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Abstract

We fully characterize (strong) implementability with transfer, without in-

voking quasilinearity, via a novel cyclical monotonicity condition that extends

Rochet (1987). We then apply it to crack the problem of implementing mono-

tone allocations for the general case under the assumption of the possibility

of compensation: (i) the single-crossing condition, when type space is totally

ordered and outcome space is partially ordered, is sufficient and necessary for

strongly implementing all monotone allocation; and (ii) with the strict single-

crossing condition and totally ordered type space and outcome space, an allo-

cation is implementable if and only if it is monotone. No additional structure

or regularity conditions are needed. Applications are discussed.
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1 Introduction

The implementability problem is crucial in mechanism design (Myerson, 2008, p.

588). Much of the literature studies implementability (with transfer) under the as-

sumption of quasilinearity.1 Powerful tools are available under this assumption, such

as the envelope theorem and the cyclical monotonicity condition of Rochet (1987),

among others. Our understanding of implementability for the general case, however,

is far less complete. The difficulty of the envelope-theory approach in addressing im-

plementability without quasilinearity is recently discussed by Sinander (2022b). On

the other hand, the cyclical monotonicity condition of Rochet (1987) is no longer

applicable for the general case. The lack of a generally useful tool for studying im-

plementability without invoking quasilinearity has greatly limited the analytic reach

of the literature.

For instance, Spence (1974), Mirrlees (1976), and Rochet (1987) show an equiva-

lence between implementability and monotonicity for the quasilinear case, when type

space and outcome space are real intervals, under the Spence-Mirrlees condition. This

is a key result for implementability. Applying Rochet (1987), it extends to any to-

tally ordered type space and outcome space (Fact 1). However, the picture is quite

different when we shift to the general case. Guesnerie and Laffont (1984) apply the

differential approach of Laffont and Maskin (1980) to first obtain a “partial” version

of this equivalence without invoking quasilinearity, by focusing on piecewisely con-

tinuously differentiable allocations. Recently, Nöldeke and Samuelson (2018) apply

the optimal-transport approach to notably obtain this equivalence without invoking

quasilinearity under the single-crossing condition. The same as Spence (1974) and

Mirrlees (1976), they focus on the case in which type space and outcome space are

real intervals. Sinander (2022a) notably advances the envelope-theorem approach to

the case with a general outcome space and without quasilinearity. The set of regu-

larity conditions needed for the envelope-theorem approach, as identified by Sinander

(2022a), are somewhat heavy and not convenient to apply.2 A natural question is:

Which regularity assumptions, if any, are actually needed to implement monotone

allocations when we shift to the general case?

This paper makes two main contributions to implementability. First, we offer a

generally useful tool for studying (strong) implementability without invoking quasi-

1According to Nöldeke and Samuelson (2018), “Models based on quasilinear utility are ill-suited
for mechanism design problems in which the stakes are sufficiently large to make income effects or
risk aversion salient (Mirrlees (1971), Stiglitz(1977)).”

2See Section 4.3.3 for a discussion.
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linearity, which has long been missing and sought in the literature. In particular,

we fully characterize (strong) implementability, without invoking quasilinearity, via a

novel cyclical monotonicity condition that extends Rochet (1987) (Theorem 1). The

same as Rochet (1987), Theorem 1 does not require any structure on type space or

outcome space, and thus is applicable to various contexts. In Section 4, we apply The-

orem 1 to crack the problem of implementing monotone allocations for the general

case.

Central to our cyclical monotonicity is comparison of the surplus obtained from

finite (mis)report cycles and the surplus obtained from truthfully reporting. We intro-

duce the notion of the generating function associated with a given allocation, which,

given each pair of types (θ, θ′), tells us the surplus obtained by the θ-type agent from

(mis)reporting θ′ as a function of the surplus obtained by the θ′-type agent from

truthfully reporting. Importantly, it is monotone in the latter. By iteration, the gen-

erating function is applied to capture the surplus obtained from (mis)report cycles, as

a function of the surplus assigned for truthfully reporting. The cyclical monotonicity

condition simply requires no strict benefit from any finite (mis)report cycle. It is

straightforward that cyclical monotonicity is necessary for implementability. What is

less obvious is that this simple condition also generally implies implementability.

Theorem 1 has not been recognized in the literature to the best of our knowledge.

This is somewhat surprising, since it has been 40 years since Rochet (1987) introduced

the cyclical monotonicity condition based on Rockafellar (1970). Theorem 1 advances

our understanding of cyclical monotonicity in the following two important respects.

First, the cyclical monotonicity of Rockafellar (1970) and Rochet (1987) stems

from convex analysis and linear programming duality, by which it takes the specific

form of the sum of (utility) differences, which is shared by all known extensions

in the literature.3 We might naturally assume that any condition that is called

cyclical monotonicity and is useful should take such a form.4 In contrast, Theo-

rem 1 shows that the essence of such conditions is the comparison of the surplus

obtained from (mis)report cycles and the surplus obtained from truthfully report-

ing, which is straightforward and generally applicable, irrespective of quasilinearity

or non-quasilinearity. With quasilinearity, such a comparison reduces to the sign of

a specific class of functions in the form of sum of differences (Section 3.2). However,

this is not the case without quasilinearity. Our cyclical monotonicity condition is not

3See Kausamo, De Pascale, and Wyczesany (2023) for a survey of cyclical monotonicity.
4Conditions in a similar form are applied to address implementability without quasilinearity by

some authors but with only partial success; e.g., Kos and Messner (2013b).

3



more difficult to verify than that of Rochet (1987), as demonstrated by our discussion

of implementing monotone allocations.

Second, in the proof of Theorem 1, we intensively exploit the monotonicity of

the generating function and its iteration, by which our approach to implementability

is related to Tarski (1955), though we do not apply Tarski’s theorem: The imple-

mentability problem is a fixed-point problem, given by (1), in which the domain is

the surplus received by the agent from truthfully reporting as a function of types.

The cyclical monotonicity condition for implementability arises from exploiting the

order structure that is innate to the implementability problem, irrelevant to linearity.

In fact, the construction in the proof of the sufficiency of Theorem 1, which modifies

Rochet (1987), yields the largest incentive-compatible transfer scheme with a given

initial condition (Proposition 1). This explains and also generalizes Kos and Mess-

ner (2013a)’s finding of extreme transfers from Rochet (1987)’s construction for the

quasilinear case: It is not surprising to get an extreme fixed point when the condition

for existence to a fixed-point problem—the cyclical monotonicity condition to the

implementability problem (1) in our case—arises from exploiting an order structure.5

The message that the implementability problem has an innate order structure that

can be fruitfully exploited echoes Nöldeke and Samuelson (2018). In fact, cyclical

monotonicity can be formally related to the Galois connection discussed by Nöldeke

and Samuelson (2018) (Lemma 3).6

Nöldeke and Samuelson (2018) introduce the important notion of strong imple-

mentability whereby for all initial conditions that specify a transfer level for some

type, there exists some incentive-compatible transfer scheme that satisfies the initial

condition. As Nöldeke and Samuelson note, in general, implementability does not im-

ply strong implementability, though they coincide for the quasilinear case. Theorem 1

characterizes both implementability and strong implementability.

The key assumption for Theorem 1 is the possibility of compensation, borrowed

from Kazumura, Mishra, and Serizawa (2020). It requires that for each type and

each pair of outcomes x 6= x′, any surplus level the agent achieves with x and some

5However, an important difference remains: The property of extreme transfer with a given initial
condition identified in Proposition 1 is rooted in incentive compatibility, which is irrelevant to the
individual rationality constraints in Kos and Messner (2013a) and Nöldeke and Samuelson (2018),
among others.

6However, there are important differences. First, the Galois connection related to cyclical mono-
tonicity is the version of Davey and Priestley (2002), not the version of Nöldeke and Samuelson
(2018). Second, the mappings in Nöldeke and Samuelson (2018), which form a connection, are the
maximum surplus of the agent and the optimal pricing scheme of the principal. In our case, the
mappings that form a connection are instead the generating functions associated with each pair of
different types. Third, the connection requirement in our case is symmetric and for one direction.
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transfer is also achievable with x′ and some (other) transfer.7 It is weaker than the

full range condition of Nöldeke and Samuelson (2018) and Sinander (2022a). As we

show, it is a necessary condition for strongly implementing monotone allocations in

common environments when we focus on interior types (Lemma 7).

Next, we apply Theorem 1 to crack the problem of strongly implementing mono-

tone allocations for the general case, which is the second major contribution of this

paper. Two main results are derived. First, under the assumption of the possibility

of compensation, the single-crossing condition, when type space is totally ordered

and outcome space is partially ordered, is sufficient and necessary for strongly imple-

menting all monotone allocations (Theorem 2). No additional structure or regularity

conditions are needed. Theorem 2 offers a structural insight on strongly implement-

ing monotone allocations, analogous to Milgrom and Shannon (1994) on monotone

comparative statics: Both show that the ordinal single-crossing condition is neces-

sary and sufficient, and dispense with the structure and regularity conditions that are

required by the traditional approach.

Theorem 2 has not yet been fully recognized in the literature. This, again, is

somewhat surprising, since it has been 30 years since Milgrom and Shannon (1994)

proposed the single-crossing condition. The implementability theorem of Sinander

(2022a) follows from Theorem 2, since his outer Spence–Mirrlees condition implies

the single-crossing condition, as Sinander notes (Claim 2).

