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Abstract

We document a sizeable increase in the frequency of price adjustments following
the large energy shocks of 2022. We use a tractable New Keynesian model, calibrated
to the pre-shock data, to interpret such a pattern. The calibration highlights the
state-dependence of firms’ decisions: prices are adjusted rapidly when markups are
misaligned. In the model, a large cost shock triggers a swift increase in the frequency
of price adjustments, causing a rapid pass-through from costs to prices. Time-dependent
models, as the Calvo model, miss this frequency response, failing to capture the sudden
inflation surge after a large shock.
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1 Introduction

The frequency of price adjustment determines the speed with which shocks transmit through

the economy in New Keynesian models. For example, Gopinath and Itskhoki (2010) docu-

ment that a higher frequency of price changes is associated with a higher pass-through of

exchange rate shocks, attributing the cross-sectional differences to primitives affecting the

curvature of the profit function (see also Devereux and Yetman (2010)). Many empirical

studies use micro data to document a large cross-sectional heterogeneity in the frequency of

price adjustments, but there have been few attempts to study what causes changes in this

frequency over time.1 In this paper we focus on the size of the aggregate shock as a key

determinant of the frequency of price changes. We document that large shocks increase the

frequency of price adjustments, leading to a faster pass-through from costs to prices.

Our main finding is that large cost shocks induce firms to react faster than in normal

times. For instance, after years of overall stationary behavior, the frequency of price changes

increased in 2022 and 2023, more than doubling across all sectors and countries, following

a two-digit increase of the energy costs for these firms. This is pictured in Figure 1, which

uses data on the frequency of price changes in the food and beverages sectors of several

countries, and in the manufacturing and services sector of France. We explain the increase

of the repricing activity with a simple model where a firm is more likely to reprice if its

markup is further away from its desired level. Since a large cost shock reduces the profit

margin markedly, many firms react by changing prices. This simple mechanism, at the core

of State-Dependent (SD) models, is absent in the Time-Dependent (TD) models that are

commonly used by Central Banks and popular in the New Keynesian literature, such as

Taylor (1980) and Calvo (1983).2 Thus, while TD and SD models may behave similarly

in the presence of small aggregate shocks, as argued by Gertler and Leahy (2008), Alvarez,

1Cavallo (2019) found that online competition led to an increase in the frequency of price changes for US
multi-channel retailers between 2008 and 2017. See Gautier et al. (2022) for recent extensive evidence on the
frequency of price changes across the industries of European countries.

2The extensive margin is also emphasized by Gagnon et al. (2012). Relatedly, Hall (2023) argues that
larger idiosyncratic shocks will make prices more flexible.
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Lippi, and Passadore (2016), and Auclert, Rigato, Rognlie, and Straub (2023), they differ

significantly in the presence of large shocks.3 This difference carries policy implications

because prices increase much faster in a SD than in a TD model after a large shock.4

We base the analysis on a rich granular dataset on price setting behavior in the food

and beverages industry of several countries. We interpret the data using a generalized state-

dependent model, following the seminal work of Caballero and Engel (1993, 1999). We

develop a new tractable model of state-dependent pricing that can be solved analytically.

This model nests a broad class of SD models, such as Golosov and Lucas (2007) or Nakamura

and Steinsson (2010), as well as TD models, such as the well-known Calvo (1983) model.

The key features of the model are determined by three “deep parameters”. We prove that

these parameters are identified by three cross-sectional moments of price setting behavior:

the frequency of price changes, the standard deviation and the kurtosis of the size of price

changes. In particular, we show analytically that the state-dependence of the firm’s pricing

policy is identified by the kurtosis of the price changes. We measure these moments before

2022, a period over which aggregate shocks were arguably small, and use them to calibrate

the model. The calibration reveals a sizeable amount of state dependence in firms’ behavior:

the probability that a price is adjusted increases as the gap between the actual and the

desired price grows. This result confirms the seminal findings of Eichenbaum, Jaimovich,

and Rebelo (2011) and the recent ones by Gautier et al. (2022); Karadi et al. (2023); Dedola

et al. (2023), highlighting the empirical relevance of state-dependent pricing.5

Our analysis has a simple structure. We calibrate the model using data on price setting

behavior observed before the energy cost shocks of 2022. We interpret this calibration as a

representation of the firms’ behavior in a “steady state”, i.e. a situation where aggregate

3The size of the shock is measured relative to the standard deviation of price changes. Small cost shocks,
such as those considered in VAR analyses, change marginal costs by less than 1%, or less than 1/10 of the
standard deviation of price changes.

4Ascari and Haber (2021) document the nonlinear responses of aggregate prices and output to large
monetary policy shocks using US data from 1969 to 2007.

5Gagnon (2009) and Nakamura et al. (2018) document that the frequency of price adjustments increases
when inflation is high, a feature captured by state-dependent models.
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shocks are small. We then use the policy function of the calibrated model to analyze how the

economy responds to a large cost shock. The mechanism explaining the burst of repricing

activity in our analysis is that a large shock shrinks the firm’s profit margin, creating an

incentive to change prices. This exercise is developed using the firm’s steady state decision

rule. Considering the general equilibrium feedback on the firm’s decisions has only minor

consequences for our findings (see Appendix D).

Other papers have shown rapid firm adjustments to large shocks: Bonadio, Fischer, and

Sauré (2019) and Auer, Burstein, and Lein (2021) offer empirical evidence of quick currency

invoicing changes after the large 2015 Swiss appreciation. Karadi and Reiff (2019) analyze

Hungary’s substantial VAT increase in 2004 and 2006 using a menu cost model, showing a

prompt aggregate price level response. Our work is closely related to Alvarez and Neumeyer

(2020), who examine inflation in Argentina following major utility cost increases in 2014 and

2016, and a sharp exchange rate devaluation in 2018. They find that such shocks lead to a

behavior akin to an economy with flexible prices, using a canonical menu cost model with

high-inflation. Our study differs in the data (we focus on low-inflation countries) and in

the modeling. Concerning the latter, they consider a Golosov-Lucas model, which has the

highest possible degree of state dependence. Our formulation lets the data speak about the

exact degree of state dependence, a key feature to determine the response of the economy to

a large shock.

The paper is organized as follows. The next section outlines the model. Section 3 presents

the calibration of the model. Section 4 uses the model to analyze the propagation of a

large energy shock, discussing the asymmetric response to cost increases vs cost decreases.

Section 5 concludes.
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2 A tractable sticky-price model

This section presents a New Keynesian model inspired by the seminal ideas of Caballero and

Engel (1993, 1999). We present a new tractable model based on a simple microfoundation

of the costly price adjustment: each firm controls the probability to change its price. At

each moment the firm pays a cost to affect this probability (this is similar to Woodford

(2009); Alvarez et al. (2022)). The model predicts that the probability of adjusting the price

increases in the “price gap”, the distance between the firm’s current price and the profit-

maximizing price. The elasticity of this probability to the price gap identifies the degree of

“state dependence” of the model. We will discuss how to identify this important parameter

in Section 3.

