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1 Introduction

When agents have heterogeneous and imperfect information about the state of the

economy, they each have an incentive to learn from their observations of endogenous

aggregate variables. But because these aggregates themselves depend on the forecasts

of other agents, learning from them requires each agent to forecast the forecasts

of others. This mechanism has proven to be both interesting and challenging for

economists to incorporate into their models. Interesting both because it can alter

the way that fundamental shocks propagate through the economy and because it

opens the door for non-fundamental shocks to expectations to have real consequences,

but challenging because it can introduce technical difficulties for standard solution

procedures. In the existing literature, the model of Townsend (1983) has played

an important role as an early dynamic formalization of this mechanism, and as a

laboratory in which to explore its implications.

The purpose of this paper is to revisit the Townsend model to simplify, revise,

and extend existing theoretical results about it in the large (and growing) subsequent

literature. The first part of the paper shows that an aggregate price index can reveal

so much information about the state of the economy that uncertainty about other

firms’ forecasts plays no role in affecting the equilibrium dynamics. Existing proofs of

this result appear in the literature, but with disadvantages, in that they are either less

general, unnecessarily roundabout, or incorrect. Furthermore, this part proves that

the revealing equilibrium is unique, which is more difficult to establish, and has so far

proven elusive. It then describes how this collection of results extends to perturbed

versions of the baseline model, including versions with persistent idiosyncratic shocks

and structural heterogeneity across sectors.

The second part of the paper discusses the version of the model originally analyzed

by Townsend, in which observations of the aggregate price index are not perfect, but

are contaminated by independent noise. The main contribution in this part is an

impossibility result, which says it is impossible to represent the equilibrium dynamics

with a finite number of state variables. An equivalent way to say this is that, even

though the endogenous processes are all stationary, they do not have autoregressive

moving average (ARMA) representations. This formally confirms Townsend’s original

conjecture that the infinite regress of higher-order beliefs in this model leads to an

infinite state problem, despite evidence to the contrary from the existing literature.
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The fact that the state is infinite-dimensional poses a challenge for using standard

Kalman filtering formulas to compute the equilibrium, and this paper presents a new

numerical procedure to compute the equilibrium in models of this type by iterating on

the equilibrium fixed point equation in the frequency domain. This procedure is used

to compare the predictions of the model with and without learning from endogenous

variables in a numerical example. This example shows that a natural modification of

the Townsend model in which firms receive a noisy signal of the exogenous aggregate

demand shock instead of the endogenous aggregate price index makes very similar

predictions, while avoiding the complications that arise from having an endogenous

signal. Of course, this finding is model-specific, and the additional discipline and

different counterfactual predictions of the endogenous signal model are still reasons

why one might prefer this formulation.

The approach of this paper is to focus attention narrowly on the Townsend model

rather than to state results over a more abstract class of models. The cost of this

approach is that the specific results in this paper cannot be directly applied to other

models without modification. However, the benefit is that by restricting attention to

a particular model, it is possible to take results farther and make them more concrete.

By working through each step of the analysis in as much detail as possible, it will

hopefully be easier to understand both the results themselves and how to use the

same steps to prove similar results in other models.

The paper is most closely connected to a series of papers that directly analyze the

Townsend model. Marcet and Sargent (1989), Sec. III, use a least-squares learning

algorithm to compute the equilibrium of the model numerically, under the restriction

that agents’ perceived laws of motion are first-order vector autoregressions. Sargent

(1991) extends this algorithm by allowing agents to fit vector ARMA models, and

claims that by doing so it is possible to formulate the equilibrium as the fixed point

of a finite-dimensional operator. Taub (1989), Sec. 5, explains that full revelation

can obtain in a model similar to Townsend’s with a large number of agents and

perfect observation of aggregate capital. Kasa (2000) seeks to derive the closed-form

solution to the Townsend model without assuming that the state of the economy is

fully revealed after a finite number of periods. Pearlman and Sargent (2005) apply

the methodology proposed by Pearlman et al. (1986) to show that prices can fully

reveal demand shocks in a two-sector version of the model. Points of connection with

these papers are discussed as they arise in the analysis below.
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Beyond the Townsend model, this paper is also related to the broader literature on

learning from endogenous signals. Many early models of this mechanism assume that

learning only lasts for one period, as in the static models of Grossman (1976), Kreps

(1977), Grossman and Stiglitz (1980), and Hellwig (1980), or the dynamic models of

Lucas (1972), King (1982), and Kimbrough (1984). Papers that follow Townsend in

allowing learning from endogenous variables to last multiple periods include Chari

(1979), Futia (1981), Singleton (1987), He and Wang (1995), Bacchetta and Van

Wincoop (2006), Hellwig and Venkateswaran (2009), Bernhardt et al. (2010), Makarov

and Rytchkov (2012), Kasa et al. (2014), Melosi (2016), Nimark (2017), Rondina and

Walker (2021), Acharya et al. (2021), Sec. 5 of Miao et al. (2021), Han et al. (2022),

Adams (2022), Rondina and Walker (2023), Sec. 5 of Huo and Takayama (2023),

and Huo and Pedroni (2023). Another part of the literature also emphasizes the

importance of higher-order beliefs, but in models with no learning from endogenous

variables. Examples include Morris and Shin (2002), Woodford (2003), Lorenzoni

(2009), Angeletos and La’O (2013), and Nimark (2014). Angeletos and Lian (2016)

provides a detailed review of the literature on dispersed information.

To outline the paper, Section 2 describes the Townsend model and defines the

rational expectations equilibrium up to a specification of agents’ information sets.

Section 3 characterizes situations in which a single index of prices reveals enough

information for firms to act as if all private information was commonly known. Section

4 analyzes the case when prices are observed only with error and proves that the state

vector becomes infinite-dimensional. Section 5 concludes.

2 Townsend model

This section describes the model of Townsend (1983). It is a multi-sector version of

the Lucas and Prescott (1971) model of firm investment under uncertainty, where the

only interconnection between sectors arises through the structure of demand. The

description provided here differs from the original in explicitly deriving the system of

linear equilibrium conditions as approximations from a nonlinear model.

The economy is made up of n sectors, each of which has a representative firm.

At each point in time, the firm in sector i chooses a contingent plan for investment

from that time forward, so as to maximize expected discounted cash flows. From the
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perspective of time t = 0, the firm chooses Iit for all t ≥ 0 so as to maximize

Ei0

∞∑
t=0

βt

[
PitYit − Iit

(
1 + Φ

(
Iit
Kit

))]
,

where Ei0 denotes the expectations of the firm in sector i as of time t = 0, Pit is

the sectoral price of output, Yit is the output of the firm, Iit is gross investment

expenditure on new capital goods, β ∈ (0, 1) is an intertemporal discount factor, and

Φ is a strictly increasing and convex adjustment cost function satisfying Φ(0) = 0

and 2Φ′(·) + αΦ′′(·) > 0, as in Abel and Blanchard (1983). The representative firm

assumption implies that the notation Yit, Iit, and Kit can be used interchangeably for

sector-level and firm-level variables; the same is true for the operator Eit.

The firm’s maximization problem is subject to the production technology Yit =

F (Kit), where F is strictly increasing and concave, the capital accumulation equation

Ki,t+1−Kit = Iit− δKit, where δ ∈ (0, 1) is the depreciation rate of the capital stock,

and the long-run constraint limt→∞ βtEi0Kit ≥ 0. The timing convention adopted

here is that output is produced using the stock of capital that was determined one

period in advance.

Up to a log-linear approximation, the optimal evolution of the capital stock in

sector i can be described by the equation

f2(ki,t+1 − kit) = βEit[f0pi,t+1 − f1ki,t+1 + f2(ki,t+2 − ki,t+1)], (1)

where kit ≡ ln(Kit/Ki) and pit ≡ ln(Pit/Pi) denote the percent deviation of capital

and price from their steady state values Ki > 0 and Pi > 0, f0 ≡ PiF
′(Ki) > 0,

f1 ≡ −PiF
′′(Ki)Ki ≥ 0, and f2 ≡ 2Φ′(δ) + δΦ′′(δ) > 0. The steady state values

are the values to which the variables in the model converge in the absence of any

exogenous disturbances, and all subjective expectations are correct. The analysis

abstracts from trend growth, which is why the steady-state values of capital and the

price of output are constant.

The price of output in each sector is determined in equilibrium, which requires

a specification of demand. This is done by introducing a demand schedule for the

output of each sector of the form Pit = D(Yit, Uit), where D is strictly decreasing in

Yit and strictly increasing in Uit, which is an exogenous random variable. Importantly,

Uit is not independent across sectors. Exogenous shifts to demand in sector i are at

least partly correlated with shifts to demand in other sectors. This correlation creates

4



a physical link between sectors, and provides an incentive for firms in one sector to

extract information from variables in other sectors about their own demand.1

Up to a log-linear approximation around the steady state, the demand schedule

in sector i can be described by the equation

pit = −b1yit + uit, (2)

where yit ≡ ln(Yit/Yi) denotes the percent deviation of output from its steady-state

value Yi > 0, uit ≡ DU(Yi, 0)/D(Yi, 0)Uit is proportional to the deviation of Uit from

its steady-state value Ui = 0, and b1 ≡ −DY (Yi, 0)Ki/D(Yi, 0)
2 > 0. In addition, it

is assumed that D(Yi, 0) = Ki/Yi > 0, so the production function can be written in

log-linear approximate form as

yit = f0kit. (3)

The exogenous component of demand, uit, is represented as the sum of a persistent

economy-wide component θt and a transitory idiosyncratic component εit,

uit = θt + σεεit, θt = ρθt−1 + σvvt, (4)

where ρ ∈ (0, 1), σε, σv > 0, and the random variables vt, ε1t, ε2t, . . . , εnt are jointly

Gaussian, mutually uncorrelated and uncorrelated over time, with mean zero and

unit variance.2 Note that, by the law of large numbers, limn→∞
1
n

∑n
i=1 εit = 0.

The system of equations (1), (2), (3), and (4) describes the equilibrium in the

economy at each point in time, up to a specification of expectations.3 It represents a

“temporary equilibrium” of the type discussed by Woodford (2013), and is compatible

with a range of different assumptions regarding how expectations are formed, pro-

vided that these expectations satisfy standard probability laws (e.g. Eit = EitEi,t+1).

The focus in this paper is on rational expectations equilibria, which means that ex-

pectations are formed rationally as a function of the variables firms observe when

they make their investment decisions.

Letting sit denote the observation vector of the representative firm in sector i

1Another reason firms might find information about other islands informative is the presence of
strategic complementarity, as in Woodford (2003).

2Gaussianity can be dispensed with if the expectations in (1) are interpreted as linear projections.
3Note that the reduced-form parameters in (1), (2), and (3) exactly match the original notation

of Townsend (1983). This shows that the model considered in that paper can be interpreted as a
linear-quadratic approximation of the nonlinear model described here.
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at time t, its information set at that time is given by the information generated by

the current and past history of this observation vector, sti ≡ (sit, si,t−1, . . . ), so that

Eit = E(·|sti). As usual, this assumes that information is retained over time. Any

variables that are either directly chosen by the firm at time t or are functions of

them, such as ki,t+1 and yi,t+1, must be measurable with respect to sti, and so are

always contained in the firm’s time-t information set. Other endogenous variables

from sector i that are not directly chosen by the firm may or may not be contained

in its information set, depending on the specification of sit. For example, (2) implies

that pit will be contained in the firm’s time-t information set if sit includes uit.

The distinctive feature of the Townsend model is that firms’ information sets can

depend on endogenous variables from other sectors. To the extent that equilibrium

prices are correlated across sectors, due to correlated demand, the firm wishes to

extract whatever information from these variables is helpful for predicting prices in

its own sector. But because the variables are endogenous with respect to the economy

as a whole, their information content depends on the solution to the signal extraction

problems simultaneously being solved by firms in other sectors. This feature would

not be present if the observation vector sit consisted only of exogenous variables.

It is now possible to define a rational expectations equilibrium in this economy,

up to a specification of the observation vectors s1t, s2t, . . . , snt. Let us collect all

exogenous random variables, including vt, ε1,t, ε2t, . . . , εnt, and any exogenous random

variables introduced in the specification of sit, into the single vector ξt.
4 Attention

will be restricted to stationary equilibria, in which the process {ξt} has a stationary

structure and extends back into the infinite past, and all endogenous variables are

time-invariant measurable functions of the history ξt ≡ (ξt, ξt−1, . . . ). This abstracts

from transitional dynamics, and amounts to analyzing only the limiting stationary

distribution of the economy.

Definition 1. A rational expectations equilibrium (REE) is a collection of covariance

stationary processes {yit, kit, pit} for each sector that satisfy (1), (2), and (3), given

an exogenous demand process {uit} that satisfies (4) and an observation vector sit

that is measurable with respect to ξt at all times.

4These may include non-fundamental noise or sunspot variables, or variables containing news
about future fundamental disturbances.
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3 Information revelation

This section proves that uncertainty about higher-order beliefs plays no role in equi-

librium dynamics when, in addition to economic conditions in its own sector, each

firm is able to observe the economy-wide average output price. The reason is that, in

equilibrium, the average price reveals the average demand shock, which is a sufficient

statistic of the demand shocks in all sectors. By observing the average price, each

firm is able to implement the same state-contingent plan that it would choose if it

were able to observe all the demand shocks directly. The existing literature contains

partial versions of this result, which establish only that an information revealing equi-

librium of this type exists in certain special cases. The purpose of this section is to

simplify and extend those results, and then to present new results regarding the more

difficult question of whether this equilibrium is unique.