As an immediate consequence of Theorem 2, a fully general version of the equiv-

alence between implementability and monotonicity, without invoking quasilinearity,

arises: Under the assumption of the possibility of compensation, with the strict single-

crossing condition and totally ordered type space and outcome space, an allocation

is implementable if and only if it is monotone (Theorem 3). Theorem 3 extends the

implementation result of Nöldeke and Samuelson (2018) for real-interval-valued type

space and outcome space (their Proposition 13) to any totally ordered type space and

outcome space, under the weaker assumption of the possibility of compensation.

Now we turn to the question posed above: Which regularity assumptions are

needed for strongly implementing monotone allocations when we shift to the general

case? Based on Theorems 2 and 3, our answer is: Basically none—the condition

of the possibility of compensation is commonly entailed by strongly implementing

7Kazumura, Mishra, and Serizawa (2020) discuss implementability without quasilinearity with a
finite outcome space. They impose a richness condition on type space and show that weak mono-
tonicity characterizes implementability, which is related to Bikhchandani, Chatterji, Lavi, Mu’alem,
Nisan, and Sen (2006) for the quasilinear case.
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monotone allocations (Lemma 7). Theorem 1 is crucial in order to answer this ques-

tion. The cyclical monotonicity condition allows us to identify the condition needed

to implement monotone allocations without any prerequisite conditions, by which a

structural theorem such as Theorem 2 is possible (see Section 4.3.3 for comparison

with the envelope-theorem approach).

Theorems 2 and 3 facilitate applications.8 We can readily apply the theory

of monotone comparative statics—e.g., Milgrom and Shannon (1994) and Topkis

(1998)—to identify the sufficient conditions on the primitives for the single-crossing

condition or the strict one to hold—the latter are the only conditions needed for

implementing monotone allocations—without any technical concerns. For instance,

in the quasilinear case, utility and transfer are aggregated in a linear way to obtain

surplus. In a canonical case, besides increasing differences, utility is also assumed to

be monotone in both types and outcomes, such as Mas-Colell, Whinston, and Green

(1995). Focusing on the canonical case, we extend the implementability of monotone

allocations to the broader class of convex and supermodular aggregators (Proposi-

tion 3). The proof applies Topkis (1998)’s composition result. As an application, we

revisit the problem of selling information of Sinander (2022a) in Example 1.

Guesnerie and Laffont (1984) show that all piecewisely continuously differentiable

monotone allocations are implementable with multidimensional Euclidean outcome

space, under the Spence-Mirrlees condition (their Theorem 2). We might wonder

whether the conditions needed to implement “well-behaved” monotone allocations

are less restrictive. The answer is No. Applying Theorem 2, we show that com-

monly, partial results regarding well-behaved monotone allocations readily extend to

all monotone allocations without imposing any extra conditions when we focus on in-

terior types (Proposition 4). As an example, we extend Guesnerie and Laffont (1984)

to all monotone allocations under their conditions (Corollary 1).

Finally, for a different thrust, in Appendix A we briefly discuss revenue equivalence

8With partially ordered outcomes, the single-crossing condition does not preclude the imple-
mentability of nonmonotone allocations. A search among the monotone ones may end up being
nonoptimal. Thus, the extra usefulness of Theorem 2 over Theorem 3 is seemingly very limited.
Such a comment also applies to Theorem 2 of Guesnerie and Laffont (1984) or Theorem 7.3 of Fu-
denberg and Tirole (1991). However, such a comment misses an important fact, whereby an optimal
design problem is often solved by working on some relaxed version in which the incentive constraints
are relaxed in some manner such as the Myersonian approach. A key step in such an approach is to
show that the obtained solution to the relaxed problem is implementable. If it is monotone, then by
Theorem 2 it is implementable and thus optimal. That is, only knowing that monotone allocations
are implementable could be very helpful. Developing applications along this line goes beyond the
scope of this paper. We are very grateful to Ludvig Sinander for sharing this valuable insight in his
correspondence with Jianrong Tian.
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for the general case. An allocation is strongly implementable and satisfies revenue

equivalence if and only if for all initial conditions, there exists a unique incentive-

compatible transfer scheme that satisfies the initial condition. Theorem 4 shows

that, among the class of strongly implementable allocations, an intuitive so-called

inverse distance condition fully characterizes the ones that satisfy the property of

revenue equivalence. With quasilinearity, our inverse distance condition reduces to

the antisymmetric distance condition of Heydenreich, Müller, Uetz, and Vohra (2009).

2 The Model

We restrict our attention to a model with a single agent. Let Θ be a set of possible

types for the agent and X a set of possible outcomes. Let (T,�T ) be a complete

totally ordered set of transfers.9 Let φ : Θ ×X × T → R be the surplus function of

the agent. The value u = φ(θ, x, t) is the surplus obtained by the θ-type agent who

gets outcome x and provides a transfer t to a principal. We impose the following

assumptions on the surplus function φ. For each θ, let U(θ) = φ(θ,X, T ) ⊆ R be the

set of all possible surplus levels of type θ.

Assumption 1. The function φ : Θ × X × T → R is strictly decreasing in its

third argument (with respect to �T ), and satisfies the condition of the possibility of

compensation: For each θ, we have φ(θ, x, T ) = U(θ) for all x ∈ X.

Some remarks about Assumption 1 are in order. First, any real interval is com-

plete, and it is perfectly fine to think of T as a real interval. We treat it more generally

to emphasize that only the completeness property is involved. Second, the condition

of the possibility of compensation, borrowed from Kazumura, Mishra, and Serizawa

(2020), asserts that, for each type θ and each pair of different outcomes x 6= x′, any

surplus level the agent can obtain with x and some transfer can also be achieved with

x′ and some (other) transfer. A similar condition also arises in other contexts, such

as the discussion of the existence of competitive equilibrium; e.g., Mas-Colell (1977)

and Baldwin, Jagadeesan, Klemperer, and Teytelboym (2023). Notice that we do not

require that U(θ) be identical for all θ. Hence, this condition subsumes as a special

case the full-range condition of Nöldeke and Samuelson (2018) and Sinander (2022a)

which requires that φ(θ, x, T ) ≡ U for all (θ, x) and T and U be open real intervals.

9By completeness, we mean that (T,�T ) has the greatest-lower-bound property or, equivalently,
has the least-upper-bound property.
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Later we show that the condition of the possibility of compensation is necessary for

strongly implementing monotone allocations in common environments (Lemma 7).

Remark 1. Assumption 1 can be equivalently stated in terms of preference orderings.

Each θ-type agent has a rational preference ordering �θ on X × T that admits a

utility function representation. The requirements of monotonicity and possibility of

compensation in Assumption 1 are imposed on each �θ: (i) ∀x ∈ X and t′ �T t,

(x, t) �θ (x, t′); and (ii) ∀x 6= x′ and t, there exists some t′ such that (x, t) ∼θ (x′, t′).

We focus on direct mechanisms. Such a mechanism consists of an allocation

x : Θ → X and a transfer scheme t : Θ → T . Recall that mechanism (x, t) is

incentive compatible if for each θ ∈ Θ, we have

u(θ) , φ(θ,x(θ), t(θ)) = max
θ′∈Θ

φ(θ,x(θ′), t(θ′)),

in which u(θ) is the surplus obtained by the θ-type agent from truthfully reporting.

An allocation x is implementable if there exists a transfer scheme t such that (x, t)

is incentive compatible. In this case, we say that t implements x or that (t,u)

implements x to emphasize the agent’s corresponding surplus. An important stronger

notion of implementability is proposed by Nöldeke and Samuelson (2018).

Definition 1 (Strong Implementability—Nöldeke and Samuelson (2018)). An alloca-

tion x is strongly implementable if for each initial condition (θ0, u0) with u0 ∈ U(θ0),

x can be implemented by some (t,u) with u(θ0) = u0.

Notice that the strong implementability of x is equivalent to that for each initial

condition (θ0, t0), x can be implemented by some transfer scheme t with t(θ0) = t0.

By Nöldeke and Samuelson (2018), with quasilinearity, an allocation is implementable

if and only if it is strongly implementable. However, this is not the case without

quasilinearity. This causes some salient differences between the quasilinear and the

general case. For related discussion, see Nöldeke and Samuelson (2018).

Finally, Assumption 1 ensures that for each (θ, x) and u ∈ U(θ), there exists a

unique t ∈ T that satisfies u = φ(θ, x, t). We denote this t by ψ(θ, x, u). Hence,

ψ(θ, x, ·) : U(θ)→ T is the inverse mapping of φ(θ, x, ·) : T → U(θ).

3 A Characterization of Implementability

In this section, under Assumption 1, we fully characterize (strongly) implementable

allocations, via a novel cyclical monotonicity condition that generalizes Rochet (1987).
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3.1 Generating Function and Incentive Constraints

We first introduce the important notion of the generating function associated with a

given allocation, which is the building block of our cyclical monotonicity condition.

Fix an allocation x and pick up any θ′ ∈ Θ and u′ ∈ U(θ′). If the θ′-type agent

obtains a surplus u′ from truthfully reporting under mechanism M = (x, t), we

must have t(θ′) = ψ(θ′,x(θ′), u′). The surplus obtained by each θ-type agent from

(mis)reporting θ′ under M is thus given by

Φx(θ, θ′;u′) , φ(θ,x(θ′), ψ(θ′,x(θ′), u′)).

