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1 Introduction

Recent theories of economic growth highlight the role of learning and knowledge diffusion as key

productivity drivers (Buera and Lucas, 2018). Idea diffusion is highly localized, making geograph-

ical proximity a key determinant of people’s capacity to learn and adopt existing knowledge, as

widely demonstrated in empirical research (e.g., Jaffe et al., 1993; Greenstone et al., 2010). This

paper investigates the role played by this diffusion process in shaping heterogeneous local growth

dynamics across cities and regions.

Changes in the technological environment have historically coincided with periods of trans-

formation of the economic geography. In the United States, this is exemplified by the rise and

fall of industrial cities in the Rust Belt in the twentieth century and the emergence of innovation

hubs specializing in information technology (IT) and pharmaceuticals in recent years (Glaeser and

Gottlieb, 2009; Moretti, 2012). While these large fluctuations are linked to a variety of outcomes

relevant to welfare, the economic channels that connect changes in the technological landscape to

these patterns remain largely unexplored. Progress on this issue has been hampered by a lack of

comprehensive data on the geography of innovation over long periods. Additionally, identifying

specific channels has proven difficult both empirically and theoretically, due to challenges in us-

ing quasi-experimental approaches to study long-term outcomes and the inherent intractability of

knowledge diffusion in spatial models.

This study presents new facts and theory linking changes in the technological environment

and local growth dynamics. Using a novel dataset of geolocated historical U.S. patents spanning

more than 100 years, we document that cities that are more favorably exposed to changes in the

technological landscape—referred to as “technological waves”—systematically experience higher

growth over the long-term. Motivated by this finding, we develop a model that integrates a

spatial equilibrium setting into a theory of economic growth with frictional idea diffusion. The

model formalizes the relationship between technological waves and local growth, allowing us to

estimate the contributions of the underlying economic forces. The quantitative results suggest

that frictions to idea diffusion explain nearly two-thirds of the empirical relationship between

exposure to technological waves and local growth throughout the last century.

To begin the analysis, we use our historical data to show that the prominence of various areas

of knowledge, measured as the share of patents from each field in the overall innovation landscape,

changes slowly but significantly over time. We refer to these long-term changes as “technological

waves.” Various factors, including scientific advancements, demand changes, or new regulations

can cause these shocks. In the paper, we do not take a stand on the origin of these shocks, and

focus instead on their effects on local growth dynamics.

Using a measure of local exposure to technological waves, we document that cities with innova-
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tion activities initially concentrated in expanding fields experience systematically higher population

growth than cities with innovation activities concentrated in declining fields.1 We also document

that knowledge diffusion, measured by patent citations, is persistently localized, both geograph-

ically and technologically. These facts suggest that a city’s ability to seize new technological

opportunities is contingent on the pre-existing local availability of complementary ideas, and can

explain why changes in the technological environment result in the success of some cities and the

decline of others.

We formalize this mechanism in a spatial model of endogenous growth with innovation and

frictional idea diffusion, which we use to quantify our proposed channel. In the model, agents make

migration and occupational decisions based on their expected lifetime productivity in each location

and sector. Productivity is determined by an individual choice between imitating an idea from

the local knowledge distribution or innovating by enhancing an existing idea from a distribution

comprising all locations and sectors. The applicability of this idea is affected by diffusion frictions

and technological wave shocks, which we model as exogenous sectoral shifters that change the

efficiency with which ideas from specific fields can be used as inputs for innovation. The existence

of frictions to diffusion implies that ideas originating from geographically and technologically closer

sources can be converted into new inventions more efficiently, making the local growth trajectory

sensitive to technological wave shocks in a manner that favors locations with a greater availability

of complementary ideas.

The framework remains tractable for any number of locations, sectors, and time periods and

has a unique equilibrium with an explicit solution. Absent technological wave shocks, the model

features a unique balanced growth path (BGP). The distribution of ideas for each location-sector

endogenously retains a Fréchet structure, with an intuitive law of motion for its average productiv-

ity.

