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Abstract

We develop a new method for deriving high-frequency synthetic distributions of con-

sumption, income, and wealth. Modern theories of macroeconomic dynamics identify the

joint distribution of consumption, income, and wealth as a key determinant of aggregate

dynamics. Our novel method allows us to study their distributional dynamics over time.

The method can incorporate different microdata sources, regardless of their frequency and

coverage of variables, to generate high-frequency synthetic distributional data. We extend

existing methods by allowing for more flexible data inputs. The core of the method is to

treat the distributional data as a time series of functions that follow a state-space model,

which we estimate using Bayesian techniques. We show that the novel method provides

the high-frequency distributional data needed to better understand the dynamics of con-

sumption and its distribution over the business cycle.
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1 Introduction

Understanding the dynamics of the joint distribution of consumption, income, and wealth

is central to understanding macroeconomic dynamics, the transmission of monetary and fiscal

policy, and their cross-sectional effects (Mian, Straub, and Sufi, 2020; Holm, Paul, and Tis-

chbirek, 2021; Andersen et al., 2021; Bhandari et al., 2021; Bayer et al., 2019). The limited

availability of high-frequency information on the joint distribution is a significant limitation

in this endeavor. We propose a novel and general technique based on functional data analysis

and Bayesian time series methods to obtain high-frequency estimates of this (or other) joint

distribution(s). The proposed method is flexible enough to combine distributional data from

different microdata sources with aggregate data, even when these data are of mixed frequency

and only one microdata set contains all variables of interest, while others contain only a subset.

The challenge is that the joint distributions of consumption, income, and wealth are infinite-

dimensional objects. Our novel method, however, exploits statistical dimensionality reduction

techniques by assuming that the distributional dynamics can be captured by a factor model

in which the factors themselves have a state-space representation. This assumption builds

on insights from the heterogeneous agent macroeconomics literature, which suggests that a

few factors should be sufficient to approximate the distributional dynamics, given that a small

set of aggregate prices/shocks shape the distribution of consumption, income, and wealth in

the short and medium run (Auclert, Bardóczy, Rognlie, and Straub, 2021; Bayer, Born, and

Luetticke, 2024). These prices also closely track movements in the aggregate economy. Indeed,

the empirical evidence generated by inequality research has so far found much support for this

(Di Maggio, Kermani, and Majlesi, 2020; Chodorow-Reich, Nenov, and Simsek, 2021; Kuhn,

Schularick, and Steins, 2020).

This set of findings from the macroeconomic literature has three implications for the joint

evolution of aggregate and distributional data: First, the dynamics of the distributional data

can be represented by a medium-size state-space model. Second, the states of this model are

driven by a small set of aggregate factors and unobserved distributional shocks. The com-

bination of these two facts is the key innovation to overcome the challenge of dealing with

multidimensional functional data. In practice, we use factor analysis to uncover the lower di-

mensional state-space representation of the distributional dynamics and its aggregate drivers.

Third, given these factor structures for the aggregate and distributional data, we estimate the

time-series behavior of the functional, i.e. distributional, data using Bayesian techniques and

link the aggregate factors and the distributional data without imposing a structural macroeco-

nomic model.

The state-space representation lends itself naturally to the use of the Kalman filter for

Bayesian estimation of the state-space model. This has several important advantages. It al-
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lows us to use and merge numerous microdata sets that refer to the same economic variable

but with different operationalized measures, e.g. differences in the sources of income covered.

When combining different data sources, it is important that we allow for measurement error

in the observation equation of the state-space model. Having an observation equation also al-

lows the combination of microdata sets with different sampling frequencies and also allows us

to exploit the information on the evolution of distributions even from microdata that contain

only a subset of the variables of interest.

Finally, we overcome the limited availability of high-frequency distributional information

and construct estimates of business cycle fluctuations in the joint distributions for any point in

time, in particular even for periods for which we do not observe distributions through mi-

crodata. The estimated state-space model allows us to construct synthetic high-frequency

distributional data by means of the Kalman smoother. The synthetic data itself, while orig-

inally functional data, can be expressed approximately in the form of repeated cross-sections

of microdata containing consumption, income, and wealth observations of synthetically con-

structed households. These households represent groups of a granularity that the researcher

can flexibly specify.

We demonstrate the power of this novel method by studying the dynamics of the joint

distribution of consumption, income, and wealth. We apply the new estimation technique to a

rich set of U.S. household microdata from the Panel Study of Income Dynamics (PSID), the Survey

of Consumer Finances (SCF), the Consumption Expenditure Survey (CEX), the Survey of of Income

and Programme Participation (SIPP), and the Current Population Survey (CPS). We complement

the microdata with a comprehensive set of macroeconomic time series. As a first challenge,

only the PSID contains all three variables of interest: consumption, income, and wealth. In

the other microdata sets at least one of the variables is absent. At the same time, all of the

microdata sets contain some information on the joint distribution of consumption, income,

and wealth. Second, all of these data sets are available at different frequencies. Third, they

differ in sampling approaches and details of their measurement concepts. Our method deals

with all three challenges.

From the estimation of the state-space model on these data, we then construct high-frequency

synthetic distributional data represented by groups of households. Each group is defined by

a particular combination of quantiles of consumption, income, and wealth. Over time, the

conditional expectations for each quantile changes, and so do the consumption, income and

wealth of each group. The population weight reflects how likely it is to observe combinations

of quantiles and therefore also the weight changes over time. Thus, the dynamics of the pop-

ulation weights induce the dynamics of the cross-sectional correlations in the three variables.

We construct the detrended business cycle variations of the joint distribution in consumption,
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income, and wealth from 1962 to 2021.

We carefully validate each step of the estimation procedure. First, we show that the factor

representation of the distributional data imposes almost no loss of information compared to

the information provided by the microdata when observed. Second, we validate the choice

of priors in Bayesian estimation, particularly with respect to measurement error. We show

that the state-space model is consistent with the sampling uncertainty of the observed distri-

butional data at the sampling points. Furthermore, we show that the model closely predicts

the distributional data, even when unobserved, through significant comovement with aggre-

gates. Specifically, we show this for the consumption distributions of the CEX and the wealth

distributions of the SCF. Third, we compare the prediction for the dynamics of income and

wealth distribution with that implied by the distributional flow of funds methodology (DFA,

see Batty, Bricker, Briggs, Friedman, Nemschoff, Nielsen, Sommer, and Volz, 2020) and that

estimated by the World Inequality Database (Alvaredo, Atkinson, Chancel, Piketty, Saez, and

Zucman, 2016; Piketty, Saez, and Zucman, 2018). We conclude that our method is capable of

producing reliable estimates of distributional data at the business cycle frequency.

Finally, as an application example, we show the dynamics of consumption along the joint

distribution of income and wealth, which can provide empirical guidance for model building

for macroeconomic models with rich heterogeneity. We show that consumption of the middle

class hardly moves in any recession whereas consumption of the poor and the rich show a

significant cyclical pattern. Comparing the Dotcom-recession, the Great Recession and the

Covid Recession, we however also document, that not all recessions are alike in terms of who

in the tails of the distribution wins or looses in terms of consumption. The Great Recession

brought consumption losses of the wealth rich, who had even gained in terms of consumption

during the Dotcom Recession. The Covid Recession primarily brought about consumption

losses of the income rich, but not of the wealth rich.

The remainder of this paper is organized as follows: Section 2 provides an overview of the

relevant literature. Section 3 develops our estimation method. Section 4 evaluates the quality

of the estimation. Section 5 provides the application examples of the novel method. Finally,

section 6 concludes the paper. Appendix A discusses the data sources used in our empirical

application.

2 Literature

The paper most closely related to ours is Chang, Chen, and Schorfheide (2024), which de-

velops a Bayesian state-space approach to estimate the coevolution of aggregate variables and

the marginal distribution of earnings. We differ from this paper in three important ways. First,
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we develop a method that is suitable for dealing with the evolution of joint distributions over

time (distributions of consumption, income, and wealth). Second, we follow Kneip and Utikal

(2001) and Tsay (2016) and Ramsay and Silverman (2005, Chapter 8) in not approximating the

distribution functions by a fixed set of basis functions, but rather determine the basis func-

tions based on a principal component analysis (see also Meeks and Monti, 2023, for a macroe-

conomic application of this method). Third, we focus on the production of high-frequency

synthetic distribution data, dealing with missing observations and the mixed frequencies of

aggregate and microdata.

The latter focus on generating new microdata relates our work to the large body of em-

pirical literature on trends and fluctuations in inequality that took off after the seminal paper

by Piketty and Saez (2003): Blanchet, Saez, and Zucman (2022) propose a methodology for

producing high-frequency (monthly), timely income and wealth distribution statistics for the

United States from 1976 to the present. The paper matches CPS and SCF microdata with in-

dividual tax data collected from Piketty, Saez, and Zucman (2018) to produce a harmonized

set of monthly microfiles representing synthetic adults, whose income/wealth data are consis-

tent with national accounts totals and whose distribution reflects only publicly observed data.

The paper emphasizes the timeliness of its data, which facilitates policymaking and public

discourse on social inequality (e.g., age, race, gender) as well as income and wealth inequality.

Most of this work focuses primarily on income or wealth separately, and thus often concen-

trates on marginal distributions, emphasizing specific moments of these distributions, such as

top wealth shares. The latter is a widespread feature of the literature. For example, Smith,

Zidar, and Zwick (2021), which uses administrative data and the capitalization method of Saez

and Zucman (2016), also provides high-frequency estimates, but focuses more on the top of

the wealth distribution, albeit at greater wealth granularity.

Similar to what we do, Batty et al. (2020) also construct an extensive synthetic dataset of

quarterly estimates since 1989 on the balance sheet of U.S. households; they rely on the granu-

larity of the wealth module of the SCF and aggregate information from the Financial Accounts.

They use Chow-Lin/Fernández type models (see Chow and Lin, 1971; Fernandez, 1981; Litter-

man, 1983) in this endeavor. The advantage of our state-space approach is that it can explicitly

deal with sampling uncertainty by treating the underlying microdata as samples of a time se-

ries of distribution functions. This means that we can explicitly deal with sampling uncertainty

in a dynamic setting and combine different microdata sources that contain the same economic

objects with slightly different operationalizations of measurement. Moreover, by combining

many microdata sources, we can go a step further and obtain the business cycle fluctuations in

the joint distributions of consumption, income, and wealth going back to the 1960s.

With the estimated joint distribution, we can speak to the large macroeconomic literature
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that has established the importance of heterogeneity for modeling macroeconomic dynamics

(Kaplan, Moll, and Violante, 2018; Bayer et al., 2019; Bayer, Born, and Luetticke, 2024) and

complement it with the still missing descriptions of the short-run dynamics of the consump-

tion, income, and wealth distribution. Our new method aims at filling this gap in the literature.