We refer to Φx(θ, θ′; ·) : U(θ′)→ U(θ) with Φx(θ, θ′;u′) defined above for each (θ, θ′)

and u′ ∈ U(θ′) as the generating function associated with x. Given each pair of types

(θ, θ′), it tells us the surplus obtained by the θ-type agent from (mis)reporting θ′

as a function of the surplus obtained by the latter from truthfully reporting. The

following lemma summarizes some obvious yet important properties of Φx inherited

from φ. The proof is omitted.

Lemma 1. Let Assumption 1 hold. For each allocation x and each θ and θ′, the map-

ping Φx(θ, θ′; ·) : U(θ′) → U(θ) is strictly increasing on U(θ′) with Φx(θ, θ′;U(θ′)) =

U(θ). Moreover, Φx(θ, θ;u) = u for all u ∈ U(θ).

Next, we extend the arguments of Φx from pairs of types to any finite chain of

types by composition as follows. For each finite chain θ1, θ2, . . . , θJ with J ≥ 3, let

Φx(θ1, θ2, . . . , θJ ; ·) : U(θJ) → U(θ1) be the composition of Φx(θ1, θ2; ·) : U(θ2) →
U(θ1) and Φx(θ2, . . . , θJ ; ·) : U(θJ)→ U(θ2). For instance,

Φx(θ1, θ2, θ3; ·) = Φx(θ1, θ2; Φx(θ2, θ3; ·));

Φx(θ1, θ2, θ3, θ4; ·) = Φx(θ1, θ2; Φx(θ2, θ3, θ4; ·)) = Φx(θ1, θ2; Φx(θ2, θ3; Φx(θ3, θ4; ·))).

We refer to Φx(θ1, · · · , θJ ;u) for u ∈ U(θJ) as the surplus obtained by the (initial)

type θ1 from the (mis)report chain θ1, . . . , θJ , given that the (ending) type θJ obtains u

from truthfully reporting. For instance, Φx(θ1, θ2, θ3;u) is the surplus obtained by the

θ1-type agent from (mis)reporting θ2, given that the θ2-type agent obtains a surplus

of Φx(θ2, θ3, u) from truthfully reporting, in which Φx(θ2, θ3, u) is the surplus the θ2-

type agent could obtain from (mis)reporting θ3, given that the θ3-type agent obtains

u from truthfully reporting. By Lemma 1, Φx(θ1, · · · , θJ ; ·) is strictly increasing on

U(θJ) with Φx(θ1, · · · , θJ ;U(θJ)) = U(θ1).

9



We now apply the generating function to capture incentive constraints. First, it

is obvious that (t,u) implements x if and only if

u(θ) = max
θ′

Φx(θ, θ′; u(θ′)),∀θ ∈ Θ. (1)

However, it is not obvious when such (t,u) exists. We now extend the above con-

straints to each finite chain θ1, . . . , θJ . If the θJ -type agent obtains u ∈ U(θJ) from

truthfully reporting under any incentive-compatible mechanism M = (x, t), then

the θJ−1-type agent obtains at least Φx(θJ−1, θJ ;u) from truthfully reporting under

M, by (1). But then the θJ−2-type agent obtains at least Φx(θJ−2, θJ−1, θJ ;u) =

Φx(θJ−2, θJ−1; Φx(θJ−1, θJ ;u)) from truthfully reporting underM. Because the agent

obtains at least Φx(θJ−2, θJ−1; Φx(θJ−1, θJ ;u)) from (mis)reporting θJ−1 underM, by

the monotonicity of Φx(θJ−2, θJ−1; ·), given that the θJ−1-type agent obtains at least

Φx(θJ−1, θJ ;u) from truthfully reporting. Continue such an argument and we arrive at

the conclusion that each θj-type agent should obtain at least Φx(θj, . . . , θJ ;u) under

M. The proof of Lemma 2 below is omitted.

Lemma 2. Let Assumption 1 hold. Then (t,u) implements x if and only if for each

finite chain θ1, · · · , θJ with J ≥ 2, we have

Φx(θ1, θ2, . . . , θJ ; u(θJ)) ≤ u(θ1). (2)

A finite chain θ1, · · · , θJ with J ≥ 2 is a cycle if θ1 = θJ . In Section 3.2, we show

that the incentive constraints (2) hold for some (t,u) if and only if (2) holds for all

cycles, which is a directly verifiable condition that generalizes Rochet (1987).

3.2 Cyclical Monotonicity

Definition 2 (Cyclical Monotonicity). An allocation x is cyclically monotone if there

exists some θ0 and u0 ∈ U(θ0) such that

Φx(θ0, θ1, . . . , θJ , θ0;u0) ≤ u0, ∀J ≥ 1, θ1, . . . , θJ ∈ Θ. (3)

An allocation x is strongly cyclically monotone if (3) holds ∀θ0 ∈ Θ and u0 ∈ U(θ0).

Our cyclical monotonicity requires the existence of some type θ0 and some u0 ∈
U(θ0), such that the θ0-type agent can never strictly benefit from any finite (mis)report

cycle, given that the θ0-type agent obtains u0 from truthfully reporting. Our strong
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x(θ0)x(θ1) x(θ2) x(θ3)

t0
t1

t2

t3

IDθ0

IDθ1

IDθ2

IDθ3

P3

P2

P1

Figure 1: Illustration of Cyclical Monotonicity. The solid curve, IDθ0 , represents
the θ0-type agent’s indifference curve passing through (x(θ0), t0). Consider cycle
θ0, θ3, θ2, θ1, θ0. Each dashed curve, IDθj , represents the indifference curve of the
θj-type agent, which passes through (x(θj−1), tj−1) and uniquely determines tj by
the indifference condition φ(θj,x(θj−1), tj−1) = φ(θj,x(θj), tj), for j = 1, 2, 3. The
cyclical monotonicity condition requires that the three recursively obtained points,
P1, P2, and P3, all lie (weakly) above IDθ0 .

cyclical monotonicity requires strongly that any type cannot strictly benefit from any

finite (mis)report cycle with any surplus assigned to that type for truthfully reporting.

The cyclical monotonicity proposed here can be demonstrated using indifference

curves in the (x, t) plane. Notice that for each (x0, t0), the points in the (x, t) plane

that lie above the indifference curve of a θ-type agent passing through (x0, t0) are

dominated by (x0, t0) in the view of the θ-type agent, because φ(θ, x, t) is strictly

decreasing in t. Consider any finite cycle θ0, θJ , . . . , θ1, θ0 and u0 ∈ U(θ0). Let t0 =

ψ(θ0, x0, u0). Condition (3) requires that for each j ≥ 1, Φx(θ0, θj, · · · , θ1, θ0;u0) ≤
u0. Let tj = ψ(θj,x(θj), φ(θj,x(θj−1), tj−1)) for each j ≥ 1. Each θj-type agent

is indifferent between (x(θj), tj) and (x(θj−1), tj−1). Also, Φx(θ0, θj, . . . , θ0;u0) =

φ(θ0,x(θj), tj). So the requirement of Φx(θ0, θj, . . . , θ1, θ0;u0) ≤ u0 is equivalent to

φ(θ0,x (θj), tj) ≤ φ(θ0,x(θ0), t0). That is, the collection of recursively obtained points

{(x(θj), tj)}Jj=1 in the (x, t) plane all lie weakly above the θ0-type agent’s indifference

curve that passes through (x(θ0), t0), as illustrated in Figure 1.

Rochet (1987) considers the quasilinear environment—that is, T = R and φ(θ, x, t) =
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v(θ, x)−t—and proposes the following cyclical monotonicity: For each θ0, θ1, . . . , θJ , θ0,

we have
J∑
j=0

[v(θj,x(θj+1))− v(θj+1,x(θj+1))] ≤ 0, (4)

in which θJ+1 = θ0. Our notions of cyclical monotonicity and strong cyclical mono-

tonicity generalize Rochet (1987) to the current environment. In fact, with quasi-

linearity, our conditions of cyclical monotonicity and strong cyclical monotonicity

coincide and reduce to (4). To see this, notice that U(θ) ≡ R and Φx(θ, θ′;u) =

v(θ,x(θ′))− v(θ′,x(θ′)) + u. For any finite chain θ1, · · · , θJ and u ∈ U(θJ), we have

Φx(θ1, . . . , θJ ;u) =
J−1∑
j=1

[v(θj,x(θj+1))− v(θj+1,x(θj+1))] + u (5)

So Φx(θ0, θ1, . . . , θJ , θ0;u0) ≤ u0 if and only if (4) holds.

Finally, the literature refers to (4) for the case J = 1 and each θ0 ∈ Θ as 2-

cyclical monotonicity, which is of particular interest. Both the 2-cyclical monotonicity

condition and the strong cyclical monotonicity condition can be rephrased in a way

reminiscent of the Galois connection discussed by Nöldeke and Samuelson (2018).10

Lemma 3 (Cyclical Monotonicity and Connections). Let Assumption 1 hold. The

following two statements about an allocation x hold:

(i) x is 2-cyclical monotone if and only if for each θ 6= θ′, the two mappings

Φx(θ, θ′; ·) : U(θ′) → U(θ) and Φx(θ′, θ; ·) : U(θ) → U(θ′) satisfy: For each

u ∈ U(θ) and v ∈ U(θ′), we have u ≤ (<)Φx(θ, θ′; v) =⇒ v ≥ (>)Φx(θ′, θ;u).

