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Abstract

Empirical methods for transferable-utility matching games have previously
been developed using the key outcome of the matches formed in equilib-
rium. We explore identification and estimation of match production functions
and agent valuation functions using data on two additional outcomes of such
matching games: monetary transfers (prices) and profits. We provide identifi-
cation results for nonparametric models for the case of data on profits and for
more parametric models for the case of data on prices. We provide estimators
paralleling the identification results for both profit data and price data. Im-
portantly, our identification results allow for agents to have valuations defined
over the unmeasured characteristics of potential partners.
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1 Introduction

This paper studies the identification and estimation of aspects of the payoffs of agents
in two-sided matching games using data on prices or profits in addition to data on
matches. We first describe some background on the empirical use of matching games
without price and profit data and then move onto our results incorporating price or
profit data.

Matching games make predictions about which of a heterogeneous group of
agents on one side of a matching market will match with particular agents on the
other side of the matching market. Transferable-utility matching games are a par-
ticular type of matching game where matched agents exchange monetary transfers
and those transfers enter additively separably into the payoffs of agents for matches.
Since at least Becker (1973), economists have used transferable-utility matching
games to make empirical predictions about the matching patterns involving the het-
erogeneous agents on both sides of a matching market. A famous theoretical result
is sometimes used. If the years of schooling of men and women are the only agent
characteristics entering the production of a match, high-schooling men marry high-
schooling women and low-schooling men marry low-schooling women if the schooling
levels of men and women are complements in the production of a match.

More recently, an influential literature developed methods to structurally esti-
mate the parameters of the match production function in transferable utility match-
ing games (e.g., Choo and Siow 2006; Fox 2010; Dupuy and Galichon 2014; Chi-
appori, Salanié, and Weiss 2017; Fox, Yang, and Hsu 2018; Fox 2018; Galichon
and Salanié 2022). The methods use data on who matches with whom as the de-
pendent variable, the outcome of the matching game observed by the researcher.
Moving past the analysis of scalar agent characteristics in Becker (1973), the in-
dependent variables in the data are vectors of measured agent characteristics as
well as, sometimes, match-specific characteristics. There are some limitations to the
identification results in this literature. One of the limitations is that usually some
notion of complementarities is the only aspect of match production that is identified
without using data on agents who are unmatched. Data on unmatched agents are
not always available. A further limitation is that at best match production functions
can be identified only up to location and scale normalizations.

The outcome to a transferable-utility matching game has additional components.
An outcome to a transferable-utility matching game is comprised of the matches
(who matches with whom) and, importantly, the monetary transfers, which we often
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call prices, exchanged between the matched parties. Together, the match and price
outcomes can be used to compute the equilibrium profit (or utility) of each agent in
a matching market if the valuation functions are known. There exist many datasets
where the researcher observes data on who matches with whom in addition to data
on the prices exchanged between matched agents or the profits agents that have.
Both price and profit data are measured in monetary units, such as dollars.

The current paper studies the identification and estimation of aspects of the
match production function as well as the valuation functions of the two sides of
the matching market using data on matches as well as one or both of the con-
tinuous, monetary outcomes of prices and profits. The addition of a mostly new
type of dependent-variable data has the potential to resolve some of the limitations
of identification using data on matches only discussed above. It is natural to ex-
pect that using monetary outcome data will allow the identification of the scale
of payoff-related functions (match production and match valuations) in monetary
units. Further, our results explore to what degree price or profit data can identify
the level of match production and match valuations, rather than just some notion
of complementarities, without relying on data on unmatched agents.

We work with outcome and agent characteristic data sampled from one or a
finite number of one-to-one, two-sided, continuum matching markets. By a contin-
uum, we mean that each matching market in truth has an infinite number of agents.
Continuum matching games are also studied in the majority of the structural empir-
ical literature on estimating transferable-utility matching games using outcome data
on matches only (e.g., Choo and Siow 2006; Fox 2010; Dupuy and Galichon 2014;
Chiappori, Salanié, and Weiss 2017; Fox 2018; Galichon and Salanié 2022). While
our paper and this prior empirical literature on continuum matching games both
study one-to-one, two-sided transferable-utility matching games, there are some key
differences in the continuum models in the matches-only literature and the models
we explore. First, we focus on the case where agents on both of the two sides of the
market each have a vector of measured, continuous characteristics. The literature
on using outcome data on matches only often focuses on on discrete characteristics,
with Fox (2010), Dupuy and Galichon (2014) and to some degree Fox (2018) be-
ing notable exceptions. Second, our treatment of variables that are unmeasured in
the data (the econometric error terms) is quite different. Most of our identification
results assume each agent has a scalar, unmeasured agent characteristic. This un-
measured agent characteristic is valued by agents on the other side of the market
and can shift the valuations of the agent whose characteristic it is. By contrast, the
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prior literature on estimating continuum matching games using matches only relies
on an model where unmeasured variables reflect preferences over the measured char-
acteristics of partners. For example in Choo and Siow (2006), who study marriage,
men and women have the measured characteristic of schooling and men have logit
shocks over female schooling levels and women have logit shocks over male schooling
levels. In the prior literature on continuum matching games, there are no unmea-
sured agent characteristics that are valued by the other side of the market. In the
sense that we allow such unmeasured agent characteristics, our continuum matching
game shares features with the finite-agent matching games analyzed in Fox, Yang,
and Hsu (2018).

As our paper studies matching games using match, price and profit data, we
need to consider several different data schemes in our paper. In labor markets, it
is common in linked employee-employer data to observe the salary of a worker in
addition to characteristics of the worker and his or her employer. This salary is a
monetary transfer and hence is the price data we would use in our analysis. If the
worker is assumed to have no non-wage valuations over firms, a common assumption
in models of the labor market, then this salary could also be modeled as the profit
of the worker. In business-to-business markets, it is common to observe the price of
a transaction between a buyer and a seller. It is less common but still possible to
observe the profit of either or both of the buyer and seller, say from accounting data.
We generally assume that match data are available, although one of our results using
profit data does not use information on the characteristics of matched partners.

While we consider many combinations of data availability and restrictions on
match production and valuation functions, there are some broad differences between
the types of results we present for profit data and for price data. For profit data, our
identification and estimation results treat the unknown match production function
nonparametrically, meaning it is not specified up to a finite vector of unknown pa-
rameters. For estimation, these nonparametric identification results inspire compu-
tationally simple estimators. For price data, our recommended estimation approach
is parametric and reasonably computationally intense, as it involves computing the
equilibrium to the matching game inside the evaluation of a likelihood function
by an optimization routine. The intuition for the more straightforward identifica-
tion results for profit data is the profits are the equilibrium utilities of agents and
correspond closely with agents’ objectives when making matches in the game. By
contrast, prices are equilibrium transfers between two matched agents and shift the
payoffs of the agents for particular partners, rather than being the realized payoffs
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themselves, as in the case of data on profits.
Each section below describes the results on matching games and results from

prior papers in econometrics that we rely on for each of our identification results
and our estimation procedures. For the case of profits data, we build on methods
that have studied non-separable econometric models (e.g., Matzkin 2003). For the
case of prices data, we use methods for simulated likelihoods where the outcome
data is continuous, as in our data schemes (e.g., Fermanian and Salanié 2004).

In addition to our results on identification and estimation, we present one result
on matching theory that may be of independent interest. Theorem 1 shows sufficient
conditions for the random variables corresponding to the measured characteristics
of agents matched to each other in equilibrium to be statistically independent of the
random variables corresponding to the unmeasured characteristics of agents matched
to each other in equilibrium. As the conditions in Theorem 1 may at first seem to
be appealing starting places for identification analysis, the new theorem shows that
weakening the conditions using a fully non-separable model may be necessary to
fit typical datasets, which contain many matches between agents with measured
characteristics such that the model needs econometric error terms, in our model the
unmeasured agent characteristics, to fit the match patterns in the data.

The literature that is closest to our study of price (not profit) data from transferable-
utility matching games goes by a different name: hedonics. In a hedonics model,
buyers and sellers transact both for monetary transfers and for other, endogenously
determined, non-price product characteristics. Think of the motivating example of
housing. Buyers are families who match with sellers, who are construction builders.
The notion of a match in the housing market would include the price of the house,
the transfer in the model, and some non-price characteristics of the house, like how
big the house is. If this optimal choice of non-price characteristics is concentrated
out, under appropriate restrictions a hedonics model is a transferable utility match-
ing game between buyers and sellers. Previous papers on identification in hedonics
models use data on prices in addition to non-price characteristics of the product
(e.g., Ekeland, Heckman, and Nesheim 2004; Bajari and Benkard 2005; Heckman,
Matzkin, and Nesheim 2010). A key restriction used in previous analyses of iden-
tification in hedonics models has been that agents have valuation functions defined
over the non-price characteristics and not the measured or unmeasured character-
istics of their match partners. In housing, families have valuations defined over the
measured characteristics of the house and not the measured or unmeasured char-
acteristics of the contractor that builds the house. The unmeasured variables in
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previous identification results in the hedonics literature are preference shifters over
the measured, non-price characteristics of the product in question, like a newly built
house. Therefore, the treatment of unmeasured variables as shifters of preferences
over measured characteristics is to some degree reminiscent of the treatment of un-
measured variables in the literature on the identification in continuum matching
games using outcome data on matches only, as described earlier (e.g., Choo and
Siow 2006). Our model allows agents to have valuations defined over the unmeasured
characteristics of partners.

Section 2 describe the one-to-one, two-sided, continuum matching game that
we study. Section 3 considers identification under profit data, using nonparametric
models. Section 4 considers identification under price data, focusing with provided
motivation on parametric models. Section 5 then discusses estimation with price
data and with profit data in separate subsections. We plan to add an empirical
application.

2 The Model

We first introduce some basic notations and definitions before discussing the exis-
tence and uniqueness of the equilibrium.

Notations and Definitions

Agents belong to either the upstream side or the downstream side of the market. An
upstream firm is characterized by a vector of types denoted by X̃ ≡ (X, ε) ∈ X̃
where x ∈ X is a dx-dimension vector of the observable or measured characteristics
and ε ∈ E is a dε-dimension vector of the unobservable or unmeasured characteris-
tics. Similarly, a downstream firm is characterized by ỹ ≡ (y,η) ∈ Ỹ , where y is a
dy-dimension vector of observable characteristics and η ∈ H is a dη-dimension vector
of unobservable characteristics. In the following sections, unless clearly stated oth-
erwise, we assume that unobserved characteristics of the upstream and downstream
firms are both scalars (i.e., dx = dy = 1), and denote them with ε and η. We will
explicitly specify where the results can be extended to allow for vector unobservable
characteristics. The upstream firm’s types are distributed as F u (·, ·), whereas the
downstream firm’s types are distributed as F d(·, ·). Throughout the paper, we as-
sume that the type distributions F u (·, ·)and F d (·, ·) are continuous and atom-less
distributions over Rdx+dε and Rdy+dη . The mass of firms on each side of the market
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is normalized to 1.
A match between an upstream firm x̃ and a downstream firm ỹ generates (pair-

wise) match production
Φ (x̃, ỹ) = Φ (x, ε,y,η) ,

where the match production function Φ : Rdx+dε+dy+dη 7→ R is a model primitive.
It is worth noting that we do not specify the firm’s payoff in a match because it is
an equilibrium outcome of the model.