The data on the joint distribution allow for an analysis of the dynamics of the joint distribution

that provides important information for model building and thus extends the rapidly growing

literature that examines the impact of policy shocks on the marginal distributions of consump-

tion, income, or wealth and their aggregate feedbacks (see for example Berger, Bocola, and

Dovis, 2023; Coibion, Gorodnichenko, Kueng, and Silvia, 2017; Cloyne, Ferreira, and Surico,

2020; Holm, Paul, and Tischbirek, 2021; Chang and Schorfheide, 2024; Bartscher, Schularick,

Kuhn, and Wachtel, 2022). McKay and Wolf (2023) surveys the empirical literature on the

effects of monetary policy on inequality.

Methodological Literature. The paper addresses the large methodological and global lit-

erature that focuses on estimating high-frequency time series using related series and lower-

frequency measures. Common methods for estimating such balanced time series include in-

terpolation (Friedman, 1962; Denton, 1971), regression-based methods with autocorrelated er-

rors (Chow and Lin, 1971; Fernandez, 1981; Litterman, 1983), dynamic Chow-Lin models, and

structural multivariate time series models that allow for endogeneity of related series (Salazar

and Weale, 1999; Silva and Cardoso, 2001; Gregoir, 2003; Di Fonzo, 2003).

The paper takes a resurfaced approach; specifically, formulating the estimation in a state

space framework (Harvey and Pierse, 1984; Harvey, 1990; Harvey and Chung, 2000; Mönch,

Uhlig, et al., 2005; Moauro and Savio, 2005; Proietti, 2006) of functional data (see e. g. Kneip

and Utikal, 2001; Diebold and Li, 2006; Chang, Kim, and Park, 2016; Inoue and Rossi, 2021;

Otto and Salish, 2022, for economic applications). The main advantages of using a functional

state-space model lie in its (1) flexibility: with appropriate manipulation, it can encompass

the other models, (2) its ability to use the well-studied Kalman filter, its results, and intuitive

diagnostics, and (3) its dynamic nature, which is not the case with widely used models such as

the Chow-Lin/Fernandez models.

3 Method

This section describes a general method for generating high-frequency estimates of joint

distributions of economic variables of interest over a large number of micro-units. This method

uses microeconomic and aggregate data as inputs. It requires only the joint observation of

the microeconomic variables in at least one data set over several, but potentially infrequent,

time periods. The developed method treats the distributional data as functional data in a

5



time-series state-space framework with unobserved states. In the following, we describe the

method using the example of the joint distribution of consumption, income, and wealth — an

important macroeconomic application.

3.1 Distributions as time series of functional data

We consider a sequence Ξt(w) of multidimensional distribution functions defined over a

d-dimensional vector w ∈ Rd. In the case of our application, we have d = 3, where w is a vector

of consumption, income, and wealth at the household level. In addition to this sequence of

distribution functions, there is a sequence of real-valued vectors Yt of stationary aggregate data.

In the following exposition, we assume that Yt is observed at all times t ∈ T := {1 . . . T}. The

extension to missing observations in Yt is standard.

From the distributions, Ξt(w), we observe only randomly drawn samples. We allow these

samples to come from different sampling procedures or to have different operationalizations of

the underlying theoretical variables. For example, the Panel Study of Income Dynamics (PSID)

and the Survey of Consumer Finances (SCF) use different sampling procedures and slightly

different concepts of wealth and income. We index each of the sampling procedures/data sets

by j = 1 . . . J . All of these different datasets are typically not observed in all time periods.

Instead, data set j is only observed in a particular subset Tj ⊂ T. Also, not all samples contain

all variables of interest, but may contain only a subset Dj ⊆ D := {1 . . . d} of variables. For

example, the Current Population Survey (CPS) provides only income information, but neither

wealth nor consumption. However, at least one data set, j, must contain all the variables of

interest for Dj = D. In our application, such a dataset is the PSID, which contains information

on consumption, income, and wealth (at least for some years).

Our goal is to obtain estimates of the joint distribution functions, Ξ̂t(w), ∀t ∈ T, by effi-

ciently combining the information from the various related microdata sources and the aggre-

gate information, Yt. We assume that there is a time series structure such that the density dΞt

evolves according to the functional difference equation

dΞt+1 = G (dΞt, Yt) + ϵt, (1)

where Yt are observed aggregate data (including lags), observed controls. G determines the

dynamics of the system, and ϵt are the corresponding shocks to the functional equation.1 This

structure arises naturally in so-called HANK models (see e.g. Bayer, Born, and Luetticke, 2024).

Since we observe Yt every period and assume that we do so without measurement error, we

can disregard any potential endogeneity of Yt for the purposes of our exercise.

1For Ξt+1 to be a distribution, we assume that
∫
G(dF, ·)(w)dw = 1,

∫
ϵt(w)dw = 0, and G(dF, Yt)(w) ≥ −ϵt(w).
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Viewing the J sampling procedures as capturing the same fundamental object Ξt but with

some measurement error, νt, allows us to combine the data in a systematic way. This means

that a data set gives us an estimate

dΞ̃j
t =

∫
D\Dj

dΞt + νt for t ∈ Tj (2)

The measurement error then captures time-varying differences in sampling and operational-

ization of economic concepts. The integral
∫
D\Dj

reflects that those variables unobserved in

dataset j have been integrated out.

3.2 Implementing the Estimation

Estimating Equation (1) directly is not feasible because it is an infinite dimensional nonlin-

ear functional difference equation and, of course, we only observe samples of the distribution

functions, not the functional data itself. Our innovation is to overcome this challenge by ren-

dering it possible to estimate the state-space model (1) using traditional Bayesian techniques

and a Kalman filter (Section 3.2.4). This requires transforming (1) into a linearized (infinite

dimensional) state-space model (Section 3.2.3), which is estimable once we reduce its dimen-

sionality by finding an appropriate factor representation (Section 3.2.2). First, however, we

need to operationalize the measurement of the distribution functions as they appear in equa-

tion (2) by transforming the microdata samples into estimates of the distribution functions

themselves (Section 3.2.1). In doing so, we have to account for changes in the effective support

of the distributions and deal with the unobservability of some of the micro variables in some

data sets.

3.2.1 Transforming the microdata

Handling changes in scale One challenge in working with distributional data is that the

magnitude of the variables of interest in w, and thus the support of Ξ, changes over time. We

deal with this in two ways. First, to deal with level changes, we rescale the vector w observed

for individual i in the microdata set j, wi,j,t, by its dataset- and time-specific mean w̄j,t.2 Sec-

ond, to deal with changes in the width of the support, we decompose the distributional data

into its marginals and a copula. Copulas by definition have a constant support (hypercubes of

[0, 1]). In addition, we represent the marginals by their quantile functions (i.e., the inverse of

2Estimating the model relative to the dataset-specific time means also allows us to flexibly match per
capita/household aggregate targets to the synthetic data our estimation produces. This simply requires that the
constructed synthetic high-frequency distribution data be scaled back not by the dataset-specific time average, but
by the appropriate aggregate target. We can also produce a consensus estimate of the business cycle component
across all datasets by using average fixed effects when scaling back and not adding back any trend.
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the marginal cumulative distribution function). Again, the quantiles have constant support by

construction. This quantile and copula representation contains the same information as Ξ, but

makes the support of all functions time-invariant.

This is based on the fact that any multivariate cumulative distribution function Ξt(w) can

be written in terms of its marginal distributions, Ξmt(w), along the dimension m ∈ D, and a

copula Ct : [0, 1]d −→ [0, 1] with uniform marginals.3 The copula captures the dependence

structure between the random variables in w and is invariant to monotone transformations in

w. For our application, the copula is

Ct(u1, . . . , ud) = Pt(U1 ≤ u1, . . . Ud ≤ ud)

= Pt

(
w1 ≤ Ξ−1

1t (u1), . . . , wd ≤ Ξ−1
dt (ud)

)
∀t ∈ T

(3)

where Um ∼ U [0, 1] for m ∈ D are the uniform marginals generated by taking the probability

integral transform of each component m of w s.t. Um = Ξm(wm) ∼ U [0, 1].4 The second line

highlights the quantile functions or the inverse transform of the univariate CDFs, Ξ−1
mt(wm),

where:

Ξ−1
mt(um) = inf{wm ∈ R : Ξm(wm) ≥ um} ∀t ∈ T,m ∈ D. (4)

Finally, for Ct to be a copula, the constraint must hold for all k ∈ {1 . . . d} that when integrating

out all but one dimension (the marginal distribution) k, the copula is identical to the value of

the marginal distribution.

∫
Ct(u1, . . . uk, . . . ud)du1duk−1duk+1 . . . dud = uk. (5)

Also, Ct(1, . . . , 1) = 1.

In the actual estimation, we work with copula densities dCt ∈ L2, and along with the quan-

tile functions Ξ−1
m,t ∈ L2, we project them onto a space of orthonormal legendre polynomials

Q ∈ L2, shifted to fall in the support [0, 1].5

For the quantile function for variable m, this means the following representation:

Ξ−1
mt(um) =

∑
o∈N

ξmo,tQo(u) (6)

3The theoretical foundations of splitting distributions into marginals and a copula were laid down by Sklar
(1959) and Sklar (1973).

4Any distributional transform that produces a uniform cdf will do. See Rüschendorf (2009) for details.
5The series estimator also satisfies the uniform margins property for the copula density. See Bakam and Pom-

meret (2023) for asymptotic properties of the estimator and further details.
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and for the copula density

dCt(u1, u2, ...ud) =
∑

(o1,...,od)∈Nd

κ(o1,...,od),t

d∏
m=1

Qom(um) (7)

where

ξo,t =

〈
Ξ−1
m,t, Qo(u)

〉
=

∫ 1

0
Ξ−1
m,tQo(u)du (8)

κo1,...,od,t =

〈
dCt,

d∏
m=1

Qom(um)

〉
=

∫
[0,1]d

d∏
m=1

Qom(um) dCt du1, . . . , dud (9)

the coefficients are the inner products of the functions and the legendre polynomials for some

order o. For the estimation of these coefficients, first, we rely on the uniformity of ranks and

that ranks are within [0, 1]. Second, by orthonormality, these coefficients are identified without

impact from other polynomial terms. This implies the inner product can be approximated by

a simple sample average representation:

ξ̂mo,t := N−1
∑
i

wm,i,tQo(um,i,t) (10)

κ̂o1,...,od,t := N−1
∑
i

(
d∏

m=1

Qom(um,i,t)

)
(11)

where um,i,t are the data ranks of wm,i,t, the sample analogue of Ξ−1
m,t for observation i.

Since the functions are projected onto a space spanned by infinitely many polynomials, this

implies estimating infinitely coefficients – just not feasible in any capacity. Thus, we truncate

the sums in equations (6) and (7) at a given maximal order O and by orthonormality of the

polynomials, the kept coefficients are unaffected by the truncation. The coefficients in our case

indeed decrease rapidly with each polynomial as we will show in Figure 1. Coeffcients beyond

order 10 are negligibly small.

Dealing with partial unobservability of the microdata Another difficulty is that not all mi-

crodata sets contain the entire vector w as an observable; some contain only a subset. This

means that we cannot generate estimates of the full d-dimensional copula at all times and for

all data sets. However, we can still estimate copulas with the unobserved dimensions inte-

grated out — lower dimensional copulas.

