words, if we use expected volume as the measurement of centrality, agents
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that have longer core access will become more central. In particular, an agent with

direct connection to the core at earlier period in fact is less central (i.e., having lower

expected volume) than an agent that has longer indirect core access. This highlights

that the timing of connections matters more than the standard distance measure used

in the network graph. Moreover, while these agents with longer core access have greater

expected volume, they are not are not ultimately riskier because they eventually unload

their risks to the core agent.15 In this sense, having larger trading volume does not imply

that they are riskier.

4.1.2 Predictions associated with the Rise of Risk-Concentration

A jump increase in transaction costs. If all banks adopt full risk-sharing, then our model

predicts a zero bid-ask spread and thus the price across all pairs can be mapped to the

fundamental price. When banks switch to risk-concentration, the bank within the pair

must be compensated, predicting an increase in bid-ask spreads. Hence, as established in

Proposition 3, it predicts a jump increase in transaction costs, even though the underlying

asset characteristics remain similar.

A jump increase in dispersion of banks' risk-bearing capacities and prices. Struc-

tural shift from fully risk-sharing to risk-concentration also predicts a jump increase in

interdealer price dispersion and risk-bearing capacities. Our model also provides an ex-

planation for the �nding in Eisfeldt, Herskovic, and Liu (2022). Through the lens of our

model, the normal time (low price dispersion time) is the period where banks adopt risk

sharing and thus relatively low price dispersion.16A slight increase in agents' risk-taking

incentives can result in banks collectively switching to risk concentration, predicting a

jump increase in interdealer price dispersion leading to the �nancial crisis.17

15In fact, as we discuss in the next section, when the �ow cost of bearing risks is positive (κt > 0) for
t ≤ N , the noncore bank directly matched to the core in the �nal trading period in fact has the lowest
posttrade risk exposure. In this sense, while these banks have been collecting risks over time and are
�closest� to the core, they actually ultimately become the least risky.

16Note that our model predicts zero price dispersion when all banks adopt risk sharing, since we
assume no other transaction costs and underlying frictions. Adding any frictions might then increase the
baseline level of price dispersion. In this sense, our model focuses on explaining the spike (the di�erence)
over time.

17Since our model is about the ex-ante risk exposures in the banking sector (instead of the ex-post
contagion risks), we interpret this endogenous regime shift happens before the collapse.
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4.2 Disintermediation with Increasing Core Size

We now analyze the possibility of varying core sizes and how such a change a�ects the

distribution of risks and prices. We use this result to show that, in response to the

regulation that increases the balance sheet cost of holding risks, the optimal network

would now feature lower level intermediation along with an increase in the core size.

Speci�cally, we analyze an environment in which all banks can potentially take a

costly binary action (such as invest or not) to reduce their risk-bearing cost in period

N + 1. This option naturally gives rise to a convex payo� function WN+1(v). Since the

investing banks will hold more risks, we refer those banks as the core banks. That is,

ci,N+1 = 1 i� a bank chooses to invest.

Assumption 4. Piecewise linear with binary action. The terminal payo� function solves

the optimal decision of accessing a faster trading technology:

WN+1(v) = max
cN+1∈{0,1}

{−γN+1(cN+1)v − ϕN+1(cN+1)} , (17)

where γN+1(1) = ηγN+1(0), 0 ≤ η < 1,and ϕN+1(1) > ϕN+1(0).

Application: Platform Access One example of Assumption 4 is that banks can po-

tentially pay a cost to obtain access to an exchange-like interdealer market.18 Such a

structure have been the focus of regulation and policy debates since the 2007-08 �nancial

crisis, as many �nancial over-the-counter (OTC) markets show a classical two-tiered mar-

ket structure where a few core banks have exclusive access to an exchange-like interdealer

market.19

The example in Equation (9) can be nested as γN+1(0) = −κN+1, and γN+1(1) =

−ηκN+1, where the �xed cost of accessing the technology is denoted ϕN+1(1) = φ >

ϕN+1(0) = 0. The convexity of the terminal payo� functionWN+1(v) holds more generally

when a bank has multiple options for investment in faster trading technologies and the

18Note that while the timing of our framework implies that platform entry comes at the end, this
assumption can be relaxed as long as there is a �xed cost associated with each entry. If there is no delay
cost, it is indeed optimal to postpone access until the end, as agents would prefer to accumulate as much
risk as possible from bilateral trades �rst before joining the platform.

19In particular, post-crisis reforms have increased dealer banks' balance sheet costs through tightened
capital requirements and additional liquidity requirements and have promoted all-to-all exchanges. See
detailed discussions in Yellen (2013) and Du�e (2018).
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Figure 3: Late vs. early Concentration (N = 2)

decision can be contingent on realized asset positions. We provide such an example in

Appendix A.3.

4.2.1 Dynamic Property of Core Access

When there are multiple cores, an additional question arises: Given the core size, what

would be the optimal connections over time? To see this, consider Figure 3 where the

total number of trading roundsN = 2 and thus four banks could potentially be connected.

Suppose that the bilateral trading outcome under both networks is such that Banks 3

and 4 (Banks 1 and 2) have higher (lower) posttrade variance, given by vi,N+1 = vH for

i = 3, 4 (vi,N+1 = vl for i = 1, 2). They, however, di�er in terms of the timing of the

bilateral connections. In the left graph of Figure 3, Bank 1 is �rst connected to Bank 2

and then Bank 3, but this order is reversed in the right graph.

Observe that the ordering of matching outcomes must result in di�erent dynamic

paths of vi,t despite having the same �nal outcome of vi,N+1. Speci�cally, to concentrate

risks on Agents 3 and 4, risk concentration takes place in period 2 for the left graph

but in period 1 for the right graph. Since concentration necessarily results in higher

total variance and is costly, it is optimal to delay risk concentration whenever the �ow

marginal cost of bearing risks in period t ≤ N, κt is strictly positive. Thus, any solution

that violates the backloading property is dominated.