A feasible matching, also known as a coupling in the optimal transport literature,
determines which firm on each side of the market is matched to another firm on the
other side of the market. In a finite setting, a matching can be characterized by
the finite set of all matches. In a continuous setting, where there is an uncountable
number of matches, a matching is defined as a probability measure µ over X × Y
determining the frequency of a match between any pair of upstream and downstream
firm types (x̃, ỹ). However, not every probability measure on X × Y is a feasible
matching. Specifically, the matching µ constitutes a feasible matching if and only
if the marginals ofµ coincide with the distributions F u (·, ·) and F d (·, ·). This is
analogous to the condition that each firm is matched only once in a finite one-to-one
matching model, or matched less than or equal to a quota in a finite many-to-many
matching model. The set of all feasible matchings between F u (·, ·) and F d (·, ·) is
denoted byM

(
F u, F d

)
.

A feasible matching where the downstream partner of (x, ε) is a deterministic
function of (x, ε) and similarly the upstream partner of (y,η) is a deterministic
function of (y,η) is called a pure matching. In a pure matching, let T u : Rdx×Rdε 7→
Rdy denote the mapping from the space of upstream types X̃ to the space Y of the
observed downstream types. That is, for (x, ε) ∈ Rdx+dε , the observed partner type
y is given by T u (x, ε), where y ∈ Rdy is the unique value such that µ (x, ε,y,η) > 0

for some η ∈ Rdη . The mapping T u (x, ε) is the observed type of the unique partner
of (x, ε)-firm. Similarly, we define the mapping Su : Rdx × Rdε 7→ Rdη given by
Su (x, ε) = η where η ∈ Rdη is the unique value such that µ (x, ε,y,η) > 0 for some
y ∈ Rdy . The mappings T d (y,η) and Sd (y,η) are s the observed and unobserved
type of the unique matching partner of the downstream firm (y,η).

A pairwise stable pure equilibrium in the continuous two-sided matching model
is a pure matching that is characterized by (T u(·), Su(·)) and a pair of equilibrium
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profit functions
(
πu, πd

)
, where πu : Rdx+dε 7→ R and πd : Rdy+dη 7→ R are such that

πu (x, ε) + πd (y,η) ≥ Φ (x, ε,y,η) , if

(
y

η

)
6=

(
T u (x, ε)

Su (x, ε)

)
, (1)

and

πu (x, ε) + πd (y,η) = Φ (x, ε,y,η) , if

(
y

η

)
=

(
T u (x, ε)

Su (x, ε)

)
. (2)

Equation (1) says that the sum of the equilibrium profits for any pair of upstream
and downstream firms should be at least as much as the potential production that
they would generate if they were in a match. If (1) is violated for some (x, ε) ∈ X̃
and (y,η) ∈ Ỹ such that y 6= T u (x, ε) and/or η 6= Su (x, ε), then they can deviate
from their equilibrium matches under (T u, Su) and form a match with each other
by dividing the production net of their equilibrium profits, i.e., Φ (x, ε,y,η) −
πu (x, ε) + πd (y,η) > 0, equally so that they are both strictly better off compared
to their equilibrium payoffs. Equation (2) says that upstream and downstream
firms in a match share the match production between themselves according to the
equilibrium profit functions πu (·, ·) and πd (·, ·).

Existence and Uniqueness

The existence and uniqueness of a pure equilibrium matching and equilibrium profits
follow from a variation of the Monge-Kantorovich theorem in Carlier (2003). We
first state the assumptions on the model primitives to ensure the existence and
uniqueness of the pure equilibrium matching—see Galichon (2016, p. 76).

Assumption 1. (i) (Differentiability) The match production function Φ (·, ·, ·, ·)
is twice continuously differentiable in all its arguments and for every compact set
Ky ⊆ Ỹ, there exists a constant cKy > 0 such that for every x̃1, x̃2 ∈ X̃ ,

sup
ỹ∈Ky
|Φ (x̃1, ỹ)− Φ (x̃2, ỹ)| ≤ cKy |x̃1 − x̃2| ,

and for every compact set Kx ⊆ X , there exists a constant cKx > 0 such that for
every ỹ1, ỹ2 ∈ Ỹ,

sup
x̃∈Kx

|Φ (x̃, ỹ1)− Φ (x̃, ỹ2)| ≤ cKx |ỹ1 − ỹ2| .
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(ii) (Twist Condition) For every x̃ ∈ X̃ and ỹ1, ỹ2 ∈ Ỹ,

∇(x,ε)Φ (x̃, ỹ1) = ∇(x,ε)Φ (x̃, ỹ2) =⇒ ỹ1 = ỹ2,

and for every ỹ ∈ Ỹ and x̃1, x̃2 ∈ X̃ ,

∇(y,η)Φ (x̃1, ỹ) = ∇(y,η)Φ (x̃2, ỹ) =⇒ x̃1 = x̃2.

Assumption 1 guarantees the differentiability and integrability of the production
function.

Assumption 2. (Continuous Types) The Marginal distributions F u (·, ·) and F d (·, ·)
on X̃ = Rdx+dε and Ỹ = Rdy+dη are continuous.

If Assumptions 1 and 2 hold, then there is a unique pure solution µ∗ to the
primal problem

sup
µ∈M(Fu,F d)

Eµ
[
Φ
(
X̃, Ỹ

)]
(3)

such that the pure solution is characterized by two bijections, i.e., the observed and
unobserved upstream matching functions, T u(·, ·) and Su (·, ·) or equivalently, the
inverse mappings, i.e., the observed and unobserved downstream matching functions,
T d (·, ·) and Sd (·, ·). If Assumptions (1) and (2) hold, then there are πu∗ and πd∗ to
the the dual problem

inf
πu,πd

{
EFu

[
πu
(
X̃
)]

+ EF d
[
πd
(
Ỹ
)]}

(4)

s.t. πu (x̃) + πd (ỹ) ≥ Φ (x̃, ỹ) .

We note that these solutions are unique up to an additive constant and are
almost-everywhere differentiable. In addition, the value of the primal solution in (3)
and of the dual solutions in (4) are equal. This is known as the Monge-Kantorovich
duality result. See Carlier (2003).

An important implication of this duality result is that there is a unique equilib-
rium matching (T u, Su) and unique (up to an additive constant) equilibrium profit
functions πu (·, ·) and πd (·, ·). In other terms, we can shift πu(·, ·) upward by a
constant c > 0 and shift πd (·, ·) downward by the same constant to reach new
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equilibrium profit functions π̃u (·, ·) and π̃d (·, ·) such that

π̃u (x, ε) = πu (x, ε) + c, π̃d (y,η) = πd (y,η)− c,

for all (x, ε) ∈ X̃ and (y,η) ∈ Ỹ .
With this new equilibrium result at hand, we derive the equilibrium prices or

transfers. The pairwise match production can be written as the sum of the upstream
and downstream valuations of the match as

Φ (x, ε,y,η) = Φu (x, ε,y,η) + Φd (x, ε,y,η) ,

where Φu(x, ε,y,η) is the upstream valuation and Φd (x, ε,y,η) is the downstream
valuation of the potential match between (x, ε) and (y,η). The firm’s valuation of
a match is the utility of being in a match before any monetary exchange or utility
transfer between the two firms. The pre-transfer utility is potentially different from
the firm’s equilibrium profits or payoffs that can be written as functions of the
equilibrium firms’ valuations and the equilibrium transfer. Let (x, ε)-firm to be
matched to (T u (x̃) , Su (x̃))-firm in a pure equilibrium matching with equilibrium
payoffs πu (x, ε) and πd (T u (x̃) , Su (x̃)). The equilibrium transfer or price in a
pairwise stable equilibrium is then defined as the amount of money pu (x, ε) received
by the upstream firm or pd (y,η) paid by the downstream firm in equilibrium. These
prices/transfers defined as

pu (x, ε) ≡ πu (x, ε)− Φu (x, ε,T u (x̃) , Su (x̃)) ,

or equivalently for (y,η)-firm

pd (y,η) ≡ Φd
(
T d (ỹ) , Sd (ỹ) ,y,η

)
− πd (y,η) .

In parallel, for each pairwise stable equilibrium, we define potentially several
competitive equilibria by specifying the prices/transfers for matches that do not
form in equilibrium. A (pure) competitive equilibrium in the continuous two-sided
matching model is a pure matching characterized by (T u, Su) and a competitive
equilibrium price function p : X̃ × Ỹ 7→ R such that for each (x.ε)-firm(

T u (x, ε)

Su (x, ε)

)
= arg max

(y,η)∈Ỹ
{Φu (x, ε,T u (x̃) , Su (x̃)) + p (x, ε,y,η)} ,
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and for each (y,η)-firm(
T d (y,η)

Sd (y,η)

)
= arg max

(x,ε)∈X̃

{
Φd
(
T d (ỹ) , Sd (ỹ) ,y,η

)
− p (x, ε,y,η)

}
.

In other words, the equilibrium matching solves the profit maximization problem
of all the firms given the competitive equilibrium price function p (·, ·, ·, ·). Consider
the pairwise stable equilibrium characterized by (T u, Su) and

(
πu, πd

)
, then a cor-

responding competitive equilibrium is given by the equilibrium matching (T u, Su)

and the equilibrium price function given by

p (x, ε,y,η) = Φd (x, ε,y, η)− πd (y, η) .

The competitive equilibrium matching and firms’ payoffs are the same as the ones
in the pairwise stable equilibrium. As an illustration, consider any two firms x̃ and
ỹ such that (y,η) = (T u (x̃) , Su (x̃)), i.e., matched in equilibrium. The competitive
equilibrium price for this match is given by

p (x, ε,y,η) = Φd (x, ε, T u (x̃) , Su (x̃))− πds (Su (x̃) , Su (x̃))

= Φd (x, ε,y,η)− πd (y,η) .

Hence, the competitive equilibrium payoff of a (x, ε)-firm, denoted πu,COMP (x, ε),
is given by

πu,COMP (x, ε) = Φu (x, ε,y,η) + p (x, ε,y,η)

= Φu (x, ε,y,η) + Φd (x, ε,y,η)− πd (y,η)

= Φ (x, ε,y,η)− πd (y,η)

= πu (x, ε) .

Similarly, we can show the (y,η)-firm’s competitive equilibrium profit is equal to
its pairwise stable equilibrium profit. Consequently, the pairwise stable transfers co-
incide with the competitive equilibrium price function evaluated at the equilibrium
matches. The notable difference between the stable equilibrium and the competitive
equilibrium is that the equilibrium price function in the latter should be defined for
all feasible matches, and not only those that are formed in the equilibrium. For
instance, the off-equilibrium prices suggested above would make downstream firms
indifferent between their equilibrium partner and any other upstream firm. The
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competitive equilibrium definition allows us to specify the equilibrium conditions
in terms of individual profit maximization behavior for price-taking firms. Never-
theless, both notions of equilibrium imply the same model outcome—that is, the
same unique equilibrium matching, equilibrium payoffs, and transfers/prices for the
matches that are formed in equilibrium.

Matching Under Independence and Separability Assumptions

We now discuss the equilibrium under more restrictive assumptions such as inde-
pendence of the unobserved and observed types and additive separability of the
production function. We state these assumptions below. Let F u(·, ·) and F d(·, ·)
denote the marginal distributions of observed and unobserved types of the upstream
and downstream firms, respectively. The induced marginal and conditional distri-
butions of the firms’ types are denoted by the subscripts.

Assumption 3. (Independence) The upstream unobserved types ε are independently
distributed from the observed types X, namely

F u (x, ε) = F u
ε|x (ε|X = x)F u

x (x) = F u
ε (ε)F u

x (x) .

Similarly, the downstream unobserved types η are independently distributed from
the observed types Y , namely

F d (y,η) = F d
η|y (η|Y = y)F d

y (y) = F d
η (η)F d

y (y) .