Households. The household preferences are given by

∫ ∞
0

e−ρtU (C(t), H(t),M(t)) dt where U(C,H,M) ≡ C1−ε

1− ε
− αH + log

(
M

P

)
, (1)

where ρ is the discount rate, ε the relative risk aversion, α the disutility of labor, C(t) is a

consumption composite, H(t) the labor supply and M(t)/P (t) real money balances at time

t. Let ci(t) denote the consumption of good i. The composite C(t) is

C(t) ≡
[∫ 1

0

(Ai(t)ci(t))
η−1
η di

] η
η−1

(2)

where Ai(t) denote preference shocks and η is a parameter determining the price elasticity

of demand. Labor supply equals the aggregate labor hired by firms, H(t) =
∫ 1

0
hi(t)di.

Households maximize utility subject to the budget constraint, choosing consumption for

each good i, labor, and real balances for each t (see Appendix A).
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Firms. The economy is populated by a unit mass of firms, indexed by i ∈ [0, 1]. Each

firm produces one good, ci(t), using labor (hi) and energy (mi) as inputs, according to

ci(t) =

(
hi(t)

Zi(t)

)1−ζ

mi(t)
ζ (3)

where ζ ∈ (0, 1) is the energy share in production. The marginal cost of production of firm

i is: mci(t) = KE(t)ζ (W (t)Zi(t))
1−ζ where W (t) is the nominal wage, E(t) is the price

of the energy input, Zi(t) is a firm-specific productivity level, and K ≡ ζ−ζ(1 − ζ)ζ−1 is a

constant. We assume that Zi(t) = exp(σ zi(t)), where {zi} are standard Brownian motions,

independent across i, with standard deviation parameter σ. We assume that Ai(t) = Zi(t)
1−ζ

so the (log of) marginal cost and the preference shock are perfectly correlated.6

The price that maximizes current profits is given by the marginal cost times a constant

markup:

p∗i (t) =
η

η − 1
mci(t) .

If prices are sticky, the state of firm i is summarized by its price gap xi(t), namely the wedge

between the actual price pi(t) and the profit-maximizing price p∗i (t):

xi(t) ≡ log pi(t)− log p∗i (t) . (4)

Absent pricing frictions the gap is identically zero, i.e. each firm charges the profit-maximizing

price pi(t) = p∗i (t). If the price is not adjusted, the price gap changes due to trend infla-

tion (increasing nominal costs) and idiosyncratic productivity shocks, as well as energy cost

shocks. As long as the nominal price is kept constant the evolution of the price gap obeys

dxi(t) = −µ dt+ σ dzi(t), (5)

6This assumption, also used in Woodford (2009); Bonomo et al. (2010); Midrigan (2011); Alvarez and
Lippi (2022), allows the problem to be described by a scalar stationary state variable, the price gap x. This
is used to write the dynamic programming problem of the firm as well as to keep the expenditure shares
stationary across goods in the presence of permanent idiosyncratic shocks.
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where zi is a standard Brownian motion describing productivity shocks and µ is the growth

rate of nominal wages per unit of time, i.e. the inflation rate.7

The price-setting problem. The firm’s value function v(x) solves the following problem:

ρ v(x) = F (x)− µv′(x) +
σ2

2
v′′(x) + min

`≥0
{` · (v(x∗)− v(x)) + (κ `)γ} (6)

where the flow cost function F (x) = 1−η
(
ex − η−1

η

)
e−ηx represents forgone profits measured

as a fraction of maximum (static) profits (see Appendix A). The variable x∗ is the optimal

price gap that is chosen upon adjustment, satisfying v′(x∗) = 0. In every moment the firm

chooses an effort rate ` for price resetting, so that with probability ` per unit of time the

price gap is reset to x∗. The optimal choice for ` balances the benefit of a price reset, given

by v(x∗)−v(x), with the cost of effort, given by the convex power function (κ `)γ, with γ > 1

and κ > 0.

We note that the flow cost F (x) is asymmetric around x = 0, because of the asymmetry

of the profit function. Such a feature arises in several models since having a “high price” is

preferable to having a “low price” (in the latter case the firm sells many units with a low,

possibly negative, margin). The asymmetry implies that a firm’s incentive to adjust prices is

larger when its price is “low”, a negative x, than when it is “high”. We will use this feature

to discuss the firm’s asymmetric response to cost increases versus cost decreases.

The price-setting behavior implied by equation (6) is summarized by a generalized hazard

function, Λ : R → R+, as postulated in Caballero and Engel (1993). The function gives the

probability (per unit of time) that a firm with price gap x will change its price. The first

order condition for ` gives the generalized hazard function Λ(x) = `∗:

Λ(x) =
1

κ

(
v (x)− v (x∗)

κ γ

) 1
γ−1

, for each x ∈ (−∞,∞) . (7)

7This is rationalized by assuming the money supply grows at an exogenous rate µ.
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This policy rule implies that price changes occur probabilistically, with an intensity that

depends on the benefits of adjustment, v (x) − v (x∗), and on the parameters of the cost

function, {γ, κ}. Hence the probability of a price adjustment depends on x, the magnitude

of the firm’s desired adjustment.

The value function v(·) and the generalized hazard function Λ(·) have a minimum at x∗

and are increasing in |x− x∗|. Intuitively, the hazard is increasing in the distance between x

and the optimal reset gap x∗: a larger distance increases the incentives to adjust, as shown

in the first panel of Figure 2 for three calibrations designed to fit Germany, the UK and the

US (described below). A v-shaped hazard emerges for all calibrations and is the hallmark of

state dependence (as opposed to a flat one).8 This finding complements previous evidence on

the relevance of state-dependent hazards, see e.g. Eichenbaum et al. (2011); Gautier et al.

(2022); Karadi et al. (2023); Dedola et al. (2023).

Building on the generalized hazard function models analyzed in Alvarez, Lippi, and Os-

kolkov (2022), our model introduces a specific analytical form for the effort cost, (κ `)γ,

allowing for analytical tractability. A large number of models are nested by this framework,

including the canonical Calvo model with a constant hazard Λ (x) = 1/κ as γ ↑ ∞, and

the canonical Ss model as γ ↓ 1, where the hazard is flat at zero for |x| < x̄ and diverges

for |x| > x̄.9 Intermediate cases cover the so called Calvo-Plus model by Nakamura and

Steinsson (2010), and the random menu cost problem of Dotsey and Wolman (2020). Hence,

the parameter γ is critical to determine the shape of the hazard function, i.e. to determine

the degree of state dependence. A small γ implies a steep v-shaped profile, revealing a high

state-dependence of pricing decisions. As γ increases state-dependence is dampened, and

eventually vanishes (flat hazard) as γ ↑ ∞.10

We note that the hazard function displays a higher slope to the left because, as discussed

8It also appears in models with “costly control” of the timing and magnitude of adjustments, see Costain
and Nakov (2019); Costain et al. (2022).