Before analyzing the equilibrium in which firms must learn from endogenous vari-

ables, it is necessary to introduce a type of equilibrium originally proposed by Radner

(1979), in which private information about demand is shared by firms in all sectors.5

Definition 2. A full communication equilibrium (FCE) is a REE with sit = ut ≡
(u1t, u2t, . . . , unt) for all i and t.

In a FCE, all firms in the economy have the same information at each point in time,

which consists of the history ut ≡ (ut, ut−1, . . . ). This implies that output and capital

in all sectors are common knowledge. It also implies that firms’ forecasts of all vari-

ables are the same. Higher-order uncertainty plays no role in this equilibrium because

each firm knows the forecasts of all other firms. In a FCE, however, firms still have

imperfect information about the underlying disturbances vt and εt ≡ (ε1t, ε2t, . . . , εnt),

(at least for finite n), and so about the realization of ξt ≡ (vt, εt). Therefore, it is

possible to distinguish a FCE from a “full information equilibrium,” in which the

history of all exogenous disturbances is common knowledge; i.e. sit = ξt.
6

The first result is the closed-form solution to the FCE. The optimal capital choice

of firm i is a second-order autoregressive transformation of the average demand shock.

5Sometimes the FCE is described as a different equilibrium concept from the REE; but it is
equally possible to view it as a REE with a particular specification of information, as is done here.
Sometimes this equilibrium is also referred to as a “pooling equilibrium.”

6According to this terminology, the full communication equilibrium approaches the full informa-
tion equilibrium as n→ ∞, since then all firms can perfectly infer ξt at each point in time.
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Proposition 1. The FCE exists and is unique. Moreover, in this equilibrium,

ki,t+1 =
ω

(1− λL)(1− ϕL)
ūt (5)

for all i and t, where L denotes the lag operator, ūt ≡ 1
n

∑n
i=1 uit, λ ∈ (0, 1) solves

λ2 − (1 + β−1 + (b1f
2
0 + f1)/f2)λ + β−1 = 0, ϕ ∈ (0, ρ) solves ρσ2

εϕ
2 − (σ2

ε(1 + ρ2) +

nσ2
v)ϕ+ ρσ2

ε = 0, and ω ≡ f0βλ(ρ−ϕ)
f2(1−βλρ)

> 0.

The details of the proof are in Appendix A, but it is helpful to provide a brief

sketch here. Using the demand schedule (2) to substitute out the price from the

capital optimality condition (1), the equilibrium path of capital in sector i must

evolve according to the equation

ki,t+1 = λkit +
f0
f2

∞∑
j=1

(βλ)jEitui,t+j, (6)

where λ has the definition stated in the proposition. This says that capital in sector

i depends only on forecasts of future demand shocks in sector i. The orthogonal

projection theorem implies that the conditional expectation Eitui,t+j ≡ E(ui,t+j|ut)
exists and is unique for all i, t, and j, so the equilibrium capital path exists and is

unique as well. The closed-form solution in (5) is obtained by explicitly computing

these expectations using the structure of the demand process in (4).

The second result applies to an economy with dispersed information, in which

firms are not able to directly observe the history of demand shocks in all sectors.

Each firm still observes the demand shock in its own sector, but now in addition can

only observe the economy-wide average output price. What can be shown in this case

is that the FCE paths from Proposition 1 are a REE in this economy.

Proposition 2. Consider an economy with sit = (uit, p̄t) for all i and t, where p̄t ≡
1
n

∑n
i=1 pit. The FCE paths of {yit, kit, pit} are a REE in this economy.

The proof of this result is simple. Equation (5) indicates that, in the FCE, capital

in each sector depends only on the history of average demand shocks, ūt. By the

demand curve (2), the average price also depends only on the history of average

demand shocks; i.e.

p̄t =

[
1− b1f0ωL

(1− λL)(1− ϕL)

]
ūt. (7)
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Moreover, it is straightforward to verify that this mapping from the history of average

demand shocks to the history of average prices is invertible (as shown in Appendix A).

Therefore, observing the history of average prices is equivalent to observing the history

of average demand shocks, so each firm will implement the same state-contingent plan

that is optimal under full communication.

While Proposition 2 says that the FCE paths of {yit,, kit, pit} are a REE in the dis-

persed information economy, this does not imply that the two equilibria are identical.

Firms still have less information in the dispersed information economy. For example,

they only have imperfect information about output and prices in sectors other than

their own. In principle, observations of cross-sector forecasts of these variables would

be able to distinguish between these two equilibria. Instead, what Proposition 2 says

is that there exist equilibrium paths of {yit,, kit, pit} which are the same “as if” firms

had this additional information. The average output price aggregates all the relevant

information necessary to optimally predict their own future prices.

For the special case with n = 2, a different proof of this result is provided in

Sec. 5.2 of Pearlman and Sargent (2005). The strategy in that paper is to apply the

method developed by Pearlman et al. (1986) to show by brute force computation that

perceived laws of motion coincide with actual laws of motion when the perceived laws

of motion for each firm are the ones from the FCE. What is shown here is that it

is possible to avoid that computation by instead checking that the operator in (7) is

invertible. This is both simpler and more intuitive, because it shows that the reason

observing output prices in both sectors is sufficient for implementing FCE plans is

because they can be used to compute the average price, the history of which can be

used to infer the history of average demand shocks.

Sec. 3 of Kasa (2000) also provides a proof of this result with n = 2, based on

computing the closed-form solution of the model and inspecting its properties. The

problem is that the closed-form solution provided there, described in his Proposition

3.1.2, is not correct. The reason for this is that the frequency-domain procedure used

to compute the solution assumes that each of the three variables in the observation

vector contains some independent information. The observation vector in that paper

is (uit, p1t, p2t), which in the case of n = 2 is informationally equivalent to s̃it =

(uit, pit, p̄t). This vector is three dimensional, but only contains two independent
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sources of information in the FCE.7 To see this, observe that (2) and (5) imply

pit =
−b1f0ωL

(1− λL)(1− ϕL)
ūt + uit.

Proposition 2 proves that p̄t and ūt contain the same information, so this equation

shows that pit is a function of (uti, p̄
t), and so contains no additional information.8

While Proposition 2 improves upon existing proofs of this result in the literature,

it says nothing about whether the equilibrium described there is unique. Could there

perhaps exist other rational expectations equilibria in which the paths of {yit,, kit, pit}
differ from their FCE paths? This question is substantially more difficult to answer,

and so far there are no results about it in the existing literature.

The following proposition says that the equilibrium from Proposition 2 is the

unique symmetric REE. The notion of symmetry involved is that all firms have the

same policy functions mapping information sets into actions. For example, ki,t+1 =

B(L)sit, where B(L) is the same for all i. This does not require all firms to have the

same information, of course, because the realizations of sit can differ across sectors.

Proposition 3. In any symmetric REE of the economy from Proposition 2, the paths

of {yit, kit, pit} are the same as in the FCE.

While the details of the proof are somewhat involved, the basic structure is

straightforward, and consists of four main steps. The first is to prove that in any

symmetric REE, there is a mapping of the form

p̄t = A(L)ūt (8)

from average demand shocks to average prices, where A(L) is a scalar operator which

is one-sided into the past. Equation (7) shows that a mapping of this form exists in

the FCE; the point here is to show such a mapping holds in any symmetric REE.

The remaining three steps involve showing that in any REE in which a relation

of the form (8) holds, the operator A(L) must be invertible, so the history of average

prices and average demand shocks contain the same information. The second step

uses (8) and the law of motion of uit in (4) to find the Wold representation of the

observation process, sit = Γ(L)wit, where wit is the one-step-ahead innovation in sit,

7More formally: the three-dimensional process {s̃it} has rank two; cf. Sec. 1.9 of Rozanov (1967).
8Alternatively, it shows that uit is redundant given (pti, p̄

t).
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and the operator Γ(L) depends on A(L). This operator is needed to compute firms’

optimal forecasts of future demand. Usually, these forecasts are computed using the

Kalman filter. But because A(L) is arbitrary, the older Wiener-Kolmogorov filter

must be used instead.9 The third step uses Γ(L) and the structural equations of

the model to find the fixed point equation A(L) = T [A(L)] in closed form. The

fourth step shows that any operator A(L) satisfying this fixed point equation must

be invertible, which completes the proof.

A first remark regarding Proposition 3 is that it implies that there do not exist

any equilibria in which endogenous variables respond to sunspots (random variables

independent of the fundamental disturbances vt and εt). However, it might be thought

that this result is sensitive to the assumption that sit = (uit, p̄t), which only allows

firms to condition their actions on sunspots indirectly, through the endogenous average

price. What would happen in an alternative economy in which sit = (uit, p̄t, ηt),

where ηt is vector of sunspots? Would the fact that firms in this economy can directly

condition their actions on sunspots make it possible to sustain an equilibrium in which

these sunspots affect equilibrium outcomes?

The answer to this question is no, for a simple reason. Firms understand that

their own future demand shocks are independent of sunspots; when the sunspots are

directly observed, rationality requires firms’ demand shock forecasts to be indepen-

dent of them as well. More formally, if p̂t denotes the residual from a projection of

p̄t on ηt = (ηt, ηt−1, . . . ), then Eitui,t+j = E(ui,t+j|uti, p̄t, ηt) = E(ui,t+j|uti, p̂t, ηt) =

E(ui,t+j|uti, p̂t), which is independent of ηt. The demand curve (2) and the policy

function (6) imply

p̄t = ūt −
b1f

2
0

f2

L

1− λL

∞∑
j=1

(βλ)jĒtui,t+j, (9)

so p̄t must also be independent of ηt. This implies that sunspots cannot affect any of

the endogenous variables in this economy. Therefore, it is without loss of generality

in Proposition 3 to exclude sunspot variables from the observation vector.

A second remark regarding Proposition 3 is that it applies only to symmetric

equilibria. While this is required for the proof, there is nevertheless no positive reason

to think that other non-symmetric equilibria exist which differ from the FCE. In fact,

as it has perhaps been possible to infer from the discussion so far, the information-

9Whittle (1983) is a standard reference on these two approaches to filtering.
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revealing properties of the average price imply an even starker uniqueness result,

which does not require symmetry.

Proposition 4. Consider an economy with sit = p̄t for all i and t. The FCE paths

of {yit, kit, pit} constitute the unique REE in this economy.

This result says that the average price in fact reveals so much information that

once firms observe this, they do not need to observe any other information about

demand in their own sector to implement the same state-contingent plan that would

be optimal with full communication. The reason is that, as shown in equation (5), the

optimal evolution of capital in the full communication equilibrium only depends on

the history of average demand shocks. Since these are fully revealed by the average

price, this information is sufficient for all firms to implement their optimal actions,

regardless of whether they also observe other prices or quantities in their own sector.

Why does Proposition 4 imply that firms do not need to rely on their own sector-

specific information to implement the optimal plan under full communication? The

result is due to the assumption that the idiosyncratic component of demand is purely

transitory, together with the one period time-to-build assumption in production. The

optimal choice of capital today, to be used in production tomorrow, depends on

forecasts of demand shocks from tomorrow out into the future, as shown in (6). Since

today’s idiosyncratic shock is purely transitory, it is only necessary to forecast the

common component of demand; Eitui,t+j = Eitθt+j. And since uit does not contain

any more information about this common component beyond what is contained in

ūt, it is therefore unnecessary to respond to it.

From this discussion, it is not difficult to see that Proposition 4 relies heavily on the

assumption that common disturbances to demand are persistent, while idiosyncratic

disturbances are not. While this assumption is a common one, and has been followed

in much of the subsequent literature, there is no economic rationale for imposing it.

Sector-specific variation in demand could be as or even more persistent than common

variation in demand. The next sub-section considers this possibility in more detail.

3.1 Persistent idiosyncratic shocks

When the idiosyncratic component of demand is persistent, sector-specific informa-

tion is useful for predicting future demand. In this case, the stark result of Proposition
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4, that observing the average price alone is sufficient to implement the full communi-

cation plan, no longer holds. However, this subsection shows that generalizations of

Propositions 1, 2, and 3 hold under this perturbation of the baseline model.

To introduce persistence in the idiosyncratic component of demand, generalize the

law of motion (4) to

uit = θt + zit, θt = ρθθt−1 + σvvt, zit = ρzzi,t−1 + σεεit, (10)

where ρθ, ρz ∈ (0, 1) and σε, σv > 0. The new parameter ρz controls the persis-

tence of the idiosyncratic component. Continue to assume that the random variables

vt, ε1t, ε2t, . . . , εnt are jointly Gaussian, mutually uncorrelated and uncorrelated over

time, with mean zero and unit variance.

The first result generalizes Proposition 1. It shows that when idiosyncratic shocks

are persistent, the optimal choice of capital now depends both on ūt and uit.

Proposition 5. Consider an economy in which the demand process {uit} satisfies

(10). The FCE exists and is unique. Moreover, in this equilibrium,

ki,t+1 =
ωθ(1− ρzL)

(1− λL)(1− ϕL)
ūt +

ωz

1− λL
uit (11)

for all i and t, where L denotes the lag operator, ūt ≡ 1
n

∑n
i=1 uit, λ ∈ (0, 1) is defined

as in Proposition 1, ϕ ∈ (0, 1) solves (ρθσ
2
ε+ρznσ

2
v)ϕ

2−(σ2
ε(1 + ρ2θ) + nσ2

v(1 + ρ2z))ϕ+

(ρθσ
2
ε + ρznσ

2
v) = 0, ωθ ≡ f0βλ(ρθ−ϕ)

f2(1−βλρθ)(1−βλρz)
, and ωz ≡ f0βλρz

f2(1−βλρz)
> 0.