Assumption 4. (Separability) The pairwise match production function is additively
separable in the observed and unobserved types, namely potential match production of
a match between a (x, ε)-firm and a (y,η)-firm is given by Φ (x, ε,y,η) = ζ (x,y)+

Ξ (ε,η), where ζ (·, ·) and Ξ (·, ·) satisfy Assumption 1.

Next, we establish a theorem that derives the pure equilibrium matching under
these assumptions.

Theorem 1. Let Assumptions 1–4 hold. The unique equilibrium matching is char-
acterized by

(
T̃ u (·) , S̃u (·)

)
where T̃ u : Rdx 7→ Rdy and S̃u : Rdε 7→ Rdη—that is, for

each (x, ε)-firm the observed types of the equilibrium partner are only a function of
the observed types x, and the unobserved types of the equilibrium partner are only a
function of the unobserved types ε .
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The uniqueness of the equilibrium matching is guaranteed by the Monge-Kantorovich
theorem under Assumptions 1 and 2. The proof of Theorem 1 relies on rewriting the
primal problem (3) as two separate maximization problems under the independence
assumption. This means that the matchings of the observed and unobserved types
are independent from each other. Theorem 1 implies that upstream firms charac-
terized by a specific observed type x in a dataset of equilibrium matching generated
by a model under Assumptions 1–4 are matched to downstream firms with a unique
observed type y. We say that the observed matching is deterministic. For instance,
if dx = dy = 1, i.e. the case of scalar observed types, the equilibrium matching
observed in the data should be a line in the x− y space. This model implication is
rarely satisfied in practice where we expect to observe firms with similar observed
types to be matched to firms that do not have the same observed types. Therefore,
the model is misspecified. This is not due to lack of model flexibility in terms of
the unobserved heterogeneity as we can include complex unobserved heterogene-
ity structure in Ξ (·, ·), but rather the property of the equilibrium matching in a
continuous market under Assumptions (1)–(3).

3 Identification under Profit Data Availability

In this section, we consider the identification and estimation of the model under
different model assumptions and data schemes. The model primitives consist of
the match production function and the marginal distributions of the upstream and
downstream characteristics, i.e. Φ (·, ·, ·, ·), F u (·, ·), and F d (·, ·). In terms of data
schemes, we consider the cases where the analyst has access to either individual prof-
its for all the firms or only firms on one side of the market, or match transfers/prices
for all the matches that are formed in equilibrium. Let the upstream firms in the
observed sample be indexed by i = 1, 2, . . . , N . Denote by (xi,y

∗
i ) the observed

match between the upstream firm i and its downstream equilibrium partner, where
xi is a vector of the observed characteristics of the upstream firm i. Similarly, y∗i
is the vector of observed characteristics of the downstream firm that is matched to
the upstream firm i. The upstream and downstream profits of the match indexed
by i are denoted by πui and πdi , respectively. Likewise, the transfer/price associated
with observation i’s match is denoted by pi.

Data Scheme 1. The data include the equilibrium matching and individual profits
of all firms from one large market. The observed sample is

{
(xi,y

∗
i ) , π

u
i , π

d
i

}N
i=1

.
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Data Scheme 2. The data include the equilibrium matching and individual profits
of either the upstream side or the downstream side, but not both, from one large
market. The observed sample is {(xi,y∗i ) , πui }

N
i=1 or

{
(xi,y

∗
i ) , π

d
i

}N
i=1

.

Data Scheme 3. The data include the equilibrium matching and match transfer
for all the matches that formed in equilibrium from one large market. The observed
sample is {(xi,y∗i ) , pi}

N
i=1 .

3.1 Identification with Profit Data under Monotonicity and

Independence

We first consider the model under Data Scheme 1 where the analyst has access to the
matching and individual profits of all firm from one large market. We also discuss
how data from multiple markets can be used for identification purpose.

The equilibrium matching, either competitive or pairwise, can be thought as the
result of profit maximization of all the firms. At equilibrium, an upstream firm char-
acterized by (x, ε) chooses the downstream firm to maximize its equilibrium profit.
The upstream firm chooses (y,η) given the downstream equilibrium profit function
πu(x, ε)chooses (y, η) so as to maximize the potential match production net of the
equilibrium profit share of the downstream firm, given by Φ (x, ε,y, η)− πd (y, η) .
The profit maximization implies given the downstream equilibrium function πd (·, ·),
the upstream profit function at every point (x, ε) ∈ X is given by

πu (x, ε) = max
(y,η)∈Y

{
Φ (x, ε,y, η)− πd (y, η)

}
. (5)

Suppose that for some (x, ε) matched to (y, η) at equilibrium, (2) does not hold.
Then, there should be another (y′, η′) 6= (y, η) such that

Φ (x, ε,y′, η′)− πd (y′, η′) > Φ (x, ε,y, η)− πd (y, η) .

By (2), we can replace Φ (x, ε,y, η) by πu (x, ε) + πd (y, η). Thus, we have

πu (x, ε) + πd (y′, η′) < Φ (x, ε,y′, η′) ,

which violates the condition for pairwise stable equilibrium in (1). Similarly, given
the equilibrium upstream profit function, the equilibrium downstream profit function
should satisfy

πd (y, η) = max
(x,ε)∈X

{Φ (x, ε,y, η)− πu (x, ε)} ,

14



at all points (y, η) ∈ Ỹ—in other words, πd should satisfy the profit maximization
of the downstream firm.

Let πuxk and πdyk denote the partial derivative of the upstream and downstream
profit functions with respect to the argument corresponding to the k’th observable
characteristic. Similarly, let πuε and πdη denote the partial derivatives with respect
to the argument corresponding to the scalar unobserved characteristic. 1

The following assumption imposes monotonicity restrictions on the structural
match production function which in turn implies monotonicity of the equilibrium
profit functions—which is the equilibrium outcome of the model.

Assumption 5. (Monotonicity) The match production function Φ (·, ·, ·, ·) is strictly
monotonic in the scalar unobservable characteristics ε and η. That is,

Φε (x, ε,y, η) > 0 and Φη (x, ε,y, η) > 0,

for all (x, ε,y, η) ∈ X̃ × Ỹ.

The next lemma is a simple application of the envelope theorem under the mono-
tonicity assumption. 2

Lemma 1. Let Assumptions 1,2, and 5 hold. The equilibrium profit functions of the
upstream and downstream firms are monotonic in the unobservable characteristics,
that is

πuε (x, ε) > 0 and πdη (y, η) > 0.

The envelope theorem says that to find the partial derivatives of the value func-
tion πu with respect to its parameters parameters x and ε in (5), we only need to
focus on direct effects of the parameters—i.e., indirect effects through the maximiz-
ers T u (x, ε) and Su (x, ε) can be ignored. The partial derivative of πu with respect
to ε is given by

1In the case of a vector of unobservables, we include a subscript to specify the components of
the vector.

2e.g., Simon and Blume (1994, pp. 453–455)
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∂πu (x, ε)

∂ε
=
∂
[
Φ (x, ε, T u (x̃) , Su (x̃))− πd (T u (x̃) , Su (x̃))

]
∂ε

=Φε (x, ε, T u (x̃) , Su (x̃))

+

dy∑
k=1

∂T uk (x̃)

∂ε

[
Φyk(x, ε, T

u (x̃) , Su (x̃))− πdyk(T
u (x̃) , Su (x̃))

]
+
∂Su(x̃)

∂ε

[
Φη(x, ε, T

u(x̃) , Su(x̃))− πdη (T u(x̃) , Su(x̃))
]

=Φε (x, ε, T u (x̃) , Su (x̃)) .

(6)

The third equality is implied by the envelope theorem. The indirect effects
through the optimizers ∂/∂εT uk (x, ε) and ∂/∂εSu (x, ε) can be ignored. Therefore,
Assumption (5) implies that the equilibrium profits are monotonic in ε. A similar
argument ensures the monotonicity in the downstream unobservable η.

Let αε ≡ F u
ε (ε) and αη ≡ F d

η (η). By construction, the random variables αε
and αη are both distributed uniformly on [0, 1]. Let T̄ u (x, αε) ≡ T u (x, F u

ε
−1 (αε))

and S̄u (x, αε) ≡ Su (x, F u
ε
−1 (αε)) be the observed and unobserved equilibrium

matching functions evaluated at observed characteristics x and the αε-quantile of the
unobserved distribution F u

ε . Similarly, π̄u (x, αε) ≡ πu
(
x, F u

αε
−1 (αε)

)
, π̄d (y, αη) ≡

πd
(
y, F d

η
−1 (αη)

)
, and Φ̄ (x, αε,y, αη) ≡ Φ(x, F u

ε
−1 (αε)y, F

d
η
−1 (αε)).

The next result builds on Matzkin (2003) who studies the identification of
nonseparable functions under independence and monotonicity in an unobserved
scalar. The equilibrium profits are nonseparable functions of the observed vectors
and an unobserved scalar, as for instance, the upstream profits can be written as
πu(x, ε) = Φ(x, ε, T u (x, ε) , Su(y, η)) ≡ m(x, ε).

Theorem 2. Let Assumptions 1,2,3, and 5; and Data Scheme 1 hold. The match
production function evaluated at quantiles of the unobserved distributions

Φ̄ (x, αε,y, αη)

is identified on the equilibrium path
(
x, αε, T̄

u (x, αε) , S̄
u (x, αε)

)
for all x and all

αε ∈ [0, 1].

The proof is provided in the appendix. The proof shows that under indepen-
dence and monotonicity assumptions, for each upstream firm the quantile αε and
for each downstream firm the quantile αη of their unobserved characteristics are
identified as the distribution of the upstream and downstream profits conditional on
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x and y, respectively. The upstream profit data identify π̄u (x, αε) as the profit
of the upstream firm with observed characteristics x and the unobservable αε,
which is already pinned down for each upstream firm. Similarly, for π̄d(y, αη).
The matching data identifies T̄ u (x, αε) as the observed characteristic y of the equi-
librium partner of (x, αε), and S̄u (x, αε) is identified as the unobserved character-
istic αη of the equilibrium partner of (x, αε). The last step of the proof uses (2) to
identifyΦ̄

(
x, ε̄, T̄ u (x, ε̄) , S̄u (x, ε̄)

)
for all x and ε̄ ∈ [0, 1] as the sum of the matched

upstream and downstream firms, namely

Φ̄
(
x, ε̄, T̄ u (x, ε̄) , S̄u (x, ε̄)

)
= πu (x, ε̄) + πd

(
T̄ u (x, ε̄) , S̄u (x, ε̄)

)
.

It is worth noting that Theorem 2 under Data Scheme 1 does not identify the
normalized match production function Φ̄ (·, ·, ·, ·) on all of its domain. For instance,
an upstream firm with observed characteristics x receiving the median profit con-
ditional on X = x , i.e., π̄u

(
x, 1

2

)
, is matched to only one downstream firm in

equilibrium that is characterized by the observed characteristics y = T̄ u
(
x, 1

2

)
and

is receiving the S̄u
(
x, 1

2

)
-quantile of downstream profits conditional on Y = y,

namely π̄d(y, S̄u(x, 1
2
)). In other words, data from one market allow us to iden-

tify Φ̄ (·, ·, ·, ·) at the point
(
x, 1

2
, T̄ u

(
x, 1

2

)
, S̄u

(
x, 1

2

))
but not off equilibrium points

(x, αε,y, αη) where y 6= T̄ u (x, αε) and/or η̄ 6= S̄u (x, αη).
We propose two solutions to the nonidentification of the match production func-

tion at the off-equilibrium points. A first solution is to obtain additional data
from other markets with different distributions of characteristics, but sharing the
same structural match production function. For each point (x, αε,y, αη), the match
production function is identified from a market where the point is an equilibrium
matching in that market. Alternatively, we can consider a semiparametric model
where the match production function is approximated by a flexible function of the
characteristics such as using a high degree polynomial in the observed and unob-
served characteristics. This strategy has been used in the literature with data on
matching to estimate features of the match production function such as complemen-
tarities, i.e., second derivatives, see e.g. Chiappori et al. (2022).

