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Abstract

This paper makes a case for the use of jackknife methods for standard error, p-value, and confidence

interval construction for difference-in-difference regression. We review CRVE1, CRVE2, bootstrap, and

jackknife standard error methods, and show that the first three can substantially underperform in con-

ventional settings. In contrast, our proposed jackknife inference methods work well in broad contexts.

We illustrate the relevance by replicating several influential DiD applications, and showing how inferen-

tial results can change if jackknife standard error and inference methods are used.
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1 Introduction

Difference-in-difference (DiD) regression is one of the most common empirical tools in current ap-

plied economic practice. The vast majority of applications report standard errors clustered at the level

of treatment. These standard errors, however, are biased towards zero, and the magnitude of bias can be

arbitrarily severe. As a consequence, conventionally reported standard errors, p-values, and confidence

intervals are unreliable.

In this paper, we argue that two simple changes can greatly alleviate these problems. First, standard

error calculation should be made by the jackknife. If the jackknife is implemented as proposed, the

variance estimator is guaranteed to be never downward biased. Jackknife variance estimation is simple

to implement, and is computationally efficient when there are a moderate number of clusters, which is

typical in applications.

The second change we recommend is the use of adjusted student t p-values and confidence inter-

vals based on a finite sample distributional approximation. These p-values and confidence intervals are

typically more conservative than conventional methods, and provide more accurate inferences in sim-

ulations. The adjusted student t approximation is computationally simple to implement, allowing for

routine default use.

To illustrate the methods, we investigate a set of results from three influential DiD applications: Card

and Krueger (1994), Bailey (2010), and Rao (2019). Using the original data from these papers, we cal-

culate standard errors, p-values, and confidence intervals both by conventional cluster-robust and our

proposed jackknife methods. We find that some results change considerably, while other results are unaf-

fected. These examples illustrate the magnitude of the changes due to our proposed changes in relevant

applications.

Cluster-robust variance estimation was introduced by Liang and Zeger (1986) and Arellano (1987) as

a natural extension of the HC0 heteroskedasticity-robust covariance matrix estimator of White (1980).

The common CRVE1 implementation (codified by the Stata cluster variance option) adds an ad hoc

degree-of-freedom correction. Since the influential work of Bertrand, Duflo, and Mullainathan (2004),

this estimator has become the ubiquitous approach for standard error construction for DiD regression.

In the context of heteroskedasticity-robust variance estimation, a substantial literature has devel-

oped investigating the poor performance of the HC0 estimator and its degree-of-freedom-corrected ver-

sion HC1. This literature includes MacKinnon and White (1985), Chesher and Jewitt (1987), Chesher

(1989), Chesher and Austin (1991), Long and Ervin (2000), and Young (2019). This literature has coa-

lesced on the recommendation to switch to HC3/jackknife standard errors, which are simple to calculate,

never-downward-biased, and robust to a variety of regressor settings.

In the heteroskedasticity-robust setting there is also a literature exploring unbiased or approximately

unbiased variance estimators, including Bera, Suprayitno, and Premaratne (2002), Cattaneo, Jansson,

and Newey (2018), and Kline, Saggio, and Solvsten (2020). These estimators can be computationally pro-

hibitive in large samples, are not necessarily non-negative, and have not yet been generalized to cluster-

robust estimation.

In the cluster-robust setting, an alternative variance estimator CRVE2 was proposed by Bell and Mc-
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Caffrey (2002), endorsed by Imbens and Kolesár (2016), and codified in Stata 18. A jackknife/CRVE3 esti-

mator was proposed and evaluated by MacKinnon, Nielsen, and Webb (2023abc). MacKinnon, Nielsen,

and Webb (2023b) develop an efficient computational implementation. Hansen (2024) analyzed the sta-

tistical properties of this estimator with some modifications, and showed that this is the only known

variance estimator which is never downward biased.

A number of papers investigate the poor performance of cluster-robust methods in regressions with

a small number of clusters and/or a small number of treated clusters. This includes Ibragimov and

Müller (2016), Rokicki, Cohen, Fink, Salomon, and Landrum (2018), Ferman and Pinto (2019), Hage-

mann (2019), and Niccodemi and Wansbeek (2022).

The jackknife estimator of variance was introduced by Tukey (1958) and was developed in the mono-

graphs of Efron (1982) and Shao and Tu (1995). Efron and Stein (1981) examined its statistical properties,

and showed that a version of the jackknife estimator is never downward biased in certain settings.

A modified student t distributional approximation to t-ratios constructed with CRVE2 standard er-

rors was proposed by Bell and McCaffrey (2002), Imbens and Kolesár (2016), and Pustejovsky and Tipton

(2018), and a related method based on CRVE1 standard errors was proposed by Young (2016). Inference

based on the wild bootstrap was proposed by Cameron, Gelbach, and Miller (2008), and its statistical

properties investigated by Djogbenou, MacKinnon, and Nielsen (2019) and Canay, Santos, and Shaikh

(2021). Randomization inference was proposed by MacKinnon and Webb (2020).

The performance of cluster-robust methods deteriorates when there are a small number of treated

clusters. In the extreme case of one treated cluster, conventional inference methods fail. In contrast, as

shown by Hansen (2024), a properly-constructed jackknife variance estimator remains never-downward-

biased in this context, resulting in conservative inference (100% coverage). Other methods have been

developed for inference with a single treated cluster under somewhat stronger assumptions by Conley

and Taber (2011) and Hagemann (2023).

A Stata and R program jregress which calculates our recommended jackknife methods is available

on the author’s website users.ssc.wisc.edu/~bhansen/, in addition to data and code for full replica-

tion of all numerical results reported in this paper.

2 Framework

The ubiquitous difference-in-difference equation is the clustered twoway fixed effect regression

Yi g t = θDi g t +γ′Zi g t +αg +φt +ei g t (1)

where g = 1, ...,G denotes group/cluster, i = 1, ...,ng denotes an individual, ng denotes the cluster size,

and t = 1, ...,T denotes the time period. The variable Y is the outcome, the binary variable D is treatment

status, the vector Z contains a set of possible controls, αg is a group-level fixed effect, φt is a time-level

fixed effect, and e is a regression error. Typically, the treatment D applies to a subset of groups (the

treated groups) for a subset of time periods (the treatment period). The coefficient θ is often the primary

parameter of interest, and equals the Average Treatment Effect on the Treated (ATT) under a set of widely-
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studied conditions1. The observations are often assumed to be cluster dependent at the group level, but

in some applications a different level of clustered dependence is assumed.

We are interested in standard error construction and inference on the coefficients in (1) given a spe-

cific identification scheme and estimator. We focus on the twoway fixed effects estimator, as it is the

dominant estimator of DiD regressions in empirical applications, and because there is a well-developed

finite sample theory for linear regression estimates. However, the general ideas expressed in this paper

should be generalizable to estimators beyond least squares.

We illustrate our goals with a well-known application. Card and Krueger (1994) estimated the effect

of the 1992 increase of the New Jersey minimum wage on worker hours, by surveying fastfood restau-

rant employee hours both before the wage increase (February-March 1992) and after the wage increase

(November-December 1992) in a sample of restaurants in New Jersey and eastern Pennsylvania. Their

estimate can be calculated by a linear regression of restaurant hours on three variables: (1) treatment

(a binary indicator for New Jersey after the wage increase); (2) state (a binary indicator for New Jersey);

and (3) time (a binary indicator for the post-increase period). We calculate and report these regression

estimates in Table 1 below, along with conventional CRVE1 clustered standard errors.

