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Abstract

We propose a prior-free model of incentive contracting in which the principal’s
beliefs about the agent’s production technology are characterized by revealed preference
data. The principal and the agent are each financially risk neutral and the agent’s
preferences are understood to be quasilinear in effort. Prior to contracting with the
agent, the principal observes the output produced by a population of identical agents
in best response to finitely many exogenously-specified contracts. She views any
technology that rationalizes this data as plausible and evaluates contracts according to
their guaranteed expected payoff against the set of all such technologies. This paper
does four things. First, we characterize the set of technologies that are consistent with
the revealed preference data. Second, we show that robustly optimal contracts are either
empirical contracts or equity bonus contracts that supplement mixtures of contracts
from the data with equity payments. Third, we provide conditions under which these
optimal contracts append equity payments to only a single contract from the data.
Fourth, and finally, we show that all of our results generalize without complication to
a setting in which there might be arbitrary forms of unobserved heterogeneity within
the population of agents.

1 Introduction

Moral hazard is the workhorse model of financial incentive provision and therefore enjoys
many important practical applications. While a rich theoretical literature has delivered many
interesting and important insights about properties that well designed incentive schemes
ought to have (Holmström [2017]), the optimal contracts prescribed by these models are
contingent on information that principals are unlikely to possess in practice. Unlike in other
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areas of mechanism design in which a theoretical pricing exercise might be supported by
the extensive literature on demand estimation or an auction design problem by the empirical
auctions literature, operationalizing the design of incentive contracts faces some special
challenges. In the classical model (Holmström [1979]), for instance, optimal contracts are
highly sensitive to the likelihood ratios induced by the output distributions associated to
actions that are by assumption unobserved. Even in weakly structured models (Chassang
[2013], Carroll [2015]) that are less informationally demanding, it is still presumed that
the principal has at least some prior knowledge about the relationship between effort and
output, even though she again never observes effort. How might an analyst give practical
and data-driven advice to a real-world principal on how to design contracts then?

This paper studies a moral hazard problem in which the principal possesses data X de-
scribing the performance of one or more exogenously specified contracts. The observations
(Fi, wi) in her data consist of a contract wi and the distribution of output Fi produced by
a population of identical agents1 in best response to wi. The agent is risk neutral, suffers
additive disutility from unobserved effort, and enjoys limited liability. The principal un-
derstands the agent’s preferences but observes neither the effort cost ei associated with Fi

nor the identity of other actions that might also be available to the agent. She insists on an
objective analysis and therefore incorporates only the information that can be inferred from
direct observation into her designs. However, because she observes best responses to only
finitely many contracts, the principal’s model of the agent’s technology is only partially
identified. In accordance with her desire to act on objective information about the agent’s
capabilities, the principal evaluates contracts according to their guaranteed payoff against
the set of technologies that rationalize the data.

There are two avenues open to the principal in pursuit of robust optimality. First,
the principal might pay the agent with an empirical contract. Because the agent accepts
recommendations from the principal whenever he is indifferent between two or more actions,
the worst-case for an empirical contract wi is simply the best response Fi recorded in the
data. Second, the principal might pay the agent with a novel contract. Because of the
principal’s permissive model of the agent’s technology, it is not prima facie obvious that
such a contract should provide any non-trivial payoff guarantee whatsoever, much less an

1While we interpret our model as one in which the revealed preference data are generated by a population
of agents, our formal model is one of interaction between a principal and a single representative member of
that population. Accordingly, we use singular language when referring to the agent throughout most of the
paper. In Section 7, we model heterogeneity within the agent population as stochasticity in the representative
agent’s technology. We discuss the interpretation of the data in both that section and in the conclusion.
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optimal one. In fact, that intuition turns out to be overly pessimistic, because the data are
indeed informative about the agent’s best response to novel contracts. As we show, there
are interesting cases of our model in which novel contracts not only provide non-trivial
guarantees but also robustly outperform all empirical contracts.

Our analysis is structured as follows. First, we characterize the rationalizability of data
sets that contain finitely many contract–action pairs. Because effort costs are additive,
a system of linear inequalities bound the unobserved effort costs e corresponding to the
observed output distributions F chosen in best response to each contract w. By analogy to a
classical problem from network theory, we give a simple necessary and sufficient condition
for there to exist effort costs that rationalize these finite data sets. We then apply this
result to (i) characterize the rationalizability of the principal’s data X and (ii) characterize
the rationalizability of the appended data set X ∪ {(F,w)} for observations (F,w) that
do not appear in the principal’s data. In turn, we obtain not only a tight condition under
which the principal’s problem is well defined, but also a tight characterization of incentive
compatibility for novel contracts.

In the second part of our analysis, we use our characterization of incentive compatibility
to reduce our model to a robust contracting problem in the spirit of Carroll [2015]. We
develop a multidimensional version of Carroll’s support line argument and use that argument
to prove that optimal contracts are either empirical contracts or equity bonus contracts that
pay the agent with a convex combination of one or more empirical contracts plus a share of
the principal’s profit. These contracts are optimal because they leverage both the revealed
preference information in the data and also the desirable preference-alignment properties
of linear contracts. We show via a simple two-observation example in Section 5 that there
are interesting cases of our model in which optimal contracts are indeed novel.

Third, we study the relationship between the form of the optimal equity bonus contract
and the characteristics of the revealed preference data X . We confirm via example that
the optimal contract is sometimes a convex combination of multiple empirical contracts
plus an equity payment and is therefore at least somewhat complex. We then show that
this complexity is related to what the data reveal about the quasiconcavity of the agent’s
payoffs. Specifically, if the data are supermodular in an appropriate sense, then two related
facts follow. First, the agent’s preferences over observed actions are provably quasiconcave.
Second, and more importantly, optimal equity bonus contracts add an equity payment to
a single contract from the data. In addition to simplicity, this result lends tractability to
our problem because the optimal one-contract mixture equity bonus contract is completely
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characterized by an adaptation of a straightforward calculation that appears in Chassang
[2013] and Carroll [2015]. This lies in contrast to the general case, where the optimal
contract can not in general be characterized by first-order conditions.

Fourth, and finally, we relax our assumption that the data are generated by a population
of identical agents and allow for arbitrary types of unobserved heterogeneity within that
population. We show via elementary arguments that the guarantee provided by any contract
in this heterogeneous-agent environment is identical to the guarantee that it provides in the
homogeneous-agent environment considered throughout the preceding parts of the paper.
In doing so, we verify not only that all of our preceding results hold in the heterogeneous-
agent environment but also confirm more broadly that unobserved agent heterogeneity is
inconsequential for data-driven robust contract design.

Relation to Literature This work continues our earlier studies of data driven prior-free
mechanism design. First and foremost, our model is an application of the revealed preference
robust mechanism design framework developed in Rosenthal [2019] to the study of moral
hazard (rather than multidimensional screening, as in that paper). Elsewhere, Burkett and
Rosenthal [2022] provides a statistical theory of simple contracts for risk-averse agents in a
model that emphasizes finite sample issues outside of the scope of the present paper.

Our model might be viewed as an alternative interpretation of the robust contracting
exercise developed by Carroll [2015] and elaborated on in Dai and Toikka [2022], Kamb-
hampati [2023], and elsewhere. Our paper is distinguished from Carroll’s analysis by the
structure of our informational environment. In particular, the principal in Carroll’s model
knows (i) the output distributions and effort costs associated with a known subset of the
agent’s actions and (ii) lower bounds on effort costs for potential unknown actions. She
otherwise entertains the possibility that the agent’s technology is any superset of the known
actions, without restriction. In our model, the principal’s knowledge of the agent’s tech-
nology is instead characterized by revealed preference data, and we impose no exogenous
bounds on relative effort costs.

Less closely related is other work in the robust mechanism design space, including
Carroll [2017]. There, the author studies a robust multidimensional screening problem
in which the principal knows the marginal distribution of each dimension of the agent’s
private information, but not the joint distribution. The optimal mechanism is a “no-
bundling” solution that concatenates the solutions to each of the one-dimensional problems.
Setting aside any subtleties that might arise from observing lower bounds rather than exact
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valuations, there is an interpretation of Carroll’s model as one in which the principal infers
the marginal distributions from a family of non-panelled cross-sectional data sets. Under
that interpretation, the author’s no-bundling solution is analogous to a counterfactual result
for our setting under which optimal contracts must be empirical. This lies in contrast to
our actual solution, in which optimal contracts are sometimes novel. At the same time, our
principal possesses “more” information than Carroll’s, because she draws information from
one panelled data set rather than a series of independent cross-sectional data sets.This is true
by definition in the homogeneous-agent environment and true “on path” in the heterogeneous
environment, wherein worst-case agent populations are indeed homogeneous.

Along separate lines, this paper is conceptually related to a similarly-motivated study of
data-driven incentive design by Georgiadis and Powell [2022]. As in our paper, the principal
in their model has access to contract-output data and uses this data to make inferences about
the performance of novel contracts. The authors identify payoff-improving perturbations
of existing contracts under the hypothesis that the agent chooses from an unknown action
set that is known by the principal to be differentiable. Aside from differences in our
model and our solution concept, there are two main distinctions between our analysis and
theirs. First, while their analysis is local in nature, we identify globally optimal contracts.
Second, while the authors later show how to extend their analysis to global optimality
under particular assumptions about the agent’s technology, our model imposes no structure
on the agent’s technology beyond rationalizability of the principal’s data, even when we
allow for heterogeneity in the agent population. In contrast, their smoothness assumption
is substantive rather than technical, given the nature of the authors’ analysis.

Finally, the concurrent paper Antic and Georgiadis [2022] studies a similar model with
intersecting results. Present in their paper but absent from ours is (i) a detailed study of
the two-observation problem, with a direct proof that one-contract mixtures are optimal
for those cases; and (ii) an interesting empirical exercise in which the authors apply their
analytical results to an experimental data set from elsewhere in the literature. Present in our
paper but lacking in theirs is (i) our first theorem on the complete characterization of the
set of rationalizing technologies; (ii) our third theorem on the optimality of one-contract
mixtures for supermodular data, which includes not only two-observation data sets as a
special case but also a much richer class of problems; and (iii) our fourth theorem on
heterogeneous agent populations.

The paper is structured as follows. First, we introduce the model in Section 2. Next, we
treat the revealed preference problem in Section 3, which yields a condition for rationalizing
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the data, as well as any previously unobserved action. This condition is then used to set up
and solve the robust contracting problem in Section 4. Section 5 discusses conditions under
which the principal can find a novel contract that improves upon the contracts in the data.
Section 6 considers special cases of the model optimal contracts take an especially simple
form, including most importantly the aforementioned supermodular case. Lastly, we extend
the model to allow for heterogeneous agent data in Section 7. Section 8 concludes. Proofs
and supporting technical material appear in the Appendix.

2 Model

2.1 Actions and payoffs

The agent chooses action (F, e) from production technology A and produces output y

in set Y ⊂ R.2 Output is distributed according to F ∈ ∆(Y) and the agent suffers
unobserved effort cost e ∈ R. The principal pays the agent with a continuous contract
w : Y → R+ to provide incentives for effort. The agent is a risk-neutral expected utility
maximizer with quasilinear effort costs and the principal is herself financially risk-neutral.
Accordingly, given action (F, e) and contractw, the agent’s payoff and the principal’s payoff
are respectively ∫

Y
w(y)dF − e

∫
Y
(y − w(y))dF.