To illustrate the model’s mechanics, we log-linearize the equilibrium conditions around the

BGP and characterize the relationship between technological waves and the evolution of local

productivity and population. We show that a measure of local exposure to technological waves

relative to the overall economy is a sufficient statistic for predicting local population growth. In

the special case of knowledge flows across sectors being of second-order importance relative to

flows within sectors, this measure of exposure becomes a standard shift-share variable, providing

1As is common in the literature on long-term spatial growth (e.g., Voigtländer and Voth, 2013; Hanlon and
Heblich, 2022), our outcome of interest is changes in local population, which we observe consistently throughout
our sample. The literature has found that fluctuations in local population carry major implications for welfare.
Periods of rapid population decline are associated with deteriorating local economic conditions and lead to lower
tax revenues, lower capacity to provide public services, and a drop in various measures of economic well-being
(Glaeser and Gyourko, 2005; Owens III et al., 2020). Periods of rapid population growth, while reflecting thriving
economic conditions for workers and firms, also carry ambiguous welfare implications, as they can lead to increasing
congestion, housing shortages, and higher economic segregation (Baum-Snow, 2023; Berkes and Gaetani, 2023).
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a simple micro-foundation for shift-share empirical strategies widely used in the literature.

For the quantitative analysis, we extend the model to include empirically relevant dimensions

such as overlapping generations, migration costs, and endogenous congestion forces, and compute

its full non-linear dynamics. We set up the calibration so that the model exactly matches data on

population and patenting between 1890 and 2010. We quantify frictions to knowledge diffusion by

deriving a gravity equation for idea flows and estimating it using patent citations data, and calibrate

technological waves by recovering the full path of exogenous shocks that rationalize patenting in

each sector throughout the sample. We show that the calibrated model successfully captures key

moments of interest, even if not directly targeted, such as the relationship between city size and

average city income, and the variation in average income across locations and sectors.

In our main counterfactual, we compare the dynamics of the economy under the calibrated

path of technological waves (which replicates the data by construction) with the dynamics that

would have occurred if technological waves had stayed constant at their values in the initial period

of the sample. Our results suggest that technological waves account for a substantial portion of

the variation in city-level population growth over the past century. The endogenous mechanism

of frictional knowledge diffusion accounts for almost two-thirds of the reduced-form relationship

between technological waves and local growth. Frictions to knowledge diffusion across geographical

areas and technological fields are both significant, with each of them accounting for roughly half

of the overall effect. Technological waves contributed to delineate the current economic geography

of the United States, penalizing growth in cities in the Central States, and fostering the growth of

modern innovation hubs.

Our mechanism also implies that cities with greater specialization experience significantly more

volatile local growth in response to technological wave shocks. We quantify this effect through

Monte Carlo simulations of counterfactual paths of sectoral shocks, and find a sizable effect of

specialization on volatility. Increasing specialization from the level of Boston (a highly diversified

city) to the level of Austin (a highly specialized one) increases the standard deviation of local

growth over 40 years by 4.59 percentage points.

Finally, we use the quantitative model to explore the predicted local growth dynamics in the

coming decades under various technological scenarios. First, we project population growth across

cities following a significant drop in frictions to diffusion across locations (due to the increasing

availability of tools of remote collaboration) and across technological fields (due to advances in

Artificial Intelligence improving possibilities of recombination of ideas from different knowledge

areas). Second, we study the geographical effects of some plausible scenarios of technological trends

affecting specific knowledge areas, including transportation, pharmaceuticals, and agriculture. We

uncover large and heterogeneous geographical effects of these scenarios, which in some cases result

in a reversal of fortune for some of the currently most successful innovation hubs.
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Related Literature This paper draws on multiple strands of previous research. First, our

theory is based on modeling idea flows across locations and sectors, with frictions in knowledge

diffusion playing an important role in explaining city dynamics. While a large body of literature

has documented the strength and geographical reach of localized knowledge spillovers (e.g., Jaffe

et al., 1993; Audretsch and Feldman, 1996; Greenstone et al., 2010), their role in long-run city

dynamics is still largely unexplored.

The complexity of modeling idea diffusion in a spatial setting has long been a primary obstacle

to this assessment. However, in recent years, two bodies of literature have provided tools making

this problem more tractable. First, many papers have developed endogenous growth models that

highlight knowledge recombination, imitation, and diffusion (e.g., Lucas and Moll, 2014; Perla

and Tonetti, 2014; De la Croix et al., 2018; Buera and Oberfield, 2020; Huang and Zenou, 2020;

Lind and Ramondo, 2023). Second, the literature on quantitative spatial economics has developed

tools for analyzing the spatial distribution of economic activity, both within (e.g., Ahlfeldt et al.,

2015; Heblich et al., 2020) and across cities (e.g., Allen and Arkolakis, 2014; Desmet et al., 2018b;

Fajgelbaum and Gaubert, 2020).2 This paper combines insights from these two literatures and

develops a tractable endogenous growth model in a spatial economy that can be quantitatively

disciplined using long-term data on city population and patents.