Table 1: Card and Krueger (1994)
Effect of Minimum Wage on Employment

Coefficient Std Err t pv 95% interval

Treatment 2.75 1.34 2.05 .041 [0.12, 5.38]
State −2.95 1.48 −1.99 .047 [−5.86, −0.04]
Time −2.28 1.25 −1.83 .068 [−4.74, 0.17]
Intercept 23.38 1.38 16.92 .000 [20.66, 26.10]
Fixed Effects None

Cluster Level Store

Number of Clusters 384
Number of Observations 768

We present the output as commonly displayed by regression packages. This is a list of all variables

included in the regression, and for each variable is displayed its coefficient estimate, standard error,

t-ratio, p-value (for the test of the hypothesis that the coefficient equals zero), and a 95% confidence

interval. Each of these pieces is useful to the researcher in their evaluation of the regression estimates,

even though only a subset of this information is typically reported in a research paper.

After the coefficient estimate itself, the second most important statistic reported is the standard er-

ror. It is a direct measure of precision, and is also the foundation for the reported t-ratio, p-value, and

confidence interval.

Our contention is that all statistics displayed in this table are important, as all are examined by an

empirical researcher in the course of their investigation. It is desirable for all default reported statistics

to be accurate in broad settings without user intervention. There should be default choices for their

1This paper is not concerned with identification; there is a large literature focusing on the conditions under which θ equals
the ATT, conditions under which this equality fails, and alternative estimation strategies which can be employed in such con-
texts.
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calculation which are reasonably accurate in any regression setting. It is important that these default

methods apply to all coefficient estimates (not just a single estimate of interest), as the full regression

output is often studied by researchers, even if the full model is not reported in their paper. Finally, it is

important that default methods are computationally efficient, as users require quick results for routine

calculations. These goals motivate our proposals.

3 Variance Matrix Estimation

It will be convenient to write (1) in cluster-level within-transformed format. Let dt be a (T −1)×1 vec-

tor of time dummy variables, set Xi g t = (Di g t , Z ′
i g t ,d ′

t )′, and set β= (θ,γ′,φ′)′. Stacking the observations

by cluster, (1) can be written as

Y g = X gβ+αg +eg .

Applying the within transformation (subtracting cluster-level means) and using standard notation we

obtain the cluster-level within-transformed model

Ẏ g = Ẋ gβ+ ėg . (2)

The twoway fixed effects estimator is least squares applied to (2). This equals

β̂=
(

G∑
g=1

Ẋ
′
g Ẋ g

)−1 (
G∑

g=1
Ẋ

′
g Ẏ g

)
. (3)

The least squares residual vector for the g th cluster is êg = Ẏ g − Ẋ g β̂.

The most common method for variance matrix calculation for (3) is the cluster-robust variance esti-

mator of Liang and Zeger (1986) and Arellano (1987) plus a degree of freedom correction. This equals

V̂ 1 = G (n −1)

(G −1)(n −kF )

(
Ẋ

′
Ẋ

)−1
(

G∑
g=1

Ẋ
′
g êg ê ′

g Ẋ g

)(
Ẋ

′
Ẋ

)−1
, (4)

where kF equals the number of coefficients in (1). We call this estimator CRVE1.

The CRVE1 estimator is simple and intuitive. However, it can be highly downward biased. Indeed,

Hansen (2024) shows that the downward bias of V̂ 1 can be arbitrarily large. One consequence of this

downward bias is that confidence intervals constructed using CRVE1 standard errors can have coverage

rates arbitrarily close to zero.

An alternative is the CRVE2 variance estimator of Bell and McCaffrey (2002), promoted by Imbens

and Kolesár (2016). It is motivated as an unbiased estimator under the auxiliary assumption that the

errors ei g t are i.i.d. Define the partial projection matrices

M g = I ng − Ẋ g

(
Ẋ

′
Ẋ

)−1
Ẋ

′
g , (5)

let A1/2 denote the symmetric square root of the matrix A, and let A+ denote the Moore-Penrose gener-
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alized inverse of A. The CRVE2 estimator is then

V̂ 2 =
(

Ẋ
′
Ẋ

)−1
(

G∑
g=1

Ẋ
′
g M+1/2

g êg ê ′
g M+1/2

g Ẋ g

)(
Ẋ

′
Ẋ

)−1
. (6)

The use of the generalized inverse in (6) was introduced by Kolesár (2023) so that CRVE2 is defined even

when M g is non-invertible. This is a potentially important generalization, as the matrix M g is not invert-

ible in many important contexts, including when treatment is applied to only a single cluster. The CRVE2

estimator is available in Stata 18 through its vce(hc2 clustvar) option.

As mentioned above, the CRVE2 estimator has the attractive feature that it is unbiased when the

errors are i.i.d. However, unbiasedness can fail when the errors have within-cluster correlation, are con-

ditionally heteroskedastic, or one of the M g matrices is non-invertible. Indeed, as shown by Hansen

(2024), the downward bias of V̂ 2 can be arbitrarily large. This implies that confidence intervals con-

structed using CRVE2 standard errors can have coverage rates arbitrarily close to zero.

A third variance estimator is obtained by the bootstrap using nonparametric pairs clustered sam-

pling. Each bootstrap sample is constructed by resampling G clusters (Ẏ g , Ẋ g ) with replacement from

the original sample of within-transformed clusters. Least squares estimation is applied to the bootstrap

sample, producing the bootstrap estimator β̂∗. This is repeated B times, yielding the bootstrap replica-

tions
{
β̂∗

1 , ..., β̂∗
B

}
. The bootstrap variance estimator is their empirical covariance matrix

V̂ boot =
1

B −1

B∑
b=1

(
β̂∗

b − β̂
∗)(

β̂∗
b − β̂

∗)′
. (7)

A complication is that it is possible that in some bootstrap samples the regressor matrix will not be full

rank, implying that the bootstrap least squares estimator will not be uniquely defined. (This will occur

with high probability if the number of treated clusters is small, for then it is possible to draw an entire

bootstrap sample with no treated clusters.) It is typical (e.g., the Stata implementation) to discard these

bootstrap samples and calculate the bootstrap variance only on the subset of bootstrap samples which

have full rank regressor matrices. This seemingly technical workaround may be inconsequential if the

frequency of discarded bootstrap samples is small, but if the frequency is high then this implementa-

tion induces selection bias. Consequently, we should not expect bootstrap variance estimation to be

generically well-behaved.

The final variance matrix estimator we consider is the jackknife. There are several implementations;

our recommendation is

V̂ jack =
G∑

g=1

(
β̂−g − β̂

)(
β̂−g − β̂

)′
, (8)

where

β̂−g =
(

Ẋ
′
Ẋ − Ẋ

′
g Ẋ g

)+ (
Ẋ

′
Ẏ − Ẋ

′
g Ẏ g

)
(9)

is a generalized delete-one-cluster estimator. By defining the jackknife variance estimator this way the
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estimator (9) is uniquely defined2 and the sum (8) includes all clusters. In contrast, the most common

implementation of the jackknife discards clusters from the sum (8) if the delete-one-cluster least squares

estimator is not uniquely defined, which occurs, for example, when treatment is applied to a single clus-

ter. This can severely downward bias the variance estimator. Two other differences between the def-

inition (8) and some other definitions of the jackknife are that (8) does not use a degree-of-freedom

correction, and (8) centers the delete-one-cluster estimators at the full-sample estimator β̂ rather than

at the mean of β̂−g .