Our next result focuses on the implication of the separability assumption of the
match production function and the result in Theorem 1 on the identification result
of Theorem 2.

Corollary 1. Let Assumptions 1–5 and Data Scheme 1 hold. The observed match
production function ζ (·, ·) is identified on (x, T u (x)) for all x, and the unobserved
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match production function of the normalized unobserved characteristics Ξ̄(·, ·) on
(αε, S

u (αε)) for all αε ∈ [0, 1].

Under the assumptions of Corollary 1, the observed matching (x, T u (x)) is just
a line—similarly for the unobserved matching (αε, S

u (αε)). In other words, the
observed production is identified only on one line.

Pairwise Stability Bounds

The data from one market without assuming a parametric functional form is still
informative about the production of the matches that are not formed in equilibrium.
We rewrite the pairwise stability condition in (4)

π̄u (x, αε) + π̄d (y, αη) ≥ Φ̄ (x, αε,y, αη) , (7)

which holds for all upstream (x, αε) and downstream (y, αη) even if they are not
matched to each other in equilibrium. The left-hand side of (7) are the profits that
the firms receive from their equilibrium matches, while the right-hand side is the
potential production of the match between (x, αε) and (y, αη) which is not formed in
equilibrium. This means that without further assumptions on the production func-
tion, the model provides an upper bound for the production of all those matches
that are not formed in equilibrium—i.e., the points at which the production function
is not identified without further data or parametric assumptions. When the pro-
duction function is approximated by a flexible parametric functional form, we can
use the additional information provided by these upper bounds in the estimation.

Next, we construct an example with a quadratic specification of the production
function.

Example 1. (Semiparametric Quadratic production) Let x, ε, y, η be scalar random
variables and Assumptions 1–3 hold. Let the total production be

Φ(x, ε, y, η) ≡ βxxx
2 + βxyxy + βyyy

2 + βxηxη + βyεyε+ εη, (8)

so that
Φ2(x, ε, y, η) = βyεy + η and Φ4(x, ε, y, η) = βxηx+ ε.

Further assume x, y, ε, η > 0 and βyε, βxη > 0 so that πu (x, ε) and πd (y, η)

are monotone in ε and η, respectively. For each matched pair reported in the
sample, which is indexed by i, we observe

(
xi, yi, π

u
i , π

d
i

)
. Let εi,ηi denote the latent
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unobserved characteristics. By definition of equilibrium, we know that

πui = πu(xi, εi), πdi = πd(yi, ηi),

yi = T u(xi, εi), ηi = Su(xi, εi),

xi = T d(yi, ηi), εi = Sd(yi, ηi).

Given the profit monotonicity and observation of
(
xi, yi, π

u
i , π

d
i

)
in the data, we

can back out the quantiles of ε and η in each matched pair in the data. Specifically,
for each matched pair i, we cannot directly pin down the realized values of εi and
ηi, but we can calculate quantiles αεi and αηi such that

Pr(πu ≤ πui |X = xi) = Pr(ε ≤ εi) = αεi,

Pr(πd ≤ πdi |Y = yi) = Pr(η ≤ ηi) = αηi.

An application of the envelop theorem in the dual of the Kantorovich problem
implies that

πu1 (x, ε) = Φ1(x, ε, T u(x, ε), Su(x, ε)) = 2βxxx+ βxyT
u(x, ε) + βxηS

u(x, ε),

πd1(y, η) = Φ3(T d(y, η), Sd(y, η), y, η) = 2βyyy + βxyT
d(y, η) + βyε

Following the independence assumption, we can identify πu1 (xi, εi) as∇xQ
u (αεi|xi)

for each matched pair i in the data, where Qu (α|xi) denotes the α-th conditional
quantile of upstream profit πu conditional on X = xi and ∇xQ

u (αεi |xi) is the partial
derivative with respect to x. This gives the following equations

2βxxxi + βxyyi + βxηηi = ∇xQ
u(αεi|xi) ≡ ui,

2βyyyi + βxyxi + βyεεi = ∇yQ
d(αηi|yi) ≡ di.

Consider any two observations of matched pairs i, j such that αηi = αηj (or
equivalently ηi = ηj). We take the difference to get

2βxx(xi − xj) + βxy(yi − yj) = ui − uj,

2βyy(yi − yj) + βxy(xi − xj) = di − dj.

Assuming the paired random vector (Xi −Xj, Yi − Yj) is not contained in a linear
subspace conditional on ηi = ηj, we can (over-)identify βxx and βxy using the first
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implication. By an analogous argument, we can (over-)identify βxx and βxy using
the second as well. This in turn implies we can identify

βxηηi = ui − 2βxxxi − βxyyi, (9)

βyεεi = di − 2βyyyi − βxyxi, (10)

for each matched pair i in the sample.
It remains to recover βxη, βyε, and the marginal distribution of ε and η. To

do so, recall that we can identify Φ (·, ·, ·, ·) over the equilibrium matching support
(x, ε, T u(x, ε), Su(x, ε)). That is we can recover

Φ (x, ε, T u(x, ε), Su(x, ε)) = βxxx
2 + βxyxT

u(x, ε) + βyyT
u(x, ε)2 + βxηxS

u(x, ε)

+ βyεT
u(x, ε)ε+ εSu(x, ε),

for all (x, ε). In terms of observed information from the sample, this means we can
observe total profits for each matched pair i, their respective observed characteristics
(xi, yi), but not the latent (εi, ηi) in the following equation,

Φi = βxxx
2
i + βxyxiyi + βyyy

2
i + βxηxiηi + βyεyiεi + εiηi. (11)

However, as explained above, we do know the corresponding percentile values
for εi and ηi, i.e. (αεi, αηi), for each i. By substituting (9) and (10) into (11), we
can express εiηi in terms of identifiable quantities.

Next, note that we need at least one scale normalization, in addition to nor-
malizing the coefficient in from of εiηi to one, in the distribution of unobserved
characteristics ε or η. We normalize the median of the marginal distribution of η
to a known value η0. Then, we can recover E0 ≡ {εi : ∃xi s.t. Su(xi, εi) = η0}
using the knowledge of εiηi on the equilibrium match support. Specifically, for an
observation with αηi = 0.5, we can identify εi simply as εiηi, which is identified
above. More importantly, we already know this realized value of εi corresponds
to the αεi-th percentile in the marginal distribution of εi, because αεi is identified
earlier using monotonicity of πu(x, ε) in ε. Next, for each ε0 ∈ E0 we can recover
H0 ≡ {ηi : ∃yi s.t. Sd(yi, ηi) = ε0}, again using knowledge of εiηi on equilibrium
support. Specifically, for an observed matched pair i with εi = ε0 ∈ E0, we identify
ηi as εiηi/ε0, where the product εiηi identified as above. Again, we know ηi is the
αηi-th percentile of the marginal distribution of ηi, thanks to previous identification
of αηi . It then follows immediately that both βxη, βyε are identified from (9) and
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(10). Furthermore, iterating this process to expand the sets to E0,H0, E1,H1, . . .

identifies more percentiles εi and ηi on their marginal support.

3.2 Identification with Profit Data under Separability

In this section, we consider the identification when the restrictive assumption of
monotonicity, i.e. Assumption 5, and the implicit assumption of unobservable scalar
in Theorem 2 are relaxed. Without these assumptions, the conditional quantiles
of the profit data do not correspond to the quantiles of the unobserved variables
distributions. The next result relaxes the monotonicity and unobserved scalar as-
sumptions, but imposes the separability assumption, i.e. Assumption 4, to restore
identification.

Theorem 3. Let Assumptions 1,2, and 4, and Data Scheme 2 hold. The mean of
the partial derivative of observed production function E [ζxk (x, T u (x, ε)) |X = x],
k = 1, . . . , dx is identified for all x ∈ X .

The proof is as follows. The (x, ε)-firm’s profit maximization problem is given
by

πu (x, ε) = max
(y,η)∈Y

{
ζ (x,y) + Ξ (ε,η)− πd (y, η)

}
.

The envelope theorem implies that the partial derivative of the upstream profit
with respect to xk evaluated at the equilibrium is given by

∂πu (x, ε)

∂xk
=
∂
[
ζ (x,y) + ξ (ε,η)− πd (y,η)

]
∂xk

∣∣∣∣∣
(y,η)=(Tu(x̃),Su(x̃))

= ζxk (x, T u (x, ε)) . (12)

Taking expectation of both sides of (12) with respect to the conditional distri-
bution of ε gives

EFu
ε|x

[
∂

∂xk
πu (X, ε) |X = x

]
= EFu

ε|x
[ζxk (X, T u (X, ε)) |X = x] .
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The left-hand side can be written as

EFu
ε|X

[
∂πu (X, ε)

∂xk
|X = x

]
=

∫
E

∂πu (x, ε) fuε|X (ε|x) dε

∂xk

=
∂
∫
ε∈E π

u (x, ε) fuε|X (ε|x) dε

∂xk

=
∂ E [πu (X, ε) |X = x]

∂xk
.

The last equality is using the Leibniz integral rule to change the order of integration
and differentiation. Thus, we obtain

∂ E [πu (X, ε) |X = x]

∂xk
= EFu

ε|x
[ζxk (X, T u (X, ε)) |X = x] , (13)

where the left-hand side is identified from the data on upstream equilibrium profits.
The next example illustrates an application of Theorem 3 in a semi-parametric

setting where the observed production function is linear in the parameters.

Example 2. We consider the match production Φ (x, y, ε,η) = βxxx
2 + βxyxy +

βyyy
2 + Ξ (ε,η) . For each x ∈ R, the expectation of the partial derivatives

E [2βxxxT
u (X, ε) + βxyT

u (X, ε) |X = x]

= 2βxxxE [T u (X, ε) |X = x] + βxy E [T u (X, ε) |X = x]

is identified using data on upstream firms’ profits. The expectation term on the
right-hand side, i.e. E [T u (x, ε) |X = x], is also identified using data on equilibrium
matching as the mean of the observed characteristic of the matching partner of x-
firms. We define ȳ∗ (x) ≡ E [T u (X, ε) |X = x]. Let x1, x2 ∈ R and x1 6= x2. Then,
we have

∂ E [πu (X, ε) |X = x1]

∂x
= ȳ∗ (x1) (2βxxx1 + βxy) ,

∂ E [πu (X, ε) |X = x2]

∂x
= ȳ∗ (x2) (2βxxx2 + βxy) .

It follows that βxx and βxy are identified as

βxx =
∂ E[πu(X,ε)|X=x2]

∂x
ȳ∗ (x1)− ∂ E[πu(X,ε)|X=x1]

∂x
ȳ∗ (x2)

2 (x1 − x2) y1y2

,
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and

βxy = −
∂ E[πu(X,ε)|X=x2]

∂x
x1ȳ

∗ (x1) + ∂ E[πu(X,ε)|X=x1]
∂x

x2ȳ
∗ (x2)

(x1 − x2) y1y2

.

Similarly, the downstream profit data identify βyy as

βyy =

∂ E[πd(Y,η)|Y=y2]
∂y

x̄∗ (y1)− ∂ E[πd(Y,η)|Y=y1]
∂y

x̄∗ (y2)

2 (x1 − x2) y1y2

.

The next corollary provides the implication of the independence assumption, i.e.,
Assumption 3, on Theorem 3.