Ties in the agent’s problem are broken in favor of the principal. Given technology A and
contract w, we write

c(A|w) = argmax
(F,e)∈A

(∫
Y
wdF − e

)
Π(A|w) = max

(F,e)∈c(A|w)

∫
Y
(y − w(y))dF

for the agent’s preferred actions and the principal’s resulting payoff, respectively.

2.2 The production technology

The principal’s beliefs about the agent’s technology A are characterized by revealed pref-
erence data. We call a pair (F,w) consisting of output distribution F and contract w an

2In the interest of brevity, we occasionally refer to output distributions F as “actions”, without explicit
reference to the associated effort cost.
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observation, and suppose that the principal observes a finite set X of observations prior to
contracting with the agent.

Definition 1. Technology A rationalizes X if there exists a map e : X → R such that
(F, e(F,w)) ∈ c(A|w) for each (F,w) ∈ X .

The principal entertains the possibility that the agent’s technology is any technology A
which rationalizes X . We make three clarifying comments about the relationship between
X and its rationalizing technologies A:

1. If A rationalizes the data X and (F,w) ∈ X for some contract w, then (F, e) ∈ A
for some effort e.

2. If X includes distinct observations that yield the same output distribution F , then
there might be fewer actions in A than observations in X .

3. If A includes actions (F, e) with output distributions F that are not constituent to any
observation (F,w) ∈ X , then there might be more actions in A than observations in
X .

We write A for the set of technologies A that rationalize X . It is sometimes convenient to
index the data, in which case we write (Fi, wi) to refer to a typical observation in the data
and ei for the value of a particular rationalizing effort cost for Fi. We reserve the subscripted
notation Fi, wi, ei for this purpose.

2.3 The principal’s objective

The principal’s objective is to choose the contract w that maximizes her payoff guarantee

Π(w) = inf
A∈A

Π(A|w).

2.4 Formalities and notation

The set of real numbers R has the Euclidean topology. The set of outputs Y is compact
and contracts are continuous. We normalize minY ≡ 0 and write δ(x) for the degenerate
distribution at x. We occasionally write ⟨F,w⟩ for the expectation of contract w against
output distribution F . When stating examples with finitely many outputs, we interpret the
set of outputs Y , output distributions in ∆(Y), and contracts w as ordered tuples.
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We normalize each contract w associated with an observation (F,w) ∈ X by supposing
that the minimum payment assigned by w is 0. This is without loss of generality,3 and we do
not require w(0) = 0. Furthermore, we restrict attention to production technologies A with
only finitely many actions, noting that this is again without loss of generality because (i) the
principal’s dataX includes only finitely many observations and (ii) the principal’s guarantee
Π(w) for any particular contract w is achieved by some technology A that includes at most
|X| + 1 actions. Finally, we streamline some definitions and proofs by suppressing edge
cases in which none of the observations in the data are profitable for the principal.

Assumption 1. The revealed preference data X contain at least one observation (F,w) with
⟨F, y − w⟩ > 0.

Were every observation in the data to yield a non-positive payoff, it might sometimes
be optimal for the principal to pay the agent with the linear bonus contract w = y that pays
the agent all of the output that he produces. Aside from ruling out those pathological data
sets, Assumption 1 does not affect our results.

3 Revealed preference

This section considers the question of which data sets can be rationalized by some assign-
ment of effort costs. The characterization in Theorem 1, which essentially reduces to an
assertion that a particular set of linear inequalities has a solution, serves two purposes for
the principal. First, it exactly characterizes what is meant by rationalizability of the data in
this setting. More importantly, we use Theorem 1 to characterize the set of rationalizable
output distributions at any contract the principal could offer the agent. This characterization
significantly reduces the complexity of principal’s optimal contracting problem, which we
return to in Section 4.

The problem of identifying which finite sets of observations are rationalizable is equiva-
lent to determining whether there exists an assignment of effort costs under which all of the
agent’s incentive compatibility conditions can jointly be satisfied. The map e rationalizes
X if

⟨F −G,w⟩ ≥ e(F,w)− e(G, v) ∀(F,w), (G, v) ∈ X. (1)
3The set of technologies that rationalize observation (F,w) is identical to the set of technologies that

rationalize observation (F,w + κ) for any constant κ. Accordingly, the normalizations minwi = 0 are for
notational convenience only.
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This problem is itself isomorphic to a classical network theory problem. To make the
connection, let ⟨F −G,w⟩ be the length of an arc from the node (G, v) to the node (F,w).
A finite sequence of observations P = {(H1, w1), . . . , (Hn, wn)} is a path through the data
with length

ℓ(P ) =
n−1∑
i=1

⟨Hi+1 −Hi, wi+1⟩

A path C = {(H1, w1), . . . , (Hn, wn), (H1, w1)} that terminates at its starting point is a
cycle.

There is nothing unusual about data sets X in which some paths have negative length,
since an alternative action may give the agent a higher expected wage at a much higher
effort cost; however, it is critical to the revealed preference problem that there are no
cycles with strictly negative length. To understand why, consider some cycle C =

{(H1, w1), . . . , (Hn, wn), (H1, w1)}. To each arc in the cycle, there is an associated in-
equality from (1) given by ⟨Hi+1 −Hi, wi+1⟩ ≥ e(Hi+1, wi+1) − e(Hi, wi). Summing up
these inequalities over all arcs in the cycle implies ℓ(C) ≥ 0. Therefore, all cycles must
have non-negative length if (1) is to have a solution. The converse is also true: if all cycles
having non-negative length, then there exists a solution to (1).

Theorem 1. The following statements are equivalent:

1. The data X are rationalizable.

2. All cycles in X have non-negative length.

3. There is a shortest path between any two observations in X .

We give a brief proof of Theorem 1 in the appendix, drawing on the network-theoretic
framework developed in Vohra [2011]; there are several closely related results in the
literature on revealed preference and rationalizability, including Afriat [1967] and Rochet
[1987]. We make use of this framework and its terminology in subsequent results.

As the result shows, the lengths of the paths and cycles in the data X determine its
rationalizability. Both of these objects have economic interpretations. For any pair of
observations, the length of the shortest path from one to the other bounds the effort cost
difference between the two associated actions. We write sij for the length of the shortest
path in X from observation (Fi, wi) to observation (Fj, wj). It follows from the argument
preceding Theorem 1 that sij is a tight upper bound for the difference in effort costs ej − ei

associated to actions Fj and Fi.
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The length of a cycle in the data then indicates the amount of slack available for
constructing effort costs that are consistent with the constituent inequalities in the cycle.
Recall that each arc in the data is associated with an inequality in (1). The length of a cycle
then corresponds to value taken by the left-hand side when these inequalities are summed
over all constituent arcs. The right-hand side of the sum is zero if it is a cycle. In the
extreme case, a zero-length cycle indicates that all inequalities must hold with equality,
and hence that the agent must be indifferent along the cycle. A cycle with strictly positive
length, on the other hand, allows for an assignment of effort costs in which some (or all) of
the constituent inequalities are slack.

Aside from offering a pair of interpretations of rationalizability, Theorem 1 plays two
major roles in our analysis. First, it yields the tightest-possible condition under which there
are technologies that rationalize the principal’s data X .

Corollary 1. If all cycles in the dataX have non-negative length, then the set of technologies
which rationalize the principal’s data X is non-empty.

Second, Theorem 1 yields a characterization of what output distributions F would be
incentive compatible for the agent in response to an arbitrary contract w. In particular, the
theorem implies that the appended data set X ∪ {(F,w)} is rationalizable if and only if
every cycle in X ∪ {(F,w)} itself has non-negative length. Equivalently, we obtain the
condition

⟨Fi − F,wi⟩+ sij + ⟨F − Fj, w⟩ ≥ 0 ∀i, j,

where we remind the reader that we write (Fi, wi), (Fj, wj) to indicate observations in X .

Corollary 2. If all cycles in the data X have non-negative length, then output distribution
F is rationalizable at contract w given data X if and only if

⟨F,w − wi⟩ ≥ Vi(w) ∀i, (2)

where Vi(w) ≡ maxj⟨Fj, w − wi⟩ −∆(i, j) and ∆(i, j) ≡ sij + ⟨Fi − Fj, wi⟩ ≥ 0 is the
length of the shortest cycle in the data that includes the arc from j to i.

Throughout the paper, we refer to the quantities w−wi as supplemental payments. Each
of the constants ∆(i, j) is fixed by the data and has a natural interpretation. First, note that
because ∆(i, j) is the length of a cycle it is nonnegative if the data can be rationalized.
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Next, notice that rationalizability requires that

⟨Fi − Fj, wi⟩ ≥ ei − ej ≥ −sij,

where the second inequality is a lower bound on ei−ej determined by a shortest path from i

to j. The difference ∆(i, j) = ⟨Fi−Fj, wi⟩+ sij is therefore the largest rationalizable gain
in payoff that the agent could realize from picking (Fi, ei) over (Fj, ej) at wi. Equivalently,
it is the largest loss the agent could experience from being forced to select (Fj, ej) at wi.
This shows up as a cost for the principal if she wants the agent to select an action like Fj at
wi. The ∆(i, j) terms play a key role in the construction of novel contracts, and we further
develop the intuition for their importance below.

As is consistent with Theorem 1, we adopt the following condition and maintain it
throughout the rest of the paper, without explicit citation. A cycle is non-degenerate if it
passes through at least two distinct observations.

Assumption 2. All non-degenerate cycles in the data X have strictly positive length.

Assumption 2 is sufficient for rationalizability and also rules out — via its exclusion of
data sets with zero-length cycles — knife-edge cases wherein there are provable indifferences
in the data, so that for example Fj is guaranteed incentive compatible at wi for distinct
observations i, j.4

Going forward, we say distribution F is rationalizable at contract w if the data set
X ∪{(F,w)} is rationalizable, meaning there exists a rationalizing technology A ∈ A and
an effort cost e such that (F, e) ∈ c(A|w). These distributions are the candidate worst-case
distributions for novel contracts.

Finally, before proceeding, we show through example that one cannot simplify the
non-negative-cycles condition to a pairwise condition.

Example 1. Suppose that there are four output states and consider the three-observation
data set X with

w1 = (3, 0, 4, 0) w2 = (4, 3, 0, 0) w3 = (0, 4, 3, 0)

F1 = (1/2, 0, 0, 1/2) F2 = (0, 1/2, 0, 1/2) F3 = (0, 0, 1/2, 1/2).

4In earlier versions of this paper we allowed for zero-length cycles in the data. While allowing for these
knife edge special cases does not change any of our results, it complicates both proofs and exposition to the
potential disservice of the reader. Details are available from the authors.
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Now, the pairwise conditions ⟨Fi, wi − wj⟩ ≥ ⟨Fj, wi − wj⟩ are apparently necessary
for rationalizability. These conditions, which are satisfied for all i, j in X , suggest the effort
bounds

1/2 ≤ e1 − e2 ≤ 3/2

1/2 ≤ e2 − e3 ≤ 3/2

−3/2 ≤ e1 − e3 ≤ −1/2.