Several existing papers have studied innovation and knowledge flows in firm and industry dy-

namics (e.g., Kogan et al., 2017; Akcigit and Kerr, 2018; Cai and Li, 2019; Atkeson and Burstein,

2019) and have developed static models that emphasize localized knowledge spillovers as determ-

inants of the economic geography (e.g., Davis and Dingel, 2019). This study connects these areas

of the literature by quantitatively assessing the importance of frictions to idea diffusion for city

dynamics. Our paper is also related to recent work on the relationship between spatial and ag-

gregate growth. The paper in this literature which is closest to ours is Cai et al. (2022b), which

examines spatial growth in a model with idea diffusion through trade and migration. In our paper,

we maintain a reduced-form view of what constitutes a channel of diffusion (while introducing a

sufficiently flexible parametrization to encompass a wide range of possible channels), and focus

instead on how the underlying frictions shape the local response to technological waves.3

There is a vast literature studying the long-run evolution of the economic geography, with a

focus on path dependence and reversals of fortune (e.g., Brezis and Krugman, 1997; Davis and

Weinstein, 2002; Bleakley and Lin, 2012; Kline and Moretti, 2014; Allen and Donaldson, 2022),

and on the effects of aggregate, regional, or sectoral shocks (e.g., Desmet et al., 2018a; Caliendo

et al., 2018). Recent studies have emphasized channels such as migration frictions (Hornbeck

2Buera and Lucas (2018) and Redding and Rossi-Hansberg (2017) provide comprehensive reviews of the literat-
ures on models of endogenous growth with idea flows and on quantitative spatial equilibrium models, respectively.

3Other contributions to this literature include Arkolakis et al. (2020) and Burchardi et al. (2020), who develop
models of spatial growth to quantify the contribution of international migration to aggregate growth.
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and Moretti, 2018; Borusyak et al., 2022), commuting across locations (Monte et al., 2018), and

general equilibrium effects (Adao et al., 2020). In our paper, we focus on shocks that, regardless

of their origin, affect innovation possibilities and returns in different technological areas, and we

isolate the role that frictions to knowledge diffusion play in shaping the spatial response to those

shocks, while allowing other residual channels to contribute to this response. While the focus

on innovation and frictional idea diffusion is new to this literature, a large body of research has

analyzed the historical dynamics of U.S. geography from both an empirical (e.g., Bostic et al.,

1997; Simon and Nardinelli, 2002; Michaels et al., 2012; Desmet and Rappaport, 2017) and a

structural and quantitative perspective (e.g., Duranton, 2007; Desmet and Rossi-Hansberg, 2014;

Nagy, 2017; Eckert and Peters, 2022; Morris-Levenson and Prato, 2021; Kleinman et al., 2021;

Giannone, 2022).

This paper also contributes to the ongoing debate regarding the returns to local specialization

(Marshall, 1890) and diversity (Jacobs, 1969). Contributions to this literature include Glaeser et al.

(1992), who find evidence supporting Jane Jacob’s view of urban diversity as a key driver of local

employment growth, and Duranton and Puga (2001), who develop a model in which diversified and

specialized cities coexist in equilibrium.4 This paper proposes and quantifies a new mechanism by

which diversification affects long-term city growth by influencing a city’s responsiveness to changes

in the technological landscape.5 By doing so, the model provides a new lens for interpreting the

effect of local policies designed to increase local diversity.

The remainder of the paper is organized as follows. Section 2 introduces the data and presents

historical trends and the motivational facts on the relationship between city growth and the techno-

logical landscape. Section 3 presents the stylized model used to derive the theoretical predictions.

Section 4 describes the model’s extensions for quantitative analysis and the calibration. Section

5 presents the quantitative results. Section 6 concludes by discussing avenues for future research

and the policy implications of our results.

2 Data and stylized facts

Our unit of analysis is the 1990 commuting zone (CZ), which we keep fixed over time.6 Throughout

the paper, we refer to cities and CZs interchangeably.