Corollary 2. Let Assumptions 1–4 and Data Scheme 2 hold. The partial derivatives
of the observed production function with respect to xk, k = 1, . . . , dx evaluated at the
observed equilibrium matches, i.e. ζxk

(
x, T̃ (x)u

)
for x ∈ X , is identified.

By Theorem 1, Assumptions 3 and 4 imply that the observed type of the down-
stream partner of each (x, ε)-firm is only a function of the observed characteristics
x. Therefore, the expectation on the right-hand side of (13) can be dropped as the
observed equilibrium matching would not include a random term. Namely,

∂ E [πu (X, ε) |X = x]

∂xk
= EFu

ε|x
[ζxk (X, T u (X, ε)) |X = x]

= EFu
ε|x

[
ζxk

(
X, T̃ u (X)

)
|X = x

]
= ζxk

(
x, T̃ u (x)

)
.

Consequently, the identified term in Corollary 2 is the derivative of the model prim-
itive itself, not a local average of it as in the more general result of Theorem 3.

3.3 Identification of the Nonseparable Model with Profit data

Up to now, we have explored how model assumptions such as independence, separa-
bility, and monotonicity in unobserved scalars together with equilibrium matching
and profit data enable us to identify the model primitives. In this section, we de-
scribe which model primitives can be identified without imposing such assumptions.
We consider two assumption scenarios: (i) a non-additively separable production
function, non-scalar unobserved characteristics of the firms, and no monotonicity in
the unobserved characteristics, whereas maintaining the independence assumption,
and (ii) relaxing the independence assumption in the previous case.
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The next theorem is an application of Hoderlein and Mammen (2007) and Sasaki
(2015) who study the identification of structural partial effects in nonseparable mod-
els with multiple unobservables.

Theorem 4. Let Assumptions 1–3 hold. Let quα (x) denote the α-quantile of the
upstream firm’s profits conditional on X = x. That is, for α ∈ [0, 1],

Pr (πu (X, ε) ≤ quα (x) |X = x) = α.

The weighted averages of the production function partial derivatives with respect to
the observed characteristics evaluated at the equilibrium matches and conditional on
the observed characteristics X = x and the α-quantile of the equilibrium profits,
namely,

Eν [Φxk (X, ε, T u (X, ε) , Su (X, ε)) |X = x, quα (x)] , k = 1, 2, . . . , dx,

where the measure ν (x, ·) is proportional to fuε (·)
/
‖∇επu (x, ·)‖, are identified.

The proof is as follows. Recall (5)

πu (x, ε) = max
(y,η)∈Y

{
Φ (x, ε,y, η)− πd (y, η)

}
≡ m (x, ε) ,

for some nonseparable function m(·, ·). Under the independence assumption3 and
Assumptions 1–2, Theorem 2.1 in Hoderlein and Mammen (2007) implies that for
each α ∈ [0, 1],

Eν
[
∂m (X, ε)

∂xk
|X = x, πu = quα (x)

]
=
∂quα (x)

∂xk
,

where quα (x) denotes the απu-th conditional quantile of the upstream profit condi-
tional onX = x and ν is the measure introduced in Theorem 4 due to Sasaki (2015).
The right-hand side is the quantile partial derivative of the upstream profits condi-
tional on the observed characteristics which is identified under Data Scheme 2 and
the independence assumption. On the other hand, an application of the envelope
theorem to the upstream profit function implies that for each observed characteris-
tic xk, the partial derivative of the upstream profit with respect to xk evaluated at
(x, ε), can be written as the derivative of the production function with respect to

3We can relax this assumption to conditional independence of xk and ε given x−k.
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xk-argument evaluated at the equilibrium match of (x, ε), i.e.

∂πu(x, ε)

∂xk
= Φxk (x, ε, T u (x, ε) , Su (x, ε)) ,

which completes the proof.
Theorem 4 and its proof describe how the partial derivates of the quantiles of the

upstream/downstream equilibrium profits conditional on the observed characteris-
tics can be linked to a weighted average of structural partial effects of the produc-
tion function within the subpopulation of upstream/downstream firms that have the
same observed characteristics and equilibrium profit equal to the α-quantile of the
upstream/downstream profits conditional on their observed characteristic. Though,
the subpopulation of firms included in the average is identified in the data, we cannot
identify the weights. Intuitively, larger weights are assigned to those points at which
the unobservables have a smaller marginal effect on the structural function. The
original result in Hoderlein and Mammen (2007) suggests that the identified feature
is a simple average of the partial effects with respect to the underlying measure of
the unobserved characteristics. However, Sasaki (2015) revisits and updates Hoder-
lein and Mammen (2007)’s result by pointing out that the local slope parameter
of the quantile regression identifies a weighted average of the underlying structural
partial effects, as described in Theorem4.

Next, we introduce an assumption ensuring that the weights in Theorem 4 are
proportional to the measure induced by the underlying distribution of the unob-
served characteristics.

Assumption 6. The gradient norm of the production function with respect to ε,
i.e., ‖∇εΦ (x, ε,y,η)‖), is only a function of x.

An implication of Assumption 6 is that conditional on X = x, the denominator
of the weight term in Theorem 4 is constant on the set {ε ∈ E|πu (x, ε) = quα (x)}.
The following corollary summarizes this result.

Corollary 3. Let Assumptions 1–3 and 6 hold. The conditional average partial
effects of the structural function

E [Φxk (X, ε, T u (X, ε) , Su (X, ε)) |X = x, quα (x)] , k = 1, 2, . . . , dx,

where the average is over all (x, ε)-firms where ε is such that πu (x, ε) = quα (x).
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4 Identification under Price Data Availability

In this section, we explore the identification of the model primitives with data on
match transfers instead of firms’ profits. Before stating any identification result, we
discuss the complexity of using transfer data. We recall that profits are the optimal
values of the firm’s objective function when choosing a partner. Unlike profits,
match transfers are not directly maximized or minimized by firms. For instance, a
CEO who has nonpecuniary preferences may choose to manage a firm that is not
paying the highest salary but rather the firm that maximizes overall utility, e.g.
firm’s prestige.

We can express the upstream price function for realized matches in terms of the
equilibrium profits and the upstream valuation function as

p (x, ε) = πu (x, ε)− Φu (x, ε, T u (x, ε) , Su (x, ε)) .

The partial derivative of this price function with respect to the unobserved scalar
type is given by

∂p (x, ε)

∂ε
=πuε (x, ε)− ∂Φu (x, ε, T u (x, ε) , Su (x, ε))

∂ε

=πuε (x, ε)− Φu
ε (x, ε, T u (x, ε) , Su (x, ε))

− T uε (x, ε) Φu
y (x, ε, T u (x, ε) , Su (x, ε))

− Suε (x, ε) Φu
η (x, ε, T u (x, ε) , Su (x, ε)) . (14)

In view of (14), assuming the monotonicity of equilibrium transfer would involve
assumptions not only on model primitives, but also on model outcomes. The second
equality in (14) includes the direct effects of the change in ε on profits and the
valuation function, and the indirect effects of the valuation function through the
changes in the equilibrium matching partner. Unlike profit function, there is no
condition on model primitives that implies monotonicity of the equilibrium matching
function. This means that data on prices for realized matches cannot pin down the
quantiles of the unobservables.

Before discussing identification of the model primitives with price data, we briefly
mention a corollary of Theorem 2 that illustrates how price data in addition to firms’
profits identify the valuation functions.

Corollary 4. Let Assumptions 1,2,3, and 5, and Data Scheme 1 of Theorem 2 hold.
We assume prices for all formed matches are observed. Then, the match production
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and valuation functions evaluated at the quantiles of the unobserved distributions
are identified on the equilibrium path.

Corollary 4 uses the fact that profits can be written as the sum of valuation
functions and equilibrium transfers. Specifically,

Φ̄u
(
x, αε, T̄

u (x, αε) , S̄
u (x, αε)

)
= π̄u (x, αε)− p̄u (x, αε) ,

Φ̄d
(
T̄ d (y, αη) , S̄

d (x, αη) ,y, αη
)

= π̄d (y, αη) + p̄d (x, αη) .

Since αε and αη are identified under profit monotonicity, the right-hand sides in
the previous equations are observed.

As noted in Section 1, the equilibrium matching, profits, and prices do not have a
closed form solution in general. However, the well-known result by Dowson and Lan-
dau (1982) shows that when the match production is quadratic in the characteristics
and the characteristics on each side of the market are jointly normally distributed,
the equilibrium admits a closed-form solution. Lindenlaub (2017) uses this result to
study worker-job complementarities in an equilibrium matching model. Bojilov and
Galichon (2016) extend this result by deriving the closed form while adding logit
unobserved heterogeneity to the model similar to Choo and Siow (2006). We use
the same model specification and the closed-form expression for equilibrium objects
to explore the model identification with price/transfer data.

We first describe the parametric model and then state the identification result.

The Quadratic production and Normal Characteristics Model

Let X̃ = (x1, x2, ε) ∼ N (0,ΣX̃), Ỹ = (y1, y2, η) ∼ N (0,ΣỸ ), and σ2
ε ≡ V ar(ε) =

σ2
η ≡ V ar (η) = 1. Let Assumption 3 hold, i.e., the unobserved characteristics

are independently distributed from the observed characteristics on each side of the
market. Furthermore, let the match production function as

Φ (x, ε,y, η) = β11x1y1 + β12x1y2 + β21x2y1 + βu22x2y2 + βu13x1η + βd33εη.

The corresponding upstream and downstream valuation functions are given by

Φu (x, ε,y, η) = βu11x1y1 + βu12x1y2 + βu21x2y1 + βu22x2y2 + βu13x1η,

Φd (x, ε,y, η) = βd11x1y1 + βd12x1y2 + βd21x2y1 + βd33εη.

Note that the production function above is neither additively separable in the
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observed and unobserved types as in Assumption 4, nor the unobserved terms are
separable in the sense of Choo and Siow (2006) due to the presence of βd33εη .

The equilibrium matching function is then a linear function in the characteristics,
and can be characterized by the reduced-formy1

y2

η

 = T ·

x1

x2

ε



=

t11 t12 t13

t21 t22 t23

t31 t32 t33


x1

x2

ε

 ,

where T is the matching matrix given by T ≡ Σ
1/2
Y

(
Σ

1/2
Y A′ΣXAΣ

1/2
Y

)−1/2

Σ
1/2
Y A′,

where

ΣY =

σy1 0 0

0 σy2 0

0 0 1

 ΣX =

σx1 0 0

0 σx2 0

0 0 1

 A =

β
d
11 + βu11 βd12 + βu12 βu13

βd21 + βu21 βu22 0

βu31 0 βd33

 .

The equilibrium transfer of the (x1, x2, ε)-firm is given by

p (x1, x2, ε) =
1

2

x1

x2

ε


′

B · T ·

x1

x2

ε



=
1

2

x1

x2

ε


′β

d
11 − βu11 βd12 − βu12 −βu13

βd21 − βu21 −βu22 0

0 0 βd33

 ·
t11 t12 t13

t21 t22 t23

t31 t32 t33

 ·
x1

x2

ε

 .

Proposition 1. Let the match production function and the characteristics dis-
tribution be given by the quadratic and normal model described above. Let Data
Scheme 3 hold. The vector of parameters of the firms’ valuation functions θ ≡(
βu11, β

d
11, β

u
12, β

d
12, β

u
21, β

d
21, β

u
22, β

u
13, β

d
33

)
is identified.