However, summing up the pairwise bounds for 1, 2 and 2, 3 yield

1 ≤ e1 − e3 ≤ 3,

which is evidently inconsistent with the pairwise 1, 3 bound. This failure of rationalizability
is captured in our condition by for example the cycle 1 → 2 → 3 → 1, which has length

⟨F2 − F1, w2⟩+ ⟨F3 − F2, w3⟩+ ⟨F1 − F3, w1⟩ = −3/2 < 0.

Thus, while the pairwise conditions are indeed necessary, they are insufficient. Instead, the
more complex cycle conditions in our characterization must also be satisfied.

4 Optimal contracts

This section provides our general results on the optimality of empirical contracts and equity
bonus contracts. First, in Proposition 1, Lemma 1, and Theorem 2, we generalize the
support line argument developed in Carroll [2015] to show that optimal novel contracts are
equity bonus contracts. Second, in Proposition 2, we show that empirical contracts and
equity bonus contracts are uniquely optimal when the output distributions in the principal’s
data have full support. Third, and finally, we use that proposition to show that our optimal
contracts are not weakly dominated by other types of contracts.

It is convenient to first restrict attention to novel contracts that improve upon the contracts
in the data.

Definition 2. Contract w is eligible if Π(w) > Π(wi) for every empirical contract wi.

In the first step towards identifying the structure of the eligible contracts, we show
that the principal’s guarantee Π(w) can be written as a minimization problem using the
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inequalities in (2) as constraints. We also establish that at least one of the inequalities must
bind at the worst-case F .

Proposition 1. If the contract w is eligible then

Π(w) = min
F∈∆(Y)

⟨F, y − w⟩ s.t. ⟨F,w − wi⟩ ≥ Vi(w) ∀i (3)

⟨F,w − wi⟩ = Vi(w) ∃i.

Proposition 1 serves two purposes. First, the proposition treats the tension between
the weak inequalities in the constraints of program (3) and the strict inequalities suggested
by our assumption that ties are broken in favor of the principal. This requires special
care in boundary cases; details are left to the Appendix for interested readers. Second, by
confirming that the worst-case distribution for any eligible contract lies on the boundary of
the constraint set, the proposition justifies our use of the separating hyperplane theorem to
assign multipliers to the inner minimization problem in the principal’s maxmin program.
We then use these multipliers to improve arbitrary eligible contracts into equity bonus
contracts.

Now, the structure of (3) implies that the principal may restrict attention to a certain
class of contracts when optimizing her guarantee. The form taken by these contracts is
revealed in the next lemma.

Lemma 1. If the contract w is eligible, then there exists a constant κ and a vector of
non-negative constants λ = (λ1, . . . , λn) with λi > 0 for at least one i such that

y − w(y) ≥
∑
i

λi(w(y)− wi(y)) + κ ∀y ∈ Y (4)

Π(w) =
∑
i

λiVi(w) + κ. (5)

The proof of Lemma 1 is based around an application of the separating hyperplane the-
orem and is essentially a multi-dimensional adaptation of a similar argument that appears in
Carroll [2015], applied to transformed payoff vectors of the form (w(y)−w1(y), . . . , w(y)−
wn(y); y − w(y)) in our analysis rather than (w(y); y − w(y)) as in Carroll’s analysis.

The constants λ given in the statement of Lemma 1 can be interpreted as the multipliers
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on the constraints in (3). Rearranging (4) yields the pointwise inequality

w(y) ≤ 1

1 +
∑

i λi

(
y +

∑
i

λiwi(y)− κ

)
, (6)

the right hand side of which delineates a new, putatively improving contract

wλ,κ(y) ≡ 1

1 +
∑

i λi

(
y +

∑
i

λiwi(y)− κ

)
(7)

that pays the agent at least as much for each level of output as the original contract w.
We make two comments about this contract here. First, wλ,κ inherits limited liability

from w (for a suitable κ) and continuity from the empirical contracts wi. Thus, it is a
well-defined contract. Second, because wλ,κ(y) ≥ w(y) for all outputs y, we also have
Vi(w

λ,κ) ≥ Vi(w) for all i. Therefore, for any F satisfying the cycle constraints in (2) we
have

⟨F, y − wλ,κ⟩ =
∑
i

λi⟨F,wλ,κ − wi⟩+ κ ≥∑
i

λiVi(w
λ,κ) + κ ≥

∑
i

λiVi(w) + κ = Π(w), (8)

where the first equality follows from the definition of wλ,κ, the second inequality from (2),
and the last equality from Lemma 1. Altogether, we conclude Π(wλ,κ) ≥ Π(w). Regardless
of the form of the original contract w, the improved contract wλ,κ belongs to the following
class.

Definition 3. Contract w is an equity bonus contract if there exists a convex combination
of empirical contracts w0 =

∑
i βiwi, a share parameter α ∈ (0, 1], and a constant γ ≥ 0

such that
w(y) = w0(y) + α(y − w0(y)) + γ.

Equity bonus contracts pay the agent a convex combination of empirical contracts
w0 =

∑
βiwi plus a share α of the principal’s profit y − w0(y) and a constant wage γ.

When w0 is itself an empirical contract, these contracts can be interpreted simply as a
payment structure in which the principal (i) pays the agent with contract wi, (ii) appends
to that contract a share α of the surplus he generates (y − wi(y)), and (iii) adds a bonus
payment (or penalty) γ to the agent’s wage. More generally, if w is a mixture of k contracts,
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then we call w a k-mixture equity bonus contract. We delay our discussion of the optimal k
until Section 6.3, and for the time being embrace the possibility that optimal equity bonus
contracts might include multiple contracts from the data.

In order to state our main result, we introduce the program

max
λ≥0,κ

∑
i

λiVi(w
λ,κ) + κ s.t. wλ,κ(y) ≥ 0 ∀y ∈ Y . (9)

It will be helpful to keep in mind that the quantities Vi(w) have a simple, closed form
representation when w is an equity bonus contract wλ,κ. In particular,

Vi(w
λ,κ) = max

j

(
⟨Fj, y − wi⟩+

∑
k λ

k⟨Fj, wk − wi⟩
1 +

∑
k λk

−∆(i, j)

)
+ κ.

Theorem 2. If (9) has a solution (λ∗, κ∗)with valueΠ∗, then equity bonus contractwλ∗,κ∗ is
optimal and Π(wλ∗,κ∗

) = Π∗. If (9) does not have a solution and i solves maxi⟨Fi, y−wi⟩,
then empirical contract wi is optimal and Π(wi) = ⟨Fi, y − wi⟩.

Theorem 2 formalizes our discussion of the optimality of equity bonus contracts and pro-
vides a characterization of optimality within that class of contracts. Mathematically, these
contracts are optimal because they impose a tight relationship on the principal’s objective
y − w and the supplemental payments w − wi that characterize incentive compatibility.
Economically, they are optimal because (i) their empirical component wi makes direct use
of the revealed preference information contained in the principal’s data and (ii) their novel
component y − wi provides the agent with incentives to maximize the principal’s profit, as
linear contracts do in Carroll [2015].

The proof of the theorem verifies that solving (9) is sufficient for solving the principal’s
problem. The main difficulty in the argument stems from the fact that it need not be true
in general that the “expected” combination of incentive compatibility constraints binds for
an arbitrary equity bonus contract w, meaning it may not necessarily be the case that the
Vi(w) constraint binds if and only if contract wi is included in w. Consequently, the payoff
guarantee given by the equity bonus contract wλ,κ might in principle exceed (rather than
meet) its lower payoff bound κ +

∑
λiVi(w

λ,κ). However, Lemma 1 is strong enough to
imply not only that the bound is tight at the solution, but also that maximizing the lower
bound stated in the objective of (9) is equivalent to maximizing the principal’s payoff
guarantee, as desired. Details are in the appendix.
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Now, Theorem 2 falls short of providing a complete characterization of optimality in
part because it does not tell us whether or not there are contracts other than equity bonus
contracts (or empirical contracts, as appropriate) that might be optimal. When output
distributions have full support, no other optimal contracts exist.

Proposition 2. Suppose output distribution Fi has full support for every i and let w∗ be an
optimal contract. If (9) has a solution (λ∗, κ∗) with Π∗ > maxi⟨Fi, y − wi⟩, then w∗ is an
equity bonus contract. If (9) has a solution (λ∗, κ∗) with Π∗ = maxi⟨Fi, y − wi⟩, then w∗

is either an equity bonus contract or an empirical contract. Finally, if (9) does not have a
solution, then w∗ is an empirical contract.

By way of interpretation, when the known output distributions Fi have full support, the
principal can always improve the agent’s payoff for choosing those actions by increasing
his wage for any output that he produces. At the same time, the unknown actions F that
drive the principal’s payoff guarantee assign positive probability only to output states where
the principal’s payoff y − w is small relative to the supplemental payments w − wi that
incentivize the agent. Thus, by increasing wages outside of the support of those “bad”
actions F , the principal further incentivizes the productive actions Fi without incentivizing
undesirable actions F . Because equity bonus contracts align the principal’s payoff with
the agent’s incentives, this is strictly desirable from her perspective. Thus, equity bonus
contracts are strictly better than their counterparts. Mathematically, Proposition 2 can
quickly be understood via (8). There, when empirical actions have full support, the final
weak inequality ≥ is instead strict.

Finally, as a last result for this section, our uniqueness result immediately yields a result
on weak dominance (mostly) as a corollary.

Corollary 3. Suppose output distribution Fi has full support for every i. If (9) has a
solution (λ∗, κ∗) with Π∗ > maxi⟨Fi, y − wi⟩, then there exists an optimal equity bonus
contract that is not weakly dominated by any other contract. If (9) has a solution (λ∗, κ∗)

with Π∗ = maxi⟨Fi, y − wi⟩, then there exists either an optimal equity bonus contract or
an optimal empirical contract that is not weakly dominated by any other contract. Finally,
if (9) does not have a solution, then there exists an empirical contract that is not weakly
dominated by any other contract.

The substance of our results on undominated contracts is contained in the uniqueness
results of Proposition 2, because robustly optimal contracts are not weakly dominated by
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contracts that are not themselves maxmin optimal; we address some remaining technicalities
around the existence of an undominated contract in the appendix. To the extent that even
robustly optimal contracts might be undesirable if they are weakly dominated, the corollary
provides further justification for the use of equity bonus contracts and empirical contracts.
On the other hand, our result comes with its own caveats. In particular, we have not ruled
out that our optimal contracts might be weakly dominated by screening menus of contracts,
nor that the principal might be able to achieve a better guarantee by randomizing over
contracts.5 We leave the development of these observations to future work.

5 When are novel contracts optimal?

Theorem 2 shows that optimal novel contracts must be equity-bonus contracts. In this
section, we study the conditions under which these contracts exist, discuss the intuition
behind these conditions, and show through example that optimal novel contracts exist for
some data sets.

It is helpful to think of optimal novel contracts as being modified versions of contracts
in the data, where the modifications are designed to robustly induce the agent to select an
alternative, more profitable action from the data. To emphasize intuition, in this section we
consider the situation where there are two data points, X = {(F1, w1), (F2, w2)} and the
principal would earn the most profit from contract w2 and action F1, were she able to select
any combination of actions and contracts from the data.

Before proceeding, note that rationalizability with two data points implies that there
exist e1 and e2 satisfying

s21 = ⟨F1 − F2, w1⟩ ≥ e1 − e2 ≥ −⟨F2 − F1, w2⟩ = −s12.