Equation (11) shows that the optimal capital choice places some weight on the

history of both average and sector-specific demand shocks. The expression for ωz

shows that the weight on the latter is positive whenever ρz > 0, while the expression

for ωθ shows that in the special case when the common and idiosyncratic components

of demand have exactly the same persistence, ρθ = ρz, which implies that ρθ = ϕ, the

optimal capital choice places no weight on the average demand shock. In this case,

the full communication equilibrium coincides with the full information equilibrium,

regardless of whether or not the number of sectors is finite. This is because common

persistence implies that (10) reduces to uit = ρui,t−1 + σwwit, where ρ ≡ ρθ = ρz,

σ2
w ≡ σ2

v +σ
2
ε , and wit is i.i.d. over time with mean zero and unit variance. Therefore,

the current demand shock becomes a sufficient statistic for predicting future demand

shocks: E(ui,t+j|θt, εt) = E(ui,t+j|ut) = ρjuit for all j ≥ 0.

13



The second result generalizes Proposition 2. It shows that the FCE paths of the

endogenous variables are always a REE in the dispersed information economy, even

when idiosyncratic shocks are persistent.

Proposition 6. Consider an economy in which the demand process {uit} satisfies

(10) and sit = (uit, p̄t) for all i and t, where p̄t ≡ 1
n

∑n
i=1 pit. The FCE paths of

{yit, kit, pit} are a REE in this economy.

The logic of the proof is the same as in Proposition 2. By subsituting the closed-

form solution (11) for the FCE evolution of capital into the demand schedule (2) and

averaging across sectors, it is possible to show that the average price depends on the

history of average demand shocks in the following way,

p̄t =

[
1− b1f0L

(1− λL)(1− ϕL)

(
ωθ(1− ρzL) + ωz(1− ϕL)

)]
ūt (12)

And, as in the proof of Proposition 2 it is possible to show that the operator on the

right side of this equation is always invertible.

Propositions 5 and 6 imply that in the special case of common persistence, firms’

private signals reveal enough information for them to implement their optimal plans

under full information. This is consistent with Hellwig and Venkateswaran (2009),

who show, in the context of new-Keysenian price setting models, that private endoge-

nous information can reveal the firm’s optimal price when common and idiosyncratic

fundamentals have the same persistence. The result here is stronger, showing that

the average price aggregates all the relevant private information from other sectors

regardless of the relative persistence of common and idiosyncratic fundamentals.

The last proposition in this subsection extends Proposition 3 to the case of persis-

tent idiosyncratic shocks, showing that the equilibrium from Proposition 6 is unique.

Proposition 7. In any symmetric REE of the economy from Proposition 6, the paths

of {yit, kit, pit} are the same as in the FCE.

An implication of Propositions 5 and 7 is that in any equilibrium, endogenous

public information is ignored when common and aggregate fundamentals have the

same persistence, consistent with Proposition 1 of Taub (1989).
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3.2 Structural heterogeneity

The results in this section so far have shown that in the Townsend model, the average

economy-wide price has strong information revelation properties. A natural question

is how much these results depend on the assumption that the sectors are completely

symmetric, both with respect to supply and demand. To address this question, this

section perturbs the baseline model by introducing different types of heterogeneity

and exploring the extent to which previous results need to be modified.

The first modification is to relax the assumption that the structural parameters

in equations (1), (2), and (3) are the same across sectors. The equations take the

same form as before, but with all parameters explicitly indexed by i:

f2i(ki,t+1 − kit) = βiEit[f0ipi,t+1 − f1iki,t+1 + f2i(ki,t+2 − ki,t+1)] (13)

pit = −b1iyit + uit (14)

yit = f0ikit. (15)

The parameters continue to satisfy the inequalities f0i > 0, f1i ≥ 0, f2i > 0, and

b1i > 0 for all i = 1, 2, . . . , n. Everything else about the economy and the definition

of equilibrium remains the same as in Proposition 2. In this case, it is possible to

prove the following result.

Proposition 8. Consider an economy in which the REE paths of {yit, kit, pit} in

each sector satisfy (13), (14), and (15), and the demand process {uit} satisfies (4).

Propositions 1, 2, and 4 are true as stated, provided that λ and ω are replaced by λi

and ωi, where λi ∈ (0, 1) solves λ2i − (1 + β−1
i + (b1if

2
0i + f1i)/f2i)λi + β−1

i = 0, and

ωi ≡ f0iβiλi(ρ−ϕ)
f2i(1−βiλiρ)

> 0.

This result says that, as long as the structure of demand shocks remains sym-

metric across sectors, other forms of heterogeneity do not not affect the information

revelation properties of the average price. The intuition is that the symmetry of de-

mand shocks implies that firms only need to obtain information about the average

demand shock in order to implement their optimal state-contingent plans. In the

FCE, the average price continues to be an invertible function of current and past

average demand shocks, regardless of whether there is asymmetry across sectors in

terms of their structural parameters. The only change relative to the results from
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the previous section is that proving that this mapping is invertible is somewhat more

involved, as shown in Appendix A.

In the existing literature, Sec. 3 of Kasa (2000) suggests that structural asym-

metries across sectors, such as in adjustment cost parameter, will prevent the full

communication dynamics from being an equilibrium with partial information. The

intuition provided there is that this type of asymmetry “jams the price signal,” mak-

ing it impossible to “posit symmetric responses in the two industries” to each of the

two idiosyncratic shocks. The intuition that responses are no longer symmetric is

correct, because the dependence of capital (and prices) on each of the idiosyncratic

shocks depends on the parameters ωi and λi, which can differ across sectors; e.g.

ki,t+1 =
ωi

(1− λiL)(1− ϕL)

(
θt +

1

n

n∑
i=1

σεεit

)
.

However, what Proposition 1 demonstrates is that symmetric responses to idiosyn-

cratic shocks is not a necessary condition for average prices to be a sufficient statistic

for implementing full communication plans. This same conclusion is briefly men-

tioned in Sec. 5.2.1 of Pearlman and Sargent (2005), but only in terms of one type of

asymmetry (adjustment costs) and only in a two-sector economy.

Now, consider the consequences of relaxing the assumption that demand shocks

are symmetric across sectors. Specifically, suppose that (4) is generalized to allow

differences both in the sensitivity of different sectors to the common component, and

in the volatility of the idiosyncratic component,

uit = αiθt + σεiεit, θt = ρθt−1 + σvvt, (16)

where 0 < ρ < 1, σε1, σε2, . . . , σεn, σv > 0, and the random variables vt, ε1t, ε2t, . . . , εnt

are jointly Gaussian, mutually uncorrelated and uncorrelated over time, with mean

zero and unit variance.

Proposition 9. Consider an economy in which the rational expectations paths of

{yit, kit, pit} in each sector satisfy (13), (14), and (15), and the demand process {uit}
satisfies (16). Propositions 1, 2, and 4 are true as stated, provided that λ is replaced

with λi defined in Proposition 8, ω is replaced with ωi ≡ αi
f0iβiλi(ρ−ϕ)
f2i(1−βiλiρ)

, σ2
ε is defined
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by 1
σ2
ε
≡ 1

n

∑n
i=1

α2
i

σ2
εi
, and ūt and p̄t are defined as

ūt ≡
1

n

n∑
i=1

σ2
ε

σ2
εi

αiuit and p̄t ≡
1

n

n∑
i=1

σ2
ε

σ2
εi

αipit.

This result indicates that with heterogeneity in the structure of demand shocks,

there always exists an average price that fully reveals the information necessary to

replicate the FCE dynamics. However, this is now a weighted average, where prices

in sectors with more volatility idiosyncratic shocks or less sensitivity to the common

component are given less weight. The intuition is straightforward: prices in more

volatile or less sensitive sectors provide less informative signals about the common

component, and so for the purpose of forecasting future values of this variable, those

noisier signals need to be given less weight.

Proposition 9 raises the interesting possibility that there may exist a price index

which reveals the right sufficient statistic needed to implement full communication

plans, but firms instead observe a different price index. In this case, full revelation

can fail, and the REE dynamics will differ from those in the FCE. To illustrate this

possibility, Figure 1 shows the impulse responses of output for an economy with sec-

toral heterogeneity in which firms do not observe the appropriately weighted average

price from Proposition 9. The economy has three sectors, which differ only in their

sensitivity to the common component of demand, as in (16), with weights

(α1, α2, α3) = (−1, 1, 2).

Instead of observing its own demand shock uit and the appropriately weighted average

price (
∑n

j=1 α
2
j )

−1
∑n

i=1 αipit, each firm instead observes its own demand shock uit and

the equally-weighted average price n−1
∑n

i=1 pit. In this example, the persistence of

the common component is set to ρ = 0.5, and the values of all other parameters are

the same as in Table 1 of Townsend (1983).

Figure 1 shows that in the FCE a purely transitory idiosyncratic demand shock in

sector 1 leads to a persistent decline in output in sector 2 (shown by the line marked

with × in the (2,2) panel of the figure). Even under full communication, firms are not

able to perfectly disentangle common and idiosyncratic shocks. The firm in sector

2 knows that demand in sector 1 has increased, but does not know whether this

is because of a negative common shock or a positive idiosyncratic shock. The firm
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Figure 1: Consequences of observing the wrong price index in a 3-sector economy
with (α1, α2, α3) = (−1, 1, 2). The lines labeled REE show the responses of output
when firms observe the equally-weighted average price instead of the appropriately
weighted average price needed to support the FCE allocations. Parameter values:
ρ = 0.5, b1 = 1, β = 0.96, f0 = 0.2, f1 = 0, f2 = 0.8, σ2

v = σ2
ε = σ2

η = 1.

attaches some probability to the possibility that there was a negative common shock,

with sectors 2 and 3 receiving offsetting positive idiosyncratic shocks, and so reduces

production in response, with declining effects over time as the firm learns that the

shock was not common.

When firms instead observe the equally-weighted average price, the firm in sector

2 still knows that its own demand has not changed, but now only observes an increase

in the equally-weighted average price in response to the idiosyncratic shock in sector 1.

It reasons that the increase in the average price could be due to a positive idiosyncratic

shock in sector 1, but could also be due to a positive common shock together with an

offsetting negative idiosyncratic shock in sector 2. This is because sector 3 is more

sensitive (in absolute value) to the common component than sector 1, so the net

effect of a common demand shock would be positive, also leading to an increase in
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the equally-weighted average price. In this numerical example, on balance the firm

in sector 2 attaches greater probability to the possibility that the price increase is

due to a positive common demand shock, and therefore responds by increasing rather

than decreasing production.

This example illustrates how information revelation can fail to obtain simply as

a result of sectoral heterogeneity, when firms do not observe the appropriate price

index. In this case, the observed price index only provides a noisy observation of

the ideal price index, where the noise depends on the differences in weights. If firms

observe p̃t =
∑n

i=1wipit, for some arbitrary sequence of weights {wi}ni=1, this can be

written as p̃t = p̄t+σηηt, where p̄t is the ideal index from Proposition 9, and the error

term

σηηt ≡
n∑

i=1

(
wi −

1

n

σ2
εαi

σ2
εi

)
pit

acts as aggregate “noise” in the observation of the ideal price index. Therefore, the

reason that information revelation fails to obtain in this case is conceptually similar

to the reason that it fails to obtain when observations of endogenous variables are

contaminated by exogenous noise, which is the situation analyzed in the next section.

More generally, with arbitrary types of heterogeneity in the structure of demand,

it can no longer be guaranteed that there will exist a single common price index that

is sufficient for all firms to implement their full communication plans. The reason is

that each firm will need to compute its own sufficient statistic of the demand shocks

in order to optimally forecast its own demand. To reveal this statistic, each firm

will require observations of its own unique price index. However, if firms are able to

observe the history of all prices in the economy, this intuition suggests that it will

still be possible for them to implement their full communication plans.

4 Infinite state problem

This section proves that the equilibrium of the Townsend model does not have a finite

state representation when firms observe average prices with error, and explains the

problem with evidence to the contrary from the existing literature. It also provides a

new numerical procedure for solving models of this type in the frequency domain.

In the context of models with dispersed information, the “infinite regress prob-

lem” refers to a situation in which the forecasting problem that agents face requires
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them not only to forecast the exogenous state of the economy, but also to forecast the

forecasts of other agents, and so on ad infinitum.10 The reason why this problem is

interesting is because it has the potential to amplify and propagate existing structural

disturbances, or open the door for purely expectational disturbances to affect equi-

librium outcomes. However, the technical challenge this problem introduces is that

it may cause the equilibrium dynamics to fail to have have a finite-dimensional state-

space representation, making it infeasible to use standard Kalman filtering formulas

to compute agents’ expectations.

In the case of full revelation, considered in the previous section, the infinite regress

problem does not lead to an infinite state problem.11 As discussed in the previous

section, when firms observe an appropriately weighted price index, the REE dynamics

of sectoral output, capital, and prices admit the same finite-state representation as in

the FCE. However, for the same reason, the infinite regress problem does not play any

role in affecting the equilibrium dynamics. Even though firms are required to form

beliefs about demand shocks indirectly through observations of endogenous variables,

the equilibrium dynamics are identical to what they would be in an economy where

firms are able to observe demand shocks directly.

Based on revelation results of this type, the literature appears to have concluded

that, for better or worse, the “new and exciting dynamics” envisioned by Townsend

(1983) fail to appear in his model. Pearlman and Sargent (2005) summarize this view:

“Townsend created [his] environment as a laboratory in which to study

the effects of unleashing ‘higher order beliefs.’ He wanted to put [agents]

into a setting in which they would have to estimate the beliefs of oth-

ers in order to solve their own optimization and forecasting problems.