The representation in the form of Legendre polynomials is very useful in this respect. First,

observe that the lower dimensional copula density has to be equal to the higher-dimensional

9



Figure 1: Legendre Coefficients Across the Distributional Data

Legendre Coefficients across Quantile Functions

(a) Consumption (b) Income (c) Wealth

Legendre Coefficients across Copulas

(a) Consumption & Income (b) Consumption & Wealth (c) Income & Wealth

Notes: Figure presents two panels. The first panel presents the coefficients (in dots) on the Legendre polynomials
from estimating the quantile function in increasing order. The second panel presents the coefficients (as a surface)
on the Legendre polynomials from estimating the copula density in lexicographic order. Data are from the 2019
PSID.
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one when we integrate out the "missing" dimension d:

dC(u1, . . . , ud−1) =
∑
o1

· · ·
∑
od−1

κo1,...,od−1

(
d−1∏
m=1

Qom(um)

)
!
=

∫ 1

0
dC(u1, . . . , ud) dud (12)

Next, we write out the integral and make use that the first (shifted) Legendre polynomial

integrates to one while all others integrate to zero to obtain:

∫ 1

0
dC(u1, . . . , ud) dud =

∫ 1

0

∑
o1

· · ·
∑
od−1

κ(o1,...,od)

d∏
m=1

Qom(um) dud

=
∑
o1

· · ·
∑
od−1

∑
od

κ(o1,...,od−1,od)

(
d−1∏
m=1

Qom(um)

) ∫ 1

0
Qod

(ud)dud

=
∑
o1

· · ·
∑
od−1

κ(o1,...,od−1,1)

(
d−1∏
m=1

Qom(um)

)
(13)

In words, the polynomial coefficients of the lower dimensional copula density are identical to

the leading “slice” of the higher dimensional copula. This means that when a dataset does

only obtain two out of the three variables of interest, we still obtain a measurement of a subset

of the coefficients from this data, see Figure 2.6

Figure 2: Geometric representation of partially observed copula density coefficients

(a) only variables 1& 3 (b) only variables 2& 3 (c) only variables 1& 2

Notes: Figure shows three cubes. A cube can be interpreted as an array of copula coefficients κj
(o1,...,od),t

for some
time t. Each cube corresponds to a scenario where one variable is missing in the estimation of the copula density.
The light edge denotes the (1,1,1) coordinate. In each scenario, the white boxes are coefficients we cannot estimate.
The slightly colored boxes correspond to the immutable coefficients, which have fixed values independent of data.
The darker colored boxes are scenario specific and correspond to (time-varying) coefficients that need to be esti-
mated.

3.2.2 Dealing with the Curse of Dimensionality

Vectorizing the array of coefficients for each time period, t, leaves us with sequences of

coefficients, θjt = (ξj,mo1,t
, . . . κj(o1,...,od),t), for each cross-sectional dataset, j. For example, with

d = 3 dimensions in our application — consumption, income, and wealth and using order

6By the same line of argument, a copula requires κ(1,...,1) = 1 and κ(1,...,j,...,1) = 0 (i.e., only a single order is not
one).
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ten polynomials (O = 10) to organize the data — the copula density would be represented by

a vector with 972 variable entries for each time point and (d − 1) × O + 1 = 28 invariable.

These 28 invariable entries are redundant due to the constraints imposed by C being a copula.

In addition, there would be d × O = 3 × 10 coefficients of the polynomials representing the

quantile functions, which we collect in θjt as well.

From this example it is clear that the dimensionality of θjt ∈ RN , N = Od + 1 for a dataset

with d variables and polynomial order O is too large to formulate and estimate a time se-

ries model directly in terms of θjt itself. For this purpose, we postulate (and then estimate) a

dynamic factor model for θ. Another advantage of the polynomial representation comes in

handy: The variance (over time) of a coefficient is proportional to its contribution to the fluc-

tuations of the function (in the L2 sense). Put simply: The polynomial coefficient provides

a useful form of standardization that provides a natural metric and allows us to uncover the

factor structure behind the time series changes in the distributions. This factor structure finally

allows us to overcome the curse of dimensionality in the distributional data.

For this purpose, all (free) coefficients of the polynomial representation of dCj
t (and sepa-

rately of the quantiles) are horizontally concatenated t:

θj =


θj1,1 θj1,T

. . .

θjN,1 θjN,T


and perform principal component analysis (a singular value decomposition), which nonpara-

metrically reduces the dimensionality of the data (Breitung and Eickmeier, 2006).7

Before performing this model reduction, we detrend and standardize the distribution data

θ separately by data source j and distribution objects o ∈ {1 . . . d + 1} (d quantile functions

and a copula) and obtain standardized measures x. 8 This takes care of data source specific

effects. We store the information needed to transform x back to the originally observed objects

to obtain source-specific predictions. For example, the quantiles of income (that would be

one object o) in the SCF and the PSID (two sources j) may be permanently different due to

differences in sample design and operationalization. The fact that θ are polynomial coefficients

already makes them comparable within the object, so we do not need to standardize them

within the object.

7Performing principal component analysis on the polynomial coefficient domain or the observed data is equiv-
alent to standardizing the data (Chen, Er, and Wu, 2005).

8The normalization of the coefficient n in the object o(n) in the data set j is given by xjnt =

(
θ
j
nt−µjo(n)

σjo(n)

)
where

µjo(n) are the specific means and σjo(n) are the standard deviations of all coefficients of the object o(n) (copula,
quantile functions) to which the coefficient n refers.
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This leaves us with the standardized observation xjnt of coefficient n in data source j at

time t. Note that in some data sources a coefficient n may be impossible to construct, and

therefore unobserved, because that data source does not contain information on the corre-

sponding variable. For example, the SCF does not contain information on consumption. For

the principal component analysis, we then concatenate all observations that do not have miss-

ing coefficients in x. The principal component analysis of x provides us with a projection

matrix Γ ∈ RN×R, with full column rank R, that projects R << N factors into the N = Od + 1

dimensional distributional data. More specifically, we decompose x into latent orthogonal

factors
[
F f

]′
(ordered by importance) and their time constant loadings

[
Γ γ

]
. This de-

composition is unique up to the scale of each factor, which allows us to normalize the loadings

so that all factors have unit variance. The factors obtained are then divided into “important”

and “unimportant” factors according to their contribution to the total variance (measured by

their singular value):

x =

[
Γ γ

] [
F f

]
(14)

where F represents the R important factors, which capture almost all of the variation in the

data, and f the N − R less important factors, which can be interpreted as some measurement

noise. This step, in a sense, identifies an ideal functional basis (Kneip and Utikal, 2001; Tsay,

2016, see) (the columns of Γ) for approximating the changes in the distribution over time, and

reduces the dimensionality of the data entering the state-space model.

We also perform a PCA on the aggregate data (see Appendix A) to further reduce the di-

mensionality of the controls. The retained important aggregate factors are denoted by Y .

3.2.3 Factor State Space Model and Measurement

With this preprocessing of the data, we can turn to estimating the state-space model that

captures the evolution of the distributional factors. Specifically, we postulate the following

state space model

Ft+1 = AFt +BYt+1 + ϵt+1, ϵt ∼ N (0,Ω). (15)

Since the factors are orthogonal by construction, we restrict the innovations of the dynamic

model ϵt to be independent, so that Ω is a diagonal matrix with diagonal entries ω1, . . . , ωR.

The loading matrix B on the aggregate controls Yt, as well as the law of motion matrix A, are

not constrained.

Since the factors are not directly observable, we complement the factor model with an
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observation equation for each data set j.

xj
t+1 = Hj

t+1(ΓFt+1 + vjt+1), vjt+1 ∼ N (0,Σ
1/2
j ∆jΣ

1/2
j

′
), (16)

where ∆j is a diagonal matrix with the n-th diagonal entry δjo(n) and Σj is a positive semidef-

inite (covariance) matrix. Stacking the data sets j then yields the complete observation equa-

tion.

The observation equation (16) translates the factors into observations of the distribution xj
t

for data set j via our estimated projection matrix Γ and the selector matrix Hj
t , which indicates

whether (parts of) the distribution are observed in data source j at time t. This logical matrix

Hj
t ∈ {0, 1}N×N indicates whether a given variable is observed in a given data set (Durbin and

Koopman, 2012, following).

The measurement error, vjt , is composed of sampling uncertainty and other errors that re-

flect the fact that a given data set has its specific operationalizations of the common economic

variables being measured. Differences in operationalizations can not only shift the level of a

particular measurement (which we capture through fixed effects), but can also become differ-

entially important over time.9 To limit the number of parameters to be estimated within the

time series model, we assume that the correlation structure of all measurement errors is the

same as the correlation structure for sampling uncertainty. Under this assumption, the matrix

Σj can be estimated outside the time series model using bootstraps or the supplied replication

weights to estimate the covariance from sampling uncertainty by data source j.10 The N ele-

ments of the diagonal matrix ∆j are estimated within the time series model with the restriction

that its entries vary only by data set and object oj(n).

9For example, the PSID and SCF differ in the way they ask respondents about their business wealth (Pfef-
fer, Schoeni, Kennickell, and Andreski, 2016). PSID and CPS differ in the sampling unit, which makes house-
hold/family income sensitive to labor supply patterns (Gouskova, Andreski, and Schoeni, 2010). Similarly, differ-
ences in the propensity to sample business owners between the different datasets make income sensitive to relative
changes in business and labor income (Kim and Stafford, 2000). Finally, the CEX and the PSID differ in the con-
sumption categories covered in the survey, with the PSID being much coarser (Insolera, Simmert, and Johnson,
2021)

10To do this, we draw bootstrap samples (or equivalently use the supplied replication weights) for each data set
j, {xj

t,b}
B
b=1, for each period t. Then, we demean the bootstrap samples b for each j and t and compute the average

within-time variance-covariance matrix Σ̂j pooling the demeaned bootstrap samples of the data set j. If an object
o is unobserved in data set j, we set the covariance terms to zero and the diagonal elements to one to still be able
to compute Σ

−1/2
j . In our application, for example, this means that in the PSID, where we observe consumption,

income, and wealth and have replication weights, we estimate a full (N × N ) variance covariance matrix ΣPSID .
In the CEX, where we only observe consumption and income, we bootstrap the variance covariance matrix for the
objects related to these two variables. We set the off-diagonal entries for wealth-related objects to zero and the
diagonal elements to one.
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Since we have an external estimate of Σj , we rewrite the observation equations as

Σ̂
−1/2
j xj

t+1 = Σ̂
−1/2
j Hj

t+1Σ̂
1/2
j (Σ̂

−1/2
j ΓFt+1 + ṽjt+1)

Σ̂
−1/2
j xj

t+1 = Σ̂
−1/2
j Hj

t+1Σ̂
1/2
j (Σ̂

−1/2
j ΓFt+1 + ṽjt+1) ṽjt+1 ∼ N (0,∆j)

x̃j
t+1 = H̃j

t+1(Γ̃jFt+1 + ṽjt+1), H̃j
t+1 := Σ̂

−1/2
j Hj

t+1Σ̂
1/2
j , Γ̃j := Σ̂

−1/2
j Γ.