The proof is provided in the appendix. Although the specification of the model in
1 has been used in empirical research, e.g. Lindenlaub (2017), the model restrictions
have implications that can easily be refuted by data. For instance, the assumption
that the observed characteristics on the upstream or downstream firms are jointly
normally distributed may not be satisfied. Moreover, the model implies that the
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equilibrium matching, i.e. the outcome of the model, is also normally distributed,
i.e. the observed (x1, x2, y1, y2) are also jointly normally distributed.

Another issue with the normal distribution of the characteristics when the pro-
duction function is quadratic is the simultaneous negative realization of the upstream
and downstream firms’ characteristics. In this case, the product of two negative
numbers would be the same as the product of two positive values.

Despite the shortcomings of the jointly normal model, it provides evidence that
price data are informative about the parameters of the firms’ valuation functions. We
can expect when the characteristics are not jointly normally distributed, model iden-
tification is still maintained. Nevertheless, any deviation from the production func-
tion’s specification and/or the normality distribution of the characteristics would
make the closed-form solutions that are used in Proposition 1 invalid. Currently, we
do not have a formal proof of identification that does not rely on the closed-form
solutions. Instead, we use Monte Carlo simulations to verify that identification is
not violated.

The model we use for the empirical application relaxes the joint normality of
characteristics. Specifically, the only restriction on the observed characteristics is
their distribution to be continuous as in Assumption 3. We consider a parametric
distribution for the unobservables, e.g. log-normal distribution. However, similar to
Proposition 1, we normalize the scale of the unobserved characteristics.

5 Estimation

In this section, we propose estimators for the identified model features under the
data schemes described in Sections 3 and 4. We first consider a nonparametric
estimator to use with profit data. Next, we suggest a simulation-based likelihood
estimation procedure to estimate the parametric model with price data.

5.1 Profit Data Estimator

Recall the identification result of Theorem 2. Our goal is to estimate the pro-
duction function Φ̄ (x, αε,y, αη) at every formed match in the market. Let the
sample be given by

{
(xi,y

∗
i ) , π

u
i , π

d
i

}N
i=1

as in Data Scheme 1. For each upstream
firm i in the sample, we need to recover αεi as the distribution of upstream prof-
its evaluated at πui and conditional on X = x. That is for each observation i,
let α̂εi = F̂ u

πu|x (πui |X = xi), where F̂ u
πu|x (·|X = xi) is a nonparametric estimate of
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the upstream profit’s conditional distribution evaluated at the observed upstream
profit of observation i and conditional on the vector of observed characteristics of
the upstream firm i.

Similarly, we can recover the quantiles α∗ηi as the distribution of downstream
profits evaluated at the vector of observed characteristics of the downstream match-
ing partner of observation i, i.e. α̂∗ηi = F̂ u

πd|y

(
πdi |Y = y∗i

)
. Note that

F u
πu|x (πu|X = xi) = E [1 (πu ≤ πui ) |X = xi] ,

and
F d
πd|y
(
πd|Y = y∗i

)
= E

[
1
(
πd ≤ πdi

)
|Y = y∗i

]
.

Thus, the conditional distributions can be estimated by a nonparametric regres-
sion of 1 (πu ≤ πui ) and 1

(
πd ≤ πdi

)
onX and Y respectively. One estimator would

be a simple Nadarya-Watson estimator4, i.e.

α̂εi = F̂πu|x (πui |X = xi) =

∑N
j=1Kh (xi,xj)1

(
πuj ≤ πui

)∑n
j=1 Kh (xi,xj)

,

and similarly for the downstream matching partner of observation i

α̂∗ηi = F̂πd|y
(
πdi |Y = y∗i

)
=

∑N
j=1Kh

(
y∗i ,y

∗
j

)
1
(
πdj ≤ πui

)∑n
j=1Kh

(
y∗i ,y

∗
j

) ,

where Kh (·, ·) is a multivariate kernel. For instance, one can use the normal kernel

Kh (xj,xi) =
dx∏
d=1

φ

(
xdi − xdj

h

)
,

where φ (·) is the standard normal density, and h is a bandwidth. The bandwidth
can be chosen by a data driven cross-validation method. For instance, we can
minimize the residuals from estimating the empirical CDF and the unconditional
CDF estimated as above except that at each observation i, we only use the other
N − 1 sample points to estimate the conditional CDF. To this end, we define the
leave-one-out estimator of the conditional CDF as

F̂πu|x,−i (π
u|X = x) =

∑
j 6=iKh (xi,xj)1

(
πuj ≤ πui

)∑
j 6=iKh (xi,xj)

.

4see Li and Racine (2007, p. 182) for details on conditional CDF estimation.
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The cross-validation criterion for a fixed profit level πu is

CV (πu, h) =
1

n

N∑
i=1

(
1 (πui ≤ πu)− F̂πu|x,−i (πu|X = x)

)2

.

The optimal bandwidth minimizes

CV (h) =

∫
CV (πu, hx) dπ

u.

We approximate this by a grid over the values of profits, by randomly selecting
Nπ profit observations. This gives

CV (h) ≈
Nπ∑
i=1

CV (πui , h) .

And , the optimal bandwidth is defined as

h∗ = arg min
h

{
Nπ∑
i=1

CV (πui , h)

}
.

Example 3. Let Φ (x, ε, y, η) = βxyxy+βxηxη+βyεyε+εη. Assume the production
function is monotone in the unobserved scalars ε and η, i.e.

βyεy + η > 0, βxηx+ ε > 0.

Further, assume that ε and η are independent from x and y, and

ε ∼ LogNormal (µε, σε) , η ∼ LogNormal (µη, ση) .

The medians of log-normally distributed ε and η are normalized to one, i.e. µε =

µη = 0. The equilibrium matching, upstream and downstream profits are observed.
Observation i is the tuple

(
xi, y

∗
i , π

u
i , π

d
i

)
. We consider a parameterization of the

model and estimate the model parameters. For each observation, α̂εi and α̂∗ηi are
estimated according to the procedure explained above. Next, for each choice of the
parameters σε and ση, we invert α̂εi and α̂∗ηi into the quantiles of the parameterized
distributions

ε̂i = q (α̂εi|σε) , η̂i = q
(
α̂∗ηi|ση

)
,
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Firms = 500 Firms = 1000 Firms =1500

truth Bias RMSE Bias RMSE Bias RMSE

βxy -3.0 0.04 0.48 -0.06 0.29 -0.04 0.26
βxη 0.7 0.02 0.11 0.02 0.09 0.02 0.07
βyε 3.0 -0.06 0.41 0.02 0.25 0.00 0.22
σε 0.2 0.02 0.06 0.01 0.05 0.01 0.05
ση 0.7 0.05 0.08 0.04 0.06 0.04 0.05

Table 1: Estimated Bias and RMSE of the estimator of the model parameters using
the equilibrium matching and profit data. We ran a Monte-Carlo experiment with
100 artificial datasets generated from the model in (8) and the parameterization in
the table to calculate the average bias and RMSE for three different sample sizes of
N = 500, 1000, 1500 firms.

where q is the quantile function for the log-normal distribution with µ = 0. Finally,
the estimator for θ = (βxy, βxη, βyε, σε, ση) minimizes

n∑
i=1

[(
πui + πdi

)
− (βxyxiyi + βxηxiη̂i + βyεyiε̂i + ε̂iη̂i)

]2
.

Table 5.1 illustrates the performance of the estimator using a Monte Carlo ex-
periment with 100 artificial datasets of equilibrium matching and profits for each
market with 500, 1000, and 1500 firms on each side.

5.2 Price Data Estimator

The identification proofs under the availability of profit data suggest appropriate
estimation methods, as discussed previously. In the same vein, the parametric iden-
tification argument of the quadratic and jointly normal model under the availability
of price data in Proposition 1 relies on the closed-form solutions for model outcomes,
and the same closed-form solutions allow us to write an expression for the maximum
likelihood estimator. In contrast, when the firms’ characteristics are not normally
distributed, we can neither rely on the identification argument, nor the closed-form
expressions for model outcomes to construct an estimator.

We first describe the model specification and discuss the difficulties in estimation.
We then propose an estimator for the model parameters. Consider the quadratic
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production and valuation functions

Φ (x, ε,y, η) = β11x1y1 + β12x1y2 + β21x2y1 + βu22x2y2 + βu13x1η + βd33εη,

Φu (x, ε,y, η) = βu11x1y1 + βu12x1y2 + βu21x2y1 + βu22x2y2 + βu13x1η,

Φd (x, ε,y, η) = βd11x1y1 + βd12x1y2 + βd21x2y1 + βd33εη. (15)

The unobserved characteristics ε and η have a non-negative support and are dis-
tributed according to a lognormal distribution with parameters (µ = 0, σ2 = 1).
The marginal distribution of the observed characteristics, Fx(·) and Fy(·), satisfy
Assumption 2 but are not assumed to belong to any parametric family. We further
assume that the independence assumption, i.e. Assumption 3, holds.

We recall that even though the equilibrium matching for the above model spec-
ification is unique, the equilibrium firm profits and transfers are only unique up to
an additive constant. In order to pin down the location of profits, we assume that
the median downstream profit is equal to κ ∈ R. That is, Pr[πd(X, η) < κ] = 1/2.
Finally, we assume the data satisfy Data Scheme 3, such that the sample can be
characterized by {x1i, x2i, y

∗
1i, y

∗
2i, pi}

N
i=1.

We note that the equilibrium matching and prices do not admit a closed-form
expression. Consequently, we are not able to write down the log-likelihood function.
Furthermore, without knowing the data-generating process, we are not not able to
generate data from the model, under different parameter choices, for simulation-
based estimation methods.

Nevertheless, the equilibrium of the parametric model above can be numerically
approximated. The numerical approximation of optimal transport problems is an
active field of research, but we consider a simple and robust approach. The goal is for
any choice of parameters θ = (βu11, β

d
11, β

u
12, β

d
12, β

u
21, β

d
21, β

u
22, β

u
13, β

d
33, κ), to approxi-

mate the data-generating process g (·, ·, ·|θ) where for every value of (x1, x2, ε) ∈ X
satisfies 

y∗1

y∗2

η∗

p

 = g (x1, x2, ε|θ) . (16)

The approximation involves solving a discretized version of the continuous prob-
lems in (3) and (4), which reduce to the assignment problem in Roth and Sotomayor
(1992). In other words, we solve for the equilibrium matching and profits in a fi-
nite market where the NA firms on each side of the market are random draws from
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the characteristics’ distributions Fx̃(·) and Fỹ(·). As NA increases, the equilibrium
matching and profits in the finite market provide a better approximation for the
ones in the continuous market. Consider NA draws of the upstream and down-
stream firms {xi ≡ (x1i, x2i, εi)}NAi=1 and {yj ≡ (y1j, y2j, ηj)}NAj=1, respectively. The
equilibrium matching can be characterized by the matrix µ∗ ∈ {0, 1}NA × {0, 1}NA

such that firms i and j are matched in equilibrium if and only if µ∗i,j = 1. The finite
market equilibrium matching µ∗ solves the primal linear programming

max
µ∈{0,1}NA×{0,1}NA

{
NA∑
i=1

NA∑
j=1

µi,jΦ (xi, εi,yj, ηj)

}
subject to ∑

i

µij = 1, for every j,∑
j

µij = 1, for every i. (17)

The formulation is slightly different from the one in Roth and Sotomayor (1992)
in the sense that we do not allow the possibility of staying single, since we do not
consider data availability on the unmatched firms. The profits solve the dual of the
above linear programming problem given by

min

NA∑
i=1

πui +

NA∑
j=1

πdj

subject to

πui + πdj ≤ Φ (xi, εi,yj, ηj) , for all i and j. (18)

The linear programming problems in (17) and (18) can be solved as a baseline
by using linear programming optimizers such as Gurobi. However, there are several
algorithms that exploit features of the linear assignment problem to reduce the
computational cost and outperform the baseline simplex method for solving the
linear program. One of the most popular methods is the one proposed by Jonker
and Volgenant (1987) who use the shortest augmenting paths based algorithm. We
use a variant of this algorithm used by Crouse (2013) to solve for the equilibrium
matching and profits in a finite market. Regardless of the algorithm, we denote the
solution as{x1i, x2i, ηi, y

∗
1i, y

∗
2i, η

∗
i , pi}

NA
i=1, where i indexes the equilibrium matches and

prices.
Next, we return to model estimation. Clearly, the model does not have a
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tractable likelihood. Also, the moments of the model outcome do not have a closed-
form expression. Therefore, we cannot use the traditional likelihood or GMM meth-
ods to recover the model parameters. An obvious alternative would be to use a
simulation based method such as the Method of Simulated Moments (MSM) pro-
posed by McFadden (1989), where we replace the intractable moments by their
simulated counterparts. However, these methods do not lead to an asymptotically
efficient estimator, even when the number of simulation draws tends to infinity.