This condition implies a bound on the agent’s loss in surplus from choosing F1 at w2,

⟨F2, w2⟩ − e2 − ⟨F1, w2⟩+ e1 ≤ ⟨F2 − F1, w2⟩+ s21 = ∆.

The ∆ term therefore measures the largest rationalizable loss the agent could experience
5Screening does not improve the principal’s guarantee in the standard robust contracts problem, as is

demonstrated in Carroll [2015]; it seems an open question as to whether or not screening might weakly
dominate paying the agent with a single contract. Elsewhere, Kambhampati [2023] confirms that there are
indeed randomized contracts that guarantee the principal a higher payoff than the best deterministic contract.
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from choosing F1 at w2 (note that ∆ = ∆(2, 1) = ∆(1, 2)). Intuitively, the larger is ∆, the
more the principal would have to compensate the agent to choose F1 over F2 if these were
the only available actions.

Theorem 3 implies that with two data points the optimal equity bonus contract, when it
exists, is a 1-mixture contract (see Section 6.3). In this case, the relevant 1-mixture contract
is w2, w = w2 +α(y−w2). From Theorem 2, the optimal contract maximizes the quantity

(1− α)⟨F1, y − w2⟩ −
1− α

α
∆

as a function of α and, as we show in the proof, the maximized quantity is its guarantee.
Maximization yields

α∗ =

√
∆

⟨F1, y − w2⟩

by the same calculation as appears in Chassang [2013], Carroll [2015]. Notice that the size
of the optimal equity share α is positively related to ∆, so that larger rationalizable losses
∆ require more equity compensation. The profit guarantee from this contract is

Π(w) =
(√

⟨F1, y − w2⟩ −
√
∆
)2

.

Therefore, a sufficient condition for there to exist an optimal novel contract in this setting is(√
⟨F1, y − w2⟩ −

√
∆
)2

≥ max{⟨F1, y − w1⟩, ⟨F2, y − w2⟩}, (10)

which shows that optimal novel contracts exist when ∆ is sufficiently small or when the
agent is sufficiently close to being indifferent between the two observed actions at w2.
Relatedly, the condition suggests changes to the data that would be particularly valuable to
the principal. For example, consider modifying w1 according to w′

1 = w1+λz, with λ > 0,
⟨F1, z⟩ = 0 and ⟨F2, z⟩ > 0.6 An increase in λ causes ∆ to fall (without affecting other
terms in (10)), because this change gives the agent more utility from the action F2 at w1

without affecting their payoff from F1. For large enough λ, ∆ approaches zero, at which
point the agent is provably indifferent between the two observed actions at both observed
contracts.

To explore additional implications of (10), the following proposition summarizes a set
6Such a z exists if ∆ > 0.
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of necessary conditions for the optimality of w.

Proposition 3. Suppose there are two data points and w = w2 + α(y − w2) is an optimal
contract. Then

⟨F1, y − w2⟩ ≥ ∆ (11)

⟨F1, w1 − w2⟩ > ⟨F2, w1 − w2⟩ ≥ 0 (12)

⟨F1 − F2, y⟩ ≥ ⟨F1 − F2, w1⟩ > ⟨F1 − F2, w2⟩. (13)

The conditions in (12) imply that w1 has a higher expected payment across both actions
in the data. As a consequence e1 ≥ e2 for all rationalizing effort costs and we can label F1

the “higher” action. The conditions in (13) imply that

⟨F1, y − w2⟩ − ⟨F2, y − w2⟩ ≥ ⟨F1 − F2, w1⟩ − ⟨F1 − F2, w2⟩ = ∆,

so the principal gains more from F1 at w2 than the agent stands to lose from selecting F1 at
w2. In other words, the data reveal that there is an increase in surplus if F1 is selected at w2

across all rationalizing technologies.
We illustrate the key ideas above through an example.

Example 2. Let Y = (0, 30, 60) and suppose the data X consists of two observations

w1 = (0, 4, 56) F1 = (0, 1/2, 1/2)

w2 = (0, 20, 20) F2 = (3/4, 0, 1/4).

from which we calculate

⟨F1, y − w1⟩ = 15 ⟨F2, y − w2⟩ = 10

⟨F1, y − w2⟩ = 25 ∆ = 1.

Letting w = w2 + α∗(y − w2) with α∗ = 1/5, we get a guaranteed profit of Π(w) = 16.
To modify w1 to improve the profit guarantee as suggested by the paragraph follow-

ing (10), let z = (0,−1, 1) and w′
1 = w1 + 4z = (0, 0, 60), making ∆′ = 0 and the optimal

profit guarantee ⟨F1, y − w2⟩ = 25.
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6 When are optimal contracts simple?

The form of any particular equity bonus contract depends on the form of the empirical
contracts from which it is constructed. In this section, we consider three special cases in
which the data satisfy stricter conditions than rationalizability and analyze what implications
those conditions have for the features of the optimal contract. First, we show quickly that if
empirical contracts are nondecreasing then so too is the optimal contract. Next, we show
that if each empirical contract is linear, then the optimal contract is not only linear but in fact
empirical. Finally, and most importantly, we show that whenever the data are supermodular
in an appropriate sense, then optimal contracts take the especially simple form of equity
bonus contracts constructed from a single empirical contract.

6.1 Monotone data

The potential failure of monotonicity in the classical moral hazard problem is occasionally
regarded as a peculiarity (Holmström [2017], Innes [1990]). It follows quickly in our
environment that whenever all of the contracts in the principal’s data are non-decreasing,
so too are our optimal contracts.

Proposition 4. If all empirical contracts wi are nondecreasing in output, then all equity
bonus contracts are nondecreasing in output.

6.2 Linear data

Linear contracts are a special case of the monotone contracts considered in the last section,
so Proposition 4 applies to them as well. However, while we can find examples such as
Example 2 in which the principal can guarantee herself a non-trivial improvement over the
profits available from the empirical contracts when her data is monotone, there is no such
hope when all contracts in the data are linear.

Proposition 5. If all empirical contracts take the form wi(y) = αiy for αi > 0, the
principal’s optimal contract is empirical.

While it is apparent from our definition that equity bonus contracts will be linear when
all of the empirical contracts in X are linear, our result is stronger. We show that not only
is the optimal contract linear, but it is exactly one of the contracts in the principal’s data,
meaning it uses the same share parameter. The proof uses the fact that when all of the
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empirical contracts are linear, the cycle constraints in (2) take a simple form. In particular,
the data can be arranged in a way to make αi and ⟨Fi, y⟩ increasing in i, and for a novel
contract w = α0y one can find an i such that αi ≤ α0 ≤ αi+1, which then can be shown to
imply that

⟨Fi, y⟩ ≤ ⟨F, y⟩ ≤ ⟨Fi+1, y⟩,

for the unknown distribution F . Finally, we show that ⟨Fi, y⟩ = ⟨F, y⟩ cannot be ruled out,
and from here it follows that w cannot improve on wi.

6.3 Multi-contract mixtures

Example 2 shows that equity bonus contracts can be quite simple in that they supplement
a single empirical contract with an equity payment. Furthermore, the resulting 1-mixture
contracts are straightforward to optimize because their payoff guarantee derives from a
single binding constraint. In particular, as suggested in Example 2, one can find the best
1-mixture contract by selecting a wi, forming the equity bonus contract α(y−wi)+wi and
choosing α to maximize the right-hand side of the ith cycle constraint. On the other hand,
identifying the solution to the general form of program (9) might in principle be difficult,
both because there are many incentive compatibility constraints that might simultaneously
bind and also because the program’s objective is sometimes non-convex. The next example
shows that such possibilities cannot be ignored, as there exist data sets where 1-mixture
contracts are strictly suboptimal.

Example 3. Suppose the set of outputs Y is the vector (0, ε1, ε2, ε3, ε4, 100), where the εi

are distinct and approximately zero. There are four observations (Fi, wi), each of which is
represented by row i in the corresponding matrices below.

F =


0.65 0.05 0 0 0.2 0.1

0 0 0 0.2 0.8 0

0.65 0 0.2 0.05 0 0.1

0 0.2 0.8 0 0 0

 w =


0 0 0 0 10 60

0 0 0 10 0 10

0 0 10 0 0 60

0 10 0 0 0 10


There are two optimal 1-mixture contracts, one constructed from w2 and the other from
w4. Each yields payoff guarantee 4. However, neither contract is optimal in general. For
instance, the 2-mixture contract w = w0 + 0.3(y − w0) with w0 = (w2 + w4)/2 has a
worst-case profit of 4.375. It is straightforward to check that w also improves on the best
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empirical contract, which yields a profit of 2.

The difficulty inherent in identifying optimal contracts for arbitrary rationalizable data
sets stems from the potentially ill-behaved nature of the principal’s problem. While The-
orem 2 suggests a computational method for finding the optimal equity bonus contract, it
does not yield much in terms of analytical insight, at least in part because the objective will
typically neither be concave nor convex. On the other hand, if the data satisfy more strin-
gent conditions than rationalizability, then the problem of identifying an optimal contract
is much simpler.

To elaborate, rationalizability itself puts only weak requirements on the structure of the
agent’s technology. In particular, there are rationalizable data sets X under which there is
no sense in which the agent’s actions can be ordered to make “local” incentive constraints
imply the “global” ones, in line with the often invoked first-order approach to the standard
model. Example 3 shows that there exist data sets for which the optimal equity bonus
contract involves convex combinations of multiple observations from the data. We show
next that these two facts are closely related.

First, we address the question of when we can assign an order to the actions in the data.
We say that the data are ordered if there is an index on the data such that for each contract
wi actions that are closer to Fi with respect to the indexing scheme are preferred to those
further away for all effort costs that rationalize the data. Formally,

Definition 4. The data can be ordered if there is an index on the data such that for all
observations i and all rationalizing choices of effort costs, {e1, . . . , en}

⟨Fj − Fk, wi⟩ ≥ ej − ek,

whenever i < j < k or i > j > k.

This is analogous to being able to prove from the data that the agent has quasiconcave
preferences over the actions in the data. Importantly, note that the ordering of the actions
is not independent of the observed contracts in the definition. To conclude that the data are
ordered, it is sufficient for the data to satisfy a supermodularity condition.

Definition 5. The data are supermodular if7

⟨Fj − Fj′ , wi − wi′⟩ ≥ 0 ∀j < j′, i < i′. (14)
7This condition is equivalent to the superficially weaker alternative with restrictions j′ = j + 1 and

i′ = i+ 1.
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We emphasize that data setsX that contain only two or fewer observations automatically
satisfy our supermodularity condition. Proceeding,

Proposition 6. If the data are supermodular, then the data can be ordered.

Proof. Fix an index on the data. If i < j < k, we have ⟨Fj − Fk, wi⟩ ≥ ⟨Fj − Fk, wj⟩ ≥
ej − ek, where the first inequality is due to supermodularity and the second is due to
rationalizability. The i > j > k case is analogous.

Next, we show that under the supermodularity condition optimal equity bonus contracts
cannot incorporate more than one contract from the data. To prove this result, we exploit
the additional structure on the cycle constraints imposed by the supermodularity condition.
For the remainder of this section, we assume that the supermodularity condition holds and
that the index on the data is consistent with this condition holding. In the next lemma,
we show that under the supermodularity condition, shortest paths through the data must
traverse adjacent nodes.