Hansen (2024) established two important properties of the jackknife estimator (8), First, V̂ jack is

never downward biased, in the sense that the expected value of V̂ jack is never less than (in a positive

definite sense) the true variance matrix. This holds under broad conditions, including arbitrary cluster

sizes, number of treated clusters, regressor leverage, within-cluster correlation, and heteroskedastistic-

ity. Second, if the errors are normally distributed (but potentially heteroskedastic and within-cluster

correlated) and the matrices Ẋ
′
Ẋ − Ẋ

′
g Ẋ g are all invertible, then the finite sample distribution of a t-ratio

constructed with the jackknife standard error is bounded by the Cauchy distribution. This implies that

confidence intervals constructed with jackknife standard errors have guaranteed coverage rates, unlike

intervals constructed with CRVE1 and CRVE2 standard errors.

The most common purpose of covariance matrix estimation is for standard error construction. Let

k be the dimension of β, and R be the k × 1 vector which selects the coefficient of interest, e.g. for

θ, R = (1,0, ....,0)′. Then a standard error for θ̂ = R ′β̂ based on the covariance matrix estimator V̂ is

ν̂=
√

R ′V̂ R. Let ν̂1, ν̂2, ν̂boot, and ν̂jack denote the standard errors constructed using (4), (6), (7), and (8),

respectively.

4 Adjusted P-Values and Confidence Intervals

Current empirical practice, as exemplified by the output displayed in Table 1, is to construct p-values

and confidence intervals for individual coefficients based on the student tG−1 distribution (or the tn−kF

distribution in the absence of clustering). These approximations can be very poor in practice as cluster-

robust t-ratios do not in general have these distributions. An alternative simple student t approximation

was introduced by Bell and McCaffrey (2002) for the HC2 and CRVE2 t-ratios, extended to CRVE1 standard

errors by Young (2016), and to jackknife t-ratios by Hansen (2024). This approximation can be used to

produce adjusted p-values and confidence intervals which are simple to calculate and, in general, have

excellent finite sample coverage. We now describe this approximation and adjusted inference methods.

Consider the t-ratio for θ constructed with the jackknife standard error,

T = θ̂−θ
ν̂jack

.

2The theoretical properties of the jackknife variance estimator (8) described in this paper hold if (9) is constructed with any
generalized inverse. An excellent property of constructing (9) with the Moore-Penrose inverse is that it is the unique minimum-
length minimizer of the least-squares criterion, and thus tends to produce variance estimators (8) which are less excessively
conservative, relative to estimates constructed with other generalized inverse formulae.
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Under the assumption that the regression error vector e ∼ N (0,Ω) is jointly normally distributed (al-

lowing for heteroskedasticity and within-cluster correlation), the coefficient estimator satisfies θ̂−θ ∼
N (0,ν2) where ν2 is the finite-sample variance of θ̂. Furthermore, with a little algebra, the variance esti-

mator can be written as a quadratic function in the regression errors, ν̂2
jack = e ′B e , where B is a known

(function of the regressors X ) positive-semi-definite matrix of rank at most G . It follows that ν̂2
jack has

the exact finite-sample distribution ν̂2
jack/ν2 ∼ ∑G

j=1λ jχ
2
j where χ2

j are independent chi-square random

variables with one degree of freedom and λ j ≥ 0 are the eigenvalues of BΩ/ν2. The widely-studied Sat-

terthwaite (1946) approximation states that this weighted sum of chi-squares can be reasonably approx-

imated by a single scaled chi-square, where the scale and degree-of-freedom are selected to match the

first two moments. This approximation is

G∑
j=1

λ jχ
2
j ≈ a2χ

2
K

K

where

a =
√√√√ G∑

j=1
λ j (10)

K =
(∑G

j=1λ j

)2

∑G
j=1λ

2
j

. (11)

Substituting this approximation into the expression for the t-ratio, we obtain the distributional approxi-

mation

T ≈ N (0,1)

a
√

χ2
K

K

≈ tK

a
(12)

where tK is distributed student t with K degrees of freedom. The second approximation in (12) holds

with equality when the numerator and denominator are independent, which holds whenΩ= I nσ
2. The

approximation (12) leads to the suggestion to use the scaled student t distribution tK /a in place of the

conventional tG−1 distribution for p-value calculation and confidence interval construction. The ap-

proximation is not exact, but it is much improved relative to the conventional tG−1 distribution.

This suggestion requires the calculation of the adjustment coefficients a and K , which are functions

of the eigenvalues of the matrix BΩ/ν2. While B is known, the covariance matrixΩ is unknown, so the

true values of a and K cannot be calculated. Bell and McCaffrey (2002) suggested to use a reference

model (akin to a rule-of-thumb), in particular Ω = I nσ
2. Using this reference model the coefficients a

and K are straightforward functions of the regressor matrix X . Explicit expressions are provided in Sec-

tion 8. The expressions depend on the specific coefficient (or, more generally, the specific linear combi-

nation R) and therefore need to be calculated separately for each coefficient. However, these calculations

are computationally straightforward.

Based on the distributional approximation (12), we propose adjusted confidence intervals and p-
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values for θ. The adjusted 1−α confidence interval for θ is

Jack* = θ̂± t 1−α/2
K

a
ν̂jack (13)

where t 1−α/2
K is the 1−α/2 quantile of the student t distribution with K degress of freedom. The difference

with the standard confidence interval is that (13) calculates the critical value using K degrees of freedom

instead of G −1, and scales down the critical value by a.

Similarly, our proposed adjusted p-value for a test of θ = θ0 is

p∗ = 1−F

(
a2

(
θ̂−θ0

ν̂jack

)2

;1,K

)
(14)

where F (x;1,K ) is the F distribution with degrees of freedom (1,K ). The difference with the standard p-

value is that (14) scales the t-statistic by a, and calculates significance using K degrees of freedom instead

of G −1.

The adjusted degree-of-freedom K satisfies 1 ≤ K ≤ G . Its value will reflect the degree of leverage

and nonhomogeneity among the regressors and cluster sizes, with K equalling 1 in the most unbalanced

cases.

The scale a satisfies a ≥ 1 and reflects the proportional bias of the jackknife standard error, calculated

under the assumption of the reference model. Since the jackknife estimator is never downward biased,

this constant satisfies a ≥ 1.

The adjusted confidence interval (13) and p-value (14) will typically be more conservative than the

intervals and p-values calculated with the conventional tG−1 distribution, but they are not necessarily

so, as the adjustments K and a work in opposite directions. If desired, more conservative inference can

be achieved by two possible modifications. First, the adjustment a could be omitted from (13) and (14),

meaning that inference would be based on the jackknife t-ratio with the adjusted degree-of-freedom K .

I do not recommend this modification as it appears to lead to excessively conservative inference under

high leverage. Second, the confidence interval and p-value can be calculated two ways, by (13)-(14),

and by using the tG−1 distribution (or tn−kF distribution for non-clustered observations) conventionally,

and reporting the more conservative of the two. This latter modification is ad hoc, but ensures that the

adjusted intervals are always more conservative than conventional intervals. The impact of this modifi-

cation, however, appears to be minor in practice. For our reported simulations, empirical applications,

and programs, we use (13)-(14) without modification.

5 Simulation

We investigate the proposed methods in a simple simulation experiment.

The observations are Yi g t for i = 1, ...,ng , g = 1, ...,G , and t = 1,2. They are generated from potential

outcomes Yi g t (D) where D ∈ {0,1} is treatment status. The clusters are divided into G0 untreated clusters

and G1 treated clusters, with G0+G1 =G . Treatment is applied only in period t = 2 to the treated clusters.
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We vary the number of clusters among G ∈ {10,20,50,200} and the number of treated clusters among

G1 ∈ {4,3,2}. In our baseline model the cluster sizes are homogeneous, ng = 10 for all g .