(ii) x is strongly cyclical monotone if and only if for each θ 6= θ′, each two finite

chains θ, · · · , θ′ and θ′, · · · , θ, the two mappings Φx(θ, · · · , θ′; ·) : U(θ′)→ U(θ)

and Φx(θ′, · · · , θ; ·) : U(θ) → U(θ′) satisfy: For each u ∈ U(θ) and v ∈ U(θ′),

we have u ≤ (<)Φx(θ, · · · , θ′; v) =⇒ v ≥ (>)Φx(θ′, , · · · , θ;u).

3.3 An Implementation Theorem

Rochet (1987) shows that his cyclical monotonicity condition is necessary and suffi-

cient for implementability in the quasilinear environment. Theorem 1 extends this

10Let A and B be two nonempty subsets of the reals. According to Davey and Priestley (2002),
two functions f : A → B and g : B → A are a Galois connection between the sets A and B if for
each v ∈ A and u ∈ B we have u ≥ f(v) ⇐⇒ v ≤ g(u). The connections involved in Lemma 3, by
symmetry, require u ≥ (>)f(v)⇐= v ≤ (<)g(u) and u ≤ (<)f(v) =⇒ v ≥ (>)g(u).
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result to the current environment. It states that our (strong) cyclical monotonicity

condition fully characterizes (strong) implementability under Assumption 1.

Theorem 1 (An Implementation Theorem). Let Assumption 1 hold. An allocation

x is (strongly) implementable if and only if it is (strongly) cyclically monotone.

The necessity of Theorem 1 is an immediate consequence of Lemma 2, in which

the monotonicity of Φx is applied. The sufficiency of Theorem 1 follows from a

modification of the construction of Rochet (1987), in which we continue to exploit

the monotonicity of φ and Φx. For each θ and θ′ in Θ and u′ ∈ U(θ′), let

Vx(θ, θ′;u′) ,
{

Φx(θ, θ1, . . . , θJ ;u′)
∣∣∣chain θ, θ1, . . . , θJ ,with θJ = θ′; J ≥ 1

}
⊆ U(θ)

and

Tx(θ, θ′;u′) ,
{
ψ(θ,x(θ), u)|u ∈ Vx(θ, θ′;u′)

}
⊆ T.

A nonempty subset V ⊆ U(θ) is bounded from above in U(θ) if there exists some u

in U(θ) such that for each v ∈ V , we have u ≥ v. It is obvious that Tx(θ, θ′;u′) is

bounded from below if and only if Vx(θ, θ′;u′) is bounded from above in U(θ).

If (3) holds, then the possible surplus levels each θ-type agent could obtain from

all possible finite (mis)report chains with θ0 as the ending type is bounded from above

in U(θ), provided the θ0-type agent obtains u0 from truthfully reporting.

Lemma 4. Let Assumption 1 hold. If (3) also holds, then for each θ, Vx(θ, θ0;u0) is

bounded from above in U(θ), and Tx(θ, θ0;u0) is bounded from below.

Proof. By Lemma 1, there exists some ū ∈ U(θ) such that Φx(θ0, θ; ū) = u0. For each

θ, θ1, . . . , θJ with θJ = θ0, we have Φx(θ, θ1, . . . , θJ ;u0) ≤ ū, since Φx(θ0, θ; Φx(θ, θ1, . . . ,

θJ ;u0)) ≤ u0 and Φx(θ0, θ; ·) is strictly increasing. So Vx(θ, θ0;u0) is bounded from

above by ū, and thus Tx(θ, θ0;u0) is bounded from below by ψ(θ,x(θ), ū).

Next, for each θ, let

t∗(θ) , inf Tx(θ, θ0;u0), (6)

which is welldefined when (3) holds by Lemma 4, since T is complete. The following

properties of t∗ are immediate, and the proof is omitted.

Claim 1. Let Assumption 1 hold. If (3) also holds, then for each u ∈ Vx(θ, θ0;u0), we

have u ≤ φ(θ,x(θ), t∗(θ)). Moreover, φ(θ0,x(θ0), t∗(θ0)) = u0.

The surplus obtained from truthfully reporting for each θ-type agent under mech-

anism (x, t∗) is (weakly) larger than the surplus he or she could obtain from any finite
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(mis)report chain with θ0 as the ending type and with u0 as the surplus assigned to

θ0 for truthfully reporting. Then it is obvious that t∗ implements x, by noticing that

for each θ′ and t′ in Tx(θ′, θ0, u0), we have φ(θ,x(θ′), t′) ∈ Vx(θ, θ0;u0).

Lemma 5. Let Assumption 1 hold. If (3) also holds, then t∗ implements x.

Proof. By Lemma 4, t∗ is welldefined, since T is complete. Consider θ 6= θ′. Let

φ(θ,x(θ′), t) = φ(θ,x(θ), t∗(θ)). For each t′ ∈ Tx(θ′, θ0;u0), we have φ(θ,x(θ′), t′) ∈
Vx(θ, θ0;u0). Because t′ = ψ(θ′,x(θ′),Φx(θ′, · · · , θJ ;u0)) for some finite chain θ′, · · · , θJ
with θJ = θ0, by the definition of Tx. Thus we have φ(θ,x(θ′), t′) ≤ φ(θ,x(θ), t∗(θ)),

by Claim 1. So t′ ≥ t, since φ(θ, x, ·) is strictly decreasing and φ(θ,x(θ′), t) =

φ(θ,x(θ), t∗(θ)). Since this holds for each t′ ∈ Tx(θ′, θ0;u0), we have t∗(θ′) ≥ t,

by which φ(θ,x(θ′), t∗(θ′)) ≤ φ(θ,x(θ′), t). So φ(θ,x(θ′), t∗(θ′)) ≤ φ(θ,x(θ), t∗(θ)).

The desired result follows.

Proof of Theorem 1: Sufficiency follows from Lemma 5 and Claim 1. Necessity follows

from Lemma 2 by taking θ1 = θJ = θ0 and u0 = u(θ0).

Finally, it is noteworthy that the transfer scheme t∗ constructed in (6) is the

largest among all transfer schemes that implement x and satisfy the initial condition

(θ0, u0). Put u∗(θ) , φ(θ,x(θ), t∗(θ)). For each initial condition (θ0, t0), let

Tx(θ0, t0) = {(t,u)|t implements x with t(θ0) = t0; u(θ) = φ(θ,x(θ), t(θ)),∀θ}.

Proposition 1 (An Extreme Transfer Property). Let Assumption 1 hold and Tx(θ0, t0)

be nonempty. Then (t∗,u∗) ∈ Tx(θ0, t0), in which t∗ is given by (6) with u0 =

φ(θ0,x(θ0), t0). Moreover, for each (t,u) ∈ Tx(θ0, t0), we have t ≤ t∗ and u ≥ u∗.

Proof. Since Tx(θ0, t0) is nonempty, the cyclical monotonicity condition (3) holds, by

applying Lemma 2 for the case θ1 = θJ = θ0. So t∗ implements x with t∗(θ0) = t0,

by Claim 1 and Lemma 5. Fix any (t,u) in Tx(θ0, t0). By Lemma 2 again, for each

θ and each u ∈ Vx(θ, θ0;u0), we have u ≤ u(θ). Thus, for each t ∈ Tx(θ, θ0;u0), we

have t ≥ t(θ) and so t∗(θ) ≥ t(θ). Then we have u ≥ u∗.

4 Strongly Implementing Monotone Allocations

In this section, we apply our implementation theorem to discuss the strong imple-

mentability of monotone allocations for the general case. Thus we assume, through-

out this section, that the type space Θ is totally ordered by ≥Θ and the outcome
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space X is partially ordered by ≥X . An allocation x is monotone if θ′ >Θ θ implies

x(θ′) ≥X x(θ).

Recall that a function v(θ, x) : Θ × X → R has (strictly) increasing differences

if for each x′ >X x in X, the mapping θ → v(θ, x′) − v(θ, x) (strictly) increases in

θ. Fact 1 below summarizes results on the implementability of monotone allocations

for the quasilinear case, which extend Spence (1974), Mirrlees (1976), and Rochet

(1987), by applying Rochet (1987)’s cyclical monotonicity condition.

Fact 1 (The Quasilinear Case). Let T = R and φ(θ, x, t) = v(θ, x)− t. The following

two statements hold:

(i) All monotone allocations are implementable if and only if v has increasing dif-

ferences;

(ii) If v has strict increasing differences and X is totally ordered, then an allocation

is implementable if and only if it is monotone.

Our main results in this section extend Fact 1 to the general case without in-

voking quasilinearity. The (strict) single-crossing condition on φ stated below can

be equivalently rephrased as: For each pricing scheme t : X → T , the mapping

(θ, x) → φ(θ, x, t(x)) has (strict) single-crossing differences. It reduce to the condi-

tion of (strictly) increasing differences on v for the quasilinear case.