Lemma 2. Between data points i and j, there is a shortest path that traverses the sequence of
adjacent nodes indexed by {i, i+ι, i+2ι, . . . , j−ι, j}where ι = sgn(j−i). Consequently,
for any i < j < k, sik = sij + sjk and ski = skj + sji.

Intuitively, the shortest paths in the data pick up on the agent’s most preferred alterna-
tive action choices, so shortest paths existing between adjacent nodes coincides with the
quasiconcavity of the agent’s preferences over actions in the data.

Towards the purpose of proving that the optimal contracts for the principal are 1-mixture
contracts, the importance of the prior lemma is that it can be used to show that the problem
in Theorem 2 is convex in directions corresponding to the removal of constituent empirical
contracts from its mixture. We show this formally in the Appendix (Lemma 9).

In Theorem 3, we also require that the contracts in the data never pay more than output,
a condition referred to as two-sided limited liability.

Definition 6. The empirical contracts satisfy two-sided limited liability if wi(y) ≥ 0 and
y ≥ wi(y) ∀i,∀y ∈ Y .

As a consequence of two-sided limited liability, there is no opportunity for the principal
to gain from subtracting a fixed payment from the contracts in the data.8

8The contracts in the data were already assumed normalized in the sense that each contract assigns a
payment of 0 to some state. The possibility that we rule out for Theorem 3 is that a convex combination of
these contracts admits a contract with a minimum payment strictly greater than 0.
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Lemma 3. Under two-sided limited liability, κ = 0 in any solution to (9).

Proof. For any λ, wλ,κ(0) = −κ/(1 +
∑

i λi), and hence κ ≤ 0 with optimal value
κ = 0.

With these intermediate results in place, our main result for this subsection is that the
supermodularity condition implies the optimality of 1-mixture contracts.

Theorem 3. If the data are supermodular and satisfy two-sided limited liability, then
1-mixture contracts are optimal.

The situation in which the data can be ordered via the supermodularity condition is
analogous to the sufficiency of local incentive compatibility constraints in the standard
moral hazard problem (c.f., Grossman and Hart [1983]), in the sense that in both cases
it is impossible for multiple (non-local) incentive constraints to simultaneously bind at an
optimum. In turn, because the set of potentially binding constraints is much smaller, the
potentially complex task of identifying an optimal contract is much easier.

7 Heterogeneous agents

Thus far, we have assumed that the revealed preference data are generated by a continuum
of identical agents equipped with the same production technology. In this section, we
show how all of our results generalize without complication to a general setting that allows
for broad heterogeneity within the population of agents. In doing so, we make no struc-
tural assumptions about the nature of that heterogeneity and we introduce no additional
assumptions about the agents or the revealed preference data. Our principal views both
homogeneity and all forms of heterogeneity as plausible.

Formally, we model agent heterogeneity as stochasticity in the agent’s production tech-
nology. For the purposes of illustration, suppose as we have done throughout the paper
that the revealed preference data X satisfy the no-negative-cycles criterion. While X might
have been generated by a continuum of agents each equipped with the same technology A,
it might also have been generated by a continuum of agents equipped with either the tech-
nology B with probability p or the technology C with probability 1− p. In the former case,
the fixed technology rationalizes the data if the best response (G, e) = (Ai, ai) to contract
wi given technology A satisfies Ai = Fi for each i; in the latter case, the heterogeneous
technologies rationalize the data if the respective best responses (Bi, bi), (Ci, ci) to wi given
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technologies B, C satisfy pBi + (1 − p)Ci = Fi for each i. Thus, Fi is the “average” best
response to wi across the population of agents. As we assumed earlier in the paper that A
is fixed across observations, we assume here that the technologies B, C and the population
weight p are similarly constant.

TODO: DOUBLE CHECK INDEXING THROUGHOUT PAPER ON BOTH THE
SET X (are we using K or N or n or none of the above? We should do this consistently and
make sure there’s nothing in this section that clashes with it

Definition 7. A finite family of technologiesA1, . . . ,AJ and a probabilityP ∈ ∆J rational-
ize the revealed preference data X if for each i, j there exists an action (Gij, eij) ∈ c(Aj|wi)

such that
J∑

j=1

GijPj = Fi.

We write P for the set of all such rationalizing stochastic technologies and

Π(P |w) =
J∑

j=1

Π(Aj|w)Pj ΠP(w) = inf
P∈P

Π(P |w)

for the principal’s payoff given distribution P and her payoff guarantee against the set
of all such distributions P , respectively, with dependency on the identities of A1, ...,AJ

suppressed in our notation for the purposes of readability.

As above, a finitely supported distribution of technologies P rationalizes the data if the
average best response to contract wi under distribution P is Fi. We emphasize for clarity’s
sake that the both the support A1, . . . ,AJ of P and the size of that support J are variables
and unknown to the principal. Thus, the rationalizing set P contains both degenerate
technology distributions (in the homogeneous agent case) and non-degenerate distributions
with support of arbitrary (finite) size. We require finite support both to avoid unnecessary
technicalities and, more importantly, to facilitate an interpretation of our heterogeneous
revealed preference exercise as one in which there are a large number of agents within each
“type”.

Remark 1. The set of rationalizing technologies A is embedded in the set of rationalizing
technology distributions P by the map P = δ(A).

Theorem 4. For all contracts w, ΠP(w) = Π(w).
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Theorem 4 shows that our identical-agents assumption is without loss of generality
from the perspective of worst-case payoff guarantees. The proof is straightforward and
based around the observation that if action (Fj, ej) is a best response to contract w under
technology Aj for each j, then the average action (

∑
FjPj,

∑
ejPj) is a best response to w

under the average technology
∑

AjPj for any distribution P . To conclude this section, we
clarify the role of the no-negative-cycles assumption in characterizing the rationalizability
of the revealed preference data by distributions of technologies.

Remark 2. There exists a distribution P of technologies that rationalize the revealed
preference data X if and only if X has no cycles of negative length.

In the proof of Theorem 4 we show that the average of any distribution of rationalizing
technologies is itself a rationalizing technology. Thus, there are no data sets that can be
rationalized by heterogeneous agent technologies that can not also be rationalized by a
single fixed technology. In turn, we obtain Remark 2.

8 Conclusion

We study a principal-agent problem in which the principal’s information about the agent’s
technology is characterized by revealed preference data. We show that robustly optimal
contracts append equity payments to the empirical contracts in the data. Both of these
features contrast sharply with the classic moral hazard model, which assumes the principal
is endowed with complete information about the agent’s capabilities and yields optimal
contracts that are both complex and may have features that are not typically seen in practice.

Throughout our analysis, we take the data X as being exogenously generated. We
imagine the data as being generated by a population of agents that are each paid with a
standard contract that periodically adjusts, perhaps in response to external wage pressures.
Alternatively, we imagine that different populations of agents within the same organization
might be employed in the same capacity but be subject to different incentive schemes,
either because of heterogeneous hiring circumstances or because they belong to different
units within the same institution. When interpreting our results along these lines, it will be
important to keep in mind that our generalization to heterogeneous agents requires only that
the population that generates the data is the same as the population from which the agent is
drawn, just as researchers in the social and natural sciences use data to make out-of-sample
predictions.
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Setting aside the stationarity of the contracting environment, the most important remain-
ing avenue for future work seems to be to relax our assumption that the principal observes
the true distribution of output produced in best response to each of the contracts in her
data, rather than a finite sample. We leave this problem, which is of significant practical
importance, to interested researchers.

Altogether, we view our analysis here as only one perspective on a much broader
empirical contract design exercise in which one might consider different types of data sets
and contracting environments.
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A Appendix

Throughout the appendix, we make use of the notation

Ci(w) ≡ argmax
j

(⟨Fj, w − wi⟩ −∆(i, j))

for the set of empirical actions that achieve the maximum Vi(w).

A.1 Theorem 1

Proof of Theorem 1. The equivalence of the last two statements is implied by Corollary
3.4.2 of Vohra [2011] (page 34). The first is equivalent to the third because, as discussed in
that text, the system in (1) is isomorphic to the dual of a shortest path problem in the data.
See also Section 7.1 of that text for a direct connection to the problem of rationalizing a set
of choice data with a quasilinear utility function.
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A.2 Supporting results

Lemma 4. Suppose that X is a set of observations with the no-negative-cycles property
and let (F,w) ∈ X . There exists a rationalization e : X → R of X in which F is strictly
incentive compatible at w if and only if every non-degenerate cycle through (F,w) in X

has strictly positive length.

Proof. For each (G, v) ∈ X , write P (G, v) for the shortest path from (F,w) to (G, v) in X

and C(G, v) for the cycle P (G, v) → (F,w). We prove the if statement first and then the
only if statement.

⇐= Define effort map e : X → R by e(F,w) = 0 and e(G, z) = ℓ(P (G, z)).
First, we claim e yields the desired strict preference for action F at contract w.
Accordingly, choose (G, v) ∈ X distinct from (F,w). Because C(G, v) is a
cycle through (F,w), we have ℓ(C(G, v)) > 0 by hypothesis. In turn, we obtain

⟨F −G,w⟩+ ℓ(P (G, v)) > 0.

It follows immediately that ⟨F −G,w⟩ > e(F,w)− e(G, v), as claimed. Next,
we claim e rationalizes X . Choose (H1, z1), (H2, z2) ∈ X arbitrarily. Because
P (H1, z1) → (H2, z2) is a path from (F,w) to (H2, z2) but P (H2, z2) is the
shortest such path, we have

ℓ(P (H1, z1)) + ⟨H2 −H1, z2⟩ ≥ ℓ(P (H2, z2)).

In turn, we obtain ⟨H2 −H1, z2⟩ ≥ e(H2, z2)− e(H1, z1) from the definition of
e. Thus, e rationalizes X .

=⇒ Per Theorem 1, X is weakly rationalizable if and only if X has the no-negative-
cycles property. Accordingly, if X includes any cycles through (F,w) with
negative length, then there is no rationalization of X under which F is even
weakly incentive compatible at w. Suppose alternatively that X has the no-
negative-cycles property but C has length zero for some non-degenerate cycle
through (F,w). Let e : X → R be any rationalization of X . Enumerate
C(g, v) by (H1, z1), . . . , (Hn, zn) and write ei ≡ e(Hn, zn). First, because
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(H1, z1) = (Hn, zn) by definition, we have∑
i

(ei − ei−1) = 0.

In turn, because C has length zero, we have∑
i

⟨Hi −Hi−1, zi⟩ =
∑
i

(ei − ei−1). (15)

Finally, because e rationalizes X , we have for all i

⟨Hi −Hi−1, zi⟩ ≥ ei − ei−1. (16)

It follows jointly from (15) and (16) that ⟨Hi − Hi−1, zi⟩ = ei − ei−1 for all i.
Because (Hi, zi) = (F,w) for some i and C is non-degenerate by hypothesis,
⟨F −G,w⟩ = e(F,w)− e(G, v) for some (G, v) ∈ X .

Lemma 5. If j ∈ Ci(w) then ⟨Fj, w − wk⟩ ≥ Vk(w) for all k.