(17)

The Equations (15) and (17) form a standard system of equations to be estimated by Bayesian

techniques using the Kalman filter.

3.2.4 Bayesian Estimation

We need to estimate the (vector) autocorrelation A of the factors, the loading matrix B on

the aggregate controls, the variance-covariance matrix of the shocks to the factors Ω, and the

variance-covariance matrix Σ
1/2
j ∆jΣ

1/2
j

′
of the measurement errors. The covariance structure

Σ1/2 is estimated outside the time series model, as noted above, while the scaling matrices

∆j are estimated within the model. Given the size of the A,B,Ω, and ∆ matrices, we use a

Bayesian approach to estimate the system. We do this by shrinking all entries of B and the

non-diagonal entries of A to zero if they are not needed to explain the data. For the diagonal

entries of ∆, we apply the restrictions described in the last subsection.

The estimation is then a standard Bayesian VAR estimation with mixed frequency data. We

collect all parameters in the parameter vector θ and formulate prior likelihoods pprior(θ).

Recall that the scaling factors δo,j in the matrix ∆ define how much larger the actual mea-

surement error standard deviation for each object o (quantile functions and copula) in each

data set j (PSID, CPS, CEX, SCF, SIPP) is compared to the corresponding sampling uncer-

tainty that we directly estimate. We assume an inverse gamma prior. We set the mean of this

distribution to 5/3, so that a priori we expect additional measurement error from conceptual

differences. However, the mode of the distribution is set to one, which would imply only

sampling uncertainty and no additional measurement error reflecting conceptual differences.

With this prior, two-thirds of the distribution falls between 0.7 and 2.0, with values below 1.0

allowing for the possibility that our estimates Σ̂j are too large, which is important to allow

for since they are estimates themselves. Identical priors across datasets mean that we do not

a priori prioritize a conceptual measure for object o in one dataset over other datasets. Setting

different priors is generally possible if a particular measurement concept should be prioritized

on theoretical grounds.
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For the matrices A and B, we use Minnesota priors

vec(A)

vec(B)

 ∼ MN (µMinn, VMinn). (18)

We specify the parameters of the prior distributions, the hyperparameters, as follows: We set

the vector of expected values µMinn so that all but the autocorrelation terms in A have an

expected value of zero. The expected values for the autocorrelations (main diagonal of A)

are set to 0.90 to reflect the quarterly nature of our data and the typically high persistence in

aggregate economic time series. The choice of the variance-covariance hyperparameter VMinn

is discussed in detail in the Appendix B using a variant of the original Minnesota prior (Doan,

Litterman, and Sims, 1984; Litterman, 1980).

For the variances of shocks to the factors Ω, we specify the prior for each of the diagonal

elements as an inverse gamma distribution with mean 0.19, such that the a priori long-run

variance of each factor is 1.0 = 0.19
1−0.902

, consistent with our prior for autocorrelation (in the

matrix A) and factor normalization to unit variance, see (15). We set the variance of the prior

extremely large to make the prior relatively uninformative.11

Likelihood and Sampling With this prior on θ, we obtain the model likelihood p(x|θ) us-

ing a Kalman filter. The posterior log-likelihood is then calculated as the sum of the prior

log-likelihood and the model log-likelihood. To sample from the potentially complex, multi-

modal, high-dimensional posterior distribution, we employ the Differential-Independence Mix-

ture Ensemble (DIME) sampler from Boehl (2024). Details and convergence results are in Ap-

pendix D.

3.3 Estimating the High-Frequency Fluctuations in the Distributional Data

Given the estimated parameters (the posterior mode), we use the Kalman smoother to es-

timate a sequence of unobserved factors F̂t. With these generated factors F̂t, we obtain a con-

sensus estimate of the standardized polynomial coefficients of the functional distribution data

x̂t by premultiplying the projection matrix. This gives us, for each data source j, a predicted

high-frequency sequence of quantile functions, Ξ̂−1
j,m,t, and copula densities, dĈj,t. Together

they describe the sequence of joint distributions, Ξ̂jt, as functional data. In our application, we

approximate all functions by polynomials of up to order ten. With the estimated sequences of

coefficients at hand, we can then generate arbitrary groups of households formed by a range

11The inverse gamma distribution with parameters α and β has a well-defined variance for α > 2 and becomes
less informative as α decreases. Therefore, we set α slightly above 2 and β = 0.19× (α− 1).
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of ranks and obtain their weight by integrating over the copula densities. Similarly, we can

obtain average realizations of variables for these groups by integrating over the quantile func-

tions (i.e., by forming conditional expectations). This implementation implies that, without the

need for sampling, we obtain an output that can be immediately interpreted as synthetic mi-

crodata. For each cell given by a combination of a consumption quantile, an income quantile,

and a wealth quantile, we interpret the vector

Xit =



cit

yit

wit

ωit


=



∫
u∈Uc

i
Ξ̂−1
j,c,t(u)du∫

u∈Uy
i
Ξ̂−1
j,y,t(u)du∫

u∈Uw
i
Ξ̂−1
j,w,t(u)du∫∫∫

(uc,uy ,uw)∈Uc
i ×Uy

i ×Uw
i
dĈjt(u

c, uy, uw)


(19)

as data for a synthetic household i, where (U c
i × Uy

i × Uw
i ) is the quantile combination that

defines household i, e.g. the first decile in consumption, c, the third decile in income, y, and the

seventh decile in wealth, w. The mass, ω, of the households in that cell defines a weight for that

synthetic household.12 We obtain a consensus estimate across datasets by simply averaging the

dĈj,t and Ξ̂−1
j,m,t over datasets j.13

4 Application

We apply our method to estimate the joint distribution of consumption, income, and wealth

at the household level in the United States from 1962 to 2021. We use microdata from the Con-

sumer Expenditure Survey (CEX), Current Population Survey (CPS), Panel Study of Income Dynam-

ics (PSID), Survey of Consumer Finances (SCF); including the historical backfiles (SCF+), and the

Survey of Income and programme participation (SIPP). We abstain from any sample selection in all

of these datasets and pool all CEXs of a given year to remove seasonality. We date the CEX

to quarter 4 of a sample year, the CPS date is taken as given. The PSID is assumed to reflect

quarter 2, the SCF is dated to quarter 3, and the SIPP data are aggregated to quarterly level

and then naturally assigned to the respective quarter.14 Table 1 lists the distributional objects

about which each dataset contains information and the respective sample periods that we use.

In terms of aggregate data, we use a wide range of standard business cycle data (GDP,

12The integrals can be calculated very efficiently as time varying linear combinations of the
time invariant integrals of the basis functions as, with Q̄o,i :=

∫
u∈Uc

i
Qo(u)du, we have X ′

it =(∑
o ξ

c
o,tQ̄o,ic ,

∑
o ξ

y
o,tQ̄o,iy ,

∑
o ξ

w
o,tQ̄o,iw ,

∑
o1

∑
o2

∑
o3

κw
(o1,o2,o3),t

Q̄o1,icQ̄o2,iy Q̄o3,iw

)
13Alternatively, given the estimated measurement error variance for each data source and object type, one could

use the inverse measurement error standard deviations as weights in averaging across datasets.
14If the survey question refers to the past, such as the PSID question on income, we use aggregate growth rates

to impute the current level.
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Table 1: Micro data sources and their sample periods

Object CEX CPS SCF PSID SIPP

Consumption quantiles 1984Q4 - 2021Q4 - - 1999Q2-2021Q2 -

Income quantiles 1984Q4 - 2021Q4 1967Q4-2022Q4 1962Q3-2022Q3 1968Q2-2021Q2 1983Q3-2022Q4

Wealth quantiles - - 1962Q3-2022Q3 1983Q2-2021Q2 1983Q3-2022Q4

Copula densities 1984Q4 - 2021Q4 - 1962Q3-2022Q3 1983Q2-2021Q2 1983Q3-2022Q4

Notes: The table reports the sample periods we use for the different micro datasets.

consumption, employment, etc.) as well as data on household balance sheets, asset prices and

interest rates. We include data from 1962:Q3 to 2021:Q4. The starting point of the aggregate

data determines the earliest date for the sample periods of the microdata used. From these

time series, we extract the 34 most important factors. Details can be found in the Appendix A.

Details on the priors can be found in Appendix B. The estimated coefficients of the state space

model in the posterior mode can be found in Appendix E.

4.1 Reliability Analysis

In the first pass, we check the reliability of our estimation procedure at each step. First, we

show that no relevant information is lost by using the factor model for the distribution (Sec-

tions 3.2.1 and 3.2.2). Second, we show that our state-space model typically implies estimates

for the distributions that are within the confidence bounds of the microdata with approxi-

mately the probability corresponding to the confidence bounds. In other words, the recon-

structed time series support our choice of priors for the measurement errors (Section 3.2.4).

Third, we rerun the estimation omitting some of the microdata samples at selected points in

time. We then show that the reconstructed, synthetic microdata agree well with the omitted

microdata. In other words, we show that the estimated state-space model is informative about

the time-series fluctuations in the distributional data (i.e., this verifies the steps in Sections

3.2.3 and 3.2.4). Finally, we also show that our reconstructed distributional data agree well

with the cyclical fluctuations in the distribution of wealth in the World Inequality Database

and the Distributional Financial Accounts.

4.1.1 Precision of the Factor Model

The first step in our procedure is to estimate the decile functions and the copula for each

year of observation in each dataset (in terms of Legendre polynomial coefficients). Next, we

estimate the factor structure in these data. Since we only retain “important” factors, we poten-

tially introduce an approximation error resulting from forcing “unimportant” factors ft to take

time-averaged values. The size of the approximation error can be controlled by choosing how
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many factors to keep. We choose to retain the seven most important factors, which explain

95% of the (business cycle frequency) variation of the distribution (i.e., of x to be precise).

The different panels in Figure 3 visualize the approximation error in our application. The

figure compares the observed conditional decile means for consumption, income, and wealth

(squares) with their counterparts from the approximation (circles). We find that the factor

model with its seven main factors is very close to the distributional dynamics over time. Figure

4 compares the copula over time between the approximation and the raw data. We do this in

terms of the Kullback-Leibler divergence. The dashed black line shows how distant the actual

distribution is from its long-term average (how much variation is there to capture), and the

solid line shows the difference between the actual distribution and the approximation based

on the important factors only (how much the factors do not capture). The Kullback-Leibler

divergence of the actual copula from its long-run average is between 0.09 and 0.12 (between

1999 and 2019),15 while the divergence between the approximation and the actual distribution

is at least an order of magnitude smaller. To put this simple: there are significant fluctuations

in the copulas over time, but the factors are able to capture them well.

15The Kullback-Leibler divergence for the pandemic year 2021 is even 0.2.