Definition 3 (Single Crossing). The surplus function φ is single crossing if, for

each θ′ >Θ θ, each x′ >X x, and each t and t′, φ(θ, x′, t′) ≥ (>)φ(θ, x, t) implies

φ(θ′, x′, t′) ≥ (>)φ(θ′, x, t). It is strictly single crossing if for each θ′ >Θ θ, x′ >X x, t

and t′, φ(θ, x′, t′) ≥ φ(θ, x, t) implies φ(θ′, x′, t′) > φ(θ′, x, t).

4.1 A Structural Theorem and Equivalence Result

Our next theorem shows that, under Assumption 1, the single-crossing condition is

both sufficient and necessary for strongly implementing all monotone allocations.

Theorem 2 (Strongly Implementing Monotone Allocations—a Structural Theorem).

Let Assumption 1 hold. All monotone allocations are strongly implementable if and

only if φ satisfies the single-crossing condition.

By Remark 1, Theorem 2 offers an ordinal theory of implementing monotone

allocations for the general case. As an immediate consequence of Theorem 2, the

following equivalence between implementability and monotonicity is obtained.
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Theorem 3 (Equivalence between Implementability and Monotonicity). Let X be to-

tally ordered and φ satisfy the strict single-crossing condition. Under Assumption 1,

an allocation is implementable if and only if it is monotone. In addition, every im-

plementable allocation is strongly implementable.

Proof. It follows from Milgrom and Shannon (1994) and Theorem 2.

Theorem 3 generalizes Nöldeke and Samuelson (2018) (their Proposition 13) to

any totally ordered type space and outcome space under the weaker assumption of

possibility of compensation. No topological requirements are imposed; the continuity

assumption of Nöldeke and Samuelson (2018) is thus dropped.

The sufficiency of Theorem 2 follows from the implementation theorem. We rel-

egate its proof to Section 4.4, in which we show, with the single-crossing condition,

that each monotone allocation is strongly cyclically monotone. Here we discuss neces-

sity. Refer to each (θ′, x′) and (θ′′, x′′) with θ′′ >Θ θ′ and x′′ >X x′ in the (θ, x) plane

as an ordered pair. An ordered pair (θ′, x′) < (θ′′, x′′) is lower (upper) strongly imple-

mentable if for each t′ (t′′), there exists some t′′ (t′) such that φ(θ′, x′, t′) ≥ φ(θ′, x′′, t′′)

and φ(θ′′, x′, t′) ≤ φ(θ′′, x′′, t′′). An ordered pair is strongly implementable if it is both

lower and upper strongly implementable. Lemma 6 relates the single-crossing condi-

tion to lower strong implementability of ordered pairs.

Lemma 6. Let φ be strictly decreasing in its third argument. If all ordered pairs in

the (θ, x) plane are lower strongly implementable, then φ is single crossing.

Proof. Suppose the contrary—that there exists θ′ >Θ θ, x′ >X x, t and t′, such

that φ(θ, x′, t′) ≥ φ(θ, x, t) but φ(θ′, x′, t′) < φ(θ′, x, t). Since (θ, x) < (θ′, x′) is lower

strongly implementable, there exists some t′′ such that φ(θ, x, t) ≥ φ(θ, x′, t′′) and

φ(θ′, x′, t′′) ≥ φ(θ′, x, t). By φ(θ, x, t) ≥ φ(θ, x′, t′′) and φ(θ, x′, t′) ≥ φ(θ, x, t), we

have φ(θ, x′, t′) ≥ φ(θ, x, t′′) and so t′′ �T t′. However, by φ(θ′, x′, t′′) ≥ φ(θ′, x, t)

and φ(θ′, x′, t′) < φ(θ′, x, t), we have φ(θ′, x′, t′′) > φ(θ′, x′, t′) and thus t′ �T t′′, a

contradiction. The proof of the strict case is the same and omitted.

Proof of Necessity of Theorem 2: It follows from Lemma 6: Trivially, if all monotone

allocations are strongly implementable, then all ordered pairs in the (θ, x) plane are

strongly implementable.

4.2 Strongly Implementing Ordered Pairs: A Reduction

In this section, we show that commonly, the possibility of compensation is a neces-

sary condition for strongly implementing all monotone allocations—and in particular,
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when we focus on interior types. As a result, commonly, strongly implementing mono-

tone allocations reduces to strongly implementing ordered pairs in the (θ, x) plane.

Say that X is simple order-connected if, for each x and y in X, there exists some

z ∈ X such that x and z are ordered and y and z are ordered. Examples of simple

order-connected outcome space abound: In ascending order of generality, (i) X is

totally ordered; (ii) X is a lattice; and (iii) X is an upward (downward) directed set:

Each pair of elements in X has an upper (lower) bound in X—e.g., experiments with

Blackwell’s informativeness order, which is not a lattice with multiple states.

Assumption 2. The type space Θ has neither a least nor a greatest element. The

outcome space X is simple order-connected. The transfer space T is a real interval.

The surplus function φ : Θ×X × T → R is continuous and strictly decreasing in its

third argument for all (θ, x).

When Θ is an open real interval—or when we focus on interior types—it has nei-

ther a least nor a greatest element. The requirement of the simple order-connectedness

of X is commonly satisfied, as discussed above. The assumptions that T is a real in-

terval and φ is continuous in transfers are made in all related discussions.

Lemma 7. Let Assumption 2 hold. If all ordered pairs in the (θ, x) plane are strongly

implementable, then φ satisfies the condition of the possibility of compensation.

Proposition 2 (Reduction). Let Assumption 2 hold. All monotone allocations are

strongly implementable if and only if all ordered pairs are strongly implementable.

Proof. Necessity is trivial. Sufficiency follows from Theorem 2 and Lemmas 6 and

7.

Finally, it is noteworthy that under Assumption 2, all monotone allocations are

strongly implementable if and only if both the single-crossing condition and the con-

dition of the possibility of compensation hold.

4.3 Discussion

In this section, we discuss several topics related to implementing monotone alloca-

tions. In Section 4.3.1, we apply Theorems 2 and 3 to extend Fact 1 to the case in

which utility and transfer are aggregated by a convex and supermodular aggregator

and thus allow for nonlinear aggregation. In Section 4.3.2, we apply Theorem 2 and

the reduction result of Proposition 2 to discuss implementing well-behaved monotone

allocations. In Section 4.3.3, we briefly comment on the envelope-theorem approach.
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4.3.1 Nonlinear Aggregation

In the quasilinear case, the type-dependent utility of outcomes v(θ, x) and transfer

t are aggregated in a linear way, independent of types (Fact 1). In this section, we

examine the following more general aggregation:

φ(θ, x, t) , g(v(θ, x), t), (7)

in which g(v, t) : R×T → R is an aggregator : It is strictly increasing in v and strictly

decreasing in t with g(·, T ) ≡ U for some U ⊆ R. Such an aggregation first appears

in Sinander (2022a)’s discussion of selling information.

By Theorem 2, all monotone allocations are strongly implementable if and only

if φ is single crossing; Assumption 1 is satisfied for aggregation. We now identify a

sufficient condition on g for the single-crossing condition on φ to hold, given that v

has increasing differences. We focus on a canonical case in which, besides increasing

differences, it also assumes that v(θ, x) increases in both θ and x: v(θ′, x) ≥ v(θ, x)

for each θ′ >Θ θ and x; v(θ, x′) ≥ v(θ, x) for each x′ >X x and θ, e.g., Mas-Colell,

Whinston, and Green (1995). Proposition 3 extends Fact 1 to the broader class

of convex and supermodular aggregators: The marginal contribution of v to the

aggregator g increases in both v and t. It applies the composition result of Topkis

(1998).

Proposition 3 (Nonlinear Aggregation). Let φ be given by (7), in which v is canon-

ical and g(v, t) is convex in v and supermodular in (v, t). The following statements

hold:

(i) All monotone allocations are strongly implementable;

(ii) If, additionally, v has strictly increasing differences and X is totally ordered,

then an allocation is implementable if and only if it is monotone.

Proof. For the first statement, for each θ′ >Θ θ, x′ >X x, and t′ �T t, we have

φ(θ′, x′, t′)− φ(θ′, x, t) ≥ φ(θ, x′, t′)− φ(θ, x, t), by Lemma 2.6.4 of Topkis (1998) (or

see Claim 4 in Appendix B.4). But this implies that φ is single crossing, since for

each θ, x′ >X x, and t �T t′, we have φ(θ, x′, t′) > φ(θ, x, t). Theorem 2 applies. If,

in addition, v has strict increasing differences, then φ is strictly single crossing. The

second statement then follows from Theorem 3.

Example 1 (Blackwell Experiments—a Revisit of Sinander (2022a)). In this ex-

ample, we revisit the problem of selling information discussed by Sinander (2022a).
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Interpret X as a collection of Blackwell experiments on a finite set of possible states of

the world Ω. Denote by ∆ the set of all possible beliefs on Ω. Let ≥X be Blackwell’s

informativeness order—that is, for each x′ >X x, x′ is more informative than x in the

sense of Blackwell (1951).11 Assume that all types of the agent share a common prior

belief π on Ω. Let λ(x, π) be the distribution of posterior beliefs induced by experi-

ment x and prior belief π in the standard way. Each θ-type agent solves some decision

problem under uncertainty of states, with Aθ as the choice set and uθ : Ω× Aθ → R
as the payoff function. For each θ ∈ Θ and q ∈ ∆, let w(θ, q) be the expected value

the θ-type agent achieves with posterior belief q:

w(θ, q) , sup
a∈Aθ

∑
ω∈Ω

uθ(ω, a)q(ω),

which is convex in q for each θ. Let v(θ, x) be the value of experiment x for θ-type

agent:

v(θ, x) ,
∫

∆

w(θ, q)dλ(x, π).