Since risk concentration arises when agents have uneven core access, it is thus optimal

to distribute core access as evenly as possible next period within a pair. This thus allows

us to uniquely pin down the optimal dynamic connections to the core given any core size.

For example, if Agents i and j are matched in period t and are connected to two core

agents from that period onward, either of them maintains one core access from period

t+ 1 onward. That is, if ci,t = cj,t = 2, then ci,t+1 = cj,t+1 = 1,20 which explains why the

20Recall that an agent's core access is de�ned in Equation 15, which must be (weakly) decreasing over
time. The only di�erence is that ci,t can now be more than one, since an agent could be connected to
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right graph cannot be optimal. This result can be established more generally beyond A4,

which we relegate to the Appendix.

Lemma 3. For any two agents i and j matched in period t, their posttrade core access is

adjacent integers, ci,t+1 = b ci,t
2
c and cj,t+1 = d cj,t

2
e. Under Assumption A4, the core access

ci,t is the su�cient static for agent i's risk capacity in period t, where

γt(ci,t) =
1

2
H
(
κt + γt+1(bci,t

2
c), κt + γt+1(dci,t

2
e)
)
∀t ≤ N, (18)

and γt(ci,t) increase in ci,t.

Under A4, the core access is again a su�cient static for agent i′s risk capacity. The

only di�erence is that core access ci,t can be larger than one. As before, given γt(ci,t),

one can then pin down variance {vi,t} for all agents: Since γt(ci,t) increases in ci,t, agents
who have more core access posttrade bear more risks.

4.2.2 Optimal Core Size

We have established that there is a unique optimal market structure given any core size

c, which equals the initial core access for all agents connected from period 1 onward, ci,1.

The optimal network can then be further reduced to choosing the number of core agents

in the beginning of the trading game among 2N connected agents from period 1 onward.

The expected ex ante payo� of an agent solves

Π(v1) = max
c

{
−γ1(c)v1 −

( c

2N

)
φ
}
. (19)

Given any core size c, γ1(c) represents the risk-bearing capacity for all agents, taking into

account future connections according to Equation 18. If there are c core agents among

2N agents, the total measure of core agents would be c
2N
; hence, the second term captures

the total entry costs.21

The tradeo� of core size can be seen from Equation 19: A larger core size results

in higher total entry costs but lower risk-bearing costs. To explore how the core size

more than one core agent.
21Recall that an agent i can connect, directly or indirectly, to at most 2N agents in N rounds of trade,

where each type has a measure of 1/2N . Then, there are 1/2N identical replicas of the �nite network of
size 2N .
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depends on the underlying parameters, we further assume the parameter for the �ow cost

of bearing risks, κt = δκN+1 ∀t ≤ N , where the parameter δ represents the �ow cost of

bearing risks in a trading period relative to the terminal period.

Proposition 5. Under Assumption A4 and κt = δκN+1 ∀t ≤ N , given any (δ, η), the

optimal core size is a weakly decreasing function of φ
κN+1v1

.

We prove this result by showing that, the risk capacity γt(c) is a homogeneous function

of degree 1 in κN+1. Recall that κN+1 represents the balance cost of holding the assets

and can be mapped to the riskiness of the underlying assets and v1 represents the ex ante

exposure. Hence, the ratio φ
κN+1v1

captures the entry cost relative to the level of risks. A

higher value of the ratio means relatively higher costs of using the platform and thus a

lower optimal core size.

Network Response to Regulatory Changes We now use Proposition (5) to shed

light on the e�ect of polices that promote central clearing and/or discourage risk taking,

following the adoption of post-2008 banking regulations. This includes policy that pro-

vide a subsidy for platform participation and/or increase taxes on banks' net exposure.

Through the lens of model, the policy can be understood as increasing κt (i.e., making

it more costly for banks to hold risks) and/or decreasing the entry cost of the platform

(φ), both of which result in a lower φ
κN+1v1

.

As predicted by Proposition 5, these polices induce an increase in participation in the

central platform (i.e., a larger core size). As a result, there is also less risk concentration

within the network, illustrated by Figure 4.

Our model predicts that the structure becomes more symmetric; nevertheless, the

two-tier market structure persists. This explains why, as discussed in Collin-Dufresne,

Junge, and Trolle (2018) and Du�e (2018), all-to-all trading has not materialized and

the provision of clearing services remains concentrated.

4.2.3 Predictions associated with disintermediation

Lower dispersion of banks' risk-bearing capacities and aggregate volumes: As the size of

cores increases, banks shift from risk-concentrating, market-making trades toward risk-

sharing trades. Hence, the model predicts that banks' risk positions become less dispersed.
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Figure 4: Pre vs. Post-regulation Market Structure.
Each panel shows the graph of the equilibrium trading network. In the network graph, each

node represents a bank. The area of the node represents the gross trading volume involving the

bank. The edges between nodes represent bilateral trading relationships. The width of an edge

represents the bilateral trading volume. The left panel illustrates the pre-regulation market

structure. The right panel illustrates the post-regulation market structure with increased

balance sheet costs and lowered cost of accessing the centralized trading platform.

This is consistent with Eisfeldt, Herskovic, and Liu (2022), who documents Volcker rule

(March 2014) resulted in lower dispersion of dealers' risk-bearing capacities.

Higher compositions of customer-to-customer trades: At a micro level, our model

further predicts that �customers� trade more with other customers to hedge their risk

exposures and less with big �dealers�. To see this, as shown in the left panel of Figure 3,

Agents 1 and 2, which we refer to as customers, now �rst trade with each other before

meeting with the core dealers. In contrast to the case when there is only one dealer, they

would unload risks to Agents 3 and 4 before meeting with each other. In other words,

such change in the market structure means di�erent timing of connections: customers

now look for risk-sharing trades directly with other customers longer before unloading

risks to dealers. Through this channel, our model predicts a higher volume between

customer-to-customer connections, consistent with the empirical �ndings in Choi, Huh,

and Seunghun Shin (2023). They show that customers increasingly provide liquidity

following the adoption of post-2008 banking regulations.