9As γ ↓ 1, equation (7) shows that x̄ is defined by the value matching condition v (x̄) = v (x∗) + κ.
10Some analysis of equation (7) shows the hazard function satisfies Λ′ (x∗) = 0 for γ ∈ (1, 3), so the function

is U shaped. Instead, for γ > 3, the hazard function has an Υ shape, namely limx↓x∗ Λ′ (x) → ∞, as is the
case of Spain in Figure 2.
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above, negative price gaps lead to larger forgone profits. This makes positive price changes

more likely. Such a behavior has been documented empirically by Karadi, Schoenle, and

Wursten (2021) and Luo and Villar (2021).11

Aggregation. The hazard Λ(x) and the law of motion of x determine the steady-state dis-

tribution of the firms’ price gaps, with density function m : R→ R+ solving the Kolmogorov

forward equation:

Λ(x) ·m(x) = µm′(x) +
σ2

2
m′′(x), for each x 6= x∗. (8)

with boundary conditions limx↓x∗ m(x) = limx↑x∗ m(x), 1 =
∫∞
−∞m(x)dx, and limx→±∞m(x) =

0. The steady-state density function m is pictured in the second panel of Figure 2.

3 Mapping the model to the “steady state” data

In this section, we derive the model’s prediction for the frequency and size distribution of

price changes in the absence of aggregate shocks (the “steady state”). We calibrate the model

using pre-2022 data on price setting behavior in the food and beverages industries of several

countries. The model captures key patterns about the frequency, scale and shape of the

distribution of price changes observed in the data.

The frequency of price adjustments N is given by

N =

∫ ∞
−∞

Λ(x)m(x) dx (9)

The equation counts the total number of price adjustments per period by weighting the rate

at which firms adjust at each x, Λ(x), with the density of firms m(x).

Recall that upon any price change the firm resets its gap from x to the optimally chosen

11The asymmetric flow cost also affects the optimal reset price-gap x∗. The first panel of Figure 2 shows
that x∗ > 0, to hedge against negative gaps. Fernandez-Villaverde et al. (2015) discuss the asymmetry of the
profit function and its business cycle implications.
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return point x∗, hence the size of the adjustment is ∆x = x∗−x. This occurs with probability

Λ(x) per unit of time for a density m(x) of firms with price gap x. Thus, the distribution of

the size of price changes has the following density:

q(∆x) ≡ Λ(x)m(x)

N
. (10)

From the distribution q, many cross-sectional moments can be computed as the variance

and kurtosis of the size of price changes, Var(∆x) and Kurt(∆x). The next proposition

establishes properties that are useful for the identification of the model’s fundamental pa-

rameters, and for simple comparisons across economies. See Appendix B for the proof.

Proposition 1. (Identification and Scaling) Consider an economy with zero inflation,

fundamental parameters {η, ρ, σ2, κ, γ}, and {v(x),Λ(x),m(x), N, q(∆x)} solving equations

(6)-(10) above. The following holds:

N · Var(∆x) = σ2 . (11)

Consider the second-order approximation of the flow cost F (x) ≈ Bx2, with B ≡ η(η−1)
2

,

and another economy denoted by tildes such that for two parameters a > 0 and s > 0, the

observables satisfy

Ṽar(∆ x) = aVar(∆ x), Ñ =
s

a
N,

then σ̃2 = s σ2. Additionally, if γ̃ = γ then ṽ(x) = v
(

x√
a

)
a2

s

(
B̃
B

)
, m̃(x) = m

(
x√
a

)
1√
a

and

Λ̃(x) =
s

a
Λ

(
x√
a

)
, q̃(x) = q

(
x√
a

)
1√
a
, (12)

provided that ρ̃ = s
a
ρ and κ̃ = κ 1

s
a
γ+1
γ

(
B̃
B

) 1
γ
.

The three key takeaways of the proposition are: a method to calibrate σ2, a one-to-

one map between the parameter γ and the kurtosis of price changes, and a scaling of the
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parameters ρ and κ for economies with different frequencies and variances of price changes.

We describe each of these results next.

First, equation (11) offers a simple method to calibrate σ2 from observables. It also reveals

the fundamental trade-off in sticky price models: given the size of the idiosyncratic shocks

σ2, the firm’s pricing policy dictates the balance between the costs of adjusting prices (N)

versus the costs of price misalignments (Var(∆x)).

Second, equation (12) indicates that if two economies have the same γ parameter then they

will have the same size-distribution of price changes, q and q̃, up to a scale transformation.

Recall that γ is key in determining the curvature of the hazard function, as discussed after

equation (7). This finding implies that there is a direct relationship between the parameter γ

and the kurtosis of price changes (a shape parameter), regardless of the frequency or variance

of price changes in those economies.12

Third, the proposition shows how to re-calibrate the parameter κ̃ for the tilde economy

accounting for variations in the frequency and variance of price changes, while holding the

γ parameter constant. For instance, two economies that differ only in the frequency of price

changes Ñ > N can be modeled by a s > 1 and a = 1, namely a smaller effort cost parameter

κ̃ = κ 1
s
.

We note that the proposition assumes no trend inflation and a second-order approximation

of the flow costs. These assumptions provide an accurate approximation to our calibration,

featuring a small inflation and the exact profit function.

The dataset. We base our analysis on granular data on price setting behavior provided

by PriceStats and related to The Billion Prices Project (Cavallo and Rigobon, 2016). This

granular data includes daily frequencies and size of price changes for numerous firms. The

12To see this, notice

K̃urt(∆x) ≡
∫∞
−∞ q̃(x)x4dx(
Ṽar(∆x)

)2 =
a2
∫∞
−∞ q

(
x√
a

)
1√
a

(
x√
a

)4
dx

a2 (Var(∆x))
2 = Kurt(∆x) .
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data, gathered via web scraping, comprises daily, product-level details from various retailers’

websites, including product id, price, category, and sale status. The data is detailed, covering

the entire lifespan of all products sold by these retailers, and provides prices that are similar

to those obtained in offline stores (Cavallo, 2017). The data is comparable across countries,

collected using identical techniques for similar categories of goods over the same time period.

This data set is also known to reduce the measurement error present in other sources, for

example, due to time aggregation using the average revenue (see Cavallo (2018)). We use a

subset of data from several European countries and the US, from January 1st 2019 to July

22nd 2023. We apply a v-shape algorithm to filter sales and focus on regular prices, as is

standard in the literature (see Appendix C for more details on the data-cleaning process).