An alternative is to use methods that rely on simulating the likelihood function
itself and are asymptotically efficient with an infinite number of simulations. The
method we choose was first suggested by Diggle and Gratton (1984), and its asymp-
totic properties and extension to dynamic models were later studied by Fermanian
and Salanié (2004). The nonparametric simulated maximum likelihood method
(NPSML) maximizes LN (θ) ≡ (1/N)

∑N
i=1 ln li(θ), where li(θ) is the joint density

of the outcomes (y∗1i, y
∗
2i, pi) given the upstream firm’s observed types (x1i, x2i) and

parameters vector θ, i.e. fy,p (y∗i , pi|xi;θ).
However, as noted earlier, we do not have a closed-form expression for fy,p(y∗i , pi|

xi;θ). Instead, the NPSML estimator approximates an unknown density by a kernel
estimator using a simulated sample generated from the model’s reduced form in
(16). To this end, for each (x1i, x2i) in the data, we consider S random realizations
from the distribution Fε|x(·|xi,θ), denoted by {εsi}Ss=1. Next, we use (16) or its
approximation to compute S model outcomes, namely {y∗s1i (θ) , y∗s2i (θ) , psi (θ)}Ss=1.
Specifically, we approximate the data-generating process for each simulation draw
s by solving the optimization problems in (17) and (18) given the upstream and
downstream firms {(x1i, x2i, ε

s
i )}Ni=1 and {(y1j, y2j, η

s
j )}Nj=1.

We note that the firms’ observed characteristics are not varying across different
simulation draws, i.e. they are the same as the observed characteristics in the data.
However, the unobserved characteristics are random draws that vary across distribu-
tions. Solving for the equilibrium of the finite market simultaneously approximates
the data-generating process and also generates the simulated samples required for
computing the conditional density. The observed simulated sample is denoted by
{{x1i, x2i, y

∗s
1i , y

∗s
2i , p

s
i}Ni=1}Ss=1, where we suppress the argument θ of the outcomes

y1, y2, and p. We note that the observed types of the equilibrium downstream part-
ner of the upstream firm i vary across simulations as the unobserved characteristics
εsi vary across simulations since they vary with the parameter values θ.
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Next, we nonparametrically estimate the conditional density fy,p (y∗i , pi|xi;θ) as

lS (y∗i , pi|xi;θ) ≡ lSi (θ) ≡ 1

Shy1hy2hp

S∑
s=1

φ

(
y∗1i − y∗s1i

hy1

)
φ

(
y∗2i − y∗s2i

hy2

)
φ

(
pi − psi
hp

)
,

where φ(·) is the standard normal density and hy1 , hy2 , hp are bandwidths for the
downstream observed characteristics and price, respectively. We discuss the choice
of bandwidths after introducing the estimator. The NPSML estimator θ̃ is the
global maximizer of

L̃SN (θ) =
1

N

N∑
i=1

lSi (θ)

=
1

NShy1hy2hp

N∑
i=1

S∑
s=1

φ

(
y∗1i − y∗s1i

hy1

)
φ

(
y∗2i − y∗s2i

hy2

)
φ

(
pi − psi
hp

)
. (19)

Equation (19) is a differentiable function of the model parameters θ if the equi-
librium matching and price y∗s1i (θ) , y∗s2i (θ) , psi (θ) are differentiable in θ. This is
a desired property of the objective function as it allows us to use gradient-based
optimization methods to find its maximizers. Even though Assumptions 1–2 en-
sure differentiability of the outcomes in the models parameters, the finite market
approximations are neither differentiable, nor continuous.

To see this, consider a finite market with firms {(x1i, x2i, εi)}Ni=1and {(y1j, y2j, ηj)}Nj=1.
Let µ∗(·;θ) to be the equilibrium matching in this market under parameters θ such
that µ∗ (i;θ) = j if and only if the upstream firm indexed by i is matched to the
downstream firm indexed by j in equilibrium. A change in parameters from θ to
θ′ either leave the equilibrium partner of i unchanged if the equilibrium matching
is still optimal under θ′, or changes the partner to j′ 6= j if the optimal matching
is different under θ′. In other words, any change in the parameters may change
y∗1i (θ) = y1j and y∗2i (θ) = y2j to y∗1i (θ

′) = y1j′ and y∗2i (θ
′) = y2j′ , where this

change in value is not continuous. Since (19) is not differentiable when the equi-
librium matching is replaced with a finite market approximation, we need to use
derivative-free optimization routines to search for the global maximum.

To evaluate (19) at parameters θ given an observed sample of size N , we sim-
ulate and solve for the equilibrium matching and transfers of S markets of size N .
The firms in each market have the same observed characteristics in the data, but
unobserved characteristics are random draws from their distributions under θ. In
order to pin down the profits in each simulated market, we use shift all the profits so
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that the median downstream profit in each market is equal to κ, i.e. the equilibrium
selection rule which itself is estimated as a parameter of the model.

Choice of Bandwidth

Estimating the conditional density of model outcomes, i.e. (y∗, p), requires choosing
a bandwidth for each dimension of the outcome. Using a large bandwidth results
in smoothing away some important features of the estimated density, while a small
one results in excessive noise that is due to the simulation process. The Silverman
(1998) rule-of-thumb is a popular choice and is used in Fermanian and Salanié (2004).
However, this would not be an optimal choice if we believe the true density is not a
normal distribution. We use the biased cross-validation (BCV) method suggested in
Scott and Sain (2005) for choosing the smoothing parameters in multivariate density
estimation. The method is based on minimizing an estimate of the asymptotic mean
integrated squared error (AMISE) from the data by choosing the bandwidth. The
criterion function is given by

BCV (hy1, hy2, hp)

=
1

(
√

2π)3Nhy1hy2hp
+

1

4N(N − 1)hy1hy2hp

×
n∑
i=1

∑
j 6=i

[(
3∑

k=1

∆2
ijk

)
− (2 · 3 + 4)

(
3∑

k=1

∆2
ijk

)
+
(
32 + 2 · 3

)]

×
3∏

k=1

φ (∆ijk) ,

(20)

where ∆ijk = (y∗ki−y
∗
kj)/hyk for k = 1, 2 and ∆ijk = (pi−pj)/hp for k = 3. The optimal

choice of bandwidth minimizes (20).

We ran a Monte Carlo experiment to evaluate the estimator’s performance using
the bandwidths selected by minimizing the biased cross-validation criterion in (20).
For each sample size S = 50, 100, 200, we generated 100 artificial datasets of observed
equilibrium matching and prices using a specific parameterization of the model in
(15). We calculated the optimal bandwidths for each artificial dataset and for each
outcome dimension by the BCV method. Finally, we estimate the model parameters
by maximizing the simulated likelihood function with the simulated sample size
equal to the number of observations in the dataset. This choice of simulated sample
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Ups. Firms = 50 Ups. Firms = 100 Ups. Firms =200

truth Bias RMSE Bias RMSE Bias RMSE

βu11 -2.5 0.09 0.71 -0.12 0.63 0.08 0.34
βu12 1.5 -0.67 0.84 -0.61 0.77 0.7 0.81
βu21 -1.5 0.35 0.48 0.11 0.37 0.04 0.26
βu22 -0.5 -0.13 0.43 -0.01 0.22 -0.01 0.19
βd11 3.5 -1.37 1.87 -1.01 1.26 -0.89 1.21
βd12 2.5 -1.9 2.01 -1.95 1.99 0.36 1.14
βd21 1.5 0.80 1.26 0.53 0.72 0.28 0.59
βu13 3.0 -2.09 -2.52 -1.872 2.22 -1.09 1.31
βd33 -3.0 2.85 2.92 2.32 2.57 1.15 1.80
κ 3.0 0.965 1.23 0.475 0.83 0.175 0.54

Table 2: Estimated Bias and RMSE of the NPSML estimator of the model pa-
rameters using the equilibrium matching and price data. We ran a Monte-Carlo
experiment with 100 artificial datasets generated from the model in (15) and the
parameterization in the table to calculate the average bias and RMSE for three dif-
ferent sample sizes of N = 50, 100, 200 firms. The simulated sample size for each
observation equals the corresponding sample size, i.e. S = N . The bias and errors
decrease with larger sample sizes and simulations.

size implies that the improvement in the estimator’s performance is both due to
the larger size of the observed sample and the larger size of the simulated sample
used to estimate the conditional likelihoods. Moreover, since each simulation is the
result of approximating the equilibrium using a finite market of size N , a larger N
results in a better approximation of the true data-generating process underlying the
continuum matching game

6 Conclusion

In this paper, we set out to explore the empirical significance of the data on two
model outcomes, namely profit and price data, in addition to matching data in
two-sided matching models where the market is assumed to consist of firms with
continuously distributed measured and unmeasured characteristics. To this end,
we provide proof for the nonparametric identification of aspects of the structural
match production function. Further, we show that price data identifies parameters
of match valuation functions of the two sides of the market. On the other hand,
although we demonstrate that price data enables us to recover the model primitives
in a parametric setting, a more robust nonparametric argument is more complicated
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than the profit data case.
For data schemes where profit data is available to the researcher, we propose non-

parametric estimators directly inspired by the identification argument. In contrast,
for price data, we suggest using a simulation-based likelihood estimation method
that does not require the model to have a tractable conditional likelihood. The
estimation method is straightforward to implement but can be computationally
intensive. Also, we need to address computational challenges resulting from the
non-differentiability of the simulated likelihood function. Nevertheless, the simu-
lated likelihood estimator is statistically efficient with infinite simulations, which
is an advantage compared to other alternatives, such as the method of simulated
moments. In both cases, we perform Monte Carlo studies to demonstrate how the
performance of these estimators improves with increasing sample size.