4Holmes and Stevens (2004) provide an overview of the patterns of specialization in the United States.
5Consistently with this interpretation, Balland et al. (2015) find that cities with more diverse knowledge bases

are less sensitive to technological crises, defined as sustained declines in patenting activity.
6Assuming a stable geography allows us to abstract from annexations and redefinition of town borders.
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2.1 Data

We collect patent data from the Comprehensive Universe of U.S. Patents, or CUSP, to quantify

innovative activities at the city level (Berkes, 2018). The CUSP contains data on the vast majority

of patents issued by the U.S. Patent and Trademark Office between 1836 and 2015, with an

estimated coverage of more than 90%. From the CUSP, we gather information regarding technology

classes, filing date, and location of each inventor listed on a patent.7 This is the first study to

exploit the entire geolocated patent time series provided by the CUSP. Patents with multiple

inventors are assigned fractionally to each listed CZ.8

We also collect data on population, human capital, and industry composition at the CZ level

using decennial censuses for each decade between 1870 and 2010 from the Integrated Public Use Mi-

crodata Series (IPUMS, Ruggles et al., 2021) and the National Historical Geographic Information

System (NHGIS, Manson et al., 2021). We build a consistent measure of the local density of hu-

man capital that combines available information on literacy and education. To make this variable

comparable across decades, we construct an index based on the ranking of the relevant measure

in each decade. Appendix B provides additional information regarding the data construction.

Our unit of time corresponds to 20-year intervals from 1870 to 2010. Patent counts are obtained

by adding patents filed in the two decades surrounding the focal year (for instance, patents in the

1990 observation correspond to the total count between 1980 and 1999). We limit our sample

to the subset of CZs in the contiguous United States that accounted for at least 0.01% of the

total population for each decade since 1890.9 This provides a sample of 485 CZs, which accounted

for approximately 94.2% of the U.S. population in 2010. Sectors are defined as the class-groups

obtained by clustering 3-digit International Patent Classification (IPC) categories into 11 class-

groups, as detailed in Appendix Table A.1.10

2.2 Historical trends

During the last 150 years, the technological landscape has undergone significant transformations,

as measured by changes in the prominence of various patent classes. These changes are already

7The CUSP assigns patents to the inventors’ city of residence, regardless of the county listed in the patent’s
text. This allows us to build geographically consistent measures of innovation at the level of CZs for the extensive
time period covered by our study.

8Berkes (2018) provides details about data collection, as well as summary statistics and stylized facts related to
the underlying data. Andrews (2021), in a comparison of historical patent data, describes it as “currently the gold
standard both in terms of completeness and scope of the types of patent information it contains” (p. 24).

9This rule requires that commuting zones had a population of at least 5,780 people in 1890 and 31,789 people
in 2010. We further drop two commuting zones (with a combined population of less that 100,000 in 1990) which,
having a patent count of zero in at least one of the 20-year periods in the sample, cannot be consistently included
in the model calibration. None of the results is sensitive to alternative ways of dealing with these two observations.

10Patents listing multiple three-digit IPC classes are assigned fractionally to class-groups, in proportion to the
frequency of each class-group in the list of classes.

7



evident when comparing patenting output across the broadest IPC classes (which are coarser

than our baseline 11 categories). The bottom-right panel of Figure 1 illustrates the evolution of

patenting shares since 1870.11 The evolution of patenting shares over time is remarkably slow,

highlighting the importance of using data that span a long period. The proportion of patents in

the “Human Necessities” category, which includes innovations in agriculture and medical sciences,

decreased in the early twentieth century, as agriculture lost its centrality to classes associated with

the heavy manufacturing industry, such as “Transporting” and “Mechanical Engineering.” In

recent decades, “Human Necessities” patents have increased as innovation in medicine has gained

prominence. In the second half of the twentieth century, patents in “Physics” and “Electricity”

grew in importance, comprising more than 50% of the total innovation output in 2010.12

Not only has the composition of patenting changed significantly over time, but it also varies

significantly between cities at any given time. Log-patenting shares residualized with respect to

decade-class fixed effects have a standard deviation of 0.66 over 1890-2010. This large variation is

illustrated in Appendix Figure A.2, which shows the distribution of patenting shares across cities

in 1890 and 2010 (the beginning and end of our quantitative analysis, respectively) for each of the

main IPC classes.