We focus on the “Food and Beverages” category which has experienced one of the highest

rates of inflation during this period and has the largest weight in the goods CPI basket for

most countries. We chose this sector because of the high quality and the comparability of the

data across countries. Other sectors, such as industry and services, record a similar increase in

the frequency of price revisions, as depicted in the bottom panel of Figure 1.13 We emphasize

that the higher steady-state frequency of price changes in the “Food and Beverages” category,

as compared to other sectors, does not tilt our results towards estimating larger degree of

state dependence (state dependence is related to the parameter γ, which is independent of

the frequency of price changes, see Proposition 1).

In Table 1 we present summary statistics of price setting behavior for several countries.

The standard deviation of price changes varies from 15% to 31% across countries. This

highlights the significant role of idiosyncratic productivity shocks. The kurtosis measure is

very similar across countries and ranges between 2 and 3.

Accurately estimating kurtosis is crucial because it informs us about the curvature of

the hazard function Λ. Kurtosis is a scale-free statistic that can be largely affected by the

mixing of distributions with different scales. For instance mixing normal distributions with

13Appendix E contains similar evidence for Spain and Italy based on CPI data. See Montag and Villar
(2023) for evidence from the US CPI data.
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different variances can yield a kurtosis much higher than 3 in spite of the fact that each of

the underlying distributions is normal. To measure kurtosis in Table 1 we follow Alvarez,

Lippi, and Oskolkov (2022) in accounting for unobserved heterogeneity. In particular, we

assume (i) that each product i within a category has a product-specific scale bi, such that

∆xi = bi ∆x, where ∆x is a random variable common across products and (ii) that price

changes ∆xt, ∆xs in different dates t 6= s are independent. The kurtosis of ∆x can be

computed from the distributions {∆xi} accounting for unobserved heterogeneity using

Kurt(∆x) =
E[(∆xit)

4]

E[(∆xit)2(∆xis)2]
, (13)

where E indicates expectation across products and time of price changes. The empirical

counterparts are estimated with

Ê[(∆xit)
4] =

1

I

I∑
i=1

1

T (i)

T (i)∑
t=1

(∆xit)
4,

Ê[(∆xit)
2(∆xis)

2] =
1

I

I∑
i=1

1

T (i)(T (i)− 1)

T (i)∑
t=1

T (i)∑
s=1, s 6=t

(∆xit)
2(∆xis)

2,

where I is the number of products and T (i) is the number of price changes for product i.

Calibration. For the food and beverages sectors of several countries we apply Proposi-

tion 1 to identify {σ, κ, γ}, using three cross-sectional moments, measured before 2022: the

frequency of price changes, the standard deviation and kurtosis of the size of price changes.

We use standard values for the other parameters: η = 6 for the price elasticity of demand

(implying a markup of 20%), a time discount ρ = 0.05 and an inflation rate of µ = 2% con-

sistent with inflation at steady state. The calibrated parameters are shown in the last three

columns of Table 1. We find a sizeable degree of state dependence, represented by (a small

value of) the parameter γ, identified by a relatively small kurtosis of price changes. This

finding is robust across countries. The first panel of Figure 2 depicts this fact: the calibrated
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shape of the hazard function is clearly v-shaped in all countries, displaying a comparable

curvature (the parameter γ) and somewhat differing levels needed to match the different

mean frequency of price changes (the parameter κ).

The calibration produces the price change distributions q(∆x) shown in Figure 2. These

feature a small mass of tiny price changes, a greater mass of positive changes, and the

distribution’s bimodality (evident in most countries except the US).

4 The propagation of an aggregate cost shock

In Figure 1 we observed that the frequency of price adjustments rose quickly after a large

energy shock. In this section we use the calibrated model to rationalize this observation.

We consider an economy at steady state and study the dynamics that follow an aggregate

shock to the firms’ marginal cost through a permanent increase in energy prices. To be

conservative, we consider a 20% shock to marginal costs. It is worth noting that the cost

shocks recorded by food production are even larger of the magnitude we are considering. For

example, in the United States, the Department of Agriculture estimated that in 2022, the

operating costs per acre for producing eleven farm crops and meats surged by 36%, with fuel,

lubricants, and electricity costs per acre registering an even more pronounced increase of over

43%. Similarly, in 27 European countries, Eurostat estimated that in 2022, the costs of inputs

used in agricultural production increased by 31% on average, with energy and lubricant costs

surging by 53%.14

We illustrate the propagation of large and small shocks using the model calibration for

the average of the food and beverages sectors described in Table 1. We hit the steady state

economy with an unexpected once-and-for-all shock to energy prices that increases the firms’

marginal cost. This displaces the distribution of price gaps by δ = 20% percentage points

14The data for the US can be found at www.ers.usda.gov/data-products/

commodity-costs-and-returns/. The products include hogs, cow-calf, milk, cotton, soy-
bean, peanut, sorghum, oats, corn, barley, and wheat. The data for Europe can be found at
https://doi.org/10.2908/APRI_PI15_INA

13

www.ers.usda.gov/data-products/commodity-costs-and-returns/
www.ers.usda.gov/data-products/commodity-costs-and-returns/
https://doi.org/10.2908/APRI_PI15_INA


“to the left”, as shown by the dashed distribution in the first panel of Figure 3.15 The firms

would then like to increase their prices to bring the markup back to the optimal level. This

incentive shapes the dynamic response of the price level and the frequency.

For simplicity we develop the analysis assuming that firms use the steady state decision

rule, Λ(x).16 We let m̂(x, t) : R × [0,∞) → R+ be the distribution of price gaps t periods

after the shock. Intuitively, the distribution depends on the time elapsed because the initial

shock places the distribution away from its steady state. The distribution m̂(x, t) solves a

Kolmogorov forward equation with initial condition (see Alvarez and Lippi (2022))

m̂(x, 0) = m(x+ δ) (14)

The shock δ > 0 thus shifts the whole distribution m(x) to the left, as an increase in energy

prices reduces the price gap of all firms.

Panel (a) of Figure 3 depicts the distribution of price gaps m, which peaks around the

vertical line x = x∗, and the distribution of firms’ price gaps after the shock m̂(x, 0). Recall

that x∗ > 0 and is approximately 10% due to the asymmetry of the profit function, discussed

above. Trend inflation is small, at 2%, and it does not significantly affect the magnitude

of x∗: a trend inflation of 2% leads to x∗ ≈ 0 when a symmetric flow cost, such as the

approximation F (x) ≈ Bx2, is used. A large shock shifts the distribution m(x) to the left,

so that most firms’ prices are further away from their desired prices (at around −20% price

gap). In this region the probability of adjustment, Λ(x), is larger for most firms. This is

the mechanism by which a large shock triggers an increase number of price adjustments.

Intuitively, the costs of not adjusting the price are much larger after the shock.