We generate the potential outcomes as independent across observations. In our baseline model they

are generated as:

Yi g t (0) ∼ N (0,1)

Yi g t (1) = Yi g t (0)+θi g

θi g ∼ N (θ,σ2
θ).

Thus, outcomes are normally distributed with individual treatment effect θi g and ATT θ. We vary treat-

ment effect heterogeneity by varying σθ among σθ ∈ {1,10}.

For each simulation replication we estimate the coefficients of the regression model (1) by the within

estimator (2), with θ̂ the estimated ATT. We calculate the four standard errors ν̂1, ν̂2, ν̂boot, and ν̂jack

discussed in Section 3, the bootstrap using B = 999 replications.

We evaluate seven confidence intervals for the ATT θ. The first four confidence intervals combine

the four standard errors with conventional student t critical values. Thus, given a standard error ν̂ we

form the confidence interval θ̂± t 0.975
G−1 ν̂ where t 0.975

G−1 is the 0.975 quantile of the tG−1 distribution. We use

the t 0.975
G−1 critical value as this is the current implementation in Stata for cluster-robust inference.

The fifth interval is the wild cluster bootstrap symmetric percentile-t interval calculated with the

CRVE1 standard error and 999 bootstrap replications. This is the method proposed by Cameron, Gel-

bach, and Miller (2008) for hypothesis testing3, and in principle could be used to construct a confidence

interval by test inversion. First4, the coefficients are re-estimated imposing the hypothesized value of

θ to obtain restricted estimates β̃ and residuals ẽg = Ẏ g − Ẋ g β̃. Next, the clusters, regressors Ẋ g , and

restricted residuals ẽg are held fixed. The bootstrap samples are generated as Ẏ
∗
g = ξg ẽg where ξg is an

independent Rademacher variable (equals +1 and −1 each with probability 1/2). It is convenient to ob-

serve that since ẽg are residuals from a within-transformed regression, they are mean zero within each

cluster, and thus Ẏ
∗
g is already within-transformed. The bootstrap sample then consists of the obser-

vations (Ẏ
∗
g , Ẋ g ). On each bootstrap sample we calculate the least squares estimate θ̂∗ and its CRVE1

standard error ν̂∗1 . From the 999 bootstrap samples we calculate the 95% quantile ĉ∗1 (θ) of the statistic∣∣θ̂∗∣∣/ν̂∗1 . The wild bootstrap confidence interval5 equals Wild = {
θ :

∣∣θ̂−θ∣∣/ν̂1 ≤ ĉ∗1 (θ)
}
.

Our sixth confidence interval is the adjusted CRVE2 interval proposed by Bell and McCaffrey (2002).

This is BM = θ̂ ± t 0.975
K ν̂2 where ν̂2 is the CRVE2 standard error and K is a non-standard degree-of-

freedom6 calculated similar to (11).

Our final confidence interval (Jack∗) is our proposed adjusted jackknife interval (13).

By simulation with 20,000 replications, we compute the empirical coverage probability of these nom-

3MacKinnon, Nielsen and Webb (2023b) review several variants of the wild cluster bootstrap. Our implementation corre-
sponds to their WCR-C method. We also experimented with their WCR-V method and obtained similar results.

4We describe here a conceptual implementation of the wild bootstrap algorithm. For our actual calculation we use the fast
computational algorithm described in MacKinnon (2023).

5To assess the coverage rate, it is sufficient to do the calculation for the true value of θ.
6See Kolesár (2023) for efficient computation.
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Table 2: Baseline Model: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild BM Jack*
10 1 4 0.93 0.94 0.92 0.96 0.94 0.95 0.95
10 1 3 0.90 0.91 0.89 0.94 0.92 0.95 0.96
10 1 2 0.81 0.85 0.80 0.89 0.97 0.99 0.99
10 10 4 0.88 0.90 0.88 0.93 0.90 0.91 0.91
10 10 3 0.82 0.85 0.83 0.89 0.81 0.90 0.91
10 10 2 0.68 0.74 0.68 0.81 0.62 0.91 0.93
20 1 4 0.89 0.90 0.90 0.93 0.93 0.95 0.95
20 1 3 0.84 0.87 0.85 0.90 0.95 0.96 0.96
20 1 2 0.73 0.79 0.73 0.85 1.00 0.99 0.99
20 10 4 0.85 0.87 0.87 0.91 0.89 0.92 0.93
20 10 3 0.79 0.83 0.81 0.87 0.78 0.92 0.93
20 10 2 0.64 0.72 0.65 0.80 0.63 0.94 0.95
50 1 4 0.85 0.88 0.87 0.91 0.92 0.95 0.95
50 1 3 0.79 0.84 0.82 0.88 0.99 0.96 0.96
50 1 2 0.67 0.74 0.68 0.81 1.00 0.99 0.99
50 10 4 0.83 0.86 0.86 0.90 0.88 0.94 0.94
50 10 3 0.77 0.82 0.79 0.86 0.77 0.94 0.94
50 10 2 0.62 0.71 0.63 0.79 0.72 0.95 0.95

200 1 4 0.83 0.86 0.86 0.90 0.95 0.95 0.95
200 1 3 0.77 0.82 0.80 0.87 1.00 0.96 0.95
200 1 2 0.63 0.72 0.64 0.79 1.00 0.98 0.97
200 10 4 0.82 0.86 0.86 0.89 0.88 0.95 0.95
200 10 3 0.76 0.81 0.79 0.86 0.83 0.95 0.95
200 10 2 0.62 0.70 0.63 0.78 0.93 0.95 0.95
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Table 3: Asymmetric Cluster Sizes: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild BM Jack*
10 1 4 0.81 0.90 0.99 0.98 0.95 0.97 0.99
10 1 3 0.77 0.88 0.98 0.97 0.96 0.98 0.99
10 1 2 0.69 0.85 0.92 0.97 0.98 0.99 0.98
10 10 4 0.58 0.80 0.99 0.94 0.60 0.89 0.97
10 10 3 0.54 0.78 0.97 0.94 0.61 0.90 0.97
10 10 2 0.44 0.74 0.86 0.94 0.63 0.91 0.96
20 1 4 0.71 0.85 0.99 0.95 0.98 0.99 0.99
20 1 3 0.65 0.82 0.97 0.95 0.99 0.99 0.98
20 1 2 0.56 0.79 0.88 0.95 1.00 1.00 0.97
20 10 4 0.53 0.77 0.99 0.93 0.65 0.95 0.97
20 10 3 0.49 0.76 0.96 0.93 0.67 0.95 0.96
20 10 2 0.39 0.72 0.85 0.93 0.68 0.94 0.95
50 1 4 0.59 0.79 0.99 0.94 1.00 1.00 0.98
50 1 3 0.54 0.78 0.97 0.94 1.00 1.00 0.98
50 1 2 0.46 0.74 0.86 0.94 1.00 0.99 0.96
50 10 4 0.50 0.75 0.99 0.93 0.77 0.97 0.97
50 10 3 0.46 0.74 0.96 0.93 0.78 0.97 0.96
50 10 2 0.37 0.71 0.85 0.93 0.78 0.95 0.95