The claim emerging from the string of papers just cited is that higher

order beliefs disappear from this environment because there are so few

sources of private information that prices can reveal all [agents’] private

information. This result has both encouraging and discouraging aspects.

Encouraging parts are that the equilibria of models like that of Townsend

(1983), Section 8, are much easier to compute than Townsend originally

thought, that standard recursive methods suffice to do the computations,

10This differs from the infinite regress problem in bounded rationality contexts; cf. Conlisk (1996).
11Another situation in which the infinite regress problem does not lead to an infinite state problem

is when agents do not learn from endogenous variables, as in Woodford (2003).
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[and] that the resulting equilibria have low-dimensional representations...

A discouraging aspect is the fact that the dimension of the state-space is

finite reflects the disappearance of the ‘forecasting the forecasts of others

problem’ in equilibrium.” (p.493)

However, this summary turns out to be misleading, for at least two reasons. The

first is that the economy actually analyzed in Sec. 8 of Townsend (1983) is not one in

which firms perfectly observe the appropriately weighted price index.12 Instead, firms

are assumed to observe it only with error. In terms of the baseline model described

in Sec. 2 above, Townsend takes n → ∞ and assumes that, in addition to their own

demand shock uit, firms observe

p̃t = p̄t + σηηt, (17)

where p̄t ≡ limn→∞
1
n

∑n
i=1 pit, and the random variable ηt is jointly Gaussian but

uncorrelated with the other disturbances in the model, uncorrelated over time, with

mean zero and unit variance. In this case, the information revelation results from the

previous section no longer apply (including the special case of Proposition 2 discussed

by Pearlman and Sargent), and cannot be used to determine whether the infinite state

problem discussed by Townsend appears under his own informational assumptions.

The second reason that the summary above is misleading is because papers that

do follow Townsend in assuming that observations of average prices are contaminated

with error do not prove any of the results described there. Two papers that may

appear to suggest the opposite are Sargent (1991) and Kasa (2000). Sargent (1991)

claims that the inclusion of “moving average components in agents’ perceptions and

of lagged innovations to agents’ information in the state vector...enables [him] to for-

mulate the equilibrium as a fixed point of a finite-dimensional operator” (pp.246-247).

However, only numerical evidence is provided to support this claim, and it turns out

to be incorrect (as Proposition 10 will show). Kasa (2000) presents the closed-form

solution to the model, in Proposition 2.2.3, and it has a finite-dimensional state-space

representation. However, the closed-form solution presented there is incorrect, essen-

tially for the same reason discussed in Sec. 3 above: the procedure used to derive the

solution fails to take into account that some observables can become informationally

redundant in equilibrium.

12Angeletos and Lian (2016) also point this out in footnote bk on p.1155.

21



The following result clarifies the situation, by proving that the infinite regress

problem does indeed lead to an infinite state problem in the Townsend model. Similar

results have been asserted in simpler settings, such as Chari (1979), Makarov and

Rytchkov (2012), and Huo and Takayama (2023).13 Establishing a similar result in

the Townsend model is more difficult due to its more complex dynamics, both in

firms’ observation process and in the underlying model structure.

Proposition 10. Consider the economy from Sec. 2, with n→ ∞ and sit = (uit, p̃t)

for all i and t, where p̃t is given by (17). There does not exist a symmetric REE in

which {yit, kit, pit} have finite-order ARMA representations.

The structure of this proof is very similar to the proofs of Propositions 3 and 7,

and basically amounts to a brute-force application of the infinite-dimensional method

of undetermined coefficients described in Townsend (1983). The first step is to write

the equilibrium law of motion of the endogenous signal as

p̃t = A(L)vt +B(L)ηt, (18)

where A(L) and B(L) are one-sided operators, and use this to find the Wold repre-

sentation of the observation vector sit = (uit, p̃t). Here, p̃t only depends on aggregate

shocks due to the assumption of symmetry and the fact that limn→∞
1
n

∑n
i=1 εit = 0.

The second step is to use the classical filtering formulas and structural equations of

the model to compute the equilibrium fixed point equation

(A(L), B(L)) = T [(A(L), B(L))] (19)

in closed form. The third step is to suppose to the contrary that A(L) and B(L) are

rational functions of L, meaning that they can be written as ratios of polynomials with

no common zeros, and use this hypothesis to rewrite the fixed point equation (19) in

terms of those polynomials. The fourth step is to derive a contradiction, proving no

operators (A(L), B(L)) satisfying (19) can be rational functions of L. This implies

that neither {p̃t} nor the processes {yit, kit, pit} which depend on it can be expressed

as finite-order ARMA processes.

13The proof of Theorem 4.1 in Chari (1979) is suggestive but invalid.
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4.1 Numerical procedure

In response to the infinite state problem, the literature has taken one of three different

approaches to compute the solution of the model numerically. The first is to modify

the information structure of agents in the model by assuming that all exogenous

disturbances become common knowledge after a finitely many periods. This is the

approach taken by Townsend (1983), originally proposed by Chari (1979). The second

is to include only a finite number of higher-order expectations, as in Nimark (2017).

The third is to use ARMA processes to numerically approximate the equilibrium

dynamics, even though the endogenous variables do not have ARMA representations.

This is the approach taken by Sargent (1991), and further developed by Han et al.

(2022), Adams (2022), and Huo and Takayama (2023).

As a complementary alternative to these, this paper proposes a new numerical

procedure that does not rely on ARMA approximations.14 The basic idea is to iterate

on the equilibrium fixed point equation of the model in the frequency domain rather

than in the time domain. The difference relative to Han et al. (2022) is that the

classical Wiener-Kolmogorov filter is used to compute forecasts instead of the Kalman

fitler, as is done theoretically in the proofs of Propositions 3, 7, and 10.

The procedure involves iterating on the equilibrium fixed point equation of the

model. To derive that equation, begin by writing firms’ perceived law of motion for

the noisy endogenous price signal in any symmetric REE as

p̃t = A(L)vt +B(L)ηt, (20)

where A(L) and B(L) are one-sided operators. In terms of these operators, the law

of motion of the observation vector sit = (uit, p̃t) is given by

sit =

 Hv(L) 0 Hε(L)

A(L) B(L) 0


 vt

ηt

εit

 ≡M(L)eit, (21)

where eit ≡ (vt, ηt, εit). To describe the procedure, the exogenous laws of motion in

(4) and (18) have been generalized to uit = Hv(L)vt+Hε(L)εit and p̃t = p̄t+Hη(L)ηt,

where Hv(L), Hε(L), and Hη(L) are one-sided and invertible into the past.

Letting sit = Γ(L)wit denote the Wold representation associated with the law of

14A parallel procedure for models with rationally inattentive agents is presented in Jurado (2023).
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motion (21), the Hansen and Sargent (1981) formula implies that

∞∑
j=1

(βλ)jEitui,t+j =
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1sit.

Substituting this into the policy function (6) and the demand curve (2), and then

averaging across sectors delivers the implied actual law of motion

p̃t = Hv(L)vt +Hη(L)ηt −
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1s̄t. (22)

Matching coefficients in the perceived and actual laws of motion (20) and (22) delivers

the equilibrium fixed point equation

[ A(L) B(L) ] = [ Hv(L) Hη(L) ] (23)

− b1f
2
0βλL

f2(1− λL)(L− βλ)
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
Hv(L) 0

A(L) B(L)

]
.

The numerical procedure involves iterating on this equation by representing the

operators A(L) and B(L) in the frequency domain. This means viewing operators

of the form A(L) =
∑∞

s=0AsL
s as functions of the real parameter ω ∈ [−π, π] by

defining a(ω) ≡ limr→1A(re
−iω), where i is the imaginary unit and ω represents the

“frequency.” (The convention here is that lower-case letters denote functions of ω and

upper-case letters denote functions of L.) Numerically, a(ω) can be represented on a

discrete grid of frequencies ω1, ω2, . . . , ωN by the sequence {a(ω1), a(ω2), . . . , a(ωN)}.
Using approximations of this type, the algorithm can be described as follows.

Algorithm 1. Initialize the functions (a(n)(ω), b(n)(ω)) on a discrete grid over [−π, π].

(1) Substitute (a(n)(ω), b(n)(ω)) into (21) to compute m(n)(ω).

(2) Use the factorization procedure of Tunnicliffe-Wilson (1972) to compute γ(n)(ω).

(3) Use (23) to compute the updated functions (a(n+1)(ω), b(n+1)(ω)).

(4) Repeat (1)-(3) until ∥(a(n+1)(ω), b(n+1)(ω))− (a(n)(ω), b(n)(ω))∥ is acceptably low.

Once numerical approximations of the functions a(ω) and b(ω) have been obtained

by means of this algorithm, the coefficient sequences {As} and {Bs}, which represent

the impulse responses of p̃t to the disturbances vt and ηt, can be recovered using the

inverse Fourier transform; i.e. As = 1
2π

∫ π

−π
eiωsa(ω)dω. The Fast Fourier Transform
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algorithm provides a numerically efficient method of approximating the Fourier coeffi-

cients of a square-integrable function. Implementations of this algorithm are available

in most numerical programming packages. In Matlab, this algorithm is implemented

by the built-in function ifft, which accepts both univariate and multivariate inputs.

In Step 2 of Algorithm 1, the factorization procedure of Tunnicliffe-Wilson (1972)

takes the place usually occupied by the Kalman filter in finding the Wold factor

associated with firms’ observation process. This procedure computes γ(ω) = Γ(e−iω)

by directly factorizing the spectral density f(ω) ≡M(e−iω)M(e−iω)∗ in the frequency

domain, using a matrix version of Newton’s method for obtaining square roots.

The next subsection uses Algorithm 1 to explore how the presence of endogenous

signals affects the equilibrium dynamics of the model.

4.2 Effects of endogenous signals

The key economic mechanism in the Townsend model is that agents learn about the

underlying state of the economy through imperfect observations of aggregate vari-

ables, which act as endogenous signals. But how much of an effect does this mech-

anism have on the equilibrium dynamics? Proposition 10 implies that one effect is

that the dynamics cannot be represented by a finite-dimensional system. However, it

is not clear from this theoretical result whether this difference is either quantitatively

or economically substantial. The purpose of this subsection is to present results from

a simple numerical exercise that helps address this question.

The exercise is to compare the equilibrium dynamics in the Townsend model

with endogenous signals to alternative versions of the model without them. For this

purpose, two alternative versions of the model serve as relevant benchmarks. The

first is one in which firms have full information about all underlying disturbances.

In this version of the model, there is no learning from endogenous variables because

there is no learning at all. Firms face no uncertainty about the current state of the

economy, and all information is common. The second is one in which firms do face

uncertainty about the current state of the economy, but they receive only exogenous

signals about it, as in Woodford (2003). In this version, there is learning, but not

from endogenous variables.

More specifically, consider three versions of the Townsend economy, where the

observation vector is specified variously as
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(1) Full information: sit = (εt, θt, ηt), where εt ≡ (ε1t, ε2t, . . . ).

(2) Exogenous signal: sit = (uit, θ̃t), where θ̃t = θt + σηηt.

(3) Endogenous signal: sit = (uit, p̃t), where p̃t = p̄t + σηηt.

Figure 2 plots the impulse responses of the average level of output, the average

price, and the average error in estimating θt to the aggregate disturbances in the

model in each of these three versions of the model. The parameter values are the

ones from Table 1 of Townsend (1983). The relevant comparison is in the difference

between the responses under each of the different informational assumptions.
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Figure 2: Effects of endogenous signals on aggregates. This figure shows the responses
of average level of output, prices, and the average estimation error of θt in response to
the common demand disturbance vt and the signal noise disturbance ηt. Parameter
values: ρ = 0.9, b1 = 1, β = 0.96, f0 = 0.2, f1 = 0, f2 = 0.8, σ2

v = σ2
ε = σ2

η = 1.

What Figure 2 shows is that there is a much larger difference in dynamics between

the full information economy and the two dispersed information economies, than be-
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tween the two dispersed information economies themselves. Indeed, the responses in

the exogenous signal economy are very similar to those in endogenous signal economy,

despite the fact that the dynamics admit a finite-dimensional representation in the

first case but not the second. Nevertheless, the endogenous signal economy does ex-

hibit the most persistence, both with respect to the aggregate demand shock (though

visually imperceptible in the figure) and the aggregate noise shock.15

The similarity between the two dispersed information models can also be seen in

their implications for the dynamics of higher-order expectations. Figure 3 illustrates

the implied dynamics of higher-order expectations of θt in response to both aggregate

shocks. Defining

Ē
(0)
t θt ≡ θt and Ē

(k)
t θt ≡ lim

n→∞

1

n

n∑
i=1

Eit[Ē
(k−1)
t θt],

the figure plots the response of Ē
(k)
t θt for various values of the parameter k. All

panels show that in response to the shocks, higher order expectations converge more

slowly towards the true response (solid line). In response to noise shocks, this means

that higher order expectations increase by more on impact, and more slowly adjust to

zero. Comparing the top and bottom rows of panels, it can be seen that the degree of

sluggishness in the higher-order expectations is moderately greater in the endogenous

signal model, but overall the dynamics are quite similar.

Even though the exogenous signal economy has very similar predictions in terms of

the time-series dynamics of model variables, there are at least three important caveats.