Ambiguous e�ects on transaction costs: Since such a change in the market structure

predicts higher volume of risk-sharing trades, it also has unique e�ect on the average
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transaction costs. Speci�cally, by looking at the weighted transaction costs, the average

spread is thus given by Σt,vSt(v)ϑt(v)

Σt,vϑt(v)
, where ϑt(v) represents the expected volume for any

pair v at round t, one can see that such a structural change could result in lower average

transaction costs despite the increase in the spread that market-makers charge. This

is because that the spread between symmetric risk-sharing trades is zero and such a

structural change results in higher shares of risk-sharing trades (i.e., C2C trades). This

prediction is again consistent with Choi, Huh, and Seunghun Shin (2023), which shows

the conventional bid-ask spread measures underestimate the cost of dealer's liquidity

provision when C2C trades increase.

Indeed, our result highlights that the standard predictions � an increase in banks'

balance sheet cost increases the bid-ask spreads and transaction costs � may not hold when

the market structure also changes. This thus rationalizes the seemingly contradicting

evidence in the post-Volcker rule era22 and also implies that transaction costs are generally

no longer a su�cient measure of welfare under an endogenous market structure.

Remark While both Section 4.1 and 4.2 can be driven by an increase in risks (measured

by v0) associated with an increase in the core size, they have di�erent predictions. This is

because that in Section 4.1, we focus on structural shift starting from fully risk-sharing,

hence, an increase in v0 predicts the rise of the core (i.e., from no core to a minimum core

size) predicts more asymmetric structure. On the other hand, in Section 4.2, we focus on

an increase in core size, conditional on positive measure of core size, which predicts more

symmetric market structure and lower intermediation.

4.2.4 Normative Implications

Concentration Can be E�cient with Platform Access Thanks to Proposition 1,

we know that e�ciency is obtained if and only if the traders' private payo� is aligned with

the social payo�. Thus, concentration itself might not be ine�cient. Hence, the optimal

intervention should not be targeting all-to-all trading or reducing risk concentration.

Indeed, if there is no gap between private incentives of risk taking and entry cost, our

results highlight the existence of exclusive core members and a high concentration of risks

22Bao, O'Hara, and Zhou (2016) and Bessembinder et al. (2018) show that the Volcker rule leads to
lower inventories and capital commitment for bank-a�liated dealers. Such a decline, however, does not
worsen the overall market liquidity measured by the bid-ask spread.
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and volume can be e�cient simply because of the economic scale, which is driven by the

�xed cost component of entering platform.

Welfare-maximizing Policy with Entrenchment by Incumbent Cores On the

other hand, whenever there are frictions that lead to a deviation between private incen-

tives for risk taking and the entry cost, the equilibrium can be ine�cient. According to

Proposition 1, such an ine�ciency (if it exists) can be corrected by aligning the private

and social value of risk taking and/or entry.

One common concern, for example, is that the platform might be controlled by or have

entrenched incumbent dealers. One can capture this in our environment by assuming that

a set I0 of agents with exogenous measure c0
2N

have built relationships among themselves

and collectively operate the trading platform at cost φ. The incumbent agents jointly own

the platform and decide whether to charge a new entrant to the platform an exogenous

fee ∆ > 0.

Given any fee, this setup can thus be understood as our trading game with heteroge-

neous costs φi where φi ≡ φ + ∆ for potential entrants i /∈ I0 and φi = φ for incumbent

banks i ∈ I0. That is, the incumbent cores have a lower entry cost than the rest of the

market. The existence of the fee thus generates the wedge between the private and social

value of platform. Our model thus predicts that setting the subsidy sc for entry such that

c∗(φ + ∆ − sc) = c∗(φ) or introducing a new platform with entry cost φ will restore the

e�cient market structure.

5 Conclusions

In this paper, we develop a tractable framework of endogenous trading networks and use

it to analyze how the market structure may respond to underlying parameters and/or

regulatory changes. Exactly because banks can accumulate risks from others, any policy

must account for the network e�ect of risk-taking behaviors among banks. Although the

network structure seems complex, our framework provides a tractable and unique char-

acterization as well as simple guidelines for possible interventions when private incentives

are distorted relative to the social cost.
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A Appendix

A.1 E�ciency, Uniqueness, and Variance Representation

Because agents have quasilinear utility, Pareto optimal allocations are the solution to

a simple social planner's optimization problem where the planer maximizes the present

value of total utility of the economy. The planner's choices in period t include any agent i's

counterparty ji,t, asset allocation within a match, ãi,t+1(ai,t, aji,t,t) and ãji,t,t+1(ai,t, aji,t,t).

The planner chooses period-t counterparties given period-0 information and asset distri-

bution in period t. The planner's value function in period t has the joint asset distribution

across agents as its state variable and can be characterized as

Πt(πt) =

ˆ
E1ut(ãi,t(ai,t, aji,t,t))di+ βΠt+1(πt+1), for t ≤ N,

ΠN+1(πN+1) =

ˆ
E1uN+1(ai,N+1)di.

The constraints that the planner faces include:

(1) Given πt, the planner's period-t is feasible if and only if

ˆ i

0

Pr(jι,t ≤ ι)dι ≤ i, (A.1)

ãi,t(ai, aji,t) + ãj(ai, aji,t) = ai + aji,t , (A.2)

where (A.1) is the feasibility constraint of the matching allocation of the planner, ∆(πi,t)

refers to the support of the marginal distribution πi,t; (2) The joint distribution evolves

consistently with the counterparty assignment and within match asset allocations.

Proposition 1 holds because the equilibrium value of bank i in period t equals the

shadow value of adding bank i to the planner's optimization problem in period t. For a

more detailed proof, see for example Chang and Zhang (2022).

Under the risk preferences speci�ed in Section 3.1, because agents' utility is quadratic

in their asset holding, only the mean and variance of a distribution are relevant to their

payo�. In general, we can represent the joint distribution by the means and variances of

agents' asset holdings and covariances between their asset holdings. To do this, we �rst

show that it is optimal to keep the means of individual asset holding at zero. We then
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show that it is optimal to match agents whose asset holdings are not correlated.