200 1 4 0.51 0.76 0.99 0.93 1.00 0.99 0.97
200 1 3 0.48 0.75 0.96 0.93 1.00 0.99 0.97
200 1 2 0.39 0.71 0.85 0.93 1.00 0.98 0.96
200 10 4 0.49 0.75 0.99 0.92 0.89 0.98 0.97
200 10 3 0.45 0.74 0.96 0.93 0.90 0.98 0.96
200 10 2 0.36 0.70 0.84 0.93 0.95 0.95 0.95
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Table 4: Geometrically Distributed Cluster Sizes: Coverage of Nominal 95% Confidence Intervals

G σθ G1 CRVE1 CRVE2 Boot Jack Wild BM Jack*
10 1 4 0.89 0.92 0.95 0.95 0.93 0.96 0.96
10 1 3 0.85 0.89 0.93 0.94 0.93 0.97 0.98
10 1 2 0.76 0.84 0.83 0.91 0.97 0.98 0.99
10 10 4 0.83 0.87 0.93 0.92 0.86 0.92 0.93
10 10 3 0.77 0.83 0.89 0.90 0.79 0.92 0.94
10 10 2 0.62 0.74 0.73 0.86 0.66 0.91 0.94
20 1 4 0.86 0.89 0.93 0.93 0.94 0.97 0.98
20 1 3 0.80 0.85 0.89 0.91 0.96 0.98 0.98
20 1 2 0.68 0.79 0.77 0.88 0.99 0.99 0.98
20 10 4 0.80 0.85 0.91 0.90 0.85 0.93 0.95
20 10 3 0.73 0.80 0.86 0.87 0.77 0.94 0.96
20 10 2 0.58 0.72 0.71 0.84 0.68 0.93 0.95
50 1 4 0.81 0.86 0.92 0.90 0.95 0.97 0.98
50 1 3 0.75 0.82 0.87 0.88 0.99 0.98 0.98
50 1 2 0.62 0.74 0.73 0.85 1.00 0.99 0.98
50 10 4 0.78 0.83 0.91 0.89 0.87 0.96 0.97
50 10 3 0.71 0.79 0.86 0.87 0.78 0.96 0.97
50 10 2 0.56 0.71 0.69 0.84 0.78 0.95 0.95

200 1 4 0.77 0.83 0.91 0.88 0.96 0.97 0.98
200 1 3 0.71 0.79 0.86 0.87 1.00 0.97 0.98
200 1 2 0.57 0.71 0.70 0.84 1.00 0.97 0.96
200 10 4 0.77 0.82 0.90 0.88 0.87 0.96 0.97
200 10 3 0.70 0.79 0.85 0.86 0.85 0.97 0.97
200 10 2 0.55 0.70 0.69 0.83 0.94 0.95 0.95

inal 95% intervals.

We report the results for the baseline model in Table 2. Ideally, all entries should equal 0.95. How-

ever, many of the actual entries are far from this ideal. The CRVE1 interval undercovers in all designs,

and in many settings quite severely, with a worst-case coverage of 62%. Undercoverage is increasing as

the asymmetry in the number of treated clusters and/or treatment effect heterogeneity is increased. Un-

dercoverage is also increasing as the number of clusters increases, because this increases the asymmetry

between treated and untreated clusters.

The CRVE2 interval has improved coverage relative to CRVE1, but also undercovers in all designs. As

for CRVE1, undercoverage is increasing in treatment asymmetry, treatment effect heterogeneity, and as

the number of clusters increases. Its worst-case coverage is 70%.

The bootstrap interval has similar coverage to CRVE1 and thus severely undercovers. Its worst-case

coverage is 63%.

The jackknife interval with conventional critical values has better coverage relative to CRVE1, CRVE2,

and the bootstrap, but undercovers under asymmetry in the number of treated clusters and under treat-

ment effect heterogeneity. Its worst-case coverage is 78%.

The Wild bootstrap confidence interval has mixed results. Its coverage rates are not strictly ranked
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relative to CRVE1, CRVE2, the bootstrap, or the jackknife. Its coverage rates generally improve as G in-

creases. It has excellent coverage when treatment effect heterogeneity is mild, but has poor coverage

when treatment effect heterogeneity is large. Its worst-case coverage is 62%.

The Bell-McCaffrey and adjusted jackknife confidence intervals both have generally good coverage,

and both dominate the other five intervals. In most cases the two have similar coverage rates, but in

some designs the adjusted jackknife interval has better coverage. In some cases they are conservative

with coverage rates as high as 99%. Their worst-case coverage rates are 90% (Bell-McCaffrey) and 91%

(adjusted jackknife).

We next investigate the impact of non-homogeneous cluster sizes. We modify the treated clusters

only, by setting one treated cluster to have size n1 = 1+ 9G1 with the remaining treated clusters with

size ng = 1. All untreated cluster sizes are set at ng = 10. This design maximizes nonhomogeneity

among treated cluster sizes while maintaining the same number (10G1) of treated clusters. The simu-

lation estimates of the coverage rates are presented in Table 3. We find that the coverage rates of CRVE1

and CRVE2 are uniformly worse than in the baseline model, with worst-case coverage of 36% (CRVE1)

and 70% (CRVE2). The bootstrap performs better than in the baseline model, and performs better than

CRVE1 and CRVE2, but generally undercovers, with a worst-case coverage of 84%. The jackknife inter-

val with conventional critical values also performs better than in the baseline model, with very good

coverage rates, and worst-case coverage of 92%. The wild bootstrap has coverage rates similar as in the

baseline model, with worst-case coverage of 60%. The Bell-McCaffery interval has mixed performance,

with worst-case coverage of 89%. The adjusted jackknife interval has excellent coverage, uniformly 95%

or higher.

To explore the impact of varied cluster sizes, for our next experiment we use a random cluster size

design. We generate the cluster sizes as 1 plus an i.i.d. draw from the geometric distribution with pa-

rameter 0.1. This process implies that the average cluster size is 10 with a standard deviation of about

9.5. This sampling framework technically lies outside the “fixed cluster size” distributional framework,

though the latter obtains by conditioning on the cluster sizes, similar to a regression model with exoge-

nous regressors. The simulation estimates of the coverage rates are presented in Table 4. The results

are similar to those obtained in the baseline model, with worst-case coverage rates of 55% (CRVE1), 70%

(CRVE2), 69% (bootstrap), 83% (jackknife with conventional critical values), 66% (wild bootstrap), 91%

(Bell-McCaffrey), and 93% (adjusted jackknife). Again, the adjusted jackknife has the best performance.

We next investigate the robustness of the results to the assumption of normal errors. For this inves-

tigation we draw the errors for Yi g t (0) and θi g from a skewed heavy-tailed distribution7. The simulation

estimates of the coverage rates are presented in Table 5. The results are almost identical to those under

normal errors.

Many difference-in-difference applications concern binary dependent variables in a linear proba-

bility model. Our third model for potential outcomes treats this case directly with a probit generating

7We use the “strongly skewed” distribution displayed in Figure 3.7(b) of Hansen (2022), which is a 9-component normal
mixture distribution with a skew of 1.34 and kurtosis of 6.7.