The first is a reminder that this conclusion is specific both to the particular model and

parameter values chosen. In terms of the model parameters, some experimentation

with different values suggests that it is difficult to make the responses in the two

dispersed information economies differ by much more than they do in the figure. In

terms of the model itself, the focus here is narrowly on the Townsend model, and

while this has been a helpful laboratory in the dispersed information literature for

some time, obviously nothing rules out the possibility that the effect of endogenous

signals may be larger in other environments. The exercise in this section does suggest,

however, that a numerical comparison of this type would be helpful for isolating the

15In contrast to the discussion of Kasa (2000), the bottom two panels show that the model does
exhibit waves of optimism and pessimism that last for more than one period, consistent with Figures
4 and 5 of Townsend (1983).
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Figure 3: Effects of endogenous signals on higher-order expectations. This figure
shows the responses of for higher-order expectations of the common demand compo-
nent, Ē

(k)
t θt, for various values of k. The case k = 0 indicates the response of θt itself.

Parameter values are the same as in Figure 2.

contribution of the endogenous learning mechanism in other environments.

The second caveat is that even if the exogenous and endogenous signal economies

have similar dynamics, the latter economy imposes greater discipline on agents’

information structures. Supposing that firms observe an exogenous signal θ̃t =

C(L)vt + D(L)ηt, it is not obvious what form the operators C(L) and D(L) should

take. Figure 2 chooses C(L) = σv/(1 − ρL) and D(L) = ση, and while this choice

may seem natural from a statistical modeling perspective, there is no economic justi-

fication for it. In the endogenous signal economy, by contrast, the mapping from the

average price to the shocks is endogenously determined by other model assumptions.

Moreover, it is not difficult to see that for any endogenous signal economy, there exists

an observationally equivalent exogenous signal economy: simply set C(L) and D(L)

equal to the equilibrium values of A(L) and B(L) implied by the endogenous signal

economy. While it may be surprising that the particular forms of C(L) and D(L)

chosen in Figure 2 happen to replicate the dynamics of the endogenous information

economy fairly well, the fact that there exist some operators that do this is not.

The third caveat is that exogenous signal economies do not permit analysis of

how changes in model structure, including policy, affect agents’ information. This is
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a central aspect of the macroeconomic literature on endogenous information choice,

especially the literature on rational inattention following Sims (2003). While agents

in the Townsend model do not choose their information sets optimally subject to

information processing constraints, the fact that they are still required to learn from

endogenous variables does mean that their information sets endogenously respond to

structural changes, unlike in an exogenous signal economy.

5 Conclusion

Prices are often referred to as signals. But in most modern macroeconomic models,

they play no formal role in transmitting information. One of the first dynamic models

that explicitly considers this mechanism is the one developed by Townsend (1983).

However, the subtle technical and conceptual issues that this model raises have led

to a degree of confusion in the subsequent literature. This paper has revisited this

influential model to help provide some precision and clarity.

On the one hand, existing results about information revelation in this model are

not stated as strongly as they could be. A single price index can reveal a substantial

amount of information, fully revealing all essential information even in the presence

of a great deal of heterogeneity, as shown in Propositions 2, 6, 8, and 9. On the

other hand, existing results about information revelation in this model are stated

more strongly than they should be. Realistic types of heterogeneity or noise in the

observation of prices can prevent full revelation, and can lead to a situation in which

the equilibrium state vector can become infinite dimensional, as in Proposition 10.

From a methodological perspective, the proofs provided in this paper can be read

as a step-by-step guide for how to prove similar results in other models, and the

numerical procedure described in Section 4.1 is broadly applicable. Hopefully these

contributions will help reduce barriers to entry for working on models with endogenous

signals, especially as new evidence on higher-order expectations, such as the survey

data from Coibion et al. (2021), makes it possible to directly discipline models of this

type in ways that were not feasible when they were originally formulated.
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A Proofs

Proof of Proposition 1. Substituting (2) into (1) implies

Eit[(1− λ1L)(1− λ2L)ki,t+2] = −f0
f2
Eitui,t+1, (24)

where λ1 and λ2 are zeros of P(λ) ≡ λ2 − (1 + β−1 + (b1f
2
0 + f1)/f2)λ + β−1. They

satisfy 0 < λ1 < 1 < λ2, because P(0) > 0, P(1) < 0, and P(λ) > 0 for large λ. The

unique stationary solution to (24) is (6), where λ ≡ λ1. Since sit = ut is exogenous,

Eitui,t+j exists and is unique for all j by the orthogonal projection theorem. By (2),

Eitui,t+j = ρjEitθt. (25)

The vector ut = (u1t, . . . , unt) contains the same information as (ūt, û1t, . . . , û2t),

where ûit ≡ uit − ūt, since the two are related by a non-degenerate linear transforma-

tion. Since the processes {û1t, . . . , ûnt} are independent of {θt},

Eitθt = E(θt|ut) = E(θt|ūt, ût1, . . . , ûtn) = E(θt|ūt). (26)

By (4), ūt = θt + σεε̄t, where ε̄t ≡ 1
n

∑n
i=1 εt is white noise with variance 1/n.

The Wold factor associated with the spectral density of {ūt} is H(L) =
√

ρσ2
ε

ϕn
(1−ϕL)
(1−ρL)

,

where ϕ is defined in the proposition. By the Wiener-Kolmogorov filtering equation,

E(θt|ūt) =
[

σ2
v

(1− ρL)(1− ρL−1)
H(L−1)−1

]
+

H(L)−1ūt =
(1− ϕ/ρ)

(1− ϕL)
ūt, (27)

where [ · ]+ projects onto the space spanned by non-negative powers of L, and the

second equality uses the fact that σ2
v = ρσ2

ε

ϕn
(1 − ϕρ)(1 − ϕ/ρ), by definition of ϕ.

Substituting (25), (26), and (27) into (6) delivers the final expression for ki,t+1.

Proof of Proposition 2. It is sufficient to verify that the operator on the right side

of (7) is invertible. This is true because P(µ) ≡ µ2 − (λ+ ϕ+ b1f0ω)µ+ λϕ has two

inside zeros, since P(0) > 0, P(λ) < 0, and P(1) = (1−λ)(1−ϕ)− b1f0ω > 0.16 The

last inequality follows because, by definition of λ and ϕ,

(1− λ)(1− ϕ) =
b1f

2
0 + f1
f2

βλ

1− βλ

σ2 + (1− ρ)σ2
ε

σ2 + σ2
ε

>
b1f

2
0

f2

βλρ

1− βλρ

σ2

σ2 + σ2
ε

= b1f0ω.

16“Inside zero” is shorthand for “zero inside the unit circle;” the same goes for “outside zero.”
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Proof of Proposition 3. The proof has four steps.

Step 1. Prove that p̄t = A(L)ūt in any symmetric REE, with A(L) one-sided.

In any symmetric REE, ki,t+1 is measurable with respect to sti = (uti, p̄
t), so ki,t+1 =

Bu(L)uit + Bp(L)p̄t for some one-sided operators Bu(L) and Bp(L), which don’t de-

pend on i by symmetry. Substituting this expression for ki,t+1 into (2), averaging

across i, and solving for p̄t implies p̄t =
1−b1f0Bu(L)L
1+b1f0Bp(L)L

ūt ≡ A(L)ūt. And, since p̄t must

be measurable with respect to ξt = (vt, εt), A(L) must be one-sided.

Step 2. Find the Wold representation of the observation vector sit = Γ(L)wit.

The law of motion for sit is

sit =
1

1− ρL

[
σv σε(1− ρL)ι′i

σvA(L) σε(1− ρL)A(L) 1
n
1′n

][
vt

εt

]
≡ 1

1− ρL
Mi(L)et,

where ιi is a vector of zeros with a one in the i-th position, and 1n is an n-dimensional

vector of ones. Given Mi(L), the Wold factor Γ(L) can be computed using the

procedure from pp.44-47 of Rozanov (1967). The result is

Γ(L) =
(1 + ϑ2)−1/2

(1− ρL)
(28)

×

 ϑ
√

ρ
α
σε(L− α) −

√
ρ
α
σε(1− αL)

ϑ
√

ρ
α
α
ϕ
σε

n
(1−ϕL)(L−ϕ)

(1−αL)
A(L) + γ(L) −

√
ρ
α
α
ϕ
σε

n
(1−ϕL)(L−ϕ)

(L−α)
A(L) + ϑγ(L)1−αL

L−α

 ,
where

ϑ ≡
√
ρ

α

α

ϕ

σε
n

(1− αϕ)(α− ϕ)

(1− α2)

A(α)

γ(α)
, (29)

γ(L) is the univariate Wold factor that satisfies

γ(L)γ(L−1) = A(L)A(L−1)
α

ϕ

σ2
ε

n

(
1− 1

n

)
(1− ϕL)(1− ϕL−1)(1− ρL)(1− ρL−1)

(1− αL)(1− αL−1)
,

(30)

and α and ϕ solve the quadratic equations

ρσ2
εα

2− (σ2
ε(1+ρ

2)+σ2
v)α+ρσ

2
ε = 0, ρσ2

εϕ
2− (σ2

ε(1+ρ
2)+nσ2

v)ϕ+ρσ
2
ε = 0, (31)

respectively, and satisfy the inequalities 0 < ϕ < α < ρ.
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Step 3. Find the equilibrium fixed point equation A(L) = T [A(L)]. Using the

Hansen and Sargent (1981) formula and averaging across sectors,

∞∑
j=1

(βλ)jĒtui,t+j =
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
ūt.

Substituting this into (9) and matching coefficients on ūt implies

A(L) = 1− b1f
2
0

f2

βλL

(1− λL)(L− βλ)
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
.

Substituting in the expression for Γ(L) in (28) and rearranging,

A(L) =
(1− λL)(1− αL)(L− α)− b0Lψ(L)

(1− λL)(1− αL)(L− α) + b0(1− α2)ϑσε
√

α
ρ

(
1− 1

n

) (1−ρL)2(L−ρ)L
γ(L)(1−αL)

, (32)

where ψ(L) ≡ ϑ2(1−αL)(1−αρ) + (L−α)(ρ−α), b0 ≡ b
1+ϑ2 , and b ≡ b1f2

0βλ

f2(1−βλρ)
> 0.

By the definition of λ in Proposition 1,

b < 1− λ. (33)

Step 4. Prove that A(L) is invertible. First, ϑ ̸= 0. If not, (32) implies

A(L) =
(1− λL)(1− αL)− bL(ρ− α)

(1− λL)(1− αL)
,

and (29) implies A(α) = 0, so α must be a zero of the numerator on the right. But

this is not possible, because (33) implies bα(ρ− α) < (1− αλ)(1− α2).

Second, it is helpful to rewrite (32) in terms of the Wold factor H(L) that satisfies

H(L)H(L−1) = A(L)A(L−1). (34)

By (30), γ(L) =
√

σ2
ε

n
α
ϕ

(
1− 1

n

) (1−ϕL)(1−ρL)
(1−αL)

H(L). Substituting this into (32) implies

A(L) =
H(L)(1− λL)(1− αL)(L− α)− b0H(L)Lψ(L)

H(L)(1− λL)(1− αL)(L− α) + b0(1− α2)ϑ
√

ϕ(n−1)
ρ

(1−ρL)(L−ρ)L
(1−ϕL)

. (35)

Third, suppose A(L) is not invertible, and has at least one inside zero (not zero,

since A(0) = 1). By (34), H(L) has at least one outside zero not shared by A(L).
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This is possible only if the zero is 1/ρ; otherwise the outside zero of H(L) in the

numerator of (35) will not cancel on the denominator, and will be a zero of A(L).

Therefore, A(L) has a zero at L = ρ of multiplicity one. By (34),

H(L) =
1− ρL

L− ρ
A(L). (36)

Substituting this into (35) and solving for A(L),

A(L) = 1− b0L
(1− ϕL)ψ(L) + ϑ(1− α2)

√
ϕ(n−1)

ρ
(L− ρ)2

(1− ϕL)(1− λL)(1− αL)(L− α)
. (37)

Equation (37) and the hypothesis that A(ρ) = 0 provide an expression for ϑ2,

ϑ2 = − (ρ− α)

(1− αρ)

(1− λρ)(1− αρ)− bρ(ρ− α)

(1− λρ)(ρ− α)− bρ(1− αρ)
, (38)

where b0 = b/(1 + ϑ2) has been used to substitute out b0. Since A(L) is one-sided,

the numerator of the fraction on the right side of (37) must have a zero at L = α to

cancel the factor L−α in the denominator. This provides a second expression for ϑ2,

ϑ2 =
(α− ϕ)(ρ− α)3

(1− αϕ)(1− αρ)3
, (39)

where it has been used that ϕ(n−1)
ρ

= (1−αϕ)(α−ϕ)
(1−αρ)(ρ−α)

by (31). Equating the two expressions

for ϑ2 in (38) and (39), and using (33) to eliminate b, implies

(α− ϕ)(ρ− α)2

(1− αϕ)(1− αρ)2
> −(1− αρ)− ρ(ρ− α)

(ρ− α)− ρ(1− αρ)
=

1

α
.

Since (ρ− α) < (1− αρ), this inequality implies (α− ϕ)/(1− αϕ) > 1/α, which is a

contradiction, because α(α− ϕ)− (1− αϕ) = −(1− α2) < 0.

Proof of Proposition 10. The proof has four steps.

Step 1. Find the Wold representation of the observation vector sit = Γ(L)wit. In

any symmetric REE, (1 − ρL)p̃t = A(L)vt + ση(1 − ρL)B(L)ηt, for some one-sided
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A(L) and B(L).17 The equilibrium law of motion of sit = (uit, p̃t) is then

sit =
1

1− ρL

[
σv 0 σε(1− ρL)

A(L) ση(1− ρL)B(L) 0

] vt

ηt

εit

 ≡ 1

1− ρL
M(L)eit.