19



Figure 3: Comparison of quantile functions in raw and approximated data (important factors)

Mean Consumption

(a) 1st to 5th decile (b) 6th to 9th decile (c) top decile

Mean Income

(d) 1st to 5th decile (e) 6th to 9th decile (f) top decile

Mean Wealth

(g) 1st to 5th decile (h) 6th to 9th decile (i) top decile

Notes: Figure shows the quantile functions (mean within decile) for consumption, income, and wealth deciles from
the survey data (squares) and approximation (dots) using only the fluctuations in the most important factors in
(14). Top row shows quantile functions for CEX consumption. Middle and bottom row show quantile functions for
SCF income and wealth. Dotted lines show linear interpolation between survey waves.
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Figure 4: Comparison of the raw data and approximated copula (important factors)

Notes: Figure shows as a black dashed line the distance between the time average copula in the PSID and the raw
data copula at every survey year. The red solid line is the distance between the copula that results from letting
fluctuate only the most important factors in Equation (14) and the raw data copula at every survey year. Distances
are measured in terms of the Kullback-Leibler divergence relative to the raw data copula.

4.1.2 Validation of Hyperparameter Choices

To evaluate our hyperparameter choices, the Bayesian estimation priors for the measure-

ment error variances, we compare the series resulting from the Kalman smoother after estima-

tion with the actual point estimates and their confidence bounds from the survey data.

Intuitively, if the prior for the measurement error variance is too low, it will force the es-

timator to exactly match each survey estimate of the distribution, despite the fact that each

survey estimate is itself subject to measurement error. Thus, we should expect the smoother

estimate to fall within the confidence bounds of each sample estimate at most with the cor-

responding probability of the bounds. The fact that the confidence level is an upper bound is

because the measurement error captures not only the sampling uncertainty that the confidence

bounds capture, but also conceptual differences.

Choosing narrow measurement errors would overstate precision and potentially limit co-

movement with aggregates, driving parameter estimates for B, which captures this comove-

ment, toward zero. Another reason not to be conservative with the measurement errors is that

allowing for measurement error also accounts for the fact that we combine data from different

sources to produce a consensus estimate. These different data sources, despite their individual

detrending, may produce some temporarily divergent estimates of the distributions. With-

out sufficient measurement error, the consensus estimate is then forced to oscillate between

these different distribution estimates over short time intervals, rather than capturing their co-

movements.
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Table 2: Deviations of smoothed estimates and microdata: Fraction within confidence bounds

Measure CEX CPS SCF SIPP PSID Overall

Consumption quantiles 87% —% —% —% 100% 89%

Income quantiles 93% 98% 96% 53% 97% 96%

Wealth quantiles —% —% 96% 55% 100% 98%

Copula densities 100% —% 98% 95% 82% 87%

Notes: The table reports, by microdata and object, the fraction of estimates from the Kalman smoother at the pos-
terior mode that fall within the 95% bootstrapped confidence intervals for the respective microdata. Quantile and
copula estimates are defined on a decile grid.

On the other hand, if the prior for the measurement error variance is too high, the estimator

will treat the data as uninformative, and the smoother will miss the survey estimates more

often and to a much greater extent than implied by its confidence bounds. We validate the

choice of hyperparameters graphically for income and wealth in the SCF data and provide

comprehensive summary statistics across all datasets and estimates.

Figure 5 shows average income (top row) and wealth (bottom row) for the top 10 percent

(first column), the next 40 percent (second column), and the bottom 50 percent (last column)

of the respective distributions. It shows the point estimates from the surveys, along with their

95% confidence limits, and the results from the Kalman smoother based on our estimates of

the parameters of equation (15). Overall, the smoothed estimates fall outside their respective

confidence bounds in only two out of 102 observations. This is a probability slightly smaller

than the confidence level.

Table 2 provides a comprehensive summary of this validation approach. For all quantile

functions and copulas, we report for each data set and survey year how often the respective

smoother estimate is within the confidence limits. Again, we use a confidence level of 95%.

For the quantile functions, we find overall a modest difference (one to three percent) between

the confidence level and the fraction of smoothed estimates that fall outside the confidence

bounds. For no data set and no quantile function does the difference exceed six percentage

points. The difference is largest for consumption, where conceptual differences in the surveys

are also likely to be the largest. For the copula densities, the smoother shows larger discrepan-

cies, falling in twelve instead of one percent of all observations outside the confidence bounds.

Consistent with our findings on consumption quantiles, it is even more difficult to obtain a

consensus estimate of the joint rank distribution of consumption and income across PSID and

CEX.
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Figure 5: Comparison of smoothed distributional data and direct survey estimates

Consumption by consumption

(a) Bottom 50 percent (b) 50-90 percent (c) Top 10 percent

Income by income

(c) Bottom 50 percent (d) 50-90 percent (e) Top 10 percent

Wealth by wealth

(f) Bottom 50 percent (g) 50-90 percent (h) Top 10 percent

Notes: Figure shows the average consumption, income, and wealth for the bottom 50 percent, 50-90 percent, and
top 10 percent of households of the respective distribution. Dots show the estimates from the individual survey
waves together with 95% confidence bounds. The solid red line shows the baseline estimate from the Kalman
smoother at the posterior mode. Consumption shows CEX data and reconstruction. Income and wealth show SCF
data and reconstruction. The legend reports for each panel the share of smoothed estimates within the confidence
bounds of the survey waves.
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4.1.3 Predictability of Distributional Data

To validate how well the method can predict distributional dynamics, we compare how

well the model predicts unused microdata. Because we allow for rich dataset-specific fixed ef-

fects and trends, we drop a number of observations in the survey year, which we then predict

using the model re-estimated on the restricted sample alone (as an out-of-sample prediction).

Dropping observations changes the estimated parameters of the factor model (15), but it also

changes the estimated measurement errors of the smoothed predictions. Specifically, we per-

form four experiments shown in the four rows of Figure 6.

First, we include only every fourth CEX survey year in the estimation, reducing the num-

ber of CEX survey years included in the estimation from 38 to 10. The focus of this exercise

is to predict the distributional dynamics of consumption. Dropping three out of four years

is motivated by the fact that most countries in Europe only survey consumption every four

years. The first row of Figure 6 shows the average consumption of the top 10%, next 40% and

bottom 50% (in terms of consumption) relative to the average across households. There is a

large sampling uncertainty around the CEX data, the 95% confidence intervals are displayed

as error bars. For this reason, even in the data-rich specification (with annual CEX data), the

smoothed estimate regularly deviates from the raw distributional data, with correlations of the

two around 95%. The correlation of the smoothed data using only every fourth survey year

with the data using every survey year is in the same range, i.e., very high, meaning that the

model can predict the consumption distribution well.

The next three experiments focus on the distributional dynamics of wealth, since wealth

is notoriously the least frequently observed data. In the second and third experiments, we

remove a series of microdata observations. In the second experiment, this is the last 20 quar-

ters of all microdata. The purpose of this exercise is to assess the predictability of the distri-

butional data using our method in terms of a nowcast of the wealth distribution. The third

experiment drops all microdata over the housing cycle of the first decade of the 21st century

between 2004Q4 and 2009Q4—arguably a period characterized by large swings in the wealth

distribution (Kuhn, Schularick, and Steins, 2020). In both experiments, we let only the aggre-

gate data inform the estimated distributional dynamics for the period in which we remove the

microdata. For both experiments, we find that the prediction that uses all microdata and the

prediction that omits five years of microdata are very close. Even in the period where we drop

the microdata information, the distributional dynamics of wealth are well captured by aggre-

gate factors, in line with previous research (Kuhn, Schularick, and Steins, 2020; Bayer, Born,

and Luetticke, 2024).

The fourth experiment rationalizes these results. Rather than re-estimating (15), we drop a

single SCF sample at a time when running the Kalman smoother. This gives us 17 smoothed
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Figure 6: Predictability of distributional data

Consumption by consumption percentile

CEX data vs. estimates from using CEX every 4 years

(a) Bottom 50 percent (b) 50-90 percent (c) Top 10 percent

Wealth by wealth percentile

Removing microdata from last 20 quarters of estimation

(d) Bottom 50 percent (e) 50-90 percent (f) Top 10 percent

Removing microdata from the housing cycle

(g) Bottom 50 percent (h) 50-90 percent (i) Top 10 percent

Removing one SCF wave at a time

(j) Bottom 50 percent (k) 50-90 percent (l) Top 10 percent

Notes: Figure shows baseline model estimate for consumption (panels (a) to (c)) and wealth (panels (d) to (l))
for different samples. Baseline estimates using all data is always shown as solid red line. Panel (a) to (c): less
data (dashed blue line) shows the smoothed estimate that results from a re-estimation of the model (and Kalman
smoother) when CEX microdata enters only every fourth year (black solid dots). Panel (d) to (f): dashed blue line
shows smoothed estimates when the last 20 quarters of all microdata have been dropped in model estimation and
Kalman smoother (empty dots). Panel (g) to (i): Same exercise as (d) to (f) but dropping the observations over the
house price cycle (2004Q4 and 2009Q4). Panel (j) to (l): show smoothed estimates when only a single SCF wave has
been dropped in the Kalman smoother. The black squares show the prediction of the dropped data at the survey
wave and the dots show the estimate from the survey data of this wave. Error bars in all figures indicate 95%
confidence bounds for each individual survey sample.
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distributional data series alongside the one using all SCF waves. The latter is shown as a solid

line in the figures in the bottom row of Figure 6. The stars indicate the corresponding smoothed

prediction for the time of each of the survey waves that we have omitted. For example, the star

in 1992 is the prediction for the wealth distribution where the 1992 SCF survey not entered the

smoother. The diamond shows the direct estimate from the corresponding survey (with its

confidence limits). The fact that the stars are virtually on top of the solid line implies that,

conditional on the model, a single observation of the distributional data has little effect on the

smoothed series. In other words, aggregate factors must be important.

4.2 Comparison with External Estimates from Other Sources/Methods

Having established that our method predicts well out of sample but within the surveys

used to estimate the distributional data, we compare our high-frequency distributional esti-

mates with estimates for the cyclical component of income and wealth distribution from the

Distributional Financial Accounts (DFA) (Batty et al., 2020) and the World Inequality Database

(WID) (Alvaredo et al., 2013). The former is based exclusively on the SCF as microdata and

uses a different estimation technique to produce high-frequency distributional estimates. The

latter is based on annual tax data, but does not use a time series framework to generate higher

frequency data. Thus, both the WID and the DFA are themselves estimates. For comparison,

we rely on the DFA estimates of average wealth by income, which allow us to compare the

estimates of the joint distribution along this dimension.

Figure 7 shows the results of this comparison for the cyclical fluctuations (in logs).16 The

first two panels compare the wealth by wealth group data from the DFA and the WID. We focus

on the wealth of the wealth-richest 10 percent and the wealth of the next 40 percent because

the poorest half of the population has wealth very close to zero.