14



Table 5: Skewed Heavy-Tailed Errors: Coverage of Nominal 95% Confidence Intervals

G α G1 CRVE1 CRVE2 Boot Jack Wild BM Jack*
10 0.1 4 0.93 0.94 0.93 0.96 0.94 0.95 0.95
10 0.1 3 0.90 0.92 0.90 0.95 0.93 0.96 0.96
10 0.1 2 0.82 0.85 0.81 0.90 0.97 0.99 0.99
10 2.5 4 0.88 0.89 0.88 0.92 0.89 0.90 0.91
10 2.5 3 0.82 0.85 0.83 0.90 0.81 0.90 0.91
10 2.5 2 0.68 0.75 0.68 0.81 0.62 0.91 0.93
20 0.1 4 0.89 0.90 0.90 0.93 0.93 0.95 0.95
20 0.1 3 0.84 0.87 0.85 0.91 0.95 0.96 0.96
20 0.1 2 0.74 0.79 0.74 0.85 1.00 0.99 0.99
20 2.5 4 0.84 0.87 0.86 0.90 0.89 0.92 0.93
20 2.5 3 0.79 0.83 0.81 0.87 0.78 0.92 0.93
20 2.5 2 0.64 0.71 0.65 0.79 0.63 0.93 0.95
50 0.1 4 0.86 0.88 0.88 0.91 0.93 0.96 0.96
50 0.1 3 0.80 0.84 0.82 0.88 0.99 0.96 0.96
50 0.1 2 0.67 0.74 0.67 0.81 1.00 0.99 0.99
50 2.5 4 0.83 0.86 0.86 0.90 0.88 0.94 0.94
50 2.5 3 0.77 0.82 0.79 0.87 0.78 0.94 0.94
50 2.5 2 0.62 0.70 0.63 0.78 0.72 0.94 0.95

200 0.1 4 0.83 0.86 0.86 0.90 0.95 0.95 0.95
200 0.1 3 0.77 0.82 0.80 0.87 1.00 0.96 0.95
200 0.1 2 0.63 0.72 0.64 0.79 1.00 0.98 0.97
200 2.5 4 0.82 0.86 0.85 0.89 0.88 0.95 0.95
200 2.5 3 0.76 0.81 0.79 0.86 0.83 0.94 0.95
200 2.5 2 0.62 0.70 0.63 0.78 0.94 0.95 0.95
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Table 6: Binary Dependent Variable: Coverage of Nominal 95% Confidence Intervals

G α G1 CRVE1 CRVE2 Boot Jack Wild BM Jack*
10 0.1 4 0.93 0.94 0.93 0.96 0.94 0.95 0.95
10 0.1 3 0.91 0.92 0.91 0.95 0.94 0.96 0.96
10 0.1 2 0.83 0.86 0.82 0.90 0.99 0.99 0.99
10 2.5 4 0.88 0.89 0.88 0.93 0.92 0.90 0.91
10 2.5 3 0.84 0.89 0.86 0.91 0.87 0.91 0.91
10 2.5 2 0.70 0.74 0.70 0.82 0.71 0.87 0.88
20 0.1 4 0.90 0.91 0.91 0.94 0.94 0.96 0.96
20 0.1 3 0.86 0.88 0.86 0.92 0.97 0.97 0.97
20 0.1 2 0.75 0.80 0.75 0.85 1.00 1.00 1.00
20 2.5 4 0.85 0.87 0.87 0.90 0.92 0.93 0.94
20 2.5 3 0.79 0.86 0.83 0.90 0.85 0.92 0.93
20 2.5 2 0.70 0.73 0.69 0.79 0.73 0.88 0.88
50 0.1 4 0.86 0.88 0.88 0.91 0.94 0.96 0.96
50 0.1 3 0.80 0.84 0.82 0.88 1.00 0.97 0.96
50 0.1 2 0.68 0.75 0.69 0.82 1.00 1.00 0.99
50 2.5 4 0.84 0.86 0.86 0.89 0.90 0.95 0.95
50 2.5 3 0.76 0.85 0.81 0.89 0.84 0.94 0.94
50 2.5 2 0.70 0.73 0.70 0.77 0.86 0.88 0.88

200 0.1 4 0.83 0.86 0.86 0.90 0.96 0.95 0.95
200 0.1 3 0.78 0.81 0.80 0.86 1.00 0.96 0.96
200 0.1 2 0.61 0.71 0.62 0.79 1.00 0.97 0.95
200 2.5 4 0.83 0.86 0.86 0.88 0.87 0.96 0.96
200 2.5 3 0.74 0.84 0.79 0.89 0.91 0.95 0.95
200 2.5 2 0.67 0.70 0.67 0.72 0.99 0.88 0.88

process. The potential outcomes are generated as follows. For some α≥ 0,

ei g t ∼ N (0,1)

Yi g t (0) = 1{ei g t >α}

Yi g t (1) = 1{ei g t > 0}.

In this model the treatment effect is θi g = 1{0 < ei g t ≤ α} with ATT θ = Φ(α)−Φ(0). Treatment effect

heterogeneity is increasing in α. We vary α ∈ {0.1,2.5}.

The simulation estimates of the coverage rates are presented in Table 6. For most of the designs and

methods, the results are quite similar to those obtained under normal errors. The one notable exception

is the design with α = 2.5 (high treatment effect heterogeneity) and G1 = 2 (high treatment asymme-

try), where all of the methods under-cover. The Bell-McCaffrey and adjusted jackknife have worst-case

coverage of 88%

For our final simulation we investigate performance in a model with one treated cluster (G1 = 1). It

should be emphasized that this is a treacherous context where it is well known that standard methods

fail. Regardless, we believe that investigating performance in this context sheds insight concerning ro-
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Table 7: One Treated Cluster: Coverage of Nominal 95% Confidence Intervals

G σθ CRVE1 CRVE2 Boot Jack Wild BM Jack*
10 1 0.43 0.43 0.42 1.00 1.00 0.43 1.00
20 1 0.31 0.30 0.30 1.00 1.00 0.30 1.00
50 1 0.19 0.19 0.19 1.00 1.00 0.19 1.00

200 1 0.10 0.10 0.10 1.00 1.00 0.10 1.00
10 10 0.08 0.08 0.08 1.00 0.60 0.08 1.00
20 10 0.05 0.05 0.05 1.00 0.73 0.05 1.00
50 10 0.03 0.03 0.03 1.00 0.91 0.03 1.00

200 10 0.02 0.02 0.02 1.00 1.00 0.02 1.00

bustness to extreme situations. We repeat our analysis using the baseline model with normal innovations

as in Table 2, but now set G1 = 1. We report the results in Table 7.

As might be expected, the confidence interval methods have poor performance. The CRVE1, CRVE2,

bootstrap, and BM methods have similar dramatic undercoverage. All have worst-case coverage of 2%.

The Wild bootstrap displays undercoverage when there is high treatment effect heterogeneity, with worst-

case coverage of 60%. Essentially, all of these methods produce confidence intervals which are much too

small.

In contrast, the jackknife and adjusted jackknife intervals are conservative, with 100% coverage. What

happens is that when there is one treated cluster we find that ν̂jack ≃ ∣∣θ̂∣∣, the jackknife standard error

approximately equals the coefficient estimate θ̂, and thus its t-ratio is always close to 1 and never “sig-

nificant”. Essentially, robust inference on the treatment effect when there is one treated cluster is similar

to inference on the mean when there is a single observation with an unknown variance. The jackknife

interval is not informative about the treatment effect, but is also not misleading regarding significance.

Comparing the seven feasible confidence interval methods across Tables 2-7, the only method with

reasonable coverage control in all contexts is the adjusted jackknife. The second best is the Bell-McCaffrey

method, if we exclude the context of a single treated cluster.