GivenM(L), the Wold factor Γ(L) can be computed using the procedure from pp.44-

47 of Rozanov (1967). The result is

Γ(L) =
(1 + ϑ2)−1/2

(1− ρL)

 ϑ
√

ρ
α
σε(L− α) −

√
ρ
α
σε(1− αL)

ϑ
√

α
ρ
σv

σε

A(L)L
(1−αL)

+ γ(L) −
√

α
ρ
σv

σε

A(L)L
L−α

+ ϑγ(L)(1−αL)
(L−α)

 , (40)

where

ϑ ≡
√
α

ρ

σv
σε

αA(α)

(1− α2)γ(α)
, (41)

and γ(L) is the univariate Wold factor that satisfies

γ(L)γ(L−1) =
α

ρ

(1− ρL)(1− ρL−1)

(1− αL)(1− αL−1)
A(L)A(L−1)+σ2

η(1−ρL)(1−ρL−1)B(L)B(L−1),

(42)

and α has the same definition as in the proof of Proposition 3.

Step 2. Find the equilibrium fixed point (19). According to the structural model,

(1− ρL)p̃t = σvvt −
b1f

2
0

f2

(1− ρL)L

(1− λL)

∞∑
j=1

(βλ)jĒtui,t+j + ση(1− ρL)ηt. (43)

Using the Hansen and Sargent (1981) formula and averaging across sectors,

∞∑
j=1

(βλ)jĒtui,t+j =
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
θt

p̃t

]
.

Substituting this into (43) and matching coefficients on vt and ηt implies

[ A(L) ση(1− ρL)B(L) ] = [ σv 0 ] + [ 0 ση(1− ρL) ]

−b1f
2
0

f2

βλL

(1− λL)(L− βλ)
[ 1 0 ](Γ(L)− Γ(βλ))Γ(L)−1

[
σv 0

A(L) ση(1− ρL)B(L)

]
.

17A(L) and B(L) are re-scaled here relative to (18) only for analytical convenience.
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Substituting in the expression for Γ(L) in (40) and rearranging,

A(L) = σv
(1− λL)(1− αL)(L− α)− b0Lψ(L)

(1− λL)(1− αL)(L− α) + b0ϑσε(1− α2)
√

α
ρ
L(1−ρL)2(L−ρ)
(1−αL)γ(L)

(44)

B(L) =
γ(L)(1− λL)(1− αL)

γ(L)(1− λL)(1− αL) + b0(1− α2)ϑ
√

ρ
α
σε(1− ρL)L

. (45)

where ψ(L) and b0 have the same definitions as in the proof of Proposition 3.

Step 3. Assume A(L) and B(L) are rational and re-write (44) and (45) in terms

of polynomials. If A(L) and B(L) are rational in L, then it is possible to write

A(L) = σA
pA(L)

qA(L)
and B(L) = σB

pB(L)

qB(L)
(46)

where pi(L) and qi(L) are polynomials with no common zeros, qi(L) has no inside

zeros, and pi(0) = qi(0) = 1 for i = A,B. In terms of these polynomials, (42) implies

γ(L) = σm

√
α

ρ

(1− ρL)m(L)

(1− αL)qA(L)qB(L)
, (47)

where m(L) is a polynomial with no inside zeros, which satisfies

σ2
mm(L)m(L−1) = σ2

ApA(L)pA(L
−1)qB(L)qB(L

−1) (48)

+ σ2
η

ρ

α
(1− αL)(1− αL−1)σ2

BpB(L)pB(L
−1)qA(L)qA(L

−1),

m(0) = 1, and σm > 0. Substituting (47) into (44) and (45), and rearranging,

σA
pA(L)

qA(L)
= σv

m(L)(1− λL)(1− αL)(L− α)− b0m(L)Lψ(L)

m(L)(1− λL)(1− αL)(L− α) + b0ϑ
σε(1−α2)

σm
qA(L)qB(L)L(1− ρL)(L− ρ)

(49)

σB
pB(L)

qB(L)
=

m(L)(1− λL)

m(L)(1− λL) + b0(1− α2)ϑ ρ
α

σε

σm
LqA(L)qB(L)

. (50)

Also, by (46), (47), and the definition of ϑ in (41),

ϑ =
σv
σε

α

1− αρ

σA
σm

pA(α)qB(α)

m(α)
. (51)

Step 4. Show that the fixed point equation defined by (48), (49), (50), and (51)

has no solution. The strategy is to derive a contradiction in each of six possible cases.

First, it helps to simplify the equations and establish some preliminary results.
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First, σA = σv and σB = 1. This follows from evaluating (49) and (50) at L = 0,

and using pA(0) = qA(0) = pB(0) = qB(0) = 1. Second, ϑ ̸= 0. If not, (49) implies

pA(L)

qA(L)
=

(1− λL)(1− αL)− b0L(ρ− α)

(1− λL)(1− αL)
,

and (51) implies pA(α) = 0, so α must be a zero of the numerator on the right. But

this is not possible, because (33) implies bα(ρ− α) < (1− αλ)(1− α2).

Define m̃(L) ≡ m(L)(1− λL), which has no inside zeros. Comparing numerators

and denominators in (50), any zeros of pB(L) or qB(L) must be a zero of m̃(L), so

m̃(L) = pB(L)qB(L)m̃1(L) (52)

for some polynomial m̃1(L). This implies pB(L) has no inside zeros. By (53), any

zeros of m̃1(L) must be shared by qA(L); i.e.

qA(L) = m̃1(L)qA1(L) (53)

for some polynomial qA1(L). Using these definitions, (50) can be rewritten as

pB(L) = qB(L)− b0ϑ
σε
σm

(1− α2)
ρ

α
qA1(L)L, (54)

which implies that qB(L) and qA1(L) have no common zeros, since qB(L) and pB(L)

do not. Substituting (52), (53), and (54) into (49), and rearranging,

pA(L)(1− λL)

pB(L)m̃1(L)
= qA1(L)

N(L)

D(L)
, (55)

N(L) ≡ (1− λL)(1− αL)(L− α)− b0L[ϑ
2(1− αL)(1− αρ) + (L− α)(ρ− α)] (56)

D(L) ≡ qB(L)(1− αL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)qA1(L)L

2. (57)

By (55), any inside zero of D(L) must be shared by N(L), because m̃(L) and qA1(L)

have no inside zeros, by definition, and pB(L) has no inside zeros, by (52). By (56),

degN(L) = 3. Substituting (52), (53), and (55) into (48), and rearranging,

qB(L)qB(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qA1(L)qA1(L
−1)qB(L)qB(L

−1)N(L)N(L−1) (58)

+
σ2
η

σ2
m

(1− αL)(1− αL−1)(1− λL)(1− λL−1)qA1(L)qA1(L
−1)D(L)D(L−1).
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This expression implies that if qA1(1/r) = 0 for |r| < 1, then (1 − α/r)D(r) = 0.

To see this, if qA1(1/r) = 0 then qB(1/r) ̸= 0 because (54) implies qB(L) and qA1(L)

have no common zeros, and qB(r) ̸= 0 because qB(L) has no inside zeros, so (58)

implies D(r)D(1/r) = 0. But by (57), D(1/r) = 0 only if r = α, which implies

(1− α/r)D(r) = 0.

Using theses preliminary results, it is possible to consider the six cases in the table

below. The numbers in the table correspond to the numbers in the proof below.

qA1(1/α) ̸= 0 qA1(1/α) = 0

qB(1/α)qB(1/λ) ̸=0
qB(1/α)=0

qB(1/λ) ̸=0

qB(1/α)̸=0

qB(1/λ)=0

qB(1/α)=0

qB(1/λ)=0
qB(1/λ)̸=0 qB(1/λ)=0

1.1 1.2 1.3 1.4 2.1 2.2

Case 1. If qA1(1/α) ̸= 0, then qA1(1/r) = 0 implies D(r) = 0 by (58). This means

D(L) has an inside zero, which by (55) is shared by N(L). But then a factor of the

form (L− r)(L−1 − r) cancels on both sides of (58), and the same argument can be

repeated to show that the multiplicity of the zero r in D(L) and N(L) is arbitrarily

large, contradicting degN(L) = 3. Therefore, qA1(L) = 1, and (58) becomes

qB(L)qB(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qB(L)qB(L
−1)N(L)N(L−1) (59)

+
σ2
η

σ2
m

(1− αL)(1− αL−1)(1− λL)(1− λL−1)D(L)D(L−1).

By (59), if qB(1/r) = 0, then (1−α/r)(1−λ/r)D(r) = 0. Now consider each sub-case.

Case 1.1. If qB(1/α)qB(1/λ) ̸= 0, then qB(1/r) = 0 implies D(r) = 0 since

qA1(1/α) ̸= 0 in this case, so D(L) has an inside zero. But then the argument above

can be used to produce a contradiction with degN(L) = 3. Therefore, qB(L) = 1,

and (57) and (59) become

D(L) = (1− αL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1)

+
σ2
η

σ2
m

(1− αL)(1− αL−1)(1− λL)(1− λL−1)D(L)D(L−1).
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If degD(L) = 2, then comparing degrees in the second equation implies the con-

tradiction 2 = max(3, 4). Therefore, the leading coefficient of D(L) must vanish; i.e.

α = −b0ϑ σ2
v

σεσm
(1−α2), which implies D(L) = (1+α2)L−α. Since r ≡ α/(1+α2) < α

is the only inside zero of D(L), (55) implies N(r) = 0. By (56),

ϑ2

1 + ϑ2
= −(α− r)

(1− λr)(1− αr)− br(ρ− α)

br[(1− αr)(1− αρ) + (α− r)(ρ− α)]
.

But by (33) and r < α, it follows that b < 1− λr, so (1− λr)(1− αr)− br(ρ− α) >

(1− λr)(1− ρr) > 0. Therefore ϑ2 < 0, which is a contradiction.

Case 1.2. If qB(1/α) = 0 but qB(1/λ) ̸= 0, then qB(L) = (1 − αL)qB1(L) for

some polynomial qB1(L). Then (59) becomes

qB1(L)qB1(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) (60)

+
σ2
η

σ2
m

(1− λL)(1− λL−1)D(L)D(L−1).

By (60), qB1(1/r) = 0 implies D(r) = 0, and D(L) has an inside zero, which can be

used to produce a contradiction with degN(L) = 3. Therefore, qB1(L) = 1, and (57)

and (59) become

D(L) = (1− αL)2(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

(1− λL)(1− λL−1)D(L)D(L−1).

From the first equation, degD(L) = 3. Comparing degrees on both sides of the

second equation produces the contradiction 3 = max(3, 4).

Case 1.3. If qB(1/λ) = 0 but qB(1/α) ̸= 0, it is possible to write qB(L) =

(1− λL)qB1(L) for some polynomial qB1(L). Then (59) becomes

qB1(L)qB1(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) (61)

+
σ2
η

σ2
m

(1− αL)(1− αL−1)D(L)D(L−1).

By (61), qB1(1/r) = 0 implies D(r) = 0, and D(L) has an inside zero, which can be

used in (61) to produce a contradiction with degN(L) = 3. Therefore, qB1(L) = 1,
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and (57) and (61) become

D(L) = (1− λL)(1− αL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

(1− αL)(1− αL−1)D(L)D(L−1).

From the first equation, degD(L) = 3. Comparing degrees on both sides of the

second equation produces the contradiction 3 = max(3, 4).

Case 1.4. If qB(1/λ) = 0 and qB(1/α) = 0, it is possible to write qB(L) =

(1− αL)(1− λL)qB1(L) for some polynomial qB1(L). Then (59) becomes

qB1(L)qB1(L
−1)D(L)D(L−1) =

σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) +

σ2
η

σ2
m

D(L)D(L−1).

This implies qB1(L) = 1; otherwise it can be shown that the reciprocal of any zero of

qB1(L) would be an inside zero of D(L) and N(L) of multiplicity greater than 3. So,

D(L) = (1− λL)(1− αL)2(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D(L)D(L−1) =
σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

D(L)D(L−1).

The first equation implies degD(L) = 4, and the second equation implies all the zeros

of D(L) must cancel with zeros of N(L). But degN(L) = 3, so this is a contradiction.

Case 2. If qA1(1/α) = 0, it is possible to write qA1(L) = (1−αL)qA2(L) for some

polynomial qA2(L). Then D(L) = (1− αL)D1(L), where

D1(L) = qB(L)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)qA2(L)L

2. (62)

By (58), qA2(1/r) = 0 impliesD1(r) = 0, which can be used to produce a contradiction

with degN(L) = 3. Therefore, qA2(L) = 1 and (58) becomes

qB(L)qB(L
−1)D1(L)D1(L

−1) =
σ2
v

σ2
m

N(L)N(L−1)qB(L)qB(L
−1) (63)

+
σ2
η

σ2
m

(1− αL)2(1− αL−1)2(1− λL)(1− λL−1)D1(L)D1(L
−1).

By (63), qB(1/r) = 0 implies (1− λ/r)D1(r) = 0. Now consider each sub-case.

Case 2.1. If qB(1/λ) ̸= 0, then qB(1/r) = 0 implies D1(r) = 0, so D1(L) has
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an inside zero, which can be used to produce a contradiction with degN(L) = 3.

Therefore, qB(L) = 1, and (62) and (63) become

D1(L) = (L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D1(L)D1(L
−1) =

σ2
v

σ2
m

N(L)N(L−1) (64)

+
σ2
η

σ2
m

(1− αL)2(1− αL−1)2(1− λL)(1− λL−1)D1(L)D1(L
−1).

From the first equation, degD1(L) = 2. Comparing degrees on both sides of the

second equation produces the contradiction 2 = max(3, 5).