Proof. Let j ∈ Ci(w) and l ∈ Ck(w). First, by definition of Ci we have

⟨Fj, w − wi⟩ −∆(i, j) ≥ ⟨Fl, w − wi⟩ −∆(i, l). (17)

Substituting in the definition of ∆(i, j),∆(i, l) into (17) yields

⟨Fj − Fl, w⟩ ≥ sij − sil. (18)

Next, because sjk is the length of the shortest path from j to k and sil is the shortest path
from i to l, we have

⟨Fk − Fj, wk⟩ ≥ sjk (19)

sij + sjk + skl ≥ sil. (20)

Together, (18), (19), (20) imply

⟨Fj − Fl, w⟩+ ⟨Fk − Fj, wk⟩+ skl ≥ 0. (21)

30



Finally, substituting the definition of ∆(k, l) into (21) yields ⟨Fj, w−wk⟩ ≥ ⟨Fl, w−wk⟩−
∆(k, l) = Vk(w), as claimed.

Corollary 4. For each observation (Fi, wi) ∈ X the principal’s payoff guarantee is
Π(wi) = ⟨Fi, y − wi⟩.

Proof. Choose (Fi, wi) ∈ X . First, for every rationalization A of X , output distribution
Fi is weakly incentive compatible given contract wi and technology A. Second, from
Lemma 4, there exists a rationalization B of X under which output distribution Fi is strictly
incentive compatible given contract wi and technology B. Because ties are broken in favor
of the principal, these two facts imply Π(wi) = ⟨Fi, y − wi⟩, as claimed.

Lemma 6. Ifw is eligible, then there exists an output distributionF such that ⟨F,w−wi⟩ >
Vi(w) for all i.

Proof. Consider any contract w. Write S ⊂ Rn for the free disposal convex hull of the
set of supplemental payment vectors (w(y) − w1(y), . . . , w(y) − wn(y)) across the set of
outputs Y and write ν ≡ (V1(w), . . . , Vn(w)). We argue by contraposition. In particular,
suppose that there does not exist an element s ∈ S with si > νi for all i, and let I be the set
of boundary indices i with the property

s ∈ S, s ≥ ν =⇒ si = νi. (22)

Part 1 First, we claim Ci(w) = {i} for each i ∈ I . To see why, choose i ∈ I and
suppose to the contrary

⟨Fj, w − wi⟩ −∆(i, j) = Vi(w) (23)

for some j distinct from i. Lemma 5 implies ∀k ⟨Fj, w−wk⟩ ≥ Vk(w). In turn,
because i ∈ I by hypothesis, (22) implies

⟨Fj, w − wi⟩ = Vi(w). (24)

From (23) and (24) we obtain ∆(i, j) = 0. This contradicts Assumption 2, and
hence we conclude Ci(w) = {i} for each i ∈ I .

Part 2 Second, we claim I = {i} for some i ∈ I . To see why, suppose to the contrary
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that I contains distinct indices i, j. From the first step, we have

⟨Fi, w − wi⟩ = Vi(w) (25)

⟨Fj, w − wj⟩ = Vj(w). (26)

From Lemma 5 and from (22), we also have

⟨Fj, w − wi⟩ = Vi(w) (27)

⟨Fi, w − wj⟩ = Vj(w). (28)

Altogether, (25)–(28) imply ⟨Fi − Fj, wi − wj⟩ = 0. This again contradicts
Assumption 2 and hence we conclude I = {i} for some i. We write i∗ for the
lone element of the set I .

Part 3 Third, note thatS is convex and that v belongs to the boundary ofS. Accordingly,
the supporting hyperplane theorem provides a normal vector η ∈ Rn \ {0} such
that

∑
ηivi ≥

∑
ηisi for all s ∈ S. We make two claims about η. First,

because S contains elements s with si arbitrarily negative for all i, it must be
that ηi ≥ 0 for all i. Second, by definition of the set I , for each i ̸= i∗ there
exists a supplemental payoff vector σ ∈ S with σ ≥ v and σi > vi. In turn,
because s is convex, there exists a σ∗ ∈ S with σ∗ ≥ v and σ∗

i > vi for all i ̸= i∗.
Consequently, ηi = 0 for all i ̸= i∗ and ηi∗ > 0. Altogether, we have

∀F ∈ ∆(Y) ⟨Fi∗ , w − wi∗⟩ ≥ ⟨F,w − w∗
i ⟩. (29)

Thus, supp(Fi∗) is contained in the set of maximizers for w(y) − wi∗(y) and hence there
is a constant γ ∈ R such that w = wi∗ + γ for all outputs y in supp(Fi∗). We claim
γ ≥ 0. For the purposes of contradiction, suppose γ < 0. There are two subcases to
consider. First, if U ≡ argmaxy w(y) − wi∗(y) intersects V ≡ argminy wi∗(y), then
w(z) = wi∗(z) + γ < wi∗(z) < 0 for some z ∈ U ∩ V . Thus, w does not satisfy limited
liability and therefore is not a contract. Alternatively, if U does not intersect V , then
w(z) < wi∗(z) + γ for some z ∈ V . Because wi∗(z) = 0 and γ < 0, we have w(z) < 0.
We again conclude that w is not a contract. In either case, we conclude γ ≥ 0, as claimed.

Part 4 Fourth, and finally, Lemma 4 implies that there exists a rationalization A of
X with the property that output distribution Fi∗ is strictly incentive compatible
given technology A and contract wi∗ . From (29), it follows that Fi∗ is also
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strictly incentive compatible given technology A and contract w. Altogether,
we have Π(w) ≤ ⟨Fi∗ , y − wi∗⟩ − γ ≤ ⟨Fi∗ , y − wi∗⟩. Corollary 4 implies
⟨Fi∗ , y − wi∗⟩ = Π(wi∗), and thus we have Π(w) ≤ Π(wi∗). This contradicts
our hypothesis that w is eligible and therefore completes the proof.

A.3 Proposition 1

Proof of Proposition 1. Consider contract w and suppose w is eligible. There are three
parts to the argument.

Part 1 To see that the claimed lower bound is valid, note that if ⟨F,w − wi⟩ < Vi(w)

for any i then there is no technology A ∈ A in which F maximizes the agent’s
payoff, per Corollary 2. Consequently,

Π(w) ≥ min
F∈∆(Y)

⟨F, y − w⟩ such that ∀i ⟨F,w − wi⟩ ≥ Vi(w). (30)

Part 2 To see that the lower bound in (30) holds with equality, let F achieve the
minimum. There are two subcases to consider. First, if ⟨F,w−wi⟩ > Vi(w) for
every i, then there exists a technology A ∈ A in which F uniquely maximizes
the agent’s payoff per Lemma 4. Accordingly, ⟨F, y − w⟩ is indeed an upper
bound for Π(w). Second, if ⟨F,w − wi⟩ = Vi(w) for at least one i, then per our
hypothesis that w is eligible Lemma 6 provides for the existence of a distribution
G such that ⟨G,w − wi⟩ > Vi(w) for every i. In turn, for every λ < 1 the
distribution

F λ ≡ λF + (1− λ)G

satisfies ⟨F λ, w−wi⟩ > Vi(w) for every i. Because ⟨F λ, y−w⟩ → ⟨F, y−w⟩,
the quantity ⟨F, y − w⟩ is again an upper bound for the principal’s guarantee.

Part 3 Finally, to see that ⟨F,w−wi⟩ = Vi(w) for at least one i, note that if ⟨F,w−wi⟩ >
Vi(w) for every i then the perturbation

F λ ≡ λF + (1− λ)δ(0)
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itself satisfies ⟨F λ, w − wi⟩ > Vi(w) for every i. Moreover, it follows from the
eligibility of w that ⟨F λ, y − w⟩ < ⟨F, y − w⟩. This contradicts our hypothesis
thatF achieves the minimum in (30) and so we conclude that ⟨F, y−w⟩ = Vi(w)

for at least one i, as claimed.

A.4 Lemma 1

Proof of Lemma 1. Write S ⊂ Rn+1 for the convex hull of the set of vectors

(w(y)− w1(y), . . . , w(y)− wn(y); y − w(y))

across the set of outputs Y and T ⊂ Rn+1 for the set of points (v1, . . . , vn; π) with

vi > Vi(w) π < Π(w).

We make two remarks about the sets S, T . First, per Proposition 1, they are disjoint.
Second, each is evidently convex. In turn, the separating hyperplane theorem provides for
the existence of constants λ1, . . . , λn, µ, κ such that

λ1v1 + · · ·+ λnvn − µπ ≤ −κ (v1, . . . , vn, π) ∈ S (31)

λ1v1 + · · ·+ λnvn − µπ ≥ −κ (v1, . . . , vn, π) ∈ T, (32)

with λ1, . . . , λn, µ not all zero. We establish four facts about these multipliers.
First, because includes points (v1, . . . , vn, π) with vi arbitrarily large and π arbitrarily

small, λ1, . . . , λn, µ are each non-negative.
Second, we claim µ > 0. To see why, suppose to the contrary that µ = 0. Because

λ1, . . . , λn, µ are not all 0, we have λi > 0 for at least one index i and λ1V1(w) + · · · +
λnVn(w) ≥ λ1v1 + · · · + λnvn for all supplemental payment vectors (v1, . . . , vn) in the
projection of S onto its first n coordinates. Per Lemma 6, this contradicts eligibility, and so
we conclude that µ > 0.

Third, we claim λi > 0 for at least one i. Were this not the case, then µπ ≥ µΠ(w)

for all values of π in the projection of S onto coordinate n + 1. Because µ > 0 and
min π ≤ 0− w(0) ≤ 0, we obtain Π(w) ≤ 0. This again contradicts eligibility.

Fourth, and finally, let F ∗ be the distribution that achieves the minimum in (3) and
write v∗i = ⟨F ∗, w − wi⟩. We claim λi = 0 for all i with v∗i > Vi(w). To see why,
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note that v∗j = Vj(w) for at least one j by hypothesis. Accordingly, the payoff vector
(v∗1, . . . , v

∗
n,Π(w)) lies in the closure of both S and T and thus

µΠ(w) = λ1v
∗
1 + · · ·+ λnv

∗
n + κ ≤ λ1V1(w) + · · ·+ λnVn(w) + κ.

Because (i) v∗i ≥ Vi(w) for all i by hypothesis and (ii) λi ≥ 0 for all i per the first fact above,
it follows immediately that λi = 0 for all i with v∗i > Vi(w). Altogether, normalizing each
multiplier µ, λ1, . . . , λn by factor 1/µ yields the claimed equality

Π(w) = λ1V1(w) + · · ·+ λnVn(w) + κ.

A.5 Theorem 2

Lemma 7. For every contract w there exists an i such that

⟨Fi, w − wj⟩ > Vj(w) j ̸= i

⟨Fi, w − wj⟩ = Vi(w) j = i.

Proof. Fix w and take Fi to be a strictly rationalizable empirical action at w. Let X ′ =

X ∪ {(Fi, w)}. Lemma 4 then implies that all non-degenerate cycles through (Fi, w) have
strictly positive length. In turn, for any j ̸= i and any k

0 < ⟨Fi − Fk, w⟩+ sjk + ⟨Fj − Fi, wj⟩

= ⟨Fi, w − wj⟩ − ⟨Fk, w − wj⟩+ ⟨Fj − Fk, wj⟩+ sjk

= ⟨Fi, w − wj⟩ − ⟨Fk, w − wj⟩+∆(j, k).