It is worthwhile to discuss in greated detail the contrast between the performance of the Bell-McCaffrey

and adjusted jackknife intervals. Why should we prefer one over the other? The Jack* interval has three

distinct advantages. First, it is robust to the context of a single treated cluster, while BM is not. In this

context, the matrix M g is not invertible for the treated cluster, and the CRVE2 estimator uses its general-

ized inverse as an ad hoc workaround. A consequence is that the CRVE2 variance estimator is downward

biased. This problem extends to inference on any regression coefficient which suffers from “delete-one-

cluster” invertibility failure, which arises frequently in applications. In these contexts, the CRVE2 stan-

dard errors and BM intervals will be misleadingly small. The second advantage of the Jack* interval is

that it is built from the the t-ratio with the jackknife standard error, which by itself produces confidence

intervals with better coverage than t-ratios with CRVE2 standard errors. Therefore, the joint display of

ν̂jack with the adjusted p-values and confidence intervals is more internally consistent than the joint dis-

play of ν̂2 with the BM p-values and confidence intervals. Third, the simulation results explored show

that Jack* has uniformly better coverage control than BM.
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Table 8: Card and Krueger (1994)
Effect of Minimum Wage on Employment

Coefficient Std Err t pv 95% interval df scale

CRVE1

Treatment 2.75 1.34 2.05 .041 [0.12, 5.38]
State −2.95 1.48 −1.99 .047 [−5.86, −0.04]
Time −2.28 1.25 −1.83 .068 [−4.74, 0.17]
Intercept 23.38 1.38 16.92 .000 [20.66, 26.10]
Jackknife

Treatment 2.75 1.35 2.04 .043 [0.89, 5.41] 112 1.01
State −2.95 1.49 −1.98 .049 [−5.89, −0.01] 112 1.01
Time −2.28 1.26 −1.81 .073 [−4.78, 0.21] 74 1.01
Intercept 23.38 1.40 16.75 .000 [20.62, 26.14] 74 1.01
Fixed Effects None

Cluster Level Store

Number of Clusters 384
Number of Observations 768

6 Illustrations

We illustrate the application of the jackknife standard errors and adjusted inference methods by ap-

plication to multiple datasets. Our purpose is to demonstrate how inferences can meaningfully change

in some contexts, while being unaltered in others.

For our first application we return to the Card and Krueger (1994) investigation of the impact of the

minimum wage on employment hours. In the first panel of Table 8 we repeat the estimates from Table

1, and in the second panel of Table 8 present the analogous results computed with jackknife standard

errors, and p-values and confidence intervals calculated using the jackknife adjustment.

What we can see in this case is that there are only very minor changes in the standard errors, p-values,

and confidence intervals.

We also display the data-based degree-of-freedom and scale adjustment for the jackknife inference

adjustment. We can see that their values are consistent with essentially no meaningful adjustment being

made. The reason, in this case, is because of the large number of clusters (G = 384) with a high degree

of homogeneity. In this example, we can see that inference is unaltered with the use of the jackknife

methods.

To illustrate how inference can be fragile we change the clustering level. In most current applica-

tions, clustering is done at a broad level of aggregation; indeed, most applications cluster at the level

of treatment. In this example this would implying clustering by state, but this is infeasible as there are

only 2 states in the sample. However, there is an intermediate case. The dataset includes an indicator for

region, separating the New Jersey and eastern Pennslyvanian stores into three and two regions, respec-

tively, for a total of five regions. We repeat the analysis, clustering by region. While this is a small number

of clusters, it is not unusual in reported applications.

We report the results in Table 9. The top panel reports the results using CRVE1 standard errors; the
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Table 9: Card and Krueger (1994)
Effect of Minimum Wage on Employment

Coefficient Std Err t pv 95% interval df scale

CRVE1

Treatment 2.75 1.17 2.35 .079 [−0.51, 6.01]
State −2.95 1.89 −1.56 .194 [−8.20, 2.30]
Time −2.28 1.14 −2.01 .115 [−5.44, 0.88]
Intercept 23.38 1.05 22.32 .000 [20.47, 26.29]
Jackknife

Treatment 2.75 2.09 1.31 .255 [−6.98, 12.48] 1.42 1.41
State −2.95 3.01 −0.98 .346 [−16.95, 11.05] 1.42 1.41
Time −2.28 2.06 −1.11 .359 [−20.62, 16.05] 1.00 1.43
Intercept 23.38 1.89 12.34 .036 [6.51, 40.26] 1.00 1.43
Fixed Effects None

Cluster Level Region

Number of Clusters 5
Number of Observations 768

bottom panel reports jackknife standard errors with adjusted p-values and confidence intervals. Exam-

ining the top panel and comparing with Table 8, there are minimal changes in the results, though the

standard error on the treatment effect decreases. A researcher may be lulled into the false sense that

“the results are robust to clustering by region”. However, this interpretation vanishes when we examine

the bottom panel of Table 9. The jackknife standard errors are nearly twice the magnitude of the CRVE1

standard errors, the p-values on the coefficients far from significant, and the 95% confidence intervals

extremely wide. The results are qualitatively different.

It is not my purpose to take a stand on the level of clustering. Rather, my goal is for regression pack-

ages to report valid measures of precision for any regression a researcher might estimate. In the present

application, it is my contention that the CRVE1 standard errors and inference methods presented in the

top panel of Table 9 are misleading, while the jackknife standard errors and inference methods of the

bottom panel are more reliable.

Our second illustration is taken from Bailey (2010), who estimates the effect of sales bans on birth

control use from surveys of married women in 1965 and 1970, exploiting the 1965 U.S. Supreme Court

Griswold decision to strike down bans on contraceptives. I focus on her baseline regression, reported in

her Table 2 column (1). A replication8 of her regression (with CRVE1 standard errors, clustered by state)

is reported in the top panel of Table 10. We follow Bailey (2020) and report only two coefficients, that

for the indicator for the Sales Ban, and that for its interaction with an indicator for 1970. In addition,

the regression includes indicators for states with physician exceptions and its interaction with 1970, as

well as census region by year fixed effects. Of these estimates, Bailey (2010) paid particular attention to

the coefficient on the Sales Ban, which is negative and significant at the 1% level, arguing that this means

8Our results are slightly different from those reported in Bailey (2010) for two reasons. First, her replication dataset has
21 fewer observations than the one used in her published paper. Second, Bailey reports average marginal effects from probit
regression, while Table 10, following MacKinnon and Webb (2020), reports linear probability estimates.
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Table 10: Bailey (2010) Table 2, Column (1)
Effect of Sales Ban on Birth Control Use

Coefficient Std Err t pv 95% interval df scale

CRVE1

Sales Ban −.055 .020 −2.71 .010 [−.095, −.014]
Sales Ban×1970 .039 .029 1.37 .177 [−.018, .097]
Jackknife

Sales Ban −.055 .028 −1.98 .046 [−.108, −.001] 7.95 1.19
Sales Ban×1970 .039 .035 1.13 .214 [−.027, .105] 10.1 1.17
Fixed Effects Region×Year
Cluster Level State

Number of Clusters 47
Number of Observations 6929

that “women in states with sales bans were significantly less likely to have used oral contraception before

the 1965 Griswold decision”.

We repeat the estimation in the bottom panel of Table 10 using our jackknife methods. The standard

errors increase significantly; that for the key Sales Ban variable by 40%. Its p-value increases from 1% to

4.6%. This change arises despite the fact that there are a reasonably large (G = 47) number of clusters

and a very large (n = 6929) number of observations. While the jackknife methods do not reverse Bailey’s

conclusions, they moderate their significance.

Our investigation next follows in the footsteps of MacKinnon and Webb (2020)9. We augment the

regression of Table 10 with a dummy variable indicating if a state repealed their sales ban in 1961, four

years before the Griswold decision. There are two such states (Illinois and Colorado). We repeat an

analog10 of their regression in the top panel of Table 11, and then repeat the analysis using our jackknife

methods in the bottom panel.