We find that our method produces smoothed estimates that are close to both alternative

estimates and well within the range of the DFA and WID. DFA also estimates a time series of

wealth by income group, see subfigures (c) and (d). Again, we find a close correlation between

our estimates and the DFA estimates where available. Finally, subfigures (e) and (f) look at the

income of the richest 10 percent and the next 40 percent, which is only available in the WID.

Again, we find a strong comovement between our estimates and the WID estimates, with the

WID showing very volatile and non-persistent changes in the income and wealth of the “next

40 percent” households for some years in the 1960s, reflecting the fact that the WID does not

use a time series model, so that all estimates are considered independent over time, and it also

does not allow for measurement errors resulting from sampling in the underlying microdata.

16We define the cyclical component as the difference between the raw series and its HP-filtered counterpart with
the smoothness parameter λ set to 1600 for quarterly series and 6 for annual series.
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Figure 7: Comparison of cyclical component of distributional data to external sources

Wealth (average)

(a) top 10 percentile in wealth (b) 50 - 90 percentile in wealth

(c) top 20 percentile in income (d) 40 - 80 percentile in income

Income (average)

(e) top 10 percentile in income (f) 50 - 90 percentile in income

Notes: Figure shows the cyclical component of (log) average wealth of (a) the wealthiest 10 percent,
(b) the next wealthiest 40 percent, (c) the 20 percent income-richest households, and (d) the next
40 percent income-richest households. Bottom row shows the cyclical component of (log) average
income of (e) the income-richest 10 percent and (f) the next income-richest 40 percent. Red lines
show cyclical components from baseline model at quarterly frequency. Dotted green line show
annual data from the World Inequality Database (WID). Dashed blue lines show quarterly data
from the Distributional Financial Accounts (DFA). Cyclical components are obtained by an HP-filter
with smoothing parameter λ = 6 for annual data and λ = 1, 600 for quarterly data.
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5 Consumption Dynamics along the Income and Wealth Distribu-

tion over the Business Cycle

In estimating consumption dynamics, the literature has traditionally relied on two main ap-

proaches: the direct method, which draws on household-level consumption data (e.g., Coibion

et al., 2017; Cloyne, Ferreira, and Surico, 2020), and the indirect method, which imputes con-

sumption through a budget identity (e.g., Eika, Mogstad, and Vestad, 2020; Holm, Paul, and

Tischbirek, 2021; Fagereng, Holm, and Natvik, 2021).17 Both methods come with challenges:

the direct approach requires rich sampling variation, while the indirect approach is susceptible

to errors due to its reliance on assumptions and multiple measurements.

The strength of our method is that it sidesteps both approaches by estimating a joint distri-

bution and with some additional structure, addresses measurement error concerns. On top,

the distributional data is of high-frequency and containing income and wealth along with

consumption— providing insights that are absent from existing U.S. data. With these high-

dimensional data, we can trace the distributional dynamics underlying macroeconomic dy-

namics, which play an important role in heterogeneous agent business-cycle models (HA) (e.g.,

Kaplan, Moll, and Violante, 2018; Bayer, Born, and Luetticke, 2024).

5.1 Consumption dynamics over three Recessions

For the application, we understand the key driver of macroeconomic dynamics and a de-

terminant of macroeconomic stabilization policies is the consumption dynamics of households

during recessions. In addition, the HA literature has emphasized the importance of hetero-

geneity in consumption responses along the income and wealth distribution. In this effort, we

trace out the consumption dynamics along the income and wealth distribution for the three

most recent recessions in the United States: the dot-com recession of the early 2000s, the Fi-

nancial crisis near the end of the first decade of the 21st century, and most recently, the Covid

recession. With this, we contribute to discussions concerning different HA model mechanisms,

whose microfoundation still remains constrained by data limitations as high frequency data on

consumption dynamics along the income and wealth distribution had remained unavailable.

Exercise. For the three recessions, we consider the consumption dynamics of the bottom

50%, the 50% to 90%, and the top 10% of the income and wealth distribution. To compare

the business cycle dynamics of consumption for the different income and wealth groups, we

express income relative to the economy-wide average for each period and then index these

17The direct approach measures consumption directly from household-level data, while the indirect approach
imputes consumption using a household budget identity, which may introduce compounded measurement errors
by relying on multiple variables.

28



Figure 8: Comparison of consumption dynamics during recessions

Consumption dynamics by income

(a) Dotcom (b) Financial Crisis (c) Covid

Consumption dynamics by wealth

(d) Dotcom (e) Financial Crisis (f) Covid

Notes: Relative consumption dynamics during recessions along the income and wealth distribution. Consumption
dynamics of each income (wealth) group are shown relative to average household consumption. These relative
consumption time series for each group are indexed to the beginning of the recession. The horizontal axes shows
changes of consumption over time relative to the change of average consumption over time. The horizontal axis
shows the time relative to the start of the recession. The recessions are the Dotcom recession in 2001q1, Financial
Crisis in 2007q4, and Covid in 2019q4. Top (bottom) row shows consumption dynamics by income (wealth) group
with the bottom 50%, 50%-90%, and top 10% of the income (wealth) distribution as income (wealth) groups.

relative consumption dynamics to the quarter preceding the recession.18,19 Given that income

is the primary source of consumption financing for most households, Figure 8 first analyzes

how consumption evolves across income groups during the last three U.S. recessions.

In Panels (a) to (c), we make several interesting observations. First, outside the Covid reces-

sion, the top half of the consumption distribution shows very similar consumption dynamics

over recessions. Consumption cyclicality of the top and middle class follow that of the average

household before each recession, but the onset of each recession brought different responses:

relative increases for the Dotcom bubble, stability during the financial crises, and decreases

during Covid. In fact, the top 10% lost 10% relative to average post Covid—a striking pattern

for recessions in the 21st century.

Second, we find that the bottom 50% are poorly insured against aggregate risk. The nor-

malization relative to average consumption has already removed aggregate fluctuations in the

18We construct symmetric 3-quarter moving averages and use this moving average for the normalization to the
pre-recession quarter.

19We rely on the NBER business cycle dates with the Dotcom recession starting in 2001q1, Financial Crisis in
2007q4, and Covid in 2019q4.
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level of consumption, still we find that relative to the average, the bottom 50% lose typically

5% in terms of consumption growth during the first year of a recession. Again, only the Covid

recession is different, where the bottom 50% of the income distribution saw over a 5% increase

in their consumption relative to average consumption. In all, only the financial crises saw

convergence of households to pre-recession consumption levels — the other recessions exhibit

signs of divergence.

Figure 8 also reports consumption dynamics by wealth group in panels (d) to (f). We find

that a very different picture emerges. The Covid recession now shows a rather uniform re-

sponse of consumption across wealth groups. The aftermath of the Financial Crisis and the

Dotcom recessions reveals strong diverging dynamics, plausibly driven by large swings in

asset prices (Kuhn, Schularick, and Steins, 2020). In the first year of the Financial Crisis, con-

sumption of the wealthiest 10% of U.S. households declined relative to the average by 5% and

did not recover in the second year. In the aftermath of the Dotcom recession, we find a flipped

picture with the top 10% of households showing much higher consumption growth than the

bottom 50% of the wealth distribution. Lottery-like realized gains from short-selling at the top

likely fueled these responses (Ofek and Richardson, 2003; Lamont and Stein, 2004) and rising

house prices during the early 2000s kept them afloat.

To conclude, two key insights emerge. First, consumption dynamics differ significantly

between the income and wealth rich and poor. Whereas some recessions reduce consumption

inequality such as the Covid recession, others such as the Dotcom recession increase consump-

tion inequality. Second, asset prices are a likely important driver of the differential consump-

tion dynamics by income and wealth. Comparing the Dotcom recession with large swings

in asset prices before and after and the Covid crisis with a strong fiscal response and income

support programs, we find very different consumption patterns by income and wealth that a

one-dimensional analysis of only consumption by income or by wealth would not have de-

tected. Our novel data allow us to identify such underlying differences in the potential drivers

of recession dynamics by jointly studying consumption dynamics by income and wealth. Fu-

ture work will have to explore in more detail which of the proposed economic mechanisms in

the rich class of heterogeneous agent models can account for these new facts that our synthetic

distributional data has uncovered.

6 Conclusion

In this paper, we presented a new method to derive synthetic distributional consumption,

income, and wealth data. The method contributes to the modern theory of macroeconomic

dynamics that has the joint distribution of consumption, income, and wealth as a key deter-
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minant of aggregate dynamics. Our method closes a gap as it provides a method to study the

empirical distributional dynamics as counterpart to the existing theory over time. We have

shown that the method is able to incorporate information from various microdata sources in-

dependent of their frequency and coverage of variables. By forecasting out of sample, we show

that our method can generate joint distributional information at high frequency with a good

precision. We show that the derived data can shed new light on the question of how business

cycle fluctuations and the distribution of consumption, income, and wealth interact.
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A Data

The construction of these estimates relies on a great deal of data. An advantage with our

method, however, is that it can incorporate these different microdata and their various dif-

ferences in generating consensus estimates of the distributional data. Below, we describe the

data, all expressed in 2019 dollars, and explain the mappings across data to ensure measures

are at some base comparability (Curtin, Juster, and Morgan, 1989; Czajka, Jacobson, and Cody,

2003; Pfeffer et al., 2016). See Table 1 for information on their availability.

A.1 SIPP

The SIPP panel is a nationally representative, individual-level survey known for provid-

ing high-frequency dynamics on employment, earnings, wealth, household composition and

program participation. For the data cleaning, the data is aggregated to the household-level, at

quarterly frequency.

Income. For the 2014 releases and onward, we use the THTOTINC variable for income. For

data releases prior, we sum over (1) earnings (ws1_am, ws1_am) (2) property/investment

income (tpprpinc) (3) unemployment (tuc1amt, tuc2amt, tuc3amt) and (4) transfers

(tptrninc, tpscininc, twicamt, tfs_am, tssi_amt) to construct household income.

Wealth. For the 2014 releases and onward, we use the THNETWORTH variable for wealth. For

data releases prior, wealth is defined as total assets (hhtwlth) net total liabilities (hhusdbt,

hhscdbt).

A.2 SCF+

The Survey of Consumer Finances (SCF), since its inception in 1983, is seen as the data

gold mine for household information on income and wealth; however, due to the research ex-

cavations of Kuhn, Schularick, and Steins (2020), we are able to combine these triennial cross-

sections with historical waves of the SCF; hence the name SCF+. Kuhn, Schularick, and Steins

(2020) mention “... the SCF+ is the first dataset that makes it possible to study the joint distri-

butions of income and wealth over the long run”. Thus, it goes without saying how requisite

this is for our study. Below we describe the concepts in turn.

Income. Our definition of income follows Kuhn, Schularick, and Steins (2020), which consists

of the following components: (1) labor income (i.e., earnings) (2) income from public transfers
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(3) income from professional practice and self-employment (4) income from rents (5) dividend

income and (6) business/farm income. A different taxonomy that illustrates these components

are taxable and transfer income.