The agent aggregates the value of the experiment and transfer using an aggregator g:

φ(θ, x, t) , g(

∫
∆

w(θ, q)dλ(x, π), t). (8)

Corollary 1. Let w(θ′, ·, )−w(θ, ·) be convex for all θ′ >Θ θ and w(·, q) be increasing

for all q ∈ ∆. If g(v, t) is convex in v and supermodular in (v, t), then all monotone

allocations are strongly implementable.

Proof. v(θ, x) has increasing differences by Blackwell (1951), since w(θ′, ·, ) − w(θ, ·)
is convex for all θ′ >Θ θ. Also, v(θ, ·) is increasing for all θ, again by Blackwell

(1951). Finally, v(·, x) is increasing for all x, because w(·, q) is increasing for all q.

Proposition 3 applies.

For linear aggregation, the condition of increasing differences on v is sufficient for

implementing monotone allocations by Fact 1. However, for the more general class of

convex and supermodular aggregators, besides increasing differences, the monotonic-

ity conditions on v(θ, x) are also needed. For instance, in Corollary 1, the condition

of convex differences—by which the higher type gets larger marginal value from more

informative experiments—ensures the implementability of monotone allocations for

the quasilinear case. However, for the more general class of convex and supermodular

11Strictly speaking, the binary relation ≥X is a subset of Blackwell’s informativeness relation.
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aggregators, the extra requirement of the monotonicity of w(·, q) for all q—by which

the higher type values each experiment in X more—is needed.

4.3.2 Well-behaved Monotone Allocations

Guesnerie and Laffont (1984) show that piecewisely continuously differentiable mono-

tone allocations are strongly implementable with multidimensional outcomes, under

the Spence-Mirrlees condition and a boundary condition (their Theorem 2).12 In this

section, we show that commonly, partial results regarding “well-behaved” monotone

allocations readily extend to all monotone allocations without imposing any extra

conditions, when we focus on interior types. For each θ′′ >Θ θ′ in Θ, say that allo-

cation x : [θ, θ′] → X is tail strongly implementable if, for each t ∈ T , there exists

t : [θ, θ′] → T with t(θ) = t and t′ : [θ, θ′] → T with t′(θ′) = t such that both (x, t)

and (x, t′) are incentive compatible (restricted on [θ, θ′]). For each k ∈ N ∪ {+∞},
let Ck be the class of kth continuously differentiable functions.

Proposition 4 (Well-behaved Monotone Allocations). Let Θ be an open real interval,

X ⊆ RL be convex and simple order-connected with the usual order, and T be a real

interval. Let φ : Θ × X × T → R be continuous and strictly decreasing in its third

argument, for all (θ, x). All monotone allocations are strongly implementable if and

only if for each θ < θ′ in Θ, each monotone allocation defined on [θ, θ′] that falls into

Ck (that is linear) (that is Lipschitz continuous) is tail strongly implementable.

Proof. Consider sufficiency. For each ordered pair (θ′, x′) < (θ′′, x′′), let x : [θ′, θ′′]→
X be such that x(θ) = (θ−θ′)/(θ′′−θ′)x′′+(θ′′−θ)/(θ′′−θ′)x′, which is feasible since X

is convex. Clearly, x is kth continuously differentiable (linear) (Lipschitz continuous).

By the tail strong implementability of x, the ordered pair (θ′, x′) < (θ′′, x′′) is strongly

implementable. Proposition 2 applies.

Example 2 (A Revisit of Guesnerie and Laffont (1984)). In this example, we revisit

Guesnerie and Laffont (1984). Let T be a real interval andX =
L∏
l=1

Xl in which eachXl

is a real interval. The orders on X and T are as usual. A function φ : Θ×X×T → R,

continuously differentiable in (x, t) for each θ, satisfies the (multidimensional) Spence-

Mirrlees condition if φt < 0 and φl/|φt| is nondecreasing in θ (with respect to ≥Θ) for

each fixed (x, t) and l, in which φl = ∂φ/∂xl.
13 Following Guesnerie and Laffont, φ

12See also Theorem 7.3 of Fudenberg and Tirole (1991).
13We do not require real-valued types. The Spence-Mirrlees condition compares the (smooth)

indifference curves in the (x, t) plane associated with each pair of different types. Conceptually,
whether types are real numbers or φ is smooth in types should be irrelevant.
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satisfies the boundary condition if there exists K > 0 and K ′, such that for all (θ, x, t)

and l, we have |φl/φt| ≤ K|t|+K ′. The sufficiency of Corollary 2 extends Theorem 2

of Guesnerie and Laffont (1984) to all monotone allocations under their conditions,

focusing on interior types.

Corollary 2. Let Θ be an open real interval, T = R, and X =
L∏
l=1

Xl where each

Xl is a real interval with the usual product order. Also, let φ : Θ × X × R → R be

twice continuously differentiable with φt < 0 and the boundary condition hold. All

monotone allocations are strongly implementable if and only if the Spence-Mirrlees

condition holds.

Proof. (Sufficiency.) With the conditions, each continuously differentiable monotone

allocation defined on [θ, θ′] for each θ < θ′ in Θ is tail strongly implementable, by

Guesnerie and Laffont (1984). Proposition 4 applies. (Necessity.) By Lemma 6, φ is

single crossing. Lemma 8 below applies.

Lemma 8. Let X =
L∏
l=1

Xl in which each Xl is a real interval with the product order

and T be a real interval. Also, let φ(θ, x, t) be continuously differentiable in (x, t) for

each θ with φt < 0. If φ is single crossing, then the Spence-Mirrlees condition holds.

Finally, we build an equivalence between strongly implementing monotone alloca-

tions and the Spence-Mirrlees condition by assuming that φ is completely regular in

the sense of Milgrom and Shannon (1994): For each θ, each x′ >X x, t and t′, such

that φ(θ, x, t) = φ(θ, x′, t′), the isoutility curve of the θ-type agent between (x, t) and

(x′, t′) corresponds to a smooth path {(x(s), t(s))|s ∈ [0, 1]} such that x′l(s) ≥ 0 for

each l with (x(0), t(0)) = (x, t) and (x(1), t(1)) = (x′, t′). In Proposition 5, both

the boundary condition and the joint twice continuous differentiability requirement

of Guesnerie and Laffont (1984) are dropped.14

Proposition 5 (Spence-Mirrlees Condition and Implementing Monotone Alloca-

tions). Let X =
L∏
l=1

Xl in which each Xl is a real interval with the usual product

order and T be a real interval. Also, let φ : Θ×X × T → R be continuously differen-

tiable in (x, t) for each θ with φt < 0, be completely regular, and satisfy the condition

of possibility of compensation. All monotone allocations are strongly implementable

if and only if the Spence-Mirrlees condition holds.

14Complete regularity calls for conditions on the sign of each φl—which, however, as highlighted by
Guesnerie and Laffont (1984), is not assumed in their results. Nor are they assumed in Corollary 2.

21



4.3.3 A Comment on the Envelope-Theorem Approach

One common approach for addressing implementability with quasilinearity is based

on applying the envelope theorem; e.g., Mas-Colell, Whinston, and Green (1995).

It would be nice to know how far this approach could go for the general case, to

which Sinander (2022a) made a notable contribution. Let Θ = [0, 1], T = R, and

φ(θ, x, t) : Θ×X×R→ R be strictly decreasing in t with φ(θ, x,R) = R for all (θ, x).

Without quasilinearity, the first step of the envelope-theorem approach is to iden-

tify the conditions by which, for each allocation x among the targeted class, there

exists some transfer scheme t such that the following envelope formula holds:

φ(θ,x(θ), t(θ)) = k +

∫ θ

0

φ1(s,x(s), t(s))ds,∀θ ∈ [0, 1], (9)

in which k is a given constant. Or equivalently,

t(θ) = ψ(θ,x(θ), k +

∫ θ

0

φ1(s,x(s), t(s))ds),∀θ ∈ [0, 1].

The conditions for the existence of such a t, when the targeted class of allocations

are the monotone ones, as identified by Sinander (2022a), are stated below.

Assumption 3 (Regularity Conditions). (i) X is regular: X is order-dense-in-itself,

countably chain-complete, and chain-separable. (ii) φ(θ, x, t) is regular: φ is differen-

tiable in types with bounded type derivative; φ1(θ, x, ·) is continuous in transfers for

all (θ, x); for each chain C ⊆ X, φ is jointly continuous on [0, 1]× C × R.

The above conditions are mild for the existence of a solution to the nontrivial fixed-

point problem (9) based on a topological approach. However, in terms of applications,

they may not be convenient to verify and easily fail.15 For instance, of all the results

in Section 4, Corollary 2 is the closest to Assumption 3. But Corollary 2 does not fit

all of these requirements: Clearly, the type derivative can be unbounded, given that

Θ is an open interval, when X = [ε,∞)L as in Guesnerie and Laffont (1984).