While our parametric result provides valuable insight into the identification value
of price data, further research is needed to better understand the scope of the non-
parametric identification of the model under this data scheme. The computational
burden of the simulated likelihood methods makes it a valuable effort to utilize faster
algorithms to approximate the solution of the continuum matching game, which is
an active area of research. Ideally, a smooth approximation method allows the use
of more reliable derivative-based optimization routines, which should significantly
decrease the number of evaluations required to find the global maximizers of the
simulated likelihood function. Finally, we are using the parametric model presented
in this paper to estimate how the general ability of the CEOs, the scope of the
firm’s operations, and its size affect the match valuation of CEOs and firms using a
dataset of large public firms and CEO compensations.
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A Proofs

Proof of Theorem 1

Let FX̃,Ỹ denote the set of all joint distributions over X̃ × Ỹ that have marginals
F u (·, ·) and F d (·, ·). Under Assumption 4, the social planner’s maximization prob-
lem in (3) is given by

max
Fx̃,ỹ∈Fx̃,ỹ

∫
(x̃,ỹ)∈X̃×Ỹ

ζ (x,y) + Ξ (ε,η) dF (x̃, ỹ) . (21)

The maximization problem in (21) is equivalent to a nested optimization prob-
lem, namely

max
Fx,y∈Fx,y

∫ [
ζ (x,y) + max

Fε,η|x,y∈Fε,η|x,y

∫
Ξ (ε,η) dFε,η|x,y

]
dFx,y, (22)

where Fx,y is the set of all joint distributions over X ×Y with marginals F u
x (·) and

F d
y (·), and Fε,η|x,y is the set of all joint distributions over E×H that have marginals
F u
ε|x (·) and F d

η|y (·).
Under Assumption 3, Fε,η|x,y is constant over X × Y as the unobserved types

are distributed independently from the observed types. In other words, any dis-
tributions over the unobserved types that coincides with the conditional marginal
distributions induced by F u (·, ·) and F d (·, ·) is also in the set of joint distributions
with unconditional marginal distributions. Thus, we can rewrite (22) as

max
Fx,y∈Fx,y

∫
[ζ (x,y) +] dFx,y + max

Fε,η∈Fε,η

∫
Ξ (ε,η) dFε,η.

Therefore, the equilibrium matching consists of solving two independent maxi-
mization problems. The first one is maximizing the expected observed production by
choosing a distribution over the observed types, and the second one where the unob-
served production is maximized by choosing a joint distribution over the unobserved
types. The solutions can be characterized by (T̃ u(·), S̃u(·)) where T̃ u : Rdx 7→ Rdy

and S̃u : Rdε 7→ Rdη , respectively.

Proof of Theorem 2

Consider the sample under Data Scheme 2, denoted by {xi,y∗i , πui , πdi }Ni=1. Under
the monotonicity assumption, ∂πu(x,ε)/∂ε > 0 and ∂πd(y,η)/∂η > 0. Consequently,
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∂π̄u(x,αε)/∂αε > 0 and ∂π̄d(y,αη)/∂αη > 0. Thus, under the independence assumption
we can recover αεi and αηi as the conditional αεi- and αηi-quantiles of the upstream
and downstream profits, given X = xi and Y = y∗i , respectively. That is for each
observation i, αεi = Pr(πu(X, ε) ≤ πui |X = xi) and αηi = Pr(πd(Y , η) < πdi |Y =

y∗i ), which are both identified under the independence assumption. We can now
characterize each observation by the match, firm profits, and the quantiles αεi and
αηi, namely (xi,yi, π

u
i , π

d
i , αεi, αηi). Finally, (2) implies that the sum of the profits

of matched firms equals the production function at the match, ie. Φ̄ (x, αε,y, αη) =

πui + πdi .

Proof of Proposition 1

The equilibrium matching is a linear function of the characteristics, such that

y1 = t11x1 + t12x2 + t13ε,

y2 = t21x1 + t22x2 + t23ε,

η = t31x1 + t32x2 + t33ε,

where tij are elements of the reduced-form matching matrix T which is a non-
trivial function of the model parameters. Since the equilibrium matching is de-
termined by the match production function and the characteristics distributions,
matrix T is a function of the following seven parameters of the production function(
βd11 + βu11

)
,
(
βd12 + βu12

)
,
(
βd21 + βu21

)
, βu22, β

u
13, β

d
33, and the distribution parameters

which are either identified for the observed ones, or normalized for the unobserved
ones. Since x1, x2 ⊥ ε, regressing y1 on x1 and x2 identifies t11, t12 as the coefficients,
and |t13| as the standard deviation of the residuals. Similarly, regressing y2 on x1

and x2 identifies t21, t22 as coefficients, and |t23| as the standard deviation of the
residuals.

The equilibrium matching implies that the following equality

Cov (y1, y2) = Cov (t11x1 + t12x2 + t13ε, t21x1 + t22x2 + t23ε)

= t11t21V ar (x1) + t11t22Cov (x1, x2) + t11t23Cov (x1, ε) +

+ t12t21Cov (x1, x2) + t12t22V ar (x2) + t12t23Cov (x2, ε) +

+ t13t21Cov (ε, x1) + t13t22Cov (ε, x2) + t13t23V ar (ε) =

= t11t21σ
2
x1

+ (t11t22 + t12t21)σx1x2 + t12t22σ
2
x2

+ t13t23 = σy1y2 .
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The sign of t13t23 is identified, since

t13t23 = σy1y2 −
(
t11t21σ

2
x1

+ (t11t22 + t12t21)σx1x2 + t12t22σ
2
x2

)
,

where all the terms on the right-hand side are identified previously.
Further, the scale normalization of η implies

V ar (η) = V ar (t31x1 + t32x2 + t33ε)

= t231σ
2
x1

+ t232σ
2
x2

+ t233 = 1,

where t31, t32, t33 are unknown parameters.
And, under Assumption 3, Cov (yj, η) = 0. So,

Cov (t11x1 + t12x2 + t13ε, t31x1 + t32x2 + t33ε) =

= t11t31V ar (x1) + t11t32Cov (x1, x2) + t11t33Cov (x1, ε)+

+t12t31Cov (x1, x2) + t12t32V ar (x2) + t12t33Cov (x2, ε)+

+t13t31Cov (ε, x1) + t13t32Cov (ε, x2) + t13t33V ar (ε) =

= t11t31σ
2
x1

+ (t11t32 + t12t31)σx1x2 + t12t32σ
2
x2

+ t13t33 =0.

Now, consider Cov (y2, η)

Cov (t21x1 + t22x2 + t23ε, t31x1 + t32x2 + t33ε) =

= t21t31V ar (x1) + t21t32Cov (x1, x2) + t21t33Cov (x2, ε)+

+t22t31Cov (x1, x2) + t22t32V ar (x2) + t22t33Cov (x2, ε)+

+t33t31Cov (ε, x1) + t33t32Cov (ε, x2) + t33t33V ar (ε) =

= t21t31σ
2
x1

+ (t21t32 + t22t31)σx1x2 + t22t32σ
2
x2

+ t23t33 =0.

Collecting the three equations,
t231σ

2
x1

+ t232σ
2
x2

+ t233 = 1,

t11t31σ
2
x1

+ (t11t32 + t12t31)σx1x2 + t12t32σ
2
x2

+ t13t33 = 0,

t21t31σ
2
x1

+ (t21t32 + t22t31)σx1x2 + t22t32σ
2
x2

+ t23t33 = 0,

where the bold variable are the unknowns.

45



Let us assume t33 ≥ 0, then

t33 =
√

1− t231σ
2
x1
− t232σ

2
x2
. (23)

Then, we end up with a system of two (non-linear) equations with two unknownst11t31σ
2
x1

+ (t11t32 + t12t31)σx1x2 + t12t32σ
2
x2

+ t13

√
1− t231σ2

x1
− t232σ2

x2
= 0,

t21t31σ
2
x1

+ (t21t32 + t22t31)σx1x2 + t22t32σ
2
x2

+ t23

√
1− t231σ2

x1
− t232σ2

x2
= 0.

(24)
We can solve the system of equations above for the two unknowns. Now, given

the matching matrix T , we move onto the prices.
Recall the equilibrium price function

p (x1, x2, ε) =
1

2

x1

x2

ε


′β

d
11 − βu11 βd12 − βu12 −βu13

βd21 − βu21 −βu22 0

0 0 βd33


︸ ︷︷ ︸

B

·

t11 t12 t13

t21 t22 t23

t31 t32 t33


︸ ︷︷ ︸

T

·

x1

x2

ε

 .

Every quadratic form x′Dx for some matrix D, can be equivalently represented
by a symmetric matrix given by D+D′

2
. Therefore, we can rewrite the equivalent

form of (15) as

p (x1, x2, ε) =
1

2

x1

x2

ε


′

· B · T + T ′B′

2
·

x1

x2

ε

 .

Let us define the symmetric matrix characterizing the price quadratic form as
K ≡ B·T+T ′B′

2
. K is characterized by only 6 values instead of 9 since it is a symmetric

matrix, i.e.

K =

K11 K12 K13

K12 K22 K23

K13 K23 K33

 ,
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whereas

K11 =2
(
βd11 − βu11

)
t11 + 2

(
βd12 − βu12

)
t21 − 2βu13t31,

K12 =
(
βd21 − βu21

)
t11 − βu22t21 +

(
βd11 − βu11

)
t12 +

(
βd12 − βu12

)
t22 − βu13t32,

K13 =βd33t31 +
(
βd11 − βu11

)
t13 +

(
βd12 − βu12

)
t23 − βu13t33,

K22 =2
(
βd21 − βu21

)
t12 − 2βu22t22,

K23 =βd33t32 +
(
βd21 − βu21

)
t13 − βu22t23,

K33 =2βd33t33.

Since the elements of T are identified, we can uniquely solve the above system
of 6 linear equations for

(
βd11 − βu11

)
,
(
βd12 − βu12

)
,
(
βd21 − βu21

)
, βu22, β

u
13, β

d
33.

This already proves that the structural parameters βu22, β
u
13, β

d
33 are identified.

However, this does not separately identify the coefficients of valuation functions,
but only their differences.

The matrix T can be written as

T =

H︷ ︸︸ ︷
Σ

1/2
Y

(
Σ

1/2
Y A′ΣXAΣ

1/2
Y

)−1/2

Σ
1/2
Y A′

=

H11 H12 H13

H12 H22 H23

H13 H23 H33


β

d
11 + βu11 βd21 + βu21 βu13

βd12 + βu12 βu22 0

0 0 βd33

 =

t11 t12 t13

t21 t22 t23

t31 t32 t33

 . (25)

Equation (25) exploits the structure of matrix T to express it as the product of a
symmetric matrixH and the matrix A which is the sum of upstream and downstream
coefficients. Since H is a symmetric matrix, it is only characterized by 6 parameters.
Recall, that all 9 elements of matrix T are identified from data on matching, and
further the three parameters βu22, β

u
13, β

d
33 are identified from the argument above

using the price equation. Equation (25) defines a system of 9 equations (not all are
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linear):

H11

(
βu11 + βd11

)
+H12

(
βu12 + βd12

)
= t11

H11

(
βu21 + βd21

)
+H12β

u
22 = t12

H11β
u
13 +H13β

d
33 = t13

H12

(
βu11 + βd11

)
+H22

(
βu12 + βd12

)
= t21

H12

(
βu21 + βd21

)
+H22β

u
22 = t22

H12β
u
13 +H23β

d
33 = t23

H13

(
βu11 + βd11

)
+H23

(
βu12 + βd12

)
= t31

H13

(
βu21 + βd21

)
+H23β

u
22 = t32

H13β
u
13 +H33β

d
33 = t33

There are 9 unknowns in the above equations:

H11, H12, H13, H22, H23, H33,
(
βu21 + βd21

)
,
(
βu12 + βd12

)
,
(
βd12 + βu12

)
.

We can solve the system of 9 equations for the 9 unknowns listed above. Collect-
ing the two intermediate identification arguments above using the price equation and
the matching equation, we have identified

(
βu21 + βd21

)
,
(
βu12 + βd12

)
,
(
βd12 + βu12

)
,
(
βd11 − βu11

)
,
(
βd12 − βu12

)
,
(
βd21 − βu21

)
, βu22, β

u
13, β

d
33.

Since we have identified
(
βu21 + βd21

)
,
(
βd21 − βu21

)
, we can identify βu21, β

d
21 separately.

Similarly, we can identify βu12, β
d
12, β

u
11, β

d
11 separately.
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