Lemma 4. It is optimal to keep the means of individual asset holding at zero.

Proof. Assumption (3) can be translated into controlled changes in the mean and variance

of an agent's asset holding. Denote Etai,t = mi,t, Et(ai,t − mi,t)
2 = vi,t and ρi,j,t =

Cov(ai,t+1,aj,t+1)
√
vi,t+1vj,t+1

for all i, j, and t. Because the utility function of the agent is quadratic,

the marginal asset distribution for Agent i enter the social planner's objective through

its expected value and variance. Let mt = {mi,t}∀i, vt = {vi,t}∀i, ρt = {ρi,j,t}∀i,j. Then
the period-t state variable of the social planner can be summarized by (mt,vt,ρt).

The planner's objective function is then

Πt(mt,vt,ρt) = −
ˆ
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1), for t ≤ N,

(A.3)

where

ΠN+1(mN+1,vN+1,ρN+1) =

ˆ
WN+1(vi,N+1)di. (A.4)

The feasibility of within-match asset allocation between agent i and her counterparty j

implies that ai,t+1 + aj,t+1 = ai,t + aj,t for all t ≤ N , which is translated into two separate

constraints for the mean and the variance of asset allocation to Agents i and j

mi,t+1 +mj,t+1 = mi,t +mj,t, (A.5)

vi,t+1 + vj,t+1 + 2
√
vi,t+1vj,t+1ρi,j,t+1 = vi,t + vj,t + 2

√
vi,tvj,tρi,j,t. (A.6)

Note that the choice of expected asset holding is subject to a separate constraint, (A.5),

from the choice of its variance, (A.6). The law of motion of asset holding variance and

correlation does not depend on the expected asset holding.

The planner's optimization problem in period t can be summarized by the following
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Lagrangian:

Lt(mt,vt,ρt) = −
ˆ
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1) (A.7)

+

ˆ
λmi,ji,t,t (mi,t −mi,t+1) di

+

ˆ
λvi,ji,t,t(vi,t +

√
vi,tvji,ttρi,ji,t,t − vi,t+1 −

√
vi,t+1vji,t+1,t+1ρi,ji,t,t+1)di

for all t ≤ N, where λmi,ji,t,t refers to the Lagrangian multiplier for constraint (A.5) for agent

i and her counterparty ji,t, and λvi,ji,t,t refers to the Lagrangian multiplier for constraint

(A.6).

For periodN+1, ∂ΠN+1(mN+1,vN+1,ρN+1)

∂mi,N+1
= 0 ≥ ∂ΠN+1(mN+1,vN+1,ρN+1)

∂vi,N+1
and ∂ΠN+1(mN+1,vN+1,ρN+1)

∂ρi,j,N+1
=

0 for all i, j.

Using mathematical deduction, we can then show that ∂Πt(mt,vt,ρt)
∂mi,t

≤ 0 for all i and

all t ≤ N , where the inequality is strict if and only if there exits t ≤ t′ ≤ N such that

κt′ > 0. This is because given the counterparty choices, ji,t, the �rst order condition with

respect to mi,t+1 implies that λmi,ji,t,t < 0 when κt > 0 or ∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0.

The e�ect of within-match asset allocation on Agent i's expected asset holding can be

summarized by αmi,t, such that mi,t+1 = αmi,t(mi,t +mj,t), mj,t+1 = (1−αmi,t)(mi,t +mj,t). If
∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0, it is clear that αmi,t should be between 0 and 1. If αmi,t were greater

than 1 or less than 0, the planner can strictly increase either agent i or her counterparty

ji,t's marginal contribution to the planner's period t objective function without reducing

other agents' contribution. For example, if αmi,t > 1, by setting αmi,t to 1 reduces m2
i,t+1 to

(mi,t +mj,t)
2 and m2

ji,t,t+1 to 0. If ∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, but κi,t > 0, the same argument

applies so that 0 ≤ αmi,t ≤ 1. If ∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, and κi,t = 0, it is without loss to

the social planner to impose 0 ≤ αmi,t ≤ 1.

Because the expected value of agents' initial marginal asset distribution is zero, the

fact that 0 ≤ αmi,t ≤ 1 implies that mi,t = 0 for all i and all period.

Lemma 4 is the �rst step in characterizing the e�cient asset allocation. It implies that

the socially optimal asset distribution in any period can be represented by the variance

of individual agents' asset holdings and the correlation of their asset holdings.

Lemma 5. In the socially optimal matching assignments and asset allocations, the post

trade asset holdings of two matched Agents i and j are perfectly correlated, and the planner
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always match agents with uncorrelated asset holding. That is, ρi,ji,t,t = 0, and ρi,ji,t,t+1 =

1, for any agent i and their optimal counterparty ji,t.

Proof. The proof takes two steps. First, we show that if ρi,ji,t,t = 0 for any agent i

and their optimal counterparty ji,t, it is optimal to have within match asset allocation

perfectly correlated.

If ρi,ji,t+1,t+1 = 0, then for all i, j such that ρi,j,t+1 > 0, we can show by di�erentiating

the planner's Lagrangian, (A.7), that ∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0. Following a similar argu-

ment to that in the proof of Lemma 4, we can see that the marginal value of increasing

an agent's variance is negative ∂Πt+1(mt+1,vt+1,ρt+1)

∂vi,t+1
≤ 0.

The feasibility of within-match asset allocation implies that variances of asset al-

locations satisfy (A.6). According to (A.6), increasing the correlation between asset

allocations to matched agents reduces the total variance of asset allocation to them,

vi,t+1 + vji,t,t+1. Because
∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0, it is then optimal to set ρi,ji,t,t+1 = 1.