Case 2.2. If qB(1/λ) = 0, then qB(L) = (1 − λL)qB1(L) for some polynomial

qB1(L), and (63) becomes

qB1(L)qB1(L
−1)D1(L)D1(L

−1) =
σ2
v

σ2
m

qB1(L)qB1(L
−1)N(L)N(L−1) (65)

+
σ2
η

σ2
m

(1− αL)2(1− αL−1)2D1(L)D1(L
−1).

If qB1(L) ̸= 1, then this equation implies D1(L) has an inside zero, which can be used

to show that N(L) has an inside zero of arbitrarily large multiplicity, which is not

possible. Therefore, it must be the case that qB1(L) = 1, so (57) and (65) become

D1(L) = (1− λL)(L− α)− b0ϑ
σ2
v

σεσm
(1− α2)L2

D1(L)D1(L
−1) =

σ2
v

σ2
m

N(L)N(L−1) +
σ2
η

σ2
m

(1− αL)2(1− αL−1)2D1(L)D1(L
−1).

If degD1(L) = 2, then the second equation implies the contradiction 2 = max(3, 4).

Therefore, the leading coefficient of D1(L) must vanish, i.e. λ = −b0ϑ σ2
v

σεσm
(1 − α2),

which implies D1(L) = (1 + αλ)L − α. Therefore, degD1(L) = 1, and its zero is

r ≡ α/(1 + αλ) < α. Since this is an inside zero, (55) implies N(r) = 0. Using (56),

ϑ2

1 + ϑ2
= −(α− r)

(1− λr)(1− αr)− br(ρ− α)

br[(1− αr)(1− αρ) + (α− r)(ρ− α)]
.

But by (33) and r < α, (1−λr)(1−αr)− br(ρ−α) > (1−λr)(1−ρr) > 0. Therefore

ϑ2 < 0, which is a contradiction.
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Proof of Proposition 4. The fact that the FCE paths are a REE follows from the

fact that the operator on the right side of (7) is invertible into the past, as shown in

the proof of Proposition 2. What remains is to show that this REE is unique. In any

REE, ki,t+1 is measurable with respect to sti = p̄t, so ki,t+1 = Ai(L)p̄t for some one-

sided operator Ai(L). Substituting this expression for ki,t+1 into (2) and averaging

across i implies [
1 +

1

n

n∑
i=1

b1f0LAi(L)

]
p̄t = ūt,

so ūt is measurable with respect to p̄t. And since p̄t must be measurable with respect

to ξt = (vt, εt), the operator on the left must be invertible, implying that p̄t is also

measurable with respect to ūt. Therefore, p̄t contains the same information as ūt in

any REE.

Proof of Proposition 5. The existence and uniqueness of the FCE follows from

the same reasoning as in the proof of Proposition 1, and the policy function (6) is

the same. Given that policy function, the closed-form expression in the proposition

comes from evaluating the forecasts Eitui,t+j under the new law of motion (10). To

do so, first notice that (10) implies

Eitui,t+j = ρjθEitθt + ρjzEitzit = (ρjθ − ρjz)Eitθt + ρjzuit, (66)

where the second equality uses zit = uit − θt to substitute out zit. The vector ut =

(u1t, . . . , unt) contains the same information as (ūt, û1t, . . . , û2t), where ûit ≡ uit −
ūt, since the two are related by a non-degenerate linear transformation. Since the
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processes {û1t, . . . , ûnt} are independent of {θt},

Eitθt = E(θt|ut) = E(θt|ūt, ût1, . . . , ûtn) = E(θt|ūt). (67)

Now it is necessary to compute E(θt|ūt). By (10),

ūt = θt + σεε̄t, θt = ρθθt−1 + σvvt, z̄t = ρz z̄t−1 + σεε̄t,

where ε̄t ≡ 1
n

∑n
i=1 εt is white noise with variance 1/n. This implies that the Wold

factor associated with the spectral density of {ūt} is

H(L) =

√
ρθσ2

ε + ρznσ2
v

ϕn

(1− ϕL)

(1− ρθL)(1− ρzL)
,

where ϕ is defined in the proposition. By the Wiener-Kolmogorov filtering equation,

E(θt|ūt) =
[

σ2
v

(1− ρθL)(1− ρθL−1)
H(L−1)−1

]
+

H(L)−1ūt =
(ρθ − ϕ)

(ρθ − ρz)

(1− ρzL)

(1− ϕL)
ūt,

(68)

where [ · ]+ projects onto the space spanned by non-negative powers of L, and the

second equality uses the fact that, by definition of ϕ,

ϕnσ2
v

ρθσ2
ε + ρznσ2

v

(1− ρθρz)

(1− ρθϕ)
=

(ρθ − ϕ)

(ρθ − ρz)
.

Substituting (66), (67), and (68) into (6) delivers the final expression for ki,t+1.

Proof of Proposition 6. By substituting the closed-form expression (11) into the

demand curve (2) and averaging across sectors,

p̄t =

[
1− b1f0L

(1− λL)(1− ϕL)

(
ωθ(1− ρzL) + ωz(1− ϕL)

)]
ūt. (69)

To prove the proposition, it is sufficient to prove that the operator on the right side

of this equation is invertible into the past. This holds if and only if

P(µ) = (µ− λ)(µ− ϕ)− b1f0(ωθ(µ− ρz) + ωz(µ− ϕ))

has no outside zeros.

2



First, suppose that ρθ = ρz. Then the characteristic equation simplifies to

P(µ) = (µ− ϕ)

(
µ− λ− b1f

2
0βλρz

f2(1− βλρz)

)
,

which has two inside zeros, because

0 < λ+
b1f

2
0βλρz

f2(1− βλρz)
< λ+

(b1f
2
0 + f1)βλ

f2(1− βλ)
= 1

by definition of λ.

Second, suppose that ρθ ̸= ρz. Then

P(0) = λϕ+
b1f

2
0

f2

βλρθρz(1− βλϕ)

(1− βλρθ)(1− βλρz)
> 0,

P(ϕ) = −b1f
2
0

f2

βλ(ρθ − ϕ)(ϕ− ρz)

(1− βλρθ)(1− βλρz)
< 0,

and

P(1) = (1− λ)(1− ϕ)− b1f
2
0

f2

βλ

(1− βλρz)

[
(ρθ − ϕ)(1− ρz)

(1− βλρθ)
+ ρz(1− ϕ)

]

> (1− ϕ)

[
(1− λ)− b1f

2
0 + f1
f2

βλ(1− βλρθρz)

(1− βλρz)(1− βλρθ)

]
(f1 ≥ 0, ρθ < 1)

= (1− ϕ)
b1f

2
0 + f1
f2

β2λ2(1− ρθ)(1− ρz)

(1− βλ)(1− βλρθ)(1− βλρz)
> 0. (1− λ =

b1f2
0+f1
f2

βλ
1−βλ

)

Therefore, P(µ) has two inside zeros in this case as well.

Proof of Proposition 7. The proof has four steps.

Step 1. Prove that p̄t = A(L)ūt in any symmetric REE, with A(L) one-sided into

the past. The proof of this step is the same as in the proof of Proposition 3.

Step 2. Find the Wold representation of the observation vector sit = Γ(L)wit.

The law of motion for sit is

sit =
1

(1− ρθL)(1− ρzL)

[
σv(1− ρzL) σε(1− ρθL)ι

′
i

σv(1− ρzL)A(L) σε(1− ρθL)A(L)
1
n
1′n

][
vt

εt

]

≡ 1

(1− ρθL)(1− ρzL)
Mi(L)et,

3



where ιi is a vector of zeros with a one in the i-th position, and 1n is an n-dimensional

vector of ones. Given Mi(L), the Wold factor Γ(L) can be computed using the

procedure from pp.44-47 of Rozanov (1967). The result is

Γ(L) =
(1 + ϑ2)−1/2

(1− ρθL)(1− ρzL)
×

 ϑ
√

ρθσ2
ε+ρzσ2

v

α
σε(L− α)

ϑ
√

α
ρθσ2

ε+ρzσ2
v

ρθσ
2
ε+ρznσ2

v

ϕn
(1−ϕL)(L−ϕ)

(1−αL)
A(L) + γ(L)

(70)

−
√

ρθσ2
ε+ρzσ2

v

α
σε(1− αL)

−
√

α
ρθσ2

ε+ρzσ2
v

ρθσ
2
ε+ρznσ2

v

ϕn
(1−ϕL)(L−ϕ)

(L−α)
A(L) + ϑγ(L)1−αL

L−α

 ,
where

ϑ ≡
√

α

ρθσ2
ε + ρzσ2

v

ρθσ
2
ε + ρznσ

2
v

ϕn

(1− αϕ)(α− ϕ)

(1− α2)

A(α)

γ(α)
, (71)

γ(L) is the univariate Wold factor that satisfies

γ(L)γ(L−1) = σ2
ε(n− 1)

α(ρθσ
2
ε + ρznσ

2
v)

ϕ(ρθσ2
ε + ρzσ2

v)

(1− ϕL)(1− ϕL−1)(1− ρθL)(1− ρθL
−1)

(1− αL)(1− αL−1)

× A(L)A(L−1), (72)

α is the smaller zero of

(ρθσ
2
ε + ρzσ

2
v)α

2 −
(
σ2
ε(1 + ρ2θ) + σ2

v(1 + ρ2z)
)
α + (ρθσ

2
ε + ρzσ

2
v) = 0, (73)

and ϕ is the smaller zero of

(ρθσ
2
ε + ρznσ

2
v)ϕ

2 −
(
σ2
ε(1 + ρ2θ) + nσ2

v(1 + ρ2z)
)
ϕ+ (ρθσ

2
ε + ρznσ

2
v) = 0. (74)

By definition, the parameters α and ϕ satisfy the relations

ρz < ϕ < α < ρθ if ρθ > ρz and ρz > ϕ > α > ρθ if ρθ < ρz. (75)

Step 3. Find the equilibrium fixed point equation A(L) = T [A(L)]. Using the

4



Hansen and Sargent (1981) formula and averaging across sectors,

∞∑
j=1

(βλ)jĒtui,t+j =
βλ

L− βλ
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
ūt.

Substituting this into (9) and matching coefficients on ūt implies

A(L) = 1− b1f
2
0

f2

βλL

(1− λL)(L− βλ)
[ 1 0 ] (Γ(L)− Γ(βλ))Γ(L)−1

[
1

A(L)

]
.

Substituting in the expression for Γ(L) in (70) and rearranging,

A(L) =
(1− λL)(1− αL)(L− α)− b0Lψ(L)

(1− λL)(1− αL)(L− α) + b0ϑ
σ2
ε(n−1)(1−α2)

n

√
α

ρθσ2
ε+ρzσ2

v

(1−ρzL)(1−ρθL)2(L−ρθ)L
γ(L)(1−αL)

,

(76)

where

ψ(L) ≡ ϑ2(1− αL)ψ1(L) + (L− α)ψ2(L), (77)

ψ1(L) ≡ 1− α(ρθ + ρz − ρθρzβλ) + ρθρz(α− βλ)L, (78)

ψ2(L) ≡ ρθ + ρz − α− ρθρzβλ− ρθρz(1− αβλ)L, (79)

b0 ≡ b/(1 + ϑ2), and

b ≡ b1f
2
0βλ

f2(1− βλρθ)(1− βλρz)
> 0.

An important property of the parameter b is that

b <
(1− λ)(1− βλ)

(1− βλρθ)(1− βλρz)
. (80)

To see this, note that by the definition of λ,

(1− λ)(1− βλ) =
(b1f

2
0 + f1)βλ

f2
>
b1f

2
0βλ

f2
= b(1− βλρθ)(1− βλρz).

Step 4. Prove that A(L) must be invertible. First consider the case when ρθ =

ρz ≡ ρ. Equations (73) and (74) imply that α = ϕ = ρ. By (71), this implies that

5



ϑ = 0, so (76) becomes

A(L) =
(1− λL)(1− αL)− bL[ρ− ρ2(βλ+ (1− αβλ)L)]

(1− λL)(1− αL)

=
1− [λ+ bρ(1− ρβλ)]L

1− λL
.

This operator is invertible because the moving average coefficient in the numerator is

no greater than one:

λ+ bρ(1− ρβλ) ≤ λ+
ρ(1− λ)(1− βλ)

(1− ρβλ)
=
λ(1− ρ) + ρ− ρβλ

1− ρβλ
≤ 1,

where the first inequality uses (80) and the second uses 0 < λ < 1. Therefore, for the

remainder of the proof it can be assumed that ρθ ̸= ρz.

Second, note that when ρθ ̸= ρz it must be that ϑ ̸= 0. To see this, suppose to

the contrary that ϑ = 0, so that (76) becomes

A(L) =
(1− λL)(1− αL)− bLψ2(L)

(1− λL)(1− αL)
.

By (71), ϑ = 0 implies A(α) = 0, since α ̸= ϕ and γ(L) has no inside zeros. Therefore,

the polynomial in the numerator on the right side of this equation must have a zero

at α. But this is not possible, because (79) and (80) imply that

bαψ2(α) < (1− αλ)(1− α2).