Assets. Total assets include (1) liquid assets such as a household’s checking and savings ac-

count, CDs, call/money market accounts, short-term government bonds, and mutual funds (2)

illiquid assets such as housing and other real estate minus debt on that properties respectively,

automobiles (3) defined-contribution retirement plans (4) the cash value of life insurance (5)

stocks and (6) business equity.

Debt. We define debt of a household as the sum of personal (mostly unsecured) debt and

housing (mortgage) debt. Housing debt includes debt from all properties and any loans made

against the housing e.g., through HELOCs. Personal debt includes car loans, education loans,

any loans from relatives, credit card debt, medical debt and legal debt.

Wealth. Wealth is total assets net total debt of a household.

A.3 PSID

The Panel Study of Income Dynamics complements the SCF+ extraordinarily well, as they

take our estimations beyond more than half a century. In comparison to the post-1983 SCF, a

deeper analysis of their similarity can be found in Pfeffer et al. (2016).

Income. The PSID has collected family income annually from 1968 to 1996 and then biennially

from 1997 to 2021. Their measure of income is the sum of taxable income, transfers and social

security for the reference person, the spouse/partner (if any) and other members of the fam-

ily.20

Assets. Data collection on household wealth took place in 1984, 1989, 1994, and then every

wave beginning in 1999. The data on assets is split into liquid and illiquid assets. Albeit mi-

nor, the definition of liquid assets will vary between datasets, so careful attention here. Liquid

assets for the PSID includes checking and savings accounts, short-term instruments such as

money-market accounts, certificates of deposit, and treasury bills. Illiquid assets include busi-

ness equity, financial assets held in mutual funds, stocks, bond funds, investment funds; real

assets held in real estate, vehicles like motor homes, boats, trailers, and cars; and retirement
20In the PSID, a family is a group of people living together who are economically interdependent.

40



wealth in private annuities or IRAs.

Debt. For the PSID, we achieve the same debt split: personal and mortgage debt. This includes

all kinds of real-estate debt, and unsecured debt such as credit card debt, student loans, medi-

cal debt, legal debt, and loans from relatives.

Wealth. Wealth is total assets net total debt of a household.

Consumption. Studying papers such as Skinner (1987), Cutler et al. (1991), Flavin and Ya-

mashita (2002), Attanasio, Hurst, and Pistaferri (2014), and Attanasio and Pistaferri (2014), we

define consumption as the sum of these expenditures: food, rent (for renters), housing rental

equivalence (for home-owners), utilities, health, public transport, education, and childcare. We

set the housing rental equivalence to be 6% of the home market value reported by households

in the PSID. Consumption data is only available from 1999 in a biennial interval.

A.4 CPS

We use the Community Population Survey (CPS) Annual Social and Economic Supplement

(ASEC). The sample is designed primarily to produce estimates of the labor force characteris-

tics and runs from 1962 to 2022.

Income. Income data are collected as part of the ASEC for the months of February, March and

April as a supplement to the regular CPS monthly labor force interviews. The ASEC asks each

person in the sample who is 15 years old and over about the amount of income received from

a list of sources in the previous calendar year. We treat these observations as being observed

in quarter 4 of the previous calendar year.

A.5 CEX

The Consumption Expenditure Survey (CEX) is the most comprehensive household survey

in the U.S. for recording the consumption habits of households. The CEX has two components:

the interview survey (IS) and the diary survey (DS). The interview survey has sufficiently rich

data on what we need, so we only use data from this component. Within this component,

there are several files, each of which pertain to a topic, from which we can extract information.

The following table breaks down each category of consumption, defining which UCCs belong

to which category and which file it can be found in. All of these categories will combine to

make the consumption variable. The table will also define wealth concepts of the CEX we use
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in our study. Since each household consumption record is with respect to a UCC, we find this

presentation most apropos.
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Item UCCs / FMLI label File

Consumption

Food 190904, 790220, 190901, 190902, 190903,

790410, 790430, 200900, 790330, 790420,

800700, 790230, 790240

MTBI

Rent 210110, 800710 MTBI

Utilities 250111, 250112, 250113, 250114, 250211,

250212, 250213, 250214, 250221, 250222,

250223, 250224, 250901, 250902, 250903,

250904, 250911, 250912, 250913, 250914,

260111, 260112, 260113, 260114, 260211,

260212, 260213, 260214, 270211, 270212,

270213, 270214, 270310, 270411, 270412,

270413, 270414,270101, 270102, 270104,

270105, 270310, 270311, 690116, 270901,

270902, 270903, 270904

MTBI

Health 570110, 570111, 570210, 570220, 570230,

560110, 560210, 560310, 560330, 560400,

340906, 540000, 550110, 550320, 550330,

550340, 570901, 570903, 570240, 580111,

580112, 580113, 580114, 580311, 580312,

580901, 580903, 580904, 580905, 580906,

580400, 580907

MTBI

Public Transport 520531, 520532, 530311, 530312, 530501,

530902, 530210, 530411, 530412, 520511,

520512, 520521, 520522, 520542, 520902,

520903, 520904, 520905, 520906, 520907,

530110, 530901, 520110, 520310

MTBI
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Education 210310, 370903, 390901, 660110, 660210,

660310, 660900, 670110, 670210, 670901,

670902, 800802, 800804, 690111, 690112,

660410, 660902, 670410, 670903, 690114,

690310

MTBI

Child care 340210, 340211, 340212, 670310, 660901 MTBI

Rental Equiva-

lence

910050, 800721 (market value of home),

SIMHOUSX, RENTEQVX

FMLI,

MTBI

Gas & Vehicle Re-

pairs

470111, 470112, 470113, 470220, 470211,

470212, 480110, 480212, 480213, 480214,

490110, 490211, 490212, 490221, 490231,

490232, 490311, 490312, 490313, 490314,

490318, 490319, 490411, 490412, 490413,

490501, 490502, 490900, 520410, 480215,

620113

MTBI

Other Concepts

Housing Debt QBLNCM1X, QBLNCM2X, QBLNCM3X, QBLNCM1G,

PRINAMTX

MOR

Personal Debt 6001, 6002 (1990-2013), 5400, 5500, 5600,

CREDITX, STUDNTX, OTHLONX, CREDITX1,

CREDITX5, QBALNM1X

MTBI,

ITBI,

FMLI,

FN2

Liquid Assets SAVACCTX, CKBKACTX, USBNDX, 920010, 920020,

920030, 5100, LIQUIDX

FMLI,

ITBI

Financial Assets 5800, 920040, STOCKX, SECESTX, OTHASTX FMLI,

ITBI

Income FINCBTAX FMLI

Comments

Table 3: Table shows, by item, the identifiers necessary to construct each component of consumption, income and
wealth for the CEX. The location of these identifiers can be found under the File column.
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A.6 Aggregates

Together with the microdata, we specify a model component that captures the various ag-

gregate shocks that buffer the joint distribution of consumption, income, and wealth. This is

represented in the state equation of the state-space model. The aggregate data we rely on to

extract this information comes from the FRED-QD. This has various macro-data on industrial

production, employment, housing, inventories, prices, earnings, productivity, household ex-

pectations, household balance sheets, interest rates, credit, etc. You can find more information

here.

Before performing the PCA on the aggregates, we are careful to check each series for non-

stationarity. Recent literature has placed emphasis on the identifiability of orthogonal fac-

tors in high-dimensional settings, in particular for macroeconomic aggregates, and finds non-

stationarity to be the culprit of spurious variation (Onatski and Wang, 2021; Hamilton and Xi,

2022). Running the PCA on the non-stationary data will erroneously find that a large set of

aggregates is confined to just a few factors. Taking note, we first remove any variation due

to seasonality via the X13-ARIMA and follow closely the transformations proposed by Mc-

Cracken and Ng (2021). The resulting series satisfy an Augmented-Dickey-Fuller Test with a

significance level of α = 0.05 and are visually inspected for abnormalities.

The set of now stationary aggregates are concatenated by three lags to form a data matrix of

quadruple the size and then column-wise standardized. A PCA on this block of data identifies

21 orthogonal factors. The model estimation includes these factors as inputs Yt. More on the

selection of factors can be found in Appendix G.

B Minnesota Prior

The prior for the bayesian estimation is defined in block 18. In it, is the prior on Φ ⊂ θ,

which consists of the parameters governing the state equation. To represent its uncertainty, the

following Minnesota prior is proposed:

vec(A)

vec(B)

 ∼ MN (µMinn, VMinn). (20)
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Aij =


κ5 for the first lag of the state variable, i = j

0 for the exogenous terms, i ̸= j

B = 0

VMinn, ii =



κ0
lκ4 for own lags of the respective state variable i

κ1κ0
lκ4

σ̂2
ii

σ̂2
jj

for lags of the other state variables j

κ2κ0
(l+1)κ4

σ̂2
ii

σ̂2
jj

for exogenous terms

κ3κ0σ̂
2
ii for deterministic terms

(21)

where the prior distribution on A and B is a multivariate normal with µMinn the mean of

the distribution and VMinn the diagonal variance-covariance matrix. Governing the tightness

variances are the set of hyperparameters {κi}5i=0. Table 4 covers each parameter in necessary

detail.21 σ̂2
ii is the estimated variance of the residuals from a least squares estimation of esti-

mated factor i on 4 lags, where factor i is estimated from the PCA and linearly interpolated

after. For the deterministic terms, they are sample estimates of their variance.

Hyperparameter Value Purpose

κ0 0.2 controls overall tightness of prior variances and prior variance of endogenous variable
i’s own lags

κ1 0.3 the size of the prior variance of state variables, not corresponding to own lags
κ2 0.001 the size of the prior variance of exogenous terms
κ3 − the size of the prior variance of deterministic terms
κ4 2 the lag decay rate
κ5 0.90 persistence of state LOM

Table 4: Minnesota Hyperparameters

C Distributional Factors

21It should be noted that κ2 is set low since σ̂2
ii is high and σ̂2

jj is always equal to 1. κ3 is not set since we do not
have any deterministic/trend exogenous terms in the state equation.
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Figure 9: Distributional Factors

D Details on MCMC

To estimate the posterior distribution of the parameters and subsequently sample, we em-

ploy the DIME sampler from Boehl (2024). The sampler is particularly advantageous for deal-

ing with potentially complex, high-dimensional, multi-modal posterior distributions, espe-

cially when these distributions have ex-ante unknown properties. Traditional MCMC methods

often struggle with such distributions due to their reliance on gradient-based optimization or

difficulties in converging efficiently. DIME addresses these issues by combining the strengths

of global multi-start optimizers with the robustness of Monte Carlo methods, allowing it to

explore the typical set of the posterior distribution more quickly and effectively. It also avoids

the need for a pre-optimization step.

To initialize the sampler, I let an ensemble of 5n chains run for 4000 − 5000 iterations, for

n the size of the parameter vector. The last 500 are kept as the posterior distribution. There is

a single tuning parameter χ that dictates (for each iteration and for each chain) the probability

of mixture between the local and global transition kernel. We set χ = 0.1, which means with

10% probability, we draw the global transition kernel.