It will be instructive to compare (9) with the implementability problem (1), which

is also a fixed-point problem,16 to understand how we managed to dispense with

Assumption 3 in our results. The monotonicity of the generating function Φx and

15This is particularly the case when φ is endogenous.
16More explicitly, let U = {u : Θ → R|u(θ) ∈ U(θ),∀θ}, R̄ = R ∪ {+∞}, and Λx : U → R̄Θ be

such that Λxu(θ) = sup
θ′

Φx(θ, θ′,u(θ′)), for each u and θ. Then x is implementable if and only if

Λx has a fixed point in U .
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the maximum operator in the fixed-point problem (1) offer an order structure that

can be fruitfully exploited, which gives rise to the cyclical monotonicity condition for

existence. The conditions in Assumption 3, entailed by a topological approach for

(9), are orthogonal to our approach for (1), and thus are not needed by Theorem 1.

This extends to Theorems 2 and 3 and other results based on them.

The next step of the envelope-theorem approach is to identify the conditions

such that for each allocation x among the targeted class, the solution to (9) indeed

implements x. For this step, the converse envelope theorem of Sinander helps. For the

class of monotone allocations, some version of the single-crossing condition is needed.

Sinander (2022a) proposes the outer Spence–Mirrlees condition, which can be neatly

applied based on his converse envelope theorem: For each monotone allocation x and

each transfer scheme t and each r < z in [0, 1], the following mapping

n→ d̄

d̄m

∫ z

r

φ(s+ n,x(s+m), t(s+m))ds
∣∣∣
m=0

is single crossing, in which d̄/d̄m denotes the upper derivative. The outer Spence-

Mirrlees condition implies the single-crossing condition in Definition 3, as Sinander

notes. As a result, the implementability theorem of Sinander (Section 4.3 of Sinander

(2022a)) follows from Theorem 2.

Claim 2. If φ is regular and satisfies the outer Spence-Mirrlees condition, then all

monotone allocations are strongly implementable.

Proof. By Lemma 7 of Sinander (2022a), φ is single crossing. Theorem 2 applies.

The outer Spence-Mirrlees condition is not as straightforward and easy to identify

as the single-crossing condition. For the latter, we can readily apply the theory of

monotone comparative statics, as illustrated by Proposition 3.

4.4 Proof of the Sufficiency of Theorem 2

We show that with the single-crossing condition, each monotone allocation is strongly

cyclically monotone. We first show 2-cyclical monotonicity.

Lemma 9. Let Assumption 1 hold and φ be single crossing. Each monotone allocation

is 2-cyclical monotone.

Proof. We show that the condition in the first statement of Lemma 3 is satisfied. Let

x be monotone. It is easy to see that by the single-crossing condition, for each θ 6= θ′,
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t and t′, we have

φ(θ,x(θ), t) ≤ (<)φ(θ,x(θ′), t′) =⇒ φ(θ′,x(θ′), t′) ≥ (>)φ(θ′,x(θ), t). (10)

Assume u ≤ (<)Φx(θ, θ′; v), or equivalently,

φ(θ,x(θ), ψ(θ,x(θ), u)) ≤ (<)φ(θ,x(θ′), ψ(θ′,x(θ′), v)).

Applying (10) for t = ψ(θ,x(θ), u) and t′ = ψ(θ′,x(θ′), v), we obtain

φ(θ′,x(θ′), ψ(θ′,x(θ′), v)) ≥ (>)φ(θ′,x(θ), ψ(θ,x(θ), u)),

or equivalently, v ≥ (>)Φx(θ′, θ;u). The desired result follows from Lemma 3.

Next, we extend Rochet’s induction analysis to the current environment. Given a

finite chain θ1, · · · , θJ with J ≥ 3, say that θj with 1 < j < J is a local extremum if

either θj = min{θj−1, θj, θj+1} or θj = max{θj−1, θj, θj+1}.

Lemma 10. Let Assumption 1 hold and φ be single crossing. Also, let x be monotone.

For each finite chain θ1, θ2, θ3, · · · , θJ with J ≥ 3, and u ∈ U(θJ), if θ2 is a local

extremum, then we have

Φx(θ1, θ2, θ3, · · · , θJ ;u) ≤ Φx(θ1, θ3, · · · , θJ ;u). (11)

Proof. Let θ2 = max{θ1, θ2, θ3}. Suppose to the contrary that (11) fails. That is,

φ(θ1,x(θ2), ψ(θ2,x(θ2),Φx(θ2, · · · , θJ ;u))) > φ(θ1,x(θ3), ψ(θ3,x(θ3),Φx(θ3, · · · , θJ ;u))).

Since θ2 ≥Θ θ3 and x is monotone, we have x(θ2) ≥X x(θ3). Then by θ2 ≥ θ1 and the

single-crossing condition, we have

φ(θ2,x(θ2), ψ(θ2,x(θ2),Φx(θ2, · · · , θJ ;u))) > φ(θ2,x(θ3), ψ(θ3,x(θ3),Φx(θ3, · · · , θJ ;u))),

or equivalently,

Φx(θ2, θ3, · · · , θJ ;u) > Φx(θ2, θ3, · · · , θJ ;u),

a contradiction. The case θ2 = min{θ1, θ2, θ3} is similar and the proof is omitted.

Proof of the Sufficiency of Theorem 2: Let x be monotone. We show that if condi-

tion (3) holds for some J , then it must also hold for J + 1. Consider any cycle
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θ0, θ1, · · · , θJ+1, θ0. If θ0 >Θ max{θ1, · · · , θJ+1}, let j∗ ∈ {1, . . . , J + 1} be such that

θj∗ = min{θ1, . . . , θJ+1}; if θ0 ≤Θ max{θ1, · · · , θJ+1}, let j∗ ∈ {1, . . . , J + 1} be

such that θj∗ = max{θ1, . . . , θJ+1}. Clearly, θj∗ is a local extremum in the chain

θj∗−1, θj∗ , θj∗+1, · · · θJ+1, θ0. Thus, we have

Φx(θ0, θ1, · · · , θJ+1, θ0;u0) = Φx(θ0, · · · , θj∗−1; Φx(θj∗−1, θj∗ , θj∗+1, · · · , θJ+1, θ0;u0))

≤ Φx(θ0, · · · , θj∗−1; Φx(θj∗−1, θj∗+1, · · · , θJ+1, θ0;u0))

= Φx(θ0, · · · , θj∗−1, θj∗+1, · · · , θJ+1, θ0;u0)

≤ u0.

The first inequality follows from Lemma 10 and the monotonicity of Φx(θ1, . . . , θj∗−1; ·).
The last inequality comes from the induction hypothesis. The desired result then fol-

lows from Lemma 9 and Theorem 1.

A Revenue Equivalence

Revenue equivalence refers to the phenomenon whereby any two mechanisms that

implement a given allocation give rise to the same revenue for each type to the prin-

cipal, provided some type—typically, the lowest type—obtains the same surplus in

these two mechanisms; e.g., Mas-Colell, Whinston, and Green (1995). In this section,

we briefly discuss revenue equivalence without quasilinearity. Following Nöldeke and

Samuelson (2018), we refer to u : Θ → R with u(θ) ∈ U(θ) for each θ as a sur-

plus profile; u is implementable under x, if ψ(θ,x(θ),u(θ)) : Θ → T implements x.

Focusing on surplus profiles, we have the following definition.

Definition 4 (Revenue Equivalence). An implementable allocation x satisfies revenue

equivalence if for each two surplus profiles u and u′ both implementable under x, we

have u(θ) = u′(θ) for some θ =⇒ u = u′.

An allocation is strongly implementable and satisfies revenue equivalence if and

only if, for each initial condition, there exists a unique transfer scheme that imple-

ments x and satisfies the initial condition. An equally common definition of revenue

equivalence in quasilinear environments requires that two transfer schemes that im-

plements a given allocation differ by a constant; e.g., Heydenreich, Müller, Uetz, and

Vohra (2009). It is obvious that with quasilinearity, these two definitions coincide.
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Heydenreich, Müller, Uetz, and Vohra (2009) provide a characterization of revenue

equivalence with quasilinearity. We now extend their analysis to the current environ-

ment. Let x be strongly implementable, and thus strongly cyclically monotone. For

each θ, θ′, and u′ ∈ U(θ′) the nonempty set Vx(θ, θ′;u′) is bounded from above in

U(θ) by Lemma 4. Let distx(θ, θ′;u′) = supU(θ) Vx(θ, θ′;u′) ∈ U(θ) be the least upper

bound of Vx(θ, θ′;u′) in U(θ).17 Actually, we have

distx(θ, θ′;u′) = φ(θ,x(θ), inf Tx(θ, θ′;u′)).

By Proposition 1, for each θ′ and u′ ∈ U(θ′), distx(·, θ′;u′) is the least surplus pro-

file implementable under x that satisfies the initial condition (θ′, u′). We refer to

distx(θ, θ′; ·) : U(θ′)→ U(θ) as the distance function from θ′ to θ associated with al-

location x. Notice that distx(θ, θ′; ·) is monotone for all (θ, θ′) with distx(θ, θ;u) = u

for each θ and u ∈ U(θ). Also, for each surplus profile u implementable under x, we

have distx(θ, θ′; u(θ′)) ≤ u(θ), ∀θ, θ′. The strong implementability of x imposes the

following requirement on the distance function associated with x.

Claim 3. Let Assumption 1 hold and x be strongly implementable. Then for each θ

and θ′ and u ∈ U(θ), we have distx(θ, θ′; distx(θ′, θ;u)) ≤ u.