The remaining panels of Figure 1 depict three archetypal examples of this heterogeneity. Since

the early 1900s, Detroit (top-left) has specialized in the production of patents related to “Trans-

porting” and “Mechanical Engineering”. In 1910, these two categories accounted for approximately

43% of its patent portfolio. Since the 1990s, there has been a small shift toward patents in “Phys-

ics” and “Electricity,” but this pattern has remained largely unchanged throughout the century.

Austin’s (top-right) innovation activities were fairly diverse until the 1970s, when the proportion of

patents in the classes “Physics” and “Electricity” began to increase, reaching 89% of the portfolio

by 2010. By contrast, Boston (bottom-left) exhibits a diversified patenting output that has closely

tracked the national trends throughout the decades.

In this paper, we argue that the heterogeneity in the composition of local knowledge makes

cities differentially suited to capitalize on new innovation opportunities. The central premise is

that knowledge is predominantly localized and diffuses slowly. This makes the trajectories of

cities sensitive to changes in the technological landscape, as cities’ current knowledge portfolio

determines the extent to which they can exploit new technological opportunities. Consequently,

11For expositional purposes, we report results for the seven main IPC classes (that correspond to the first letter
in the IPC). This has the drawback of bundling together, among others, innovations related to agriculture and
medicine. Appendix Figure A.1 shows the corresponding distribution across the 11 IPC class-groups described in
Appendix Table A.1 that we use in our analysis, which separates, among others, agriculture and medicine. Class
names are abbreviated for clarity. The full description of each class can be found at https://www.wipo.int/

classifications/ipc/en/. Kelly et al. (2021) provide an alternative measure of technological importance by
constructing technology indices based on textual analysis of patent data.

12Classes “Physics” and “Electricity” include the bulk of innovation related to computers, electronics, and in-
formation and communication technology.
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Figure 1: Composition of the technological output
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patents filed between t − 10 and t + 9. Class names are abbreviated. The full description for each class is available at https:

//www.wipo.int/classifications/ipc/en/.

cities experience heterogeneous productivity gains from common technological shocks, contributing

to explaining the heterogeneous historical dynamics of U.S. urban and regional growth.

The experiences of Detroit, Austin, and Boston illustrate this point. Figure 2 depicts the

20-year population growth of these three CZs since 1890, residualized with respect to Census

Division-time fixed effects, which account for systematic regional variations in population growth

over time. In the decades following the rise of the automobile industry around 1910, Detroit

displays the highest growth rates, followed by a long-lasting decline that resulted in a steady

population loss since the 1980s. Austin experienced a specular trajectory. Despite relative decline

in the first half of the twentieth century, Austin has emerged as a leading innovation hub in recent

decades, becoming one of the country’s fastest-growing cities. Finally, Boston has maintained

a significantly less volatile trajectory over the previous century, marked by periods of moderate

relative growth interrupted by occasional periods of modest relative decline. As we argue in this

paper, the diversification of Boston’s patenting output may have made its growth trajectory less

sensitive to changes in the technological landscape.13

13Glaeser (2005) discusses the causes of the slow decline of Boston between 1920 and 1980, and the subsequent
re-emergence of the city, and proposes the high density of human capital as the major factor behind its resilience.
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Figure 2: City dynamics
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2.3 Technological waves and the growth and decline of cities

Figures 1 and 2 suggest that changes in the importance of technological fields may have differential

effects on the growth trajectories of cities due to their pre-existing specialization across fields.

While this idea is present in much of the economic geography literature, empirical support has

been predominantly anecdotal, and it remains unclear to what extent these patterns are directly

attributable to innovation as opposed to production activities. In this section, we show that these

patterns hold systematically over the long period covered by our data and are robust to controlling

for potential local confounders such as industrial composition and human capital density.

We refer to changes in the technological landscape, captured by shifts in the composition

of national patenting by class-group, as “technological waves.” We explore the hypothesis that

cities with portfolios initially concentrated in expanding fields are better positioned to exploit new

innovation opportunities, resulting in higher productivity and population growth in these cities.