The second step is to show ρi,ji,t,t = 0. Because the initial asset holdings are not

correlated, if ρi,ji,t,t+1 = 1, then the asset allocations are either uncorrelated or perfectly

positively correlated. Because there is a continuum of agents in the economy, for any

agent i, if the planner is to match him with an agent with variance v′, there always exists

such an agent whose asset holdings are uncorrelated with agent i. According to (A.7),

this shadow value of ρi,ji,t,t equals λ
v
i,ji,t,t

, which is weakly negative. It is then optimal to

match two agents whose asset holdings are not correlated.

Lemma 5 implies that even though agents have the option to trade repeatedly with a

counterparty, repeated trade without receiving new asset holding shocks is suboptimal.

Trading once, the asset holdings of Agent i and the counterparty become positively

correlated. Then, trading twice is dominated by trading with a new counterparty with

the same asset holding variance but whose asset holding is not correlated with Agent i's.

Thus, we can characterize the equilibrium using a representation of the aggregate asset

holding distribution by the variances of individual agents' asset holding distribution.

39



A.2 Network Properties

A.2.1 Proposition 2

For result (1): From Equation 11, let

ft(α) ≡ −κt
{
α2 + (1− α)2

}
V +Wt+1(α2V ) +Wt+1((1− α)2V )

We thus have

f ′t(α) =
(
−κt +W ′

t+1(α2V )
)

2αV −
(
−κt +W ′

t+1((1− α)2V )
)

2(1− α)V.

If W ′′
t+1 < 0,Ft(α) is a concave function in α, as

f ′′t (α) =
(
−κt +W ′

t+1(α2V )
)

2V +
(
−κt +W ′

t+1((1− α)2V )
)

2V

+W ′′
t+1(α2V )(2αV )2 +W ′′

t+1((1− α)2V ) (2(1− α)V )2 < 0.

Hence, if WN+1(V ) is concave in V, α = 1
2
, which satis�es the FOC, is the global

maximizer. Thus

ΩN(vi + vj) = −κN
(
vi + vj

2

)
+WN+1(

vi
2

) +WN+1(
vj
2

),

Given that WN(vi) = maxj ΩN(vi + vj)−WN(vj), we thus have

W ′
N(vi) = −κN +

1

2
W ′
N+1(

vi
2

)

and hence,W ′′
N(vi) < 0 ifW ′′

N+1(vi
2

) < 0. By backward induction, we haveW ′′
t (v) < 0 ∀t, v

and thus risk sharing is always the optimal solution. We thus have vi,t = 1
2
vi,t−1 =

(
1
2

)t
v0

∀i. Since all agents are symmetric over time, it is WLOG to assume random matching.

For result (2): Given that Vij = vi + vj, to establish PAM, it is su�cient to show that
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Ωt(V ) is convex in V ∀t. Let α = α∗(V ) denote the optimal allocation under V.

Ωt(λV ) + Ωt((1− λ)V )

≥κt
{

(α2 + (1− α)2)V
}

+Wt+1(α2λV ) +Wt+1((1− α)2λV )

+Wt+1(α2(1− λ)V ) +Wt+1((1− α)2(1− λ)V )

≥
{
κt(α

2 + (1− α)2)V +Wt+1

(
α2 (λV + (1− λ)V )

)
+Wt+1

(
(1− α)2 (λV + (1− λ)V )

)}
= Ωt(V ).

where the �rst inequality follows that the surplus under optimal allocation α∗(λV ) and

α∗((1 − λ)V ) is higher than using the allocation rule α∗(V ). The second follows that

Wt+1(v) is convex in v, which is true for WN+1(v). Assume that Wt+1(v) is convex, it

thus implies that Ωt(Vij) is convex in Vij = vi + vj. Moreover, since

Wt(vi) = max
j
{Ωt(vi + vj)−Wt(vj)} ,

it thus shows that Wt(v) is convex in v ∀t. Hence, by backward induction, Ωt(vi + vj) is

convex in vi + vj and hence PAM ∀t.

A.2.2 Proof for Lemma 8

Proof. For any α(V ) that satis�es the FOC condition and PAM, we thus have

Ωt(V |gt) = Σk

{
−κtα2

kV +Wt+1(α2
kV |gt+1(α2

kV ))
}
,

where αi = α(V ) = 1− αj.
By the envelope theorem, and v = 2V,Wt(v|gt) = 1

2
Ωt(2v|gt), we have

W ′
t(v|gt) = Ω′t(2v|gt) =

{
−κt +W ′

t+1(α2V |gt+1(α2V ))
}
α2 +

{
−κt +W ′

t+1((1− α)2V |gt+1((1− α)2V ))
}

(1− α)2

=

∏
k∈{i,j}

(
−κt +W ′

t+1(α2
kV |gt+1(α2

kV ))
)

Σk∈{i,j}
(
−κt +W ′

t+1(α2
kV |gt+1(α2

kV ))
) =

1

2
H(−κt +W ′

t+1(α2V |gt+1(α2V )),−κt +W ′
t+1((1− α)2V |gt+1((1− α)2V ))

, where using the fact that from FOC αk =
−κt+W ′t+1(α2

−kV |gt(α
2
−kV ))

Σk(−κt+W ′t+1(α2
kV |gt(α

2
kV )))

.
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A.2.3 Proof for Lemma ??

Let FN(α) ≡ 1
2N

{
WN+1 (α2 (V )) +

(
2N − 1

)
WN+1

((
1−α

2N−1

)2
V
)}

,the FOC thus yields

F
(1)
N (α|N) =2

√
V

W ′ ((α2V
))√

α2V −W ′

((
1− α
2N − 1

)2

V

)√(
1− α
2N − 1

)2

V

 .

(A.8)

and χ(v) ≡
{(

dW ′(v)
√
v

dv

)√
v
}

= 1
2
W ′(v) +W ′′(v)v, SFOC can be rewritten as

F
(2)
N (α) = 4V

(
χ(α2V ) + χ

((
1− α
2N − 1

)2

V

)
1

2N − 1

)
, (A.9)

which is concave as χ(v) is concave. Let v̄ denote the maximum of χ(v). Under A3,

χ(0) = 1
2
W ′(0) < 0 and limv→∞ χ(v) > 0, and we thus have χ(v̄) > 0, and there exists

v̂ < v̄ such that χ(v̂) = 0, and χ(v) < 0 i� v < v̂. This also implies that dW
′(v)
√
v

dv
= χ(v)√

v
< 0

i� v < v̂. In other words, W ′(v)
√
v is a unimodal function with the minimum at v̂. Hence,

for any asymmetric root that satis�es FOC , it must be the case that vl(α) < v̂ < vh(α).We

now use the next two lemma to establish that there can be at most one core.