Proof. Let u be a surplus profile implementable under x with u(θ) = u. We have

distx(θ, θ′; distx(θ′, θ;u)) ≤ distx(θ, θ′; u(θ′))) ≤ u(θ) = u.

Theorem 4 (Characterization of Revenue Equivalence—Inverse Distance). Let As-

sumption 1 hold and x be strongly implementable. Then, x satisfies revenue equiv-

alence if and only if for all θ and θ′, distx(θ, θ′; distx(θ′, θ; ·)) : U(θ) → U(θ) is an

identity mapping: For each u ∈ U(θ), we have distx(θ, θ′; distx(θ′, θ;u)) = u.

Proof. (Necessity.) Suppose the contrary—that there exists some u′ ∈ U(θ′) such that

distx(θ′, θ′′; distx(θ′′, θ′;u′)) 6= u′. Consider the surplus profiles implementable under x:

u(·) ≡ distx(·, θ′′; distx(θ′′, θ′;u′)) and u′(·) ≡ distx(·, θ′;u′). We have u(θ′) 6= u′(θ′)

but u(θ′′) = u′(θ′′), a contradiction. (Sufficiency.) To show that x satisfies the

property of revenue equivalence, it suffices to show that for each surplus profile u

implementable under x, and each θ and θ′, we have u(θ′) = distx(θ′, θ; u(θ)). But

this follows from u(θ′) ≥ distx(θ′, θ; u(θ)) ≥ distx(θ′, θ; distx(θ, θ′; u(θ′))) = u(θ′).

17By completeness of T , for each θ, U(θ) with the usual order is also complete. However, notice
that the least upper bound of V in U(θ) differs from its usual supremum in R—i.e., supV—whenever
supV is not an element of U(θ). For example, let U(θ) = (−1, 0) ∪ [1, 2) and V = (−1, 0). V is
bounded from above in U(θ) with supU(θ) V = 1. But supV = 0.
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The inverse distance condition in Theorem 4 reduces to the antisymmetric distance

condition of Heydenreich, Müller, Uetz, and Vohra (2009) for the quasilinear case.

Let T = R, φ(θ, x, t) = v(θ, x)− t, and x be implementable. For each θ and θ′,

distlx(θ, θ′) , inf
chain

θ=θ1,...,θJ=θ′

J−1∑
j=1

[v(θj+1,x(θj+1))− v(θj+1,x(θj))]

is the distance from θ to θ′ (in type graph) of Heydenreich, Müller, Uetz, and Vohra

(2009). By (5), for all θ and θ′ and u ∈ U(θ), we have

distx(θ′, θ;u) = −distlx(θ, θ′) + [v(θ′,x(θ′))− v(θ,x(θ))] + u.

So, for all θ, θ′ ∈ Θ and u ∈ U(θ), we have

distx(θ, θ′; distx(θ′, θ;u)) = −distlx(θ, θ′)− distlx(θ′, θ) + u.

Thus, by Theorem 4, an implementable allocation x satisfies revenue equivalence

if and only if for all θ and θ′ in Θ, we have distlx(θ, θ′) = −distlx(θ′, θ), which is the

antisymmetric distance condition of Heydenreich, Müller, Uetz, and Vohra (2009).

B Omitted Proofs

B.1 Proof of Lemma 3

We only prove the second statement. The proof of the first statement is the same

and omitted. (Necessity.) Let u ≤ (<)Φx(θ, · · · , θ′; v). By strong cyclical mono-

tonicity, we have Φx(θ, · · · , θ′; Φx(θ′, · · · , θ;u)) ≤ u and so Φx(θ′, · · · , θ;u) ≤ (<

)v, since Φx(θ′, · · · , θ; ·) is strictly increasing. (Sufficiency.) Consider any cycle

θ0, θ1, · · · , θJ , θ0 and u0 ∈ U(θ0). If θj ≡ θ0 for all j, then (3) holds trivially, since

Φx(θ0, θ1, · · · , θJ , θ0;u0) = u0. Now consider the case θj 6= θ0 for some j. Let v =

Φx(θj, · · · , θJ , θ0;u0). By the proposed condition, we have u0 ≥ Φx(θ0, θ1, · · · , θj; v).

So u0 ≥ Φx(θ0, θ1, · · · , θJ , θ0;u0).

B.2 Proof of Lemma 7

We show, for each θ, x 6= x′, and t, there exists some t′ such that φ(θ, x, t) = φ(θ, x′, t′).

Let x and x′ be ordered. Consider the case x′ >X x. Let θ′ >Θ θ in Θ. The
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existence of θ′ is guaranteed by the assumption that Θ has no greatest element.

Since (θ, x) < (θ′, x′) is lower strongly implementable, there exists some t′′ such that

φ(θ, x, t) ≥ φ(θ, x′, t′′). Now let θ >Θ θ′′ in Θ. The existence of θ′′ is guaranteed by

the assumption that Θ has no least element. Since (θ′′, x) < (θ, x′) is lower strongly

implementable, there exists some t′′′ such that φ(θ, x′, t′′′) ≥ φ(θ, x, t). By continuity

of φ in transfers, there exists some t′ between t′′ and t′′′ such that φ(θ, x′, t′) =

φ(θ, x, t). The case x >X x′ follows from the upper strong implementability of each

ordered pair. Now consider the case in which x and x′ are not ordered. Since X is

simple order-connected, there exists some z ∈ X such that x and z are ordered and

x′ and z are ordered. By the previous argument, there exists some t̂ and t̄ such that

φ(θ, x, t) = φ(θ, z, t̂) and φ(θ, z, t̂) = φ(θ, x′, t̄). The desired result follows.

B.3 Proof of Lemma 8

Suppose, in contradiction, that φl/|φt|(θ, x̄l, x̄−l, t̄) > φl/|φt|(θ′, x̄l, x̄−l, t̄) for some

θ < θ′ and l and (x̄, t̄). Without loss of generality, let x̄ be in the interior of X

and the strict inequality holds in a neighbourhood of (x̄l, t̄)—say, N—when x−l is

fixed at x̄−l. If φl(θ, xl, x̄−l, t) ≡ 0 on N , then we have φl(θ
′, xl, x̄−l, t) < 0 on

N . A contradiction can be drawn by noticing φ(θ, x′l, x̄−l, t) = φ(θ, xl, x̄−l, t) but

φ(θ′, x′l, x̄−l, t) < φ(θ′, xl, x̄−l, t) for each (xl, t) and (x′l, t) with x′l > xl in N . Now

consider the case φl(θ, x̂l, x̄−l, t̂) 6= 0 for some (x̂l, t̂) in N . By the implicit function

theorem, there exists an isoutility segment of the θ-type agent in N , {xl(s), t(s)|s ∈
[0, 1]}, such that x′l(s) > 0. A contradiction can be drawn using the same argument

as Milgrom and Shannon (1994).

B.4 Topkis (1998)’s Composition Result

We adapt the composition result of Topkis (1998) to our environment and give a proof

for completeness—but unlike Topkis, we do not require that X be a lattice.

Claim 4 (Topkis (1998)). Let v(θ, x) in (7) have increasing differences and be increas-

ing in both θ and x. If g(v, t) is convex in v and supermodular in (v, t), then for each

θ′ >Θ θ, x′ >X x, and t′ �T t, we have φ(θ′, x′, t′)−φ(θ′, x, t) ≥ φ(θ, x′, t′)−φ(θ, x, t).
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Proof.

φ(θ′, x′, t′)− φ(θ′, x, t) = [φ(θ′, x′, t′)− φ(θ′, x, t′)] + [φ(θ′, x, t′)− φ(θ′, x, t)]

= [g(v(θ′, x′), t′)− g(v(θ′, x), t′)] + [g(v(θ′, x), t′)− g(v(θ′, x), t)]

≥ [g(v(θ, x′), t′)− g(v(θ, x), t′)] + [g(v(θ, x), t′)− g(v(θ, x), t)]

= φ(θ, x′, t′)− φ(θ, x, t).

Now we explain the inequality in the above expression. By increasing differences and

v(θ′, x) ≥ v(θ, x), we have g(v(θ′, x′), t′)− g(v(θ′, x), t′) ≥ g(v(θ, x′), t′)− g(v(θ, x), t′),

since g(v, t) is convex and increasing in v. By supermodularity of g, g(v(θ′, x), t′) −
g(v(θ′, x), t) ≥ g(v(θ, x), t′)− g(v(θ, x), t), since t′ �T t and v(θ′, x) ≥ v(θ, x).

B.5 Proof of Proposition 5

Necessity follows from Theorem 2 and Lemma 8. Now turn to Sufficiency. We first

show that φ is single crossing. For each θ′ >Θ θ, x′ > x, t and t′, such that φ(θ, x′, t′) =

φ(θ, x, t), we have φ(θ′, x′, t′) ≥ φ(θ′, x, t) by Milgrom and Shannon (1994), since φ is

completely regular. Now consider the case φ(θ, x′, t′) > φ(θ, x, t). By the condition of

the possibility of compensation, there exists t′′ > t′ such that φ(θ, x′, t′′) = φ(θ, x, t).

By the previous argument, we have φ(θ′, x′, t′′) ≥ φ(θ′, x, t) and so φ(θ′, x′, t′) >

φ(θ′, x, t). This shows that φ is single crossing. Theorem 2 applies.
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