Using m̂(x, t) we can describe the path for the aggregate price level and the frequency of

15A shock eδ/ζ to energy prices affects the marginal cost by eδ, as implied by equation (3).
16This assumption is often used in the literature, see Baley and Blanco (2021). In Appendix D we solve

the general equilibrium problem, with feedback from aggregates to the individual firm’s decision, and show
that results are similar.
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price changes after an aggregate shock, as

P (t) ≈ P (0) +

∫ ∞
−∞

x · m̂(x, t) dx − (Xss − δ), (15)

N(t) =

∫ ∞
−∞

Λ(x) · m̂(x, t) dx (16)

where Xss =
∫
R x · m(x) dx. The right hand side of equation (15) can be written more

succinctly as P (0) +X(t)− (Xss − δ), where X(t) denotes the mean price gap at time t.

Panel (c) of Figure 3 illustrates a marked rise in frequency following a large shock, of a

magnitude that is akin to the one observed across all countries in our sample during 2022-

2023, see Figure 1. As mentioned, the aggregate cost shock locates many firms in a region

where the hazard rate is high, Λ(x). This leads to a sustained increase in the frequency of

price changes. Evidently this mechanism is not at work if the hazard function is flat, as

in time-dependent models. These results are robust in our sample of countries because the

calibrated hazard functions are v-shaped in all countries.

We stress that the marked response of the frequency does not depend on the relatively

high frequency of price changes in the food and beverages industry. What is necessary for

the result to obtain is that the hazard function is v-shaped. As shown by Proposition 1,

the extensive margin response depends on the value of γ, hence on the kurtosis of price

changes. It does not depend on the steady-state frequency of price changes, which is driven

by κ. To see this formally note that the impact response of the frequency to the shock is

N0 ≡
∫∞
−∞ Λ(x)m(x + δ)dx. Consider another economy differing only in the steady state

frequency Ñ = sN . A straightforward application of equation (12) yields

Ñ0

Ñ
=

∫∞
−∞ Λ̃(x)m̃(x+ δ)dx

Ñ
=
s
∫∞
−∞ Λ(x)m(x+ δ)dx

sN
=
N0

N

proving that the percentage increase of the frequency after the shock is identical in the two

economies. To obtain a different response it is necessary to consider economies that differ in

their degree of state dependence, i.e. with very different levels of kurtosis.
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Inflation dynamics. Panel (b) of Figure 3 shows that the propagation of a large shock

features a faster pass-through than one predicted by a Calvo model matching the same

frequency, and size, of price changes. This result mirrors the observation about frequency.

Upon a large shock the calibrated model is characterized by more firms adjusting prices

upwards resulting in faster passthrough. Inspecting the slope of the price path, the figure

illustrates that failing to account for the large increase in the frequency of price revisions,

as would occur in a time-dependent model, leads to a substantial initial underestimation of

inflation followed by a subsequent overestimation. A feature much discussed in the recent

inflationary episode.

We note that one feature not captured by our simple model is the half-life of the shock,

which is faster than observed in the data. Enriching the model to have strategic comple-

mentarities in price setting would slow down the propagation of the shock, while retaining

the state-dependence of the firms’ decision and thus preserve a sizeable response along the

extensive margin, as shown in Alvarez, Lippi, and Souganidis (2023). Such an extension

comes at the cost of a more involved model, which we leave for future work.

In summary, the state-dependent model features a dynamic response to a large shock

that resembles the data on the frequency of adjustments observed after the energy shocks of

2022. Furthermore the forecast of the frequency of price changes and the path of inflation

vary significantly with the chosen model. The implications of a purely time-dependent model

are counterfactual because the model misses the extensive margin response documented in

Figure 1.

Starting with the last quarter of 2022, there has been a rapid decrease in energy prices,

prompting the question of how swiftly firms will respond by adjusting their prices downward.

Different features of the economic environment may induce an asymmetric response to posi-

tive vs negative cost shocks, such as a sizeable trend inflation or a variable markup.17 Indeed

an asymmetric response to positive vs negative cost shocks is present in our model. Panel

17See Peltzman (2000) and Tappata (2009) for more evidence and interpretations of the “rockets and
feathers” phenomenon, i.e., that prices rise faster than they fall.
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(d) of Figure 3 depicts the asymmetric response of the frequency to a large positive versus

a large negative shock (both of the same size). This behavior is a direct consequence of the

asymmetric shape of the hazard function, Λ(x), and in particular of the fact that the hazard

has a higher slope when the firm markup is low (x < x∗) than when it is high (stemming

from the asymmetry of the profit function discussed above). Unlike a positive shock (dotted

line), a negative shock (thick line) leads to a less pronounced rise in the frequency of price

changes due to lower probabilities of adjustments for high price gaps (x > x∗).18 Although

the pass-through of a negative shock is relatively slower than its positive counterpart, it

continues to be faster than the passthrough predicted by a purely time-dependent model. In

short, our model with asymmetries shows that prices are more flexible upon a cost increase

than upon a cost decrease.

In this section we examined the propagation of an aggregate costs shock of δ = 20%, in a

model calibrated to the food and beverages data. We note that our findings are robust to the

magnitude of the shock chosen. As depicted in Figure 4, shocks of 10% and 15% also lead to

a significant increase in frequency, with factors of 1.5 and 2, respectively. It is apparent in

Figure 4 that shocks larger than 5% introduce non-linearities, a result that aligns with those

in Auclert et al. (2023).19

5 Conclusions

We use a tractable New Keynesian model, calibrated using granular data from the food and

beverages industry of several countries, to study the propagation of a large supply shock. The

model matches some key features of the data, including the (pre-shock) distribution of the

size of price changes and the significant increase in the frequency of price changes following

a large shock. The findings underscore the state-dependent nature of price setting decisions,

where the probability of a price adjustment increases as the firm’s price deviates from its

18Such an asymmetry cannot be caused by a high trend inflation in this model because the flow cost is
convex in the size of price gaps x. Thus price gaps x > x∗ are even more costly.

19Blanco et al. (2024) find similar nonlinear responses in an SD model with pricing complementarities.
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desired level.

The main implication of our research is that large shocks lead to a rapid pass-through from

costs to prices causing a temporary surge in inflation, i.e., we show that large shocks travel

fast. Understanding the different firm-level reactions to large and small shocks is critical

to predict inflation dynamics following a large shock. Our findings highlight the limitations

of time-dependent models, commonly used by central banks. By failing to account for the

increased frequency of price adjustments, the time-dependent models are unable to capture

the fast inflation run up after the shock, as well as the subsequent quick slowdown.