Lemma 6. When N = 1, FN(α) is single-peaked. Moreover, the optimal share α∗N(v) at

period N continuously increases in v

Proof. Since

F (3)(
1

2N
) =

{
g′(

1

2N
V )

√
1

2N
V

}(
1−

(
1

2N − 1

)2
)
, (A.10)

hence when N = 1, F
(3)
N (1

2
) = 0. Given that F (3)

N (1
2
) is concave, F (2)

N (1
2
) is the maximum

of F (2)
N (α) and F (3)

N (α) < 0 ∀α ∈ (1
2
, 1). This thus means that there can be at most one

local maximum in the region of (1
2
, 1). To see this, suppose that there are two maxima

(α1, α2) in this region; then, there must exist a local minimum αmin ∈ (α1, α2), where

F
(2)
N (αmin) > 0 but F (2)

N (α1) < 0 and F (2)(α1) < 0, which again contradicts that F (3)(α) <

0 ∀α ≥ 1
2
. Hence, (1) if F (2)(1

2
) = g(V

4
) < 0, then 1

2
is the unique local maximum; (2) if

F (2)(1
2
) = g(V

4
) > 0, then 1

2
is the local minimum, and there is a unique local maximum

α∗ ∈ (1
2
, 1).
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By the implicit function theorem, for any α∗N(V ) ≥ 1
2
, since χ(v) = 1

2
W ′(v)+W ′′(v)v,

and we have

dα∗N(V )

dV
= −

∂2FN (α,V )
∂α∂V

∂2FN (α,V )
∂2α

|α=α∗∝ 2
{
W ′′
N+1(α2V )α3V −W ′′

N+1((1− α)2V )(1− α)3V
}

= 2

{
χ(vh(α))− 1

2
W ′(vh(α))

}
α−

{
χ(vl(α)− 1

2
W ′(vl(α))

}
(1− α)

= 2 {χ(vh(α))α− χ(vl(α))(1− α)} ≥ 0.

The �rst equality uses the fact that χ(v) = 1
2
W ′(v) + W ′′(v)v, and the second uses

W ′(vh(α))
√
α = W ′(vh(α))

√
(1− α) at α∗. The last inequality uses the fact that, for any

α∗N(V ) > 1
2
, it must be the case that vl(α) < v̂ < vh(α); thus χ(vl(α)) < χ(vh(α)).

Lemma 7. Under A3 and κt = 0, (1) there can be at most two di�erent values of vN+1;

(2) if max{vkN+1} > min{vkN+1}, there can be at most one core agent when κt = 0.

Proof. First, from Equation A.8, F (1)(1) = W ′(V ) < 0, which means that the solution

must be interior. For Result (1), observe that any vN+1 must satisfy the FOC from the

static problem, where {vk,N+1} maximizes

max Σ2N

k=1WN+1(vk,N+1) (A.11)[
Σk
√
vk,N+1

]2
= 2Nv1. (A.12)

Hence,
√
vk,N+1

(
W ′
N+1(vk,N+1)

)
= λ

√
2Nv1, (A.13)

where λ is Lagrange multiplier of the constraint A.12. Since W ′(v)
√
v is a unimodal

function with the minimum at v̂, Hence, there can be at most two roots for Equation

A.13.

For Result (2): let vcN+1 = max{vkN+1} and v0
N+1 = min{vkN+1}. This statement holds

automatically when N = 1. We now show this holds when N ≥ 2. Suppose that there

are more than one agent with vcN+1. Given that the outcome can be achieved under any

ordering of matching, �rst consider the case that the core is matched with a non-core

agent in period N , which means that v1
N =

(
√
vcN+1+

√
v0
N+1)2

2
and it must be the case that
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α∗N(v1
N) > 1

2
. The same outcome, however, can be achieved by have two core agents meet

in period N,which implies their v2
N =

(
√
vcN+1+

√
vcN+1)2

2
and they adopt risk sharing, where

α∗N(v2
N) = 1

2
. Since v1

N < v2
N , the fact that α

∗
N(v2

N) = 1
2
but α∗N(v1

N) > 1
2
violates the fact

that α∗N(vN) increases in vN . Contradictions.

Lastly, given that there can be at most one core agent and the problem is identical

to a static allocation, Equation 16 thus follows from Equation A.11, using the constraint

that
[√

α2V +
(
2N − 1

)√
vl(α)

]2

= 2Nv1, we thus have vl(α) =
(√

V−
√
α2V

(2N−1)

)2

.

A.2.4 Proof for Proposition 3

Proof. Step 1: We �rst show that, for any N > 1, FN(α) has at least two local maxima

(α∗e, α
∗
c) from some mid-range of V ∈ (V`, Vh), where α∗e = v1

2N
represents the risk sharing

and α∗c ∈ ( v1

2N
, 1) is a solution involve risk concentration. To do so, we show that FN(α)

is convex in some region (α1, α2), where 1
2N

< α1 < α2 < 1.

First of all, in order to guarantee that full risk sharing is a local maximum, we need

F
(2)
N (

1

2N
) = 4V

{
g(

V

(2N)2 )
2N

2N − 1

}
< 0,

hence, this condition holds whenever
(

1
2N

)2
V < v̂. Hence, we set Vh = 2Nv1 =

(
2N
)2
v̂.