The right-hand side of the first inequality is the length of a non-degenerate cycle in X ′,
while remaining inequalities use the definitions of sik, sjk and ∆(j, k). It follows that for
all j ̸= i

⟨Fi, w − wj⟩ > max
k

⟨Fk, w − wj⟩ −∆(j, k) = Vj(w)
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Note that if j = i

Vi(w) = max
k

⟨Fk, w − wi⟩ −∆(j, k) ≥ ⟨Fi, w − wi⟩,

since ∆(i, i) = 0. The reverse inequality holds because Fi is rationalizable at w.

Corollary 5. If w0 =
∑

i βiwi is a convex combination of empirical contracts with βi < 1

for all i, then
∑

i βiVi(w0) < 0.

Proof. By Lemma 7, if βi < 1 for all i, then there is a Fj such that∑
i

βiVi(w0) <
∑
i

βi⟨Fj, w0 − wi⟩ = 0.

Lemma 8. If wλt,κt is a sequence of equity bonus contracts with
∑

i λ
t
i → ∞, then

lim supΠ(wλt,κt
) ≤ max

(Fi,wi)∈X
Π(wi).

Proof. Consider a sequence (λt, κt) of equity bonus contract parameters with
∑

i λ
t
i → ∞

and κt chosen so that wt ≡ wλt,κt satisfies limited liability for each t. Define

Λt =
∑
i

λt
i αt =

1

1 + Λt
βt
i =

λt
i

Λt

and note that (i)
∑

βt
i = 1 for all t; (ii) βt

i ∈ [0, 1] for all i; and (iii) κt is bounded. Passing to
a subsequence if necessary, we have (βt, κt) → (β∗, κ∗) for some vector of weights β∗ and
some constant κ∗. Because αt → 0, wt converges uniformly on Y to w∗ ≡

∑
i β

∗
i wi + κ∗.

There are two cases to consider.

Case 1. Suppose β∗
i = 1 for some i. Because wt ⇒ w∗ and ∆(i, j) > 0 for all j ̸= i, we

have Ci(w
t) = {i} for all t sufficiently large and hence Vi(w

t) = ⟨Fi, w
t − wi⟩.

Rearranging terms yields the equality

Π(wt) =
∑
j

λt
jVj(w

t) + κt =
λt
i

1 + λt
i

⟨Fi, y − wi⟩+ κt

and hence lim supΠ(wt) = ⟨Fi, y − wi⟩+ κ∗ = Π(wi) + κ∗, where the second
equality follows from Corollary 4. Lastly, because wt ⇒ wi and minwi = 0,
κ∗ ≤ 0 and thus lim supΠ(wt) ≤ Π(wi).
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Case 2. Suppose β∗
i < 1 for all i. First, note that∑

i

λt
iVi(w

t) + κt = Λt
∑
i

βt
iVi(w

t) + κt.

Second, because wt ⇒ w∗ and (βt, κt) → (β∗, κ∗), we have∑
i

βt
iVi(w

t) →
∑
i

β∗
i Vi(w

∗) κt → κ∗.

Third, from Corollary 5, ∑
i

β∗
i Vi(w

∗) < 0.

Altogether, we have
∑

i λ
t
iVi(w

t) + κt → −∞.

Proof of Theorem 2. First, suppose that (9) has a solution (λ∗, κ∗) with value Π∗ ≡∑
i λ

∗
iVi(w

∗) + κ∗, where we write w∗ ≡ wλ∗,κ∗ . We have

Π(w∗) ≥
∑

λ∗Vi(w
∗) + κ∗ ≥ max

(Fi,wi)∈X
Π(wi), (33)

where the first inequality follows from (8) and the second follows from the argument given in
the first case of the proof of Lemma 8. We claimΠ∗ ≥ Π(w) for all contractsw, includingw∗

itself. To see why, suppose to the contrary that Π(w̃) > Π∗ for some contract w̃. Because
Π∗ ≥ maxi Π(wi) per (33), w̃ is eligible. In turn, Lemma 1 yields multipliers λ̃ and a
constant κ̃ such that Π(w̃) =

∑
i λ̃iVi(w̃)+ κ̃. Thus,

∑
i λ̃iVi(w̃)+ κ̃ >

∑
i λ

∗
iVi(w

∗)+κ∗.
However, this can not be the case because (i) (λ̃, κ̃) is feasible for program (9) by construction
of wλ̃,κ and (ii) (λ∗, κ∗) is a solution to that program. We conclude both that w∗ is optimal
and that Π(w∗) = Π∗.

Second, suppose instead that (9) does not have a solution. Write M for its supremum
and let (λt, κt) be a feasible sequence with∑

i

λt
iVi(w

t) + κt ↗ M,

where we write wt ≡ wλt,κt . Because the sum
∑

i λiVi(w
λ,κ) + κ is continuous in (λ, κ)

and the set of feasible solutions to (9) is closed, it must be that at least one of λt, κt is
unbounded. More specifically, because each pair (λt, κt) is feasible and therefore satisfies
limited liability, κt is bounded and λt must therefore be unbounded. The rest of the argument
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follows immediately from Lemma 8.

A.6 Proposition 2

Proof of Proposition 2. We argue in cases.

Case 1. Suppose that (9) has a solution and that its value Π∗ strictly exceeds the payoff
from the best empirical contract maxi⟨Fi, y − wi⟩. By definition, optimal con-
tracts in these cases are eligible. Accordingly, suppose w is an eligible contract
that is not an equity bonus contract. Apply Lemma 1 to obtain constants λ, κ

such that Π(w) =
∑

i λiVi(w) + κ, and consider equity bonus contract wλ,κ.
We have already argued in the body that Π(wλ,κ) ≥ Π(w); we claim now that
this improvement is strict under the full support assumption. To see why, recall
from (8) that

Π(wλ,κ) ≥
∑
i

λiVi(w
λ,κ) + κ ≥

∑
i

λiVi(w) + κ = Π(w).

Because (i) contracts are continuous by definition; (ii) wλ,κ(y) ≥ w(y) for all
y by construction; and (iii) wλ,κ and w are distinct because w is not an equity
bonus contract, there exists an open set O ⊂ Y such that wλ,κ(y) > w(y) for all
y in O. Consequently, Vi(w

λ,κ) > Vi(w) for all i and hence

Π(wλ,κ) ≥
∑
i

λiVi(w
λ,κ) + κ >

∑
i

λiVi(w) + κ = Π(w).

Thus, w is not an optimal contract.

Case 2. Suppose that (9) has a solution and that its value Π∗ is exactly the payoff from
the best empirical contract maxi⟨Fi, y−wi⟩. Now, because maxi⟨Fi, y−wi⟩ >
0 by assumption, w is optimal only if w yields a positive payoff guarantee.
Accordingly, let Π(w) > 0 and suppose that w is neither an empirical contract
nor an equity bonus contract.

Strictly speaking, we can not immediately apply Lemma 1 and replicate the
above argument because eligibility is a hypothesis of the Lemma. However,
the proof of that Lemma can quickly be strengthened to show that if each
Fi has full support, then the desired constants λ, κ exist unless w = wi + γ
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for some non-negative constant γ. To see why, note that the only place the
hypothesis Π(w) > maxiΠ(wi) is used in the proof of Lemma 1 (other than
via its implication that Π(w) > 0, which holds here by hypothesis) or any of its
dependencies is in Part 4 of the proof of Lemma 6. However, in Part 3 of that
same proof, the conclusion that there exists an index i∗ and a constant γ ≥ 0

such that w(y) = wi∗(y) + γ for all y in supp(Fi∗) simplifies under our full
support assumption to w(y) = wi∗(y) + γ for all y. Thus, either (i) Lemma 1
applies and w can be strictly improved to an equity bonus contract, by the same
argument as in the first case; or (ii) γ = 0 and w = wi∗ , so that w is itself an
empirical contract; or (iii) γ > 0 and Π(w) = Π(wi∗) − γ < Π(wi∗), so that w
is strictly suboptimal. Because we have excluded the second case by hypothesis,
we conclude that w is not an optimal contract.

Case 3. Suppose that (9) does not have a solution and further that w is not an empirical
contract. As before, if w is optimal, then Π(w) > 0; assume as such. Now, if
w is an equity bonus contract, then the argument provided in the second step
of this proof provides for the existence of constants λi + κ such that Π(w) =∑

λiVi(w)+κ. However, because (9) does not have a solution, there is a strictly
better set of constants and the corresponding equity bonus contract generated by
those contracts yields a strictly better guarantee than w. Accordingly, suppose
instead that w is neither an empirical contract nor an equity bonus contract.
The same argument as the one used in the second case implies that w is strictly
suboptimal.

A.7 Corollary 3

Proof of Corollary 3. Corollary 3 almost follows from the uniqueness results in Proposition
2. Because optimal contracts are not weakly dominated by suboptimal contracts, we are left
to verify the existence of an undominated contract within the class of optimal contracts. In
all three cases of the problem, the set of optimal contracts is compact in the standard topology
on R|X|+1 (when equity bonus contracts are viewed as standard convex combinations of
the empirical contracts and the output vector). Furthermore, the principal’s payoff is a
continuous function of output distributions F in the topology of weak convergence, and
the set of distributions F satisfying the constraints of Proposition 1 is itself compact in
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the same topology. Consequently, the problem of identifying an undominated contract can
be interpreted as a normal form game between the principal (choosing contracts from the
set of optimal contracts) and an adversary (choosing output distributions from the set of
distributions that satisfy the constraints of Proposition 1). Standard results based on Zorn’s
lemma provide for the existence of undominated strategies in normal form games with
compact action sets and continuous payoff functions. TODO: CITE

A.8 Proposition 3

Proof of Proposition 3. The requirement in (11) is obvious. For (12) note(√
⟨F1, y − w2⟩ −

√
∆
)2

≥ ⟨F1, y − w1⟩

⟨F1, y − w2⟩ − 2
√
⟨F1, y − w2⟩∆+∆ ≥ ⟨F1, y − w1⟩

⟨F1, y − w2⟩ −∆ ≥ ⟨F1, y − w1⟩

⟨F2, w1 − w2⟩ ≥ 0

where the third line follows from
√

⟨F1, y − w2⟩∆ >
√
∆2 = ∆. Similarly,(√

⟨F1, y − w2⟩ −
√
∆
)2

≥ ⟨F2, y − w2⟩

⟨F1, y − w2⟩ −∆ ≥ ⟨F2, y − w2⟩

⟨F1 − F2, y⟩ ≥ ⟨F1 − F2, w1⟩.

The remaining inequalities follow from ∆ > 0.

A.9 Proposition 5

Proof of Proposition 5. Define yi ≡ ⟨Fi, y⟩ so that wi = αiyi. Note that any novel equity
bonus contract is a linear contract, as in w0 = α0⟨F, y⟩ = α0y0 where y0 is unknown. Note
also that since min(y) = 0, adding a constant can only reduce the principal’s guarantee.
First, we show that the data can be ordered. For any i and j, there is a cycle length in the
data corresponding to the inequality

⟨Fj − Fi, αjy⟩+ ⟨Fi − Fj, αiy⟩ = (αi − αj)(yi − yj) ≥ 0,
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so αi > αj if and only if yi > yj . Index the data so that i < j implies yi < yj and hence
αi < αj . Note also that the supermodularity condition holds trivially here.