Future research should extend the analysis to more categories of goods, and explore the

role of strategic complementarities in shaping the speed of pass-through of large shocks.
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Figure 1: Frequency of price changes
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Note: The top panel uses data from PriceStats (see Section 3). A simple average is plotted on a thick
line. The data source for the bottom panel is the Banque de France Monthly Business Survey (see Dedola
et al. (2023)); we map the original data (share of firms changing prices per month) into number of price
changes per year.
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Figure 2: Calibrated hazard function Λ(x), distribution m(x), and distribution q(∆x)

Note: Model calibration for the food and beverages sector of several countries. The first panel shows the
calibrated hazard function (expressed as a monthly probability). The second panel shows the steady state
distribution of price gaps using the average of the food and beverages sectors, see Table 1. The other panels
show the distribution of the size of the price changes, q(∆x), standardized at the COICOP level along with
the calibrated model-implied distribution. See Table 1 for more information on the calibration.
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Figure 3: Propagation of a Large Shock

(a) Hazard Λ(x) and distributions m(x), m̂(x, 0) (b) Price level response to the shock
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Note: The figure uses the average of the food and beverages sectors, see Table 1. The calibration matches a
frequency of N = 1.9 price changes a year, the kurtosis and standard deviation of price changes of 2.3 and
27% respectively. Time is measured in months after the shock. Panel (a) has a dual scale: the left axis gives
the density of price gaps; the right axis gives the hazard rate of a price gap (as the probability per month)
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Table 1: Price Setting Behavior for “Food and Beverages” before 2022

Price-Setting Statistics Model Calibration
Mean St. Dev. Kurtosis Frequency # obs. σ γ κ
of ∆x of ∆x of ∆x N (thousands)

France -0.002 0.15 2.4 2 503 0.21 2.54 0.09
Germany 0.011 0.16 2.6 1.2 177 0.18 2.85 0.18
Italy 0.007 0.26 2.2 1.5 93 0.32 2.09 0.13
Netherlands 0.009 0.13 2.3 2.3 330 0.20 2.42 0.07
Spain 0.011 0.16 2.9 2.1 350 0.23 3.40 0.12
UK 0.007 0.31 2.1 0.8 95 0.28 1.89 0.24
US 0.012 0.31 2.2 2.1 282 0.45 2.02 0.10
Average 0.010 0.27 2.3 1.9 - 0.37 2.22 0.11

Source: The PriceStats data (period 2019-21) use a sample of daily changes in regular prices (excluding
sales). The statistics are computed over the distribution of the size of price changes after dropping price
changes larger than 1.50 log points in absolute value and products with less than 3 price spells for the period
2019-2021. Kurtosis is computed using equation (13). Frequency is annualized. The Average statistics are
weighted by 2019 consumption at current USD. The calibration of parameters σ, γ, κ is discussed in the text.
The drift of price gaps is µ = 2%. The additional parameters are set to canonical values: η = 6, ρ = 0.05.

Figure 4: Size of shocks and the role of extensive margin
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Note: The figure uses the average of the food and beverages sectors, see Table 1.
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Online Appendix: Large shocks travel fast

Alberto Cavallo, Francesco Lippi, Ken Miyahara

A The model economy

Household problem. Households consume a composite good C made of varieties ci with
a constant elasticity of substitution η > 1

Ct =

(∫ 1

0

(Aitcit)
η−1
η di

) η
η−1

(17)

where Ait denote shocks to preferences. The households maximize utility

max
C(t),ci(t),H(t),M(t)

∫ ∞
0

e−ρt
(
C1−ε
t

1− ε
− αHt + log

(
Mt

Pt

))
dt

where α > 0 is a labor disutility parameter and ρ > 0 is the discount factor, subject to the
inter-temporal budget constraint

M0 +

∫ ∞
0

Qt

(
HtWt (1 + τ`) + Πt + τt −RtMt −

∫ 1

0

pitcitdi

)
dt = 0 (18)

where Rt denotes the nominal interest rate, Qt = exp(−
∫ t

0
Rsds) is the discount factor, Wt is

the nominal wage rate, τ` a labor income tax, Πt the firms’ profits, τt a lump-sum transfer, pit
the nominal price of variety i and P is the price index. The household first order conditions
yield

Ct : e−ρtC−εt − λQtPt = 0 (19)

cit : e−ρtC−εt C
1
η

t A
η−1
η

it c
− 1
η

it − λQtpit = 0 (20)

Ht : − e−ρtα +QtWt (1 + τ`)λ = 0 (21)

Mt : e−ρt
1

Mt

− λQtRt = 0 (22)

where λ is the lagrange multiplier of the intertemporal budget constraint.
Using equation (19) and equation (20)

cit =

(
pit
Pt

)−η
Aη−1
it Ct (23)

Rearranging and differentiating equation (22) with respect to time we obtain

−ρe
−ρt

Mt

− e−ρt

Mt

Ṁt

Mt

= − λQtR
2
t + λQtṘt
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where Q̇t = −QtRt. Assume a monetary policy Mt = M0 exp(µt). Then simplifying the
above expression

ρ+ µ =Rt −
Ṙt

Rt

which is solved by Rt = ρ+ µ, all t. This implies, using equation (22)

λ =
exp(−ρt)
MtQtRt

=
1

M0(ρ+ µ)
.

From equation (21), the nominal wage rate is

Wt = exp(µt)
α

1 + τ`
M0(ρ+ µ),

with growth rate equal to µ. Using equation (20) and equation (21)

Aitcit =

(
pit

WtAit

)−η (
α

1 + τ`

)−η
C1−εη
t ,

Aitcit =

(
η

η − 1
K

(
Et
Wt

)ζ
pit
p∗it

)−η (
α

1 + τ`

)−η
C1−εη
t ,

Aitcit = e−ηxit

(
K

(
Et
Wt

)ζ
η

η − 1

α

1 + τ`

)−η
C1−εη
t .

where the second line uses the definition of profit-maximizing price and the fact Ait = Z1−ζ
it .

Integrating over varieties,

C
η−1
η

t =

(
K

(
Et
Wt

)ζ
η

η − 1

α

1 + τ`

)1−η

C
η−1
η
−ε(η−1)

t

∫
R
e(1−η)xm̂(x, t)dx,

C
ε(η−1)
t =

(
K

(
Et
Wt

)ζ
η

η − 1

α

1 + τ`

)1−η ∫
R
e(1−η)xm̂(x, t)dx,

Ct =

(
K

(
Et
Wt

)ζ
α

)− 1
ε (∫

R
e(1−η)xm̂(x, t)dx

)− 1
ε(1−η)

, (24)

which gives aggregate consumption as a function of the distribution of price gaps m̂(x, t) and
prices. The labor subsidy is assumed to offset markups. Further, using the aggregate price
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index implied by equation (23) we obtain

P 1−η
t =

∫ 1

0

(
pit
Ait

)1−η

di,

P 1−η
t =

(
η

η − 1
mct

)1−η ∫
R
e(1−η)xm̂(x, t)dx, (25)

where mct is short for KEζW 1−ζ . Equation (25) gives an expression for real marginal costs
as a function of the distribution of price gaps m̂(x, t).