To capture this idea in a simple empirical setting, we construct the following measure of local

exposure to technological waves:

Expn,t ≡
∑
s∈S

Sharen,s,t−1 × g−n,s,t, (1)

where Sharen,s,t−1 is the share of patents filed in CZ n belonging to class-group s at time t−1 and

g−n,s,t is the growth rate in the share of patents of class-group s in all the other CZs between t−1 and

t. This exposure measure is analogous to a shift-share variable (Bartik, 1991) in which the shares
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correspond to the distribution of local patenting across class-groups, and the shifts to changes

in the distribution of nationwide patenting across class-groups (leaving out local patenting). A

city whose portfolio of patents is initially concentrated in expanding (declining) class-groups will

record a positive (negative) value of Expn,t, reflecting a favorable (adverse) exposure to the current

technological wave.

We then estimate the relationship between the growth rate of local population and our exposure

measure between 1910 and 2010 by running the following regression:

∆ log (Popn,t) = αExpn,t +
2∑

τ=1

βτ log (Popn,t−τ ) + γ Xn,t + δd(n),t + εn,t, (2)

where ∆ log (Popn,t) is the 20-year growth rate of population in CZ n between t − 1 and t, and

Expn,t denotes the exposure measure from Equation (1). The regression model includes two lags

of log-population, to account for size and growth effects, such as convergence and persistence,

and Census Division-time fixed effects (δd(n),t), to account for the differential growth rates of CZs

across space as a result of factors such as the Westward expansion or the Great Migration.14 The

term Xn,t denotes an additional set of controls that we discuss below. We weight observations by

beginning-of-the-period share of total population.15

Table 1 displays the results of the regression. The estimate in column 1 is positive and sig-

nificant, indicating that cities with a more favorable initial exposure to the technological wave

have experienced systematically greater population growth.16 The estimated coefficient implies

that an increase of one residual standard deviation in the measure of exposure is associated with

an increase of 15.2% of one residual standard deviation in population growth. In column 2, we

control for lagged total patenting. This control does not significantly affect the exposure measure’s

coefficient, suggesting that the estimated relationship is not driven by local innovation intensity.

In our analysis, we do not take a position on the factors that affect the national patenting

shares by class-group. Technological waves could result from scientific and technological advance-

ments, but also from political and environmental factors, such as regulation, trade agreements,

or changes in consumer preferences. Critical to our analysis is the fact that, regardless of their

source, technological waves differentially affect the returns to innovation in different fields and,

consequently, the evolution of patenting shares across class-groups.

An alternative view is one of innovation as a byproduct of production. In this case, factors

14The earliest period corresponds to population growth between 1890 and 1910, and it controls for two lags of
log-population (1870 and 1890). The latest period corresponds to population growth between 1990 and 2010, and
it controls for two lags of log-population (1970 and 1990).

15In Appendix Table A.3, we show that results do not change significantly when we run unweighted regressions,
or include CZ fixed effects to account for systematic differences across locations in their growth rates and their
exposure measure.

16The relationship is visually displayed in the bin-scatter plot in Appendix Figure A.3.
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that impact patenting across fields may be correlated with other industry-level shocks that drive

differences in population growth across cities, confounding our interpretation. To address this

concern, we construct a variable similar to the one in Equation (1), but we use employment

by industry instead of patenting by class-group to compute local shares and aggregate shifts.17

Appendix Figure A.4 plots the measures of exposure to industry shocks and to technological waves,

after residualizing both variables with respect to two lags of log-population and Census Division-

time fixed effects. The correlation between the two variables is positive but weak (the R2 of the

underlying regression is 0.008). This suggests substantial variation in the composition of patents

across fields that is not explained by the local employment distribution across industries. The

absence of a strong correlation may be attributable to several factors, including the geographical

separation between innovation and production activities and the applicability of ideas within a

given patent class to multiple industries.

In column 3 of Table 1, we re-estimate Equation (2) while directly controlling for industry shock

exposure. This variable is a strong predictor of population growth, and its inclusion slightly reduces

the estimated coefficient on the exposure to technological waves, which nevertheless remains large

and significant. Finally, in column 4, we include the control for human capital density. This

indicator correlates with local population growth, as documented by Glaeser and Saiz (2003).

However, it has a negligible effect on the estimated coefficient of the exposure measure, suggesting

that this measure does not merely reflect the availability of human capital in the city.

In summary, our empirical analysis showed a systematic correlation between local exposure to

technological waves and local population growth, even after controlling for innovation intensity,

industry composition, and human capital density. While this correlation can be explained through

various mechanisms, such as irreversible investments in specialized physical or human capital,

the remainder of the paper examines a specific hypothesis that rationalizes this relationship: the

existence of frictions to the diffusion of ideas across space and fields of knowledge, which prevent

cities from reallocating their resources optimally to capitalize on technological waves. Cities with

an innovation portfolio skewed toward expanding fields are better positioned to take advantage of

new innovation opportunities and will become more attractive to workers and firms.