The results in the top panel indicate that the coefficient on “Repeal in 1961” is negative and statis-

tically significant, with a p-value of 0.000. This appears to suggest the counter-intuitive finding that the

early repeal resulted in a lower probability of birth control use. However, if we examine the bottom panel

we find that the standard error for “Repeal in 1961” increases fivefold when the jackknife is used, and

the reported p-value increases to 0.178. The “significance” of the result disappears. Our message is that

a researcher who uses conventional CRVE1 methods could easily be misled by regressions such as that

in the top panel of Table 11, but will not be as easily misled if they use jackknife methods as presented

in the bottom panel. As shown by MacKinnon and Webb (2020), similar inferences can be obtained by

randomization methods. An important difference is that the jackknife can be a computationally sim-

ple default method for calculation of standard errors, p-values, and confidence intervals, not just as a

specialized robustness check.

9Their purpose was to illustrate inference based on randomization methods.
10In Table 1 of MacKinnon and Webb (2020) they add two dummy variables rather than just one, interacting the “Repeal in

1961” indicator with year dummies. We do not do so as this regression suffers from poor identification (the coefficients are not
identified if Illinois is omitted, as there are no observations for Colorado in 1970.) This is a “one treated cluster” context. While
our inference methods are valid in this case, we did not want this to be the focus of this illustration.
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Table 11: MacKinnon and Webb (2020), Table 1
Effect of Early Repeal on Birth Control Use

Coefficient Std Err t pv 95% interval df scale

CRVE1

Sales Ban −.046 .016 −2.81 .007 [−.079, −.013]
Sales Ban×1970 .036 .028 1.30 .200 [−.020, .092]
Repeal in 1961 −.082 .019 −4.23 .000 [−.121, −.043]
Jackknife

Sales Ban −.046 .023 −2.06 .039 [−.090, −.003] 8.29 1.19
Sales Ban×1970 .036 .033 1.09 .230 [−.027, .099] 10.1 1.17
Repeal in 1961 −.082 .106 −0.77 .178 [−.373, .209] 1.02 4.38
Fixed Effects Region×Year
Cluster Level State

Number of Clusters 47
Number of Observations 6929

Our third illustration is from Rao (2019). He investigates the impact of the integration of poor chil-

dren into elite private schools on the social behaviors of rich students, using a combination of admin-

istrative data and field experiments. His paper reports many regressions; I report two. I start with the

first reported in his paper, from column (1) of his Table 2, which measures the effect of integration on

whether a rich student volunteers for charity. I repeat his regression in the top panel of Table 12, which

reports a linear regression of an indicator for volunteering on treatment (the presence of poor children

in a student’s classroom), four demographic controls, and school and grade fixed effects. Clustering is

done at the school-by-grade level, so there are G = 68 clusters and n = 2304 observations. The coefficient

of interest is that for treatment.

We repeat the analysis using our jackknife methods in the bottom panel. The standard error on treat-

ment increases by 46%, while the standard errors on the other estimates do not change. The p-value

for treatment in both regressions is highly significant, so the conclusion that integration affects behavior

is not altered, but the fact that the standard error increased by nearly 50% illustrates how conventional

inference has the potential for fragility.

As a second example I take Rao’s regression reported in column (2) of his Table 6, which measures

the effect of integration on a discriminatory behavior (choosing a lower-ability wealthy student over a

higher-ability poor student as a teammate in an athletic contest). In this regression, in addition to the

primary treatment indicator there are four other coefficients of interest (two indicators of higher prize

money, and interactions of these indicators with the treatment indicator) as well as school and grade

fixed effects. In this example there are G = 8 clusters and n = 342 observations.

We repeat Rao’s results in the top panel of Table 13 and present the jackknife results in the bottom

panel. Rao’s results appear to show that treatment has a significant negative effect on discriminatory

behavior, and so does the offer of higher prize money. The jackknife results, however, moderate these

inferences. The standard error on treatment triples, and its p-value increases from 0.006 to 0.121. The

impact of integration no longer appears to have a statistically significant impact on behavior. The stan-
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Table 12: Rao (2019), Table 2, Column 1
Effect of Integration on Volunteering for Charity

Coefficient Std Err t pv 95% interval df scale

CRVE1

Treated classroom .130 .026 5.05 .000 [.079, .182]
Age .029 .035 0.84 .407 [−.041, .010]
Male .010 .018 0.56 .576 [−.026, .046]
Family Owns Car .038 .026 1.47 .146 [−.014, .100]
Family Hires Private Driver .015 .025 0.61 .541 [−.034, .065]
Jackknife

Treated classroom .130 .038 3.43 .000 [.066, .195] 20.1 1.23
Age .029 .036 0.82 .407 [−.041, .010] 58.8 1.01
Male .010 .018 0.55 .577 [−.026, .046] 61.1 1.02
Family Owns Car .038 .026 1.45 .146 [−.014, .091] 48.9 1.02
Family Hires Private Driver .015 .025 0.61 .539 [−.034, .065] 56.6 1.01
Fixed Effects School, Grade

Cluster Level School×Grade
Number of Clusters 68
Number of Observations 2364

Table 13: Rao (2019), Table 6, Column 2
Effect of Integration on Discriminatory Behavior

Coefficient Std Err t pv 95% interval df scale

CRVE1

Treated classroom −.256 .065 −3.91 .006 [−.411, −.101]
Prize = Rs 200 −.137 .054 −2.54 .039 [−.265, −.009]
Prize = Rs 500 −.314 .050 −6.32 .000 [−.432, −.197]
Treated×Prize=200 .085 .067 1.28 .242 [−.072, .243]
Treated×Prize=500 .186 .094 1.99 .087 [−.035, .408]
Jackknife

Treated classroom −.256 .194 −1.32 .121 [−.655, .143] 2.42 1.78
Prize = Rs 200 −.137 .061 −2.26 .056 [−.279, .005] 4.98 1.10
Prize = Rs 500 −.314 .055 −5.69 .002 [−.445, −.184] 4.81 1.10
Treated×Prize=200 .085 .094 0.90 .377 [−.299, .470] 1.63 1.32
Treated×Prize=500 .186 .157 1.19 .280 [−.427, .800] 1.69 1.32
Fixed Effects School, Grade

Cluster Level School×Grade
Number of Clusters 8
Number of Observations 342
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dard errors and p-values for the prize levels, in contrast, increase more moderately.

My view is that if results such as the bottom panel of Table 13 were routinely displayed, rather than

the results from the top panel, researchers would make more informed decisions.

7 Conclusion

Difference-in-difference regression is a standard tool in contemporary economics. The vast majority

of applications report cluster-robust standard errors, but the conventional formula produces estimates

which can be highly biased towards zero, resulting in spurious levels of statistical significance. Two sim-

ple changes can alleviate this problem: the use of jackknife variance estimation, and adjusted student t

critical values. These alternatives are computationally efficient, and could be set for default use.

A Stata and R program jregress which calculates the recommended methods is available on the

author’s website users.ssc.wisc.edu/~bhansen/.

8 Appendix: Adjusted Jackknife Inference Formula

The formula for the constants K and a for the p-value (14) and confidence interval (13) are taken

from Hansen (2024) and are as follows.

a =
√

tr [L]

ν2 , (15)

and

K = (tr [L])2

tr [LL]
, (16)

with
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Ẋ
′
Ẋ
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′
Ẋ
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where
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Ẋ − Ẋ
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