Moreover, from Equation A.10,

F
(3)
N (

1

2N
) =

{
χ′(

(
1

2N

)2

V )

√
1

2N
V

}(
1−

(
1

2N − 1

)2
)
> 0,

as χ′(v) > 0 for v < v̂ < v̄. To show that F (2)
N (α) > 0 for some interior range of

α, it is su�cient to show that the maximum value of F (2)
N (α) is large than zero. Let

Γ(V ) = maxα F
′′
N(α|V ). One can show that Γ(v) increases in v. To see this, let α̂(V ) be
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the solution above. For any V ′ > V, let α̃ = α̂(V )
√

V
V ′
, and thus

Γ(V ′) ≥ χ

((
α̂2(V )V

V ′

)
V ′
)

+ χ


1−

(
α̂(V )V
V ′

)
2N − 1

2

V ′

( 1

2N − 1

)

= χ
(
α̂2(V )V

)
+ χ


√V ′ −

(
α̂(V )

√
V
)

2N − 1

2
( 1

2N − 1

)

≥ χ
(
α̂2(V )V

)
+ χ


√V −

(
α̂(V )

√
V
)

2N − 1

2
( 1

2N − 1

)
= Γ(V ),

where the last inequality uses the fact that χ′(vl(α)) ≥ 0. Let V̄ such that Γ(V̄ ) = 0,

we thus have Γ(V ) > 0, for V > V̄ , and by continuity, there exists a region where

F ′′N(α|V ) > 0. Moreover, since

Γ(Vh + ε) > χ(v̂ +
ε

2N
)

2N

2N − 1
> 0,

it must be the case that to V̄ < 2N v̂. Lastly, we need to have

F ′′N(1|V ) = χ(V ) + χ (0)
1

2N − 1
< 0, (A.14)

so that F ′′(α|V ) is concave when α is large enough. Note that since F ′N(1|V ) < 0, together

with F ′′N(1|V ) < 0, it then guarantees the existence of another local maximum α∗c < 1.

Condition A.14 is possible as 2Nv1 > v̄, χ′(v) < 0 for v < v̄ and χ(0) < 0, this condition

is thus guarantees when v1 is large enough. Let Ṽ > v̄ such that F ′′N(1|Ṽ ) = 0, we thus

have F ′′n (1|V ) < 0 for V > Ṽ . Hence, set V` = max{V̄ , Ṽ }, there exists a region where

F ′′N(α|V ) > 0 when V ∈ (V`, Vh).

Step 2: We now show that the exists V ∗ ∈ (V`, Vh) such that α∗e is the global optimal

i� V < V ∗.

D(V,N) ≡ max
α> 1

2N

{
WN+1

(
α2V

)
+
(
2N − 1

)
WN+1

((
1− α
2N − 1

)2

V

)}
−2NWN+1

((
1

2N

)2

V

)
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∂D(V,N)

∂V
=

{{
W ′
N+1 (vh(α))

vh(α)

V
+
(
2N − 1

)
W ′
N+1 (vl(α))

vl(α)

V

}
− 2NW ′(

(
1

2N

)2

V )

((
1

2N

)2
V

V

)}

= W ′
N+1 (vl(α))

√
vl(α)

1

V

{√
vh(α) +

(
2N − 1

)√
vl(α)

}
−W ′(

(
1

2N

)2

V )
1

2N

= W ′
N+1 (vl(α))

√
vl(α)−W ′(

(
1

2N

)2

V )

=
1√
V

{
W ′
N+1 (vl(α))

√
vl(α)−W ′(

(
1

2N

)2

V )

√
V

(2N)2

}
> 0

where the �rst equality uses FOC and thusW ′ ((α2V ))
√
α2V−W ′

((
1−α

2N−1

)2
V
)√(

1−α
2N−1

)2
V =

0, the second equality uses the variance constraint
√
vh(α)+

(
2N − 1

)√
vl(α) =

√
V , and

the last inequality uses the fact that
d(W ′(v)

√
v)

dv
< 0 for v < v̂.

A.2.5 Proof for Corollary 4

We �rst show that, according to Lemma 8, when κt=0, we haveW ′
t(vi,t) = 1

2N−t+1

 2N−t+1

Σk∈Ψt(i)

(
1

W ′
N+1

(vk,N+1)

)
 .

This holds for period N. Assume that W ′
t+1(vi,t+1) =

 1

Σk∈Ψt(i)

(
1

W ′
N+1

(vk,N+1)

)
 ,by back-

ward induction, we thus have

W ′
t(vi,t) =

1

2

{
2

Σ 1
W ′t+1(vi,t+1)

}
=

1

Σk∈Ψt+1(i)

(
1

W ′N+1(vk,N+1)

)
+ Σk∈Ψt+1(j)

(
1

W ′N+1(vk,N+1)

)
=

1{
Σk∈Ψt(i)

(
1

W ′N+1(vk,N+1)

)}−1

Hence, the value above only depends on whether ic ∈ Ψt(i). If so, ci,t = 1, and thus have

γt(1) =
1

1
W ′N+1(vcN+1)

+ (2N−t+1−1)

W ′N+1(v0
N+1)

>
1

1
W ′N+1(v0

N+1)
+ (2N−t+1−1)

W ′N+1(v0
N+1)

=
W ′
N+1(v0

N+1)

2N−t+1
= γt(0),

where the inequality uses the fact that 1
W ′N+1(vcN+1)

< 1
W ′N+1(v0

N+1)
.
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A.2.6 Proof for Lemma 3

We �rst use the lemma below to establish an additional necessary condition for the

optimal path of vi,t.

Lemma 8. When the �ow marginal cost of bearing risks κt > 0, the optimal solution

must satisfy

ṽht+1(ṽht (vt)) ≥ ṽht+1(ṽlt(vt)) ≥ ṽlt+1(ṽlt(vt)) ≥ ṽlt+1(ṽht (vt)).