In the following sub-section, we use patent citation data to provide suggestive evidence of the

existence of geographical and technological frictions to idea diffusion. We then develop a model

to structurally quantify the contribution of these frictions to the empirical relationship between

exposure to technological waves and population growth documented in this section.

17See Appendix B for details on the construction of the data on employment by industry at the commuting zone
level. Industries correspond to the 12 main industries in the 1950 Census Bureau industrial classification system.
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Table 1: Technological waves and city growth

Growth rate of population

(1) (2) (3) (4)

Exposure to tech. waves, Expn,t 0.429*** 0.383*** 0.350*** 0.341***
(0.083) (0.087) (0.084) (0.099)

Log-total patents 0.033*** 0.008 0.006
(0.011) (0.013) (0.014)

Industry composition 0.570*** 0.573***
(0.113) (0.113)

Human capital (ranking) 0.020
(0.066)

Log-population (lags 1 and 2) Yes Yes Yes Yes

Fixed effects CD×T CD×T CD×T CD×T

# Obs. 2,910 2,881 2,855 2,852

R2 0.512 0.519 0.545 0.544

Notes: CZ-time-level regression, 1910-2010, weighted by share of population at the beginning of the period. Dependent variable defined
as growth rate of population over 20 years. “CD×T” denotes Census Division-time fixed effects. Standard errors clustered at the CZ
and the Census Division-time level in parenthesis. ***p < 0.01.

2.4 Evidence on frictions to knowledge diffusion

The fact that knowledge diffusion is highly localized has been well documented in the literature

on the geography of innovation. Within this literature, a rich body of work, starting with Jaffe

et al. (1993), has provided evidence of this localization by studying the spatial patterns of patent

citations (Murata et al., 2014; Kerr and Kominers, 2015). Our citation data confirm this evidence

of localization, which does not appear to diminish over time. Citations to the same CZ account for

15.6% of all citations for patents filed since 1940.18 This proportion of citations is 6.24 times the

background probability (2.5%) of observing a citation to the same CZ if citations were distributed

randomly and proportionally to each city’s overall share of patents. When we divide the sample

into an early (1940–1979) and late (1980 and later) subsamples, we find that, despite the dramatic

decline in communication costs, this evidence of localization has, if anything, strengthened over

time. In the early subsample, the proportion of citations to the same CZ is 4.34 times greater than

18Patent citations are not consistently available in the earlier decades. Thus, when considering citations, we
restrict the sample to all the patents filed since 1940. A separate section containing referenced patents was formally
introduced in patent documents only in 1947. In constructing these statistics, we only consider citations to and from
commuting zones included in our sample, and weight each citation by the inverse of the total number of citations
given by the citing patent. By doing so, each citing patent has a weight of one in our sample.
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the background probability and in the late subsample, it is 6.60 times greater.19

Analogously, we find substantial evidence of localization of patent citations in the technological

space. Appendix Figure A.5 displays a heatmap of the empirical probability that a citation from

each class-group on the vertical axis is directed toward each class-group on the horizontal axis.

The concentration of probabilities along the diagonal of the heatmap indicates a high degree

of technological localization in the diffusion of ideas. Appendix Figure A.6 provides separate

heatmaps for the early subsample (1940–1979) and the late subsample (1980 and later), showing

that evidence of technological localization remains strong over time.

3 Stylized model and theoretical predictions

Motivated by our empirical findings, in this section we develop a model that incorporates en-

dogenous growth via frictional idea diffusion into a spatial equilibrium framework. We start by

presenting a stylized version of the model, which allows us to solve for the equilibrium in closed

form and to derive sharp theoretical predictions to gain insight into the model’s mechanics. In

Section 4, we extend the model to incorporate relevant features from a quantitative standpoint,

and use this extended version for the quantitative analysis of Section 5.

In the model, agents decide where to migrate and in which sector to specialize after forming

expectations about their lifetime productivity. This productivity is determined through a decision

of whether to imitate an idea from the local distribution, or to innovate upon an idea drawn

from the distribution of any location and sector in the economy. The applicability of an