The cycle constraints in (2) then imply through an analogous inequality that there is an
i such that αi ≤ α0 ≤ αi+1 and yi ≤ y0 ≤ yi+1. Fix that i for the remainder of the proof.

We next show that y0 = yi satisfies all of the cycle constraints. To show this, note that
for the cycle constraints in (2) to be satisfied it is sufficient for the following inequality to
hold for all k and j:

αk(yk − y0) + skj + α0(y0 − yj) ≥ 0,

and these hold for y0 = yi if

αk(yk − yi) + skj + α0(yi − yj) ≥ 0.

The key observation is that α0(yi − yj) > sji. Using δ = sgn(i− j), this follows from

α0(yi − yj)− sji = α0(yi − yj)−
i∑

k=j+δ

αk(yk − yk−δ)

=
i∑

k=j+δ

(α0 − αk)(yk − yk−δ) > 0,

where the first equality follows from Lemma 2. Therefore

αk(yk − yi) + skj + α0(yi − yj) ≥ αk(yk − yi) + skj + sji ≥ 0,

because the αk(yk − yi) + skj + sji is the length of a cycle in the data and nonnegative by
assumption. Therefore, by Proposition 1

Π(w0) ≤ (1− α0)yi ≤ (1− αi)yi,

and the principal has no opportunity to improve on the contract wi.

A.10 Theorem 3

Proof of Lemma 2. First, we claim that there is a shortest path that traverses adjacent nodes.
Suppose to the contrary that for any shortest path through nodes indexed by {n1, n2, . . .}
there is a k such that |nk+1 − nk| > 1 (i.e., the path skips adjacent nodes between nk and
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nk+1). Consider any such path and any such node nk. Notice that supermodularity implies
the inequality in

⟨Fnk+1
− Fnk

, wnk+1
⟩ =

nk+1−nk−1∑
ℓ=0

⟨Fnk+ℓ+1 − Fnk+ℓ, wnk+1
⟩

≥
nk+1−nk−1∑

ℓ=0

⟨Fnk+ℓ+1 − Fnk+ℓ, wnk+ℓ+1⟩.

For this path to be a shortest path it must be that the inequality holds with equality, but
this implies the existence of another shortest path that does not jump from nk to nk+1 but
instead traverses the sequence {nk, nk + 1, . . . , nk+1 − 1, nk+1}, a contradiction.

Next, suppose that there is no shortest path following the particular sequence of adjacent
nodes {i, i+ ι, i+ 2ι, . . . , j − ι, j} where ι = sgn(j − i). In such a case, any shortest path
through adjacent nodes must visit at least one node more than once. Thus there is a cycle in
the path, and in order for this path to be shortest this cycle must have zero length. Therefore,
there is another shortest path with this cycle removed. By successively removing such
cycles we get the claimed shortest path, contradicting the supposition. The final statement
of the lemma is an obvious consequence.

We introduce two more lemmas before proving the result. The first lemma analyzes the
following modified (but equivalent) version of (9), where we use the fact that κ = 0 under
two-sided limited liability.

max
γ

∑
i,j

γij (⟨Fj, w
γ − wi⟩ −∆(i, j)) (34)

s.t., wγ(y) =
y +

∑
i,j γijwi(y)

1 +
∑

i,j γij

wγ(y) ≥ 0, ∀y ∈ Y .

Any optimal γ for this problem corresponds to an optimal (λ, κ) for (9) where λi =
∑

j γij

and κ = 0. Note that if γ is optimal for (34) and γij > 0 then it must be that j ∈ Ci(w
γ).

Lemma 9. Let γ ≥ 0 satisfy γii′ > 0 and γjj′ > 0. If

⟨Fi′ − Fj′ , wi − wj⟩ ≥ 0, (35)
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then there is a γ′ ̸= γ with either γ′
ii′ = 0 or γ′

jj′ = 0 that yields a weakly higher value
of (34).

Proof of Lemma 9. Suppose that the optimal γ in (34) is such that γii′ > 0 and γjj′ > 0.
Consider the adjustments to γ given by γii′ + δ and γjj′ − δ for some δ ∈ [−γii′ , γjj′ ]. If γ is
optimal, it must be optimal to set δ = 0. However, the second-order effect on the objective
of increasing δ is

2

1 +
∑

k λk

⟨Fi′ − Fj′ , wi − wj⟩ ≥ 0.

Therefore, under the supposition of the Lemma the objective is convex in δ and hence is
optimized on the boundary, δ ∈ {−γii′ , γjj′}.

Lemma 10. Shortest path lengths are submodular in the sense that

si′j′ − si′j ≤ sij′ − sij ∀i′ > i, j′ > j.

Proof of Lemma 10. Fix j and j′ and consider the difference di ≡ sij′ − sij . We want to
show that di is non-increasing in i for any such j < j′. Using Lemma 2,

di =


sjj′ i ≤ j < j′

sij′ − sij j < i < j′

−sj′j j < j′ ≤ i.

It is immediate that sjj′ ≥ sij′ − sij ≥ −sj′j for any j ≤ i ≤ j′, and consequently, di ≥ di′

if either i ≤ j or i′ ≥ j′. In the remaining case, j < i < i′ < j′,

si′j′ − si′j − sij′ + sij = −sii′ − si′i ≤ 0,

due to the non-negative cycle length condition.

Proof of Theorem 3. As in Lemma 9, this proof refers to the problem in (34). Suppose
there are no optimal one-contract mixtures, but there is an optimal multi-contract mixture,
parameterized by some γ. For such a mixture, it must be that γii′ > 0 and γjj′ > 0 for some
i ̸= j, i′, and j′. Without loss of generality, take i < j.

It is also without loss to consider cases where γik = 0 for all k ̸= i′ and γjk = 0 for
all k ̸= j′. If, for example, γik > 0 for some k ̸= i′ and γ is optimal, the problem in (34)
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would also be optimized by shifting the ik weight to ii′ as in

γ′
ℓm =


0 if ℓm = ik

γii′ + γik if ℓm = ii′

γℓm otherwise .

We show that whenever wi and wj are involved in the proposed optimal contract, as
indicated by γii′ > 0 and γjj′ > 0, there exists another γ′ that sets either γ′

ii′ = 0 or γ′
jj′ = 0

that yields a weakly higher value for the objective. Hence, there is a weakly better mixture
contract that removes either wi or wj . By successively removing such contracts we arrive
at a weakly better 1-mixture contract.

There are two cases. First, if i′ ≤ j′, supermodularity immediately implies the sufficient
condition in Lemma 9 for a mixture involving wi and wj to be weakly worse than a contract
only involving one of wi or wj (i.e., ⟨Fi′ − Fj′ , wi − wj⟩ ≥ 0).

Alternatively, if i′ > j′, the optimality of γ implies9

⟨Fi′ , w
γ,κ⟩ − ⟨Fi, wi⟩ − sii′ ≥ ⟨Fj′ , w

γ,κ⟩ − ⟨Fi, wi⟩ − sij′

⟨Fj′ , w
γ,κ⟩ − ⟨Fj, wj⟩ − sjj′ ≥ ⟨Fi′ , w

γ,κ⟩ − ⟨Fj, wj⟩ − sji′ ,

which implies
sjj′ − sji′ ≤ ⟨Fj′ − Fi′ , w

γ,κ⟩ ≤ sij′ − sii′ . (36)

Together, Lemma 10 and (36) imply

⟨Fi′ , w
γ,κ⟩ − ⟨Fi, wi⟩ − sii′ = ⟨Fj′ , w

γ,κ⟩ − ⟨Fi, wi⟩ − sij′

⟨Fj′ , w
γ,κ⟩ − ⟨Fj, wj⟩ − sjj′ = ⟨Fi′ , w

γ,κ⟩ − ⟨Fj, wj⟩ − sji′ .

Using the second equation, we find if setting γjj′ > 0 is optimal, so is taking the weight off
9Note for any i and j

⟨Fj , w
γ,κ − wi⟩ −∆(i, j) = ⟨Fj , w

γ,κ⟩ − ⟨Fi, wi⟩ − sij
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of jj′ and placing it on ji′, meaning

γ′
kℓ =


0 if kℓ = jj′

γjj′ + γji′ if kℓ = ji′

γkℓ otherwise .

Since, γ′ satisfies the conditions of Lemma 9 with ⟨Fi′ − Fi′ , wi − wj⟩ = 0, we find that
there is a weakly better contract that does not involve both of wi and wj .

A.11 Theorem 4

Proof of Theorem 4. Choose P ∈ P arbitrarily and enumerate its support A1, . . . ,AT .
Because P rationalizes the data, there exists selections (Fit, eit) from the choice sets
c(A1|wi), . . . , c(AT |wi) such that Fi =

∑
t FitPt for each i. Extend the index i on

the revealed preference data X by writing w0 = w for the principal’s contract and
(F01, e01), . . . , (F0T , e0T ) for the elements of the choice sets c(A1|w0), . . . , c(AT |w0) that
minimize the principal’s payoff with ties broken in favor of the principal. Observe that

Π(P |w0) = ⟨F01, y − w0⟩P1 + · · ·+ ⟨F0T , y − w0⟩PT = ⟨F0, y − w0⟩. (37)

We proceed by constructing a fixed technology A ∈ A with the property Π(A|w0) =

Π(P |w0). Toward that end, define output distribution F0 =
∑

t F0tPt and effort cost vector
(e0, . . . , en) by ei =

∑
t eitPt. Let A = {(F0, e0), . . . , (Fn, en)} and choose i, j arbitrarily.

Since ⟨Fit, wi⟩ − eit ≥ ⟨Fjt, wi⟩ − ejt for all t,

⟨Fi, wi⟩ − ei =
T∑
t=1

(⟨Fit, wi⟩ − eit)Pt

≥
T∑
t=1

(⟨Fjt, wi⟩ − ejt)Pt = ⟨Fj, wi⟩ − ej.

This establishes two facts. First, it follows immediately thatA rationalizes the data. Second,
it follows almost immediately that

⟨F0, y − w0⟩ = Π(A|w0). (38)
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The only difficulty in the latter lies in ruling out that the existence of an index i with

⟨Fi, w0⟩ − ei = ⟨F0, w0⟩ − e0 (39)

⟨Fi, y − w0⟩ > ⟨F0, y − w0⟩. (40)

To see why this can not be the case, note that

(39) =⇒ ∀t : ⟨Fit, w0⟩ − eit = ⟨F0t, w0⟩ − e0t

(40) =⇒ ∃t : ⟨Fit, y − w0⟩ > ⟨F0t, y − w0⟩.

To see why, observe that if the agent strictly preferred F0t over Fit at any component
technology t, then he would necessarily strictly prefer F0 to Fi. Similarly, if the principal
strictly preferred Fi to F0, then she must strictly prefer Fit to F0t for at least one component
technology t. However, we began by choosing (F0t, e0t) as the principal’s preferred element
of c(At|w0). Accordingly, no such index exist, and hence (38) holds. Together, (37)
and (38) imply Π(P |w0) = Π(A|w0), as claimed. In summary, we have shown that for
every stochastic technology P that rationalizes the data, there exists a fixed technology A
that (i) also rationalizes the data and (ii) yields the same payoff for the principal as P .
Together, these two facts imply ΠP(w) ≥ Π(w). Jointly with Remark 1, this establishes
ΠP(w) = Π(w) for all contracts, as claimed.
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