Proof. We now show that if this condition is violated, �xing vk,t+2 but changing the

ordering of the matches among these four banks lowers the total variance of vk,t+1. Hence,

whenever κt > 0, such a deviation is pro�table. Given that the constraint yields (
√
vi,t+2+

√
vj,t+2)2 = 2vi,t+1, we thus have,

Ωt(v) = −κt
1

2

{[√
vi,t+2 +

√
vj,t+2

]2
+
[√
vi,t+2 +

√
vj,t+2

]2}
+ Σk (−κt+1vk,t+2 +Wt+2(vk,t+2))

≤ −κt
1

2

[√v1,t+2 +
√
v4,t+2

]2︸ ︷︷ ︸
v1,t+1

+
[√
v2,t+2 +

√
v3,t+2

]2︸ ︷︷ ︸
v2,t+1

+ Σk (−κt+1vk,t+2 +Wt+2(vk,t+2))

The �rst inequality uses the fact that f(vi, vj) ≡
[√
vi +
√
vj
]2

and f12(vi, vj) > 0; hence

NAM sorting minimizes the �ow payo�. The last equality uses the fact that

vt =
(√

v1,t+1 +
√
v2,t+1

)2
=

1

4

[√
v1,t+2 +

√
v4,t+2 +

√
v2,t+2 +

√
v3,t+2

]2
.

In other words, di�erent matching plan in period t+1 only a�ects changes the �ow payo�

in period t. Hence, if the condition is violated, changing the ordering of the matches

among these four banks lowers the total variance of vk,t+1 and still have identical vk,t+2

from period t+ 2 onward .

We now use the result above to prove Lemma 3.

Given the payo� in the �nal period N+1, WN+1(v) = maxcN+1
γN+1(cN+1)v−φ(cN+1),

where γN+1(cN+1) increase in cN+1 ∈ {0, 1}, and thus if ci,N+1 > cj,N+1, then it must be

the case that vi,N+1 > vj,N+1. Since ci,N = ci,N+1 + cjt(i),N+1 ∈ {0, 1, 2},the value of γN(c)

is given by Equation 14, which increases in c. Thus, c∗N+1(v) must increase in v.

For any period t = N − 1, suppose that cj,N − ci,N ≥ 2. which is only possible when
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cj,N = 2 and ci,N = 0, as ck,N ∈ {0, 1, 2}. Since γN(c) increases in c, Agent j must

hold strictly higher posttrade variance (i.e., vj,N > vi,N). Moreover, as ck,N ∈ {0, 1, 2},
cj,N − ci,N ≥ 2 is only possible when cj,N = 2 and ci,N = 0. This thus means that

cj,N+1 = cjN (j),N+1 = 1 and ci,N+1 = cjN (i),N+1 = 0. Since c∗N+1(v) must increase in v, it

thus implies that

min{vj,N+1, vjN (j),N+1} > min{vi,N+1, vjN (i),N+1},

which contracts Lemma 8. Hence, for any cN−1 ∈ {0, 1, 2, 3, 4}, the connections are

unique, where ci,N =
{
b ci,N−1

2
c, d ci,N−1

2
e
}
and thus cN−1 is su�cient statics. Last, since

γN(c) decrease in c, γN−1(c) thus also increases in c.

By backward induction, assume that ci,t =
{
b ci,t

2
c, d ci,t

2
e
}
and let γt+1(c) denote its

corresponding risk capacity, which decreases in c and the value function yields

Wt(v) = max
c
γt(c)v − φ(c),

and hence if ci,t > cj,t, then it must be the case that vi,t > vj,t. Hence, by similar logic, if

cj,t+1 − ci,t+1 ≥ 2, then

min
{
cj,t+2, cj∗t+1(j),t+2

}
> min

{
ci,t+2, cj∗t+1(i),t+2

}
and thus

min{vj,t+2, vj∗t+1(j),t+2} > min{vi,t+2, vj∗t+1(i),t+2},

which violates Lemma 8. Last, since γt+1(c) is decreasing in c and, under optimal access,

γt(c) = 1
2
H(κt + γt+1(b c

2
c), κt + γt+1(d c

2
e)) is thus increasing in c in period t. This thus

establishes that Lemma 3 must hold for any t.

A.2.7 Proof of Proposition 5

We �rst show that γ∗t (c|δ, η, κ) = κγ∗t (c|δ, η, 1) is a homogeneous function of κ. This holds

for N + 1, as γN+1(1) = −ηκ and γN+1(0) = −κ. Given the expression for γ∗t (c|δ, η, κ)

from Equation 18, we thus have
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γ∗t (c|δ, η, κ) =
1

2
H
{
κ(−δ + γ∗t+1(b c

2
c|δ, η, 1)), κ(−δ + γ∗t+1(d c

2
e|δ, η, 1))

}
= κ

1

2

{
H
(
−δ + γ∗t+1(b c

2
c|δ, η, 1)

)
,
(
−δ + γ∗t+1(d c

2
e|δ, η, 1)

)}
.

Hence, Equation (19) can be rewritten as Π = κv1 maxc

{
γ̂1(c)− c

2N

(
φ
κv1

)}
, where

γ̂1(c) = γ∗t (c|δ, η, 1). By comparative statics, c∗
(

φ
κv1

)
increases in φ

κv1
.

A.3 Diminishing Marginal Cost of Bearing Risks and Endoge-

nous Search Intensity: An Example

Suppose that banks can pay a quadratic cost − c
2
γ2 to have access to the competitive

market with probability γ and that they choose the search intensity, γ, conditional their

realized asset holding. Denote

WN+1(v) =

ˆ
Ŵ (a)dπN+1(a)

where Ŵ (a) is a bank's expected payo� conditional on pretrade asset holding being a.

Ŵ (a) = max
γ
− c

2
γ2 − (1− γ)a2

Thus, the optimal search intensity conditional on pretrade asset holding a is

γ(a) = c−1a2

and

Ŵ (a) = − c
2
γ(a)2 − (1− γ(a))a2 = −a2 + c−1a4.

If the asset holding follows a normal distribution with mean 0 and variance v, the kurtosis

of the distribution is Ea4 = 3v2.

WN+1(v) = EvŴ (a) = −v + 3c−1v2
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The marginal risk-bearing cost is decreasing in v, W ′(v) = −1 + 6c−1v.
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