Figure 10 shows the traces of the log-likelihood of all chains over the iterations. The plot

clearly shows signs of convergence. The sampler implementation also returns the current log-

weight on the history of the proposal distribution. The log-weight measures how much the

current ensemble of MCMC samples influences the proposal distribution. Early in the sam-

pling process, the log-weight should be greater than zero, indicating that the current samples

strongly influence the proposal distribution, allowing it to adapt to the target distribution. As

the sampling progresses and the chains begin to converge, the log-weight should be very close

to zero, indicating that the influence of the current samples decreases and the proposal dis-
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tribution stabilizes. After the 4000 − 5000 iterations, the log-weight is always very close to 0

(around 9e-7 to be exact).

E Estimated Parameters

The parameters of the model are defined by the law of motion of states A, control variables

B, the variance covariance matrix of the state process noise Ω and the measurement noise ma-

trix ∆. The resulting parameter vector θ from the estimated baseline model of consumption,

income and wealth is summarized below:

A =



−0.172138 0.104549 0.0375995 −0.0365716 0.0517868 0.164601 0.169162

−0.198363 0.0220448 0.0318587 −0.0755722 0.583719 −0.439327 0.179461

−0.232617 0.159984 −0.299377 −0.312839 0.439963 0.424342 0.405313

0.122183 0.0777094 0.0076737 −0.136233 0.0410441 −0.3757 −0.469405

0.090222 0.0487302 −0.035005 −0.120615 −0.090295−0.296449 −0.205093

0.0707263 −0.0404629 −0.0218973 −0.0288991 0.13403 −0.207689−0.0808181

−0.0244344−0.0121677−0.00627248 0.0479002 0.0182849−0.137255 0.235568



B′ =



−0.120962 −0.0106441 −0.0429657 −0.19099 −0.072416 0.127412 0.0309303

0.0416033 −0.191426 0.0890118 −0.187741 0.0113039 −0.0452964 −0.0154524

−0.0729248 0.0743314 −0.0351416 0.070014 −0.0580504 0.0233263 0.00293904

0.131014 0.0758711 −0.0756035 0.0527423 0.00081871 −0.0358998 0.00104553

0.127058 −0.0273002 0.156481 0.00843965 −0.0288098 −0.0133379 0.0103688

0.0493484 −0.117778 0.01163 0.0471963 −0.0839208 −0.0387515 0.00341004

0.0231236 −0.162675 −0.309534 −0.140972 −0.00896298 −0.0111249 0.0111561

−0.133706 0.0205727 −0.0639536 −0.00693861−0.00412038 −0.0241852 −0.0270461

0.0537212 0.0539921 0.125736 −0.0690668 −0.0046014 0.0595303 0.0261332

0.177312 −0.137346 −0.0582303 0.146275 0.0111653 0.00545539 0.0247737

0.250165 0.00894873 0.196468 −0.0737448 0.0696563 −0.051642 −0.0159294

−0.0669459 0.0617581 0.176292 0.131503 −0.0221056 0.0372529 −0.0314296

0.142072 0.0840433 0.0536954 −0.122196 0.0346887 −0.0791965 0.036459

0.12649 0.00719191 −0.136866 0.0114966 −0.0452859 −0.00935734 −0.0216441

0.0426566 0.0498708 0.0383232 −0.0772039 −0.0111427 −0.0114288 −0.0364814

0.0721697 0.244335 0.0769378 −0.106185 −0.0292045 0.112148 0.0281219

−0.0649757 0.0215878 −0.00336058 −0.140149 0.00254169 −0.0612346 −0.00957795

0.0416246 −0.0187523 −0.0779292 0.154285 0.0265518 0.105266 0.00174256

−0.17362 −0.286801 0.205799 −0.162271 0.0335973 −0.020848 0.0336134

0.242736 −0.130083 0.116346 0.0825682 0.136489 −0.00618597 −0.0226616

−0.146157 −0.00539771 0.0554425 0.00856631 −0.101038 0.0165377 −0.0332974
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Figure 10: Converging Chains

(a) Baseline model (b) Excluding housing cycle

(c) Excluding recent 20 quarters (d) CEX every 4 years

(e) With additional factors (f) With less factors

(g) Higher order

Notes: Figure shows, for each model, the evolution of the ensemble of chains in terms of log-
likelihood. Log-likelihood values are scaled to ensure visualization of the chains’ evolution. Last
500 draws are kept as samples of the posterior. Refer to the text for the different model specifica-
tions.
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diag(Ω) =



0.8959743540555566

1.7705637242549592

6.3263383206429245

1.3020308461348842

0.5291877124871194

1.5024039261214224

0.23863667802303593



diag(∆) =



1.6024590866261839

4.337758003802917

−0.22295262182858905

14.715094101556144

11.405188534807998

−2.8324599266551034

−3.001686737483659

0.8808642685742953

−2.830542756560333

−0.6929230805702409

1.9290834527792229

−1.5225502172616414

1.607191251281862

30.840680139761012

2.7987305685544297

0.7685929868640887

8.792026736855282

10.254048620164346


F Additional Factors

There may be concerns that the model is misspecified and that the distribution of con-

sumption, income and wealth are driven by more factors. These additional factors may carry

important information on the distributional dynamics orthogonal to the other factors and aggre-
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gate information. To this, instead of retaining the factors that represent 95% of the microdata

variation, we use 99% as our cutoff. Figure 11 compares the baseline estimates to the model es-

timates with more factors. Clearly, model estimates are unchanged from the addition of more

factors.

Figure 11: Estimates unchanged with additional factors

Consumption by consumption

(a) (b) (c)

Income by income

(d) (e) (f)

Wealth by wealth

(g) (h) (i)

Notes: See Figure 6 for further details.

G Factor Selection

The estimation of the joint distribution of consumption, income, and wealth necessitates

samples of this distribution and a comprehensive set of macroeconomic data to inform its dy-

namics. Macroeconomic theory and empirical validation suggest that both the distribution and

business cycle fluctuations are driven by a smaller set of underlying factors. Consequently, a

significant area of macro-econometric research has produced several estimators to determine

which of these factors to retain and how many factors are necessary.22 For our setting, it is

additionally crucial to motivate the macroeconomic data we project, since, alongside the mi-

crodata, this will determine the cyclicality of the distributional data. This interdependency is

further elaborated in the following section.

22For references, see Bai and Ng (2002), Ahn and Horenstein (2013), Bai and Ng (2019), Gagliardini, Ossola, and
Scaillet (2019), and Freyaldenhoven (2022).
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G.1 Choice of Factor Representation

The goal of factor decomposition of distributional data is to inform the size of the state-

space model and ensure that these factors can accurately reconstruct the cyclical movements

observed in the data. As illustrated in Figure 3, the factor decomposition effectively recon-

structs the data with minimal to no information loss. Consequently, we remain agnostic about

the specific factors retained, opting to retain enough factors to replicate the data on average.

Factors may consist of components that explain general or local movements within the dis-

tribution (Freyaldenhoven, 2022), possess eigenvalues greater than or less than 1, or induce

weak to no cross-correlation in the unretained factors.23 This observation underscores that

solely retaining factors that explain common movements, have eigenvalues greater than 1, or

focus on specific subsets of the factor space may inadequately capture the heterogeneity-rich

cyclicality of consumption, income, and wealth, which is paramount in this study. Figure XX

shows precisely this.

For the estimation of business cycle fluctuations, the selection of macroeconomic data must

account for the rich heterogeneity present in the distributional data. The conventional ap-

proach to estimating business cycle fluctuations relies on the FRED-QD dataset—a common

starting point of 200+ time series for exploratory factor analysis in macroeconomics. Many

studies will then estimate the common component of these macroeconomic time series, con-

sisting of a set of factors and their respective loadings, and define it as the most relevant move-

ments in the macroeconomy. For a given estimator, the number of factors from projecting the

FRED-QD dataset will vary and explain around 40− 50% of the (summable) data variation.

We adopt this approach, but use a more conservative estimator, which augments the nor-

mal estimated set of factors with local factors (Freyaldenhoven, 2022). These local factors only

explain a subset of the data, but carry nonetheless relatively large loadings. This approach

would capture the most pervasive business cycle fluctuations as well as the granular move-

ments, both potentially necessary to explain the income and wealth movements relevant for

consumption dynamics. Using this estimator, we find that six factors are sufficient to explain

the cyclical movement in the aggregate data (Panel (a)).

However, to inform the dynamics of the distributional factors, we specify four quarters of

aggregate information. Figure 12, Panel (b) presents the factors from performing the PCA on

these four quarters of data (over 1000 time series). Figure 12, Panel (c) plots the unweighted

eigenvalues Υ̂0
k and the eigenvalues accounting for the contribution of the loadings Υ̂2

k. Panel

(d) plots Ŝ2, which measures how concentrated the corresponding eigenvector is on its z

largest entries. Taking into account these two plots, we find that around 10 factors are suf-

23Our decomposition of the joint distribution into its correlational structure and marginal distributions implies
the potential existence of local factors. Any local change in a bona fide distribution inherently represents a global
change.
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ficient to explain the aggregate data. It is around 10 factors that Υ̂2
k < Υ̂0

k for the first time.

We ultimately settle on 21 factors, however, since it is around this point that the concentration

completely decreases .

Figure 12: Eigenvalue Analysis

(a) Stationary aggregates (b) Factors from 4 Lags of Stationary Aggregates

(c) Eigenvalues (d) Concentration
Notes: Figure shows an overview of the aggregate data. Panel (a) shows each aggregate series reduced to its sta-
tionary component. Panel (b) are the factors from 4 lags of stationary aggregate data. Panel (c) are the resulting
eigenvalues weighted by the respective eigenvector loadings. Panel (d) are the weight contributions to the eigen-
values based on eigenvector loadings. Data used are from FRED-QD 1959Q1 to 2024Q1.

H Less Factors (fix consumption labels)

What is lost? Marginals and correlational structure seem to be well represented by fewer

factors.
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Figure 13: Comparison of quantile functions in raw and approximated data (only 3 factors)

Mean Consumption

(a) 1st to 5th decile (b) 6th to 9th decile (c) top decile

Mean Income

(d) 1st to 5th decile (e) 6th to 9th decile (f) top decile

Mean Wealth

(g) 1st to 5th decile (h) 6th to 9th decile (i) top decile

Notes: See Figure 3 for details.
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Figure 14: Estimates unchanged with additional factors

Consumption by consumption

(a) (b) (c)

Income by income

(d) (e) (f)

Wealth by wealth

(g) (h) (i)

Notes: See Figure 6 for further details.

I Do results change with higher order?
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Figure 15: Comparison of cyclical component of distributional data to external sources

Wealth (average)

(a) top 10 percentile in wealth (b) 50 - 90 percentile in wealth

(c) top 20 percentile in income (d) 40 - 80 percentile in income

Income (average)

(e) top 10 percentile in income (f) 50 - 90 percentile in income

Notes: Figure presents model implied estimates from a model of higher order. Refer to Figure 7
for remaining notes.
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