The firm’s profit function. The technology for firm i is Cobb-Douglas yi = (hi/Zi)
1−ζmζ

i

where hi are units of labor and mi are units of energy input. The marginal cost (and average

cost) of producing yi is mci = K · Eζ (W · Zi)1−ζ where K = ζ−ζ · (1− ζ)−(1−ζ). The profit
function is

Πi = (pi −mci)
(pi
P

)−η
Aη−1
i C,

Πi =

(
pi

mci
− 1

)(
pi
PAi

)−η
A−1
i K · Eζ (W · Zi)1−ζ C,

Πi =

(
pi

mci
− 1

)(
pi

PZ1−ζ
i

)−η
K · EζW 1−ζC,

Πi =

(
pi

mci
− 1

)(
pi

mci

)−η
P η
[
K · EζW (1−ζ)]1−η C,

the first line uses equation (23), the second factorizes marginal cost out, the third uses
the assumption that Ai = Z1−ζ

i and the fourth rearranges. The flexible-price optimum is
p∗i = η

η−1
mci. Let x ≡ log pi/p

∗
i denote the “price gap”, namely the distance between the

current price and the static profit maximizing price. Expressing profits as a function of the
price gap gives

Π(x, t) =

[
ex − η − 1

η

]
e−ηx · P η

t

[
η

η − 1
K · Eζ

tW
(1−ζ)
t

]1−η

Ct,

Π(x, t)

Pt
=

[
ex − η − 1

η

]
e−ηx

[
η

η − 1

mct
Pt

]1−η

Ct, (26)

where mct, again, is short for KEζ
tW

1−ζ
t . It is worth noting that all time dependent terms

of real profits can be computed from the distribution of price gaps using equation (24) and
equation (25). Notice how the assumption Ai = Z1−ζ

i makes the profit function independent
of the productivity shock, a feature that allows us to reduce the state space of the problem
to a single scalar variable x. We define the flow cost function that represents forgone profits

28



due to price gap x along a transition and in steady-state as

F (x, t) ≡ 1− Π(x, t)

Πss(0)
, F (x) ≡ 1− η

[
ex − η − 1

η

]
e−ηx,

where Πss(0) are profits at x = 0 given steady state real marginal costs and consumption.
A second order expansion of the flow cost function around x = 0, yields the following

quadratic approximation

F (x) ≈ η(η − 1)

2
x2,

where the profits are expressed as a fraction of the maximized profits Πss(0). Thus, profit
maximization can be approximated by the minimization of the quadratic return function
η(η−1)

2
x2.

The profit function Π(x) also reveals that the aggregate consumption level C only has
a second order effect on the firm’s choice of the optimal price gap, since the cross partial
derivative of ∂2Π

∂x∂C
is zero when evaluated around the optimal value x = 0. This fact, which

is due to the constant elasticity assumption, implies that the steady state decision rules of
the firm are not altered, up to a first order, by a small perturbation of the aggregate variable
C. We note that the absence of strategic complementarities makes the analysis with steady
state rule Λ very close to the one of a general equilibrium model with feedback to aggregates
(see Appendix D).

The firm’s price-setting problem. The firm’s sequential problem consists in minimizing
the flow costs from forgone profits and effort costs by choosing hazard rates `(t) and the
optimal reset point x∗ according to

υ (x) = min
`(t),x∗

E
{∫ ∞

0

e−ρt [F (x (t)) + (κ ` (t))γ] dt
∣∣∣x (0) = x

}
s.t. x(t) = x(0)− µt+ σz(t) +

∑
τi<t

∆x(τi)

where τi denotes the stopping times when a resetting opportunity arrives, ∆x(τi) = x∗−x(τi)
is the price change, and (κ`)γ is the effort cost of choosing hazard rate ` with κ > 0 and
γ > 1. This sequential formulation implies the HJB equation in equation (6).

B Proof of Proposition 1

Proof. Note that upon a stopping time τ (when adjustment occurs) we have x(τ) = x∗ +
σz(τ) where z(t) is a standard Brownian motion since µ = 0. By Ito’s lemma the stochastic
process u(t) ≡ (x(t)− x∗)2 follows the diffusion

du = σ2dt+ 2σ
√
u dz
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Notice that u(t)− σ2t = 2σ
√
u z(t) is a martingale. Letting τ be a stopping time, we have

E
(
u(τ)− σ2τ

)
= 0 so that E (u(τ))− σ2E (τ) = 0

Note that E(∆x) = E(x∗−x(τ)) = −σEz(τ) = 0, so that E (u(τ)) ≡ V ar(∆x) is the variance
of the size of price changes. Then, using that the mean duration of price changes satisfies
E (τ) = 1/N , we have

N · Var(∆x) = σ2.

From the equation above and the stated relation between variance and frequency among the
two economies, we immediately obtain σ̃2 = s σ2. Next we prove the scaling properties stated
in the proposition. The steps are: we guess and verify a solution for the value function ṽ
using the HJB, then we obtain the hazard function Λ̃ and we guess and verify a solution to
m̃ using the hazard and the KFE. The HJB equation for the tilde economy satisfies

ρ̃ ṽ(x) = B̃x2 +
σ̃2

2
ṽ′′(x) + C̃(x) where C̃(x) ≡

(
ṽ(x)− ṽ(x∗)

κ̃ γ

) γ
γ−1

(1− γ) < 0

Define β ≡ B̃/B and consider ρ̃ = s
a
ρ, σ̃2 = sσ2 and κ̃ = κ

s
a
γ+1
γ β

1
γ . Guess that ṽ(x) =

v
(

x√
a

)
a2

s
β and substitute in the equation above to obtain (after some algebra)

aβ ρ v

(
x√
a

)
= aβ

(
B

(
x√
a

)2

+
σ2

2
v′′
(
x√
a

)
+ C

(
x√
a

))

This verifies our guess for ṽ since the HJB for v holds. Note that given the value function
and parameters we have

Λ̃(x) =
1

κ̃

(
ṽ(x)− ṽ(x∗)

κ̃ γ

) 1
γ−1

=
s

a
Λ

(
x√
a

)
. (27)

Now guess a density function m̃(x) = m
(

x√
a

)
1√
a
. Note that the density m solves∫∞

−∞m(x)dx = 1 hence it follows that
∫∞
−∞ m̃(x)dx =

∫∞
−∞m

(
x√
a

)
1√
a
dx = 1 which veri-

fies the integration to one condition. Consider the Kolmogorov forward equation for the tilde
economy

Λ̃(x)m̃(x) =
σ̃2

2
m̃′′(x), x 6= 0

and rewrite it using the guessed density, σ̃2 = sσ2, and equation (27). We obtain

Λ

(
x√
a

)
m

(
x√
a

)
=
σ2

2
m′′
(
x√
a

)
, x 6= 0
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which verifies our guess for m̃ since the KFE for m holds. Our final result follows from

q̃(x) =
Λ̃(x)m̃(x)

Ñ
=

Λ
(

x√
a

)
m
(

x√
a

)
N

1√
a

= q

(
x√
a

)
1√
a
.