Third, let H(L) denote the univariate Wold factor that satisfies

H(L)H(L−1) = A(L)A(L−1). (81)

By (30),

γ(L) =

√
σ2
ε

n

α

ϕ

(
1− 1

n

)
(ρθσ2

ε + ρzσ2
v)

(ρθσ2
ε + ρznσ2

v)

(1− ϕL)(1− ρθL)

(1− αL)
H(L). (82)

Substitution of this expression into (76) produces

A(L) =
H(L)(1− λL)(1− αL)(L− α)− b0H(L)Lψ(L)

H(L)(1− λL)(1− αL)(L− α) + b0(1− α2)ϑσ (1−ρzL)(1−ρθL)(L−ρθ)L
(1−ϕL)

, (83)
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where σ2 ≡ (n− 1)ϕσ2
ε/(ρθσ

2
ε + ρznσ

2
v). By definition of α and ϕ,

ρθσ
2
ε + ρzσ

2
v

α
(1− αL)(L− α) = σ2

v(1− ρzL)(L− ρz) + σ2
ε(1− ρθL)(L− ρθ),

ρθ
σ2
ε

n
+ ρzσ

2
v

ϕ
(1− ϕL)(L− ϕ) = σ2

v(1− ρzL)(L− ρz) +
σ2
ε

n
(1− ρθL)(L− ρθ).

Evaluating these equations at L = α and subtracting the first from the second, σ2

can be written more conveniently as

σ2 =
(1− αϕ)(α− ϕ)

(1− αρθ)(ρθ − α)
. (84)

Now, suppose to the contrary that A(L) is not invertible, and has at least one

inside zero (which is not at the origin, since A(0) = 1). By (81), this means that

H(L) has at least one outside zero that is not shared by A(L). By (83), there are

only three possibilities:

1. H(L) = 1−ρθL
L−ρθ

A(L)

2. H(L) = 1−ρzL
L−ρz

A(L)

3. H(L) = (1−ρθL)(1−ρzL)
(L−ρθ)(L−ρz)

A(L).

These are the only possibilities because if h(1/r) = 0 and A(1/r) ̸= 0 for any other

|r| < 1, then 1/r would be a zero of the numerator but not the denominator of (83).

What remains is to show that each of these three possibilities entails a contradiction.

Case 1. H(L) = 1−ρθL
L−ρθ

A(L). Substituting this expression for H(L) into the fixed

point equation (83) and solving for A(L) implies that

A(L) = 1− b0L[(1− ϕL)ψ(L) + (1− α2)ϑσ(1− ρzL)(L− ρθ)
2]

(1− λL)(1− αL)(L− α)(1− ϕL)
. (85)

Equation (85) and the hypothesis that A(ρθ) = 0 provide an expression for ϑ2,

ϑ2 = − (ρθ − α)

(1− αρθ)

(1− λρθ)(1− αρθ)− bρθψ2(ρθ)

(1− λρθ)(ρθ − α)− bρθψ1(ρθ)
, (86)

where ψ1(L) and ψ2(L) are defined in (78) and (79), and b0 = b/(1+ϑ2) has been used

to substitute out b0. If ρθ < α, then by (78) and (80), and (79) and (80), respectively,

bρθψ1(ρθ) > (1− λρθ)(ρθ − α) and bρθψ2(ρθ) < (1− λρθ)(1− αρθ). (87)

7



By (86) and (87), ϑ2 > 0 implies ρθ > α, which implies ρz < ϕ < α < ρθ, by (75).

Since A(L) must be one-sided, the numerator of the fraction on the right side of

(85) must have a zero at L = α to cancel the factor L− α in the denominator. This

provides a second expression for ϑ2,

ϑ2 =
(α− ϕ)(ρθ − α)3

(1− αϕ)(1− αρθ)3
, (88)

where (77) and (84) have been used. Equating the two expressions for ϑ2 in (86) and

(88), it follows that

(α− ϕ)(ρθ − α)2

(1− αϕ)(1− αρθ)2
= −(1− λρθ)(1− αρθ)− bρθψ2(ρθ)

(1− λρθ)(ρθ − α)− bρθψ1(ρθ)
.

Since (80) implies b(1− βλρz) < (1− λρθ), this equation implies

(α− ϕ)(ρθ − α)2

(1− αϕ)(1− αρθ)2
> −(1− βλρz)(1− αρθ)− ρθψ2(ρθ)

(1− βλρz)(ρθ − α)− ρθψ1(ρθ)

=
(1− ρθρz)− βλρz(1− αρθ)

α(1− ρθρz) + βλρz(ρθ − α)
,

where the equality uses (78) and (79). Since (ρθ − α) < (1 − αρθ) and βλ < 1, this

inequality implies
(α− ϕ)

(1− αϕ)
>

(1− ρθρz)− ρz(1− αρθ)

α(1− ρθρz) + ρz(ρθ − α)
.

But this is a contradiction, because the denominators on both sides are positive, and

(α− ϕ)[α(1− ρθρz) + ρz(ρθ − α)]− (1− αϕ)[(1− ρθρz)− ρz(1− αρθ)]

= (1− α2)[−1 + ρz + ρθρz(1− ϕ)]

< (1− α2)(ρz − ϕ) < 0.

Case 2. H(L) = 1−ρzL
L−ρz

A(L). Substituting this expression for H(L) into the fixed

point equation (83) and solving for A(L) implies that

A(L) = 1− b0L[(1− ϕL)ψ(L) + (1− α2)ϑσ(1− ρθL)(L− ρθ)(L− ρz)]

(1− λL)(1− αL)(L− α)(1− ϕL)
, (89)

where σ2 is still defined as in (84). Equation (89) and the hypothesis that A(ρz) = 0
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provide an expression for ϑ2,

ϑ2 = − (ρz − α)

(1− αρz)

(1− λρz)(1− αρz)− bρzψ2(ρz)

(1− λρz)(ρz − α)− bρzψ1(ρz)
. (90)

By (78), (79), and (80), if ρz < α then

bρzψ2(ρz) < (1− λρz)(1− αρz) and bρzψ1(ρz) > (1− λρz)(ρz − α). (91)

Therefore, (90) indicates that ϑ2 > 0 only if ρz > α, which implies ρz > ϕ > α > ρθ

by (75). Because A(L) must be one-sided, the numerator of the fraction on the right

side of (89) must have a zero at L = α to cancel the factor L−α in the denominator.

This provides a second expression for ϑ2,

ϑ2 =
(α− ϕ)(ρθ − α)(ρz − α)2

(1− αϕ)(1− αρθ)(1− αρz)2
, (92)

where (77) and (84) have been used. Equating the expressions for ϑ2 in (90) and (92),

(α− ϕ)(ρθ − α)(ρz − α)

(1− αϕ)(1− αρθ)(1− αρz)
= −(1− λρz)(1− αρz)− bρzψ2(ρz)

(1− λρz)(ρz − α)− bρzψ1(ρz)
.

Since (80) implies b(1− βλρθ) < (1− λρz), this equation implies

(α− ϕ)(ρθ − α)(ρz − α)

(1− αϕ)(1− αρθ)(1− αρz)
> −(1− βλρθ)(1− αρz)− ρzψ2(ρz)

(1− βλρθ)(ρz − α)− ρzψ1(ρz)

=
(1− ρθρz)− βλρθ(1− αρz)

α(1− ρθρz) + βλρθ(ρz − α)
,

where the equality uses (78) and (79). Since (ρθ−α) < (1−αρθ), (ρz−α) < (1−αρz),
and βλ < 1, this inequality implies

(α− ϕ)

(1− αϕ)
>

(1− ρθρz)− ρθ(1− αρz)

α(1− ρθρz) + ρθ(ρz − α)
.

But this is a contradiction, because the denominators on both sides are positive, and

(α− ϕ)[α(1− ρθρz) + ρθ(ρz − α)]− (1− αϕ)[(1− ρθρz)− ρθ(1− αρz)]

= (1− α2)[−1 + ρθ + ρθρz(1− ϕ)] < (1− α2)(ρθ − ϕ) < 0.

Case 3. H(L) = (1−ρθL)(1−ρzL)
(L−ρθ)(L−ρz)

A(L). Substituting this expression for H(L) into

9



the fixed point equation (83) and solving for A(L) implies

A(L) = 1− b0L[(1− ϕL)ψ(L) + (1− α2)ϑσ(L− ρθ)
2(L− ρz)]

(1− λL)(1− αL)(L− α)(1− ϕL)
. (93)

This equation and the hypothesis A(ρθ) = A(ρz) = 0 implies that ϑ2 satisfies (86)

and (90). But it has been shown that (86) implies ρθ > ρz and (90) implies ρθ < ρz,

a contradiction.

Proof of Proposition 8. The proofs of the analogous versions of Propositions 1

and 4 are exactly the same as before, just with the relevant parameters indexed by i.

The only thing that remains is to prove the analogous version of Proposition 2. By

substituting (5) into (14), and averaging across sectors,

p̄t =

[
1− 1

n

n∑
i=1

b1if0iωiL

(1− λiL)(1− ϕL)

]
ūt. (94)

To prove the proposition, it is sufficient to verify that the operator on the right side

is invertible into the past. This is true if and only if characteristic polynomial

P(µ) =
n∏

i=1

(µ− λi)(µ− ϕ)− 1

n

n∑
i=1

b1if0iωiµ
∏
j ̸=i

(µ− λj)

has n + 1 inside zeros. Note first that signP(0) = (−1)n+1 because 0 < ϕ < 1 and

0 < λi < 1, and P(1) > 0 because

1− ϕ > ρ(1− ϕ/ρ)
1

n

n∑
i=1

b1if
2
0i(1− βiλi)

(b1if 2
0i + f1i)(1− βiλiρ)

=
1

n

n∑
i=1

b1if0iωi

1− λi
,

where the last equality uses the definitions of ωi and λi.

Next, arrange the sequence {λi}ni=1 such that λ1 ≤ λ2 ≤ · · · ≤ λn, and note that

P(λi) = − 1

n

n∑
i=1

b1if0iωiλi
∏
j ̸=i

(λi − λj).

This implies that P(λ1) = 0 if λ1 = λ2 and signP(λ1) = (−1)n otherwise, so

signP(λ1) ̸= signP(0). Similarly, signP(λn) = 0 if λn = λn−1 and signP(λn) = −1
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otherwise, so signP(λn) ̸= signP(1). Finally, note that for i = 2, 3, . . . , n,

signP(λi) =

 0 λi = λi−1

− signP(λi−1) λi > λi−1

Therefore P(µ) has n+ 1 inside zeros.

Proof of Proposition 9. Existence and the uniqueness of the FCE follows from the

same reasoning as in the proof of Proposition 1, and the policy function (6) is the

same, except with the relevant structural parameters now indexed by i. Given (6),

the closed-form expression in (1) comes from evaluating the forecasts Eitui,t+j under

the new law of motion (16). By(16) ,

Eitui,t+j = αiρ
jEitθt (95)

The vector ut = (u1t, . . . , unt) contains the same information as (ūt, û1t, . . . , û2t),

where ūt ≡ 1
n

∑n
i=1

σ2
ε

σ2
εi
αiuit, σ

2
ε ≡ ( 1

n

∑n
i=1

α2
i

σ2
εi
)−1, and ûit ≡ uit−αiūt, since the two are

related by a non-degenerate linear transformation. Since the processes {û1t, . . . , ûnt}
are independent of {θt},

Eitθt = E(θt|ut) = E(θt|ūt, ût1, . . . , ûtn) = E(θt|ūt). (96)

By (16), ūt = θt + σεε̄t, where ε̄t ≡ 1
n

∑n
i=1 εt is white noise with variance 1/n. This

is the same law of motion from the proof of Proposition 1, so the optimal forecast of

θt is given by (27) (with appropriate re-definitions of ϕ and ūt). Substituting (95),

(96), and (27) into (6) delivers the same expression for ki,t+1 presented in Proposition

1, with the new expression for ωi reported in this proposition.

Substituting this policy function into the demand curve and computing the ap-

propriately weighted average of prices across sectors implies

p̄t =

[
1− 1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i

ω̃iL

(1− λiL)(1− ϕL)

]
ūt, (97)

where ω̃i ≡ ωi/αi > 0. To prove the analogous version of Proposition 2, it is sufficient

to verify that the operator on the right side is invertible into the past. This is true if
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and only if characteristic polynomial

P(µ) =
n∏

i=1

(µ− λi)(µ− ϕ)− 1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i ω̃iµ

∏
j ̸=i

(µ− λj)

has n + 1 inside zeros. Note first that signP(0) = (−1)n+1 because 0 < ϕ < 1 and

0 < λi < 1, and P(1) > 0 because

1− ϕ > ρ(1− ϕ/ρ)
1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i

b1if
2
0i(1− βiλi)

(b1if 2
0i + f1i)(1− βiλiρ)

=
1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i

ω̃i

1− λi
,

where the last equality uses the definitions of ω̃i and λi.

Next, arrange the sequence {λi}ni=1 such that λ1 ≤ λ2 ≤ · · · ≤ λn, and note that

P(λi) = − 1

n

n∑
i=1

σ2
ε

σ2
εi

α2
i ω̃iλi

∏
j ̸=i

(λi − λj).

This implies that P(λ1) = 0 if λ1 = λ2 and signP(λ1) = (−1)n otherwise, so

signP(λ1) ̸= signP(0). Similarly, signP(λn) = 0 if λn = λn−1 and signP(λn) = −1

otherwise, so signP(λn) ̸= signP(1). Finally, note that for i = 2, 3, . . . , n,

signP(λi) =

 0 λi = λi−1

− signP(λi−1) λi > λi−1

Therefore, P(µ) has n+ 1 inside zeros.

To prove the analogous version of Proposition 4, note that any REE of an economy

with sit = p̄t implies a relationship of the form[
1 +

1

n

n∑
i=1

σ2
ε

σ2
εi

αib1if0iLAi(L)

]
p̄t = ūt.

The fact that p̄t must be measurable with respect to ξt = (vt, εt) implies that the

operator on the left must always be invertible into the past. This proves that, in any

REE, p̄t and ūt contain the same information.
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