C Detailed Data Description

In this Appendix we describe the data-cleaning process and provide information on the data
coverage. We use granular price data collected from the websites of large multi-channel re-
tailers that sell products both online and in brick-and-mortar stores. The data were collected
on a daily basis by PriceStats, a private firm related to the Billion Prices Project at Harvard
and MIT. Previous research has shown that price indices constructed with this data can
closely track official CPI statistics in many countries (Cavallo and Rigobon (2016)).20 We
focus on the “Food and Beverages” sector and use data for all products sold by some of the
largest food retailers in six European countries (France, Germany, Italy, Netherlands, Spain,
and the United Kingdom) and the United States. The sample goes from January 1st, 2019,
until July 22nd, 2023, and contains daily information on price spell duration and the size of
price changes.

Data-cleaning process. To minimize the impact of scraping errors and compositional
changes, we keep only the products that remain in the sample for at least 365 days. For
each product, we fill all the missing prices with the last available price from the previous
spell. We also drop all price changes larger than 1.5 log points and equal to 1 cent in local
currency. We filter temporary price discounts (sales) by using a V-shaped algorithm that
detects a price drop followed by an equal price increase, back to the original price, within
90 days. When we identify a sale, we replace the discounted price with the last observed
pre-sale price to obtain a regular price spell for that product.

Data coverage. The final dataset contains information on 583,788 products from 58
retailers the “Food and Beverages” sector. For each country, we have products from eleven
3-digit COICOP sectors within the 1-digit “Food and Beverages” sector. As Table 2 shows,
each product remains over 1000 days in the sample with an average of 8 distinct prices.

D General equilibrium

Equilibrium. The equilibrium is characterized by {v̂, m̂, C} a value function for the firms’
price-setting problem, a distribution of price gaps, and a path of aggregate consumption such
that for each t

20Also see Cavallo, A. (2013). Online and official price indexes: Measuring Argentina’s inflation. Journal
of Monetary Economics 60 (2), 152-165
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Table 2: Data Coverage

Average Prices Average
Retailers Unique Products per Product Product Life

France 12 147,115 9.41 998
Germany 7 65,670 7.26 963
Italy 5 36,490 7.04 988
Netherlands 8 80,614 9.98 1,001
Spain 9 91,184 8.65 1,051
United Kingdom 10 86,295 4.98 1,096
United States 7 76,420 9.05 1,034
All 58 583,788 8.05 1,019

ρv̂(x, t)− v̂t(x, t) =F (x, t;C(t))− µ v̂x(x, t) +
σ2

2
v̂xx(x, t) + min

`,x∗
{` (v̂(x∗, t)− v̂(x, t)) + (κ `)γ},

(28)

m̂t(x, t) = − λ̂(x, t)m̂(x, t) + µ m̂x(x, t) +
σ2

2
m̂xx(x, t), x 6= x̂∗(t), (29)

C(t) =

(
K

(
E(t)

W (t)

)ζ
α

)− 1
ε (∫

R
e(1−η)xm̂(x, t)dx

)− 1
ε(1−η)

, (30)

where F emphasizes how the firm problem depends on aggregate consumption C(t). Equa-
tion (28) takes a path of aggregate demand C and solves for v̂ given terminal condition
limt→∞ v̂(x, t) = v(x), the steady-state value function. Policies λ̂, x̂∗ are obtained from equa-
tion (28) using the optimal return condition v̂x(x̂

∗(t), t) = 0 and the optimal hazard condi-
tion in equation (7). Equation (29) takes policies and solves for m̂ given initial condition
m̂(x, 0) = m(x+ δ), the displaced steady-state distribution.

Equilibrium is a fixed point problem. Policies λ̂, x̂∗ depend on the path C and the
distribution depends on a path of policies. Equation (30) is the equilibrium condition coupling
the HJB and KFE, requiring that the path C is consistent with both. This is the structure
of a mean-field game where optimal decisions and aggregation are coupled only through a
finite set of distributional moments, see Alvarez, Lippi, and Souganidis (2023). In this case,
only through the aggregate consumption path.

Fixed point problem. Following Golosov and Lucas (2007), we construct an operator
Γ over paths C such that a fixed point solves the coupled system of equations described by
equations (28)-(30). Consider a path C, then the correspondence Γ maps C into a path ΓC
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implied by the HJB and KFE. Specifically, for each t, (ΓC) (t) is defined as

(ΓC) (t) =

(
K

(
E(t)

W (t)

)ζ
α

)− 1
ε (∫

R
e(1−η)xm̂(x, t;C)dx

)− 1
ε(1−η)

.

where m̂ emphasizes the dependence on the input path C. Aggregate consumption path
C = ΓC and associated v̂, m̂ solve equations (28) to (30).

Computation. To compute the equilibrium we use standard finite difference methods
(Achdou et al., 2021). Iteration on the operator Γ converges in few steps. We set the two
additional parameters of labor disutility and relative risk aversion to standard parameters
α = 6 and ε = 2, following Golosov and Lucas (2007).

A shock to energy prices increases marginal cost by δ = 20%. We assume that energy
prices and money grow at rate µ. Together these imply that (i) the shock to nominal marginal
cost is permanent, drifting at rate µ for t > 0 and (ii) the relative price of energy to wages
E(t)/W (t) increases permanently.

Results. Panel (a) and (b) of Figure 5 indicate that the general equilibrium response of
frequency is very close to one using steady-state policy rules. Panel (a) depicts the hazards,
as a monthly probability, at several points in time, in yearly units, and shows that they are
close to the stationary hazard (dashed). Panel (b) shows that the response of frequency is
slightly dampened due to a lower hazard at impact but reaches a comparable peak response
of 5 price changes per year.

Panel (c) shows the response of output. At impact, the increase in relative costs E(t)/W (t)
exactly offsets the increase in demand due to low price gaps. Afterwards, elevated relative
costs and rising prices P (t) generate a permanent decrease in output. This is a canonical
permanent supply shock.

The slightly dampened response of frequency is explained by the general equilibrium ef-
fects on the flow cost function (i.e. on the profit function). Equation (26) indicates that flow
costs increase with output (are more negative) and decrease with real marginal costs, with
an elasticity of 1 and η− 1 = 5, respectively. Real marginal costs (in equation (25)) increase
by δ at impact and gradually revert to steady state, whereas output (in equation (24)) is
unresponsive at impact and gradually declines by δ/ε relative to the pre-shock level. Quan-
titatively, the real marginal cost drives the dynamics of the flow cost, reducing the marginal
value of repricing efforts, and thus the hazard (see panel (a)). This in turn, marginally
dampens the response of frequency.
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Figure 5: Propagation of a Large Shock in General Equilibrium

(a) Time dependent hazard (b) Frequency of price changes: N(t)
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E More evidence on increased frequency of price changes

Figure 6: Increase in Frequency: Aggregate data

(a) Spain CPI data (b) Italy CPI data
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Sources: Left panel, Instituto Nacional de Estadistica and Bank of Spain staff calculations. Right panel,
Istat and Bank of Italy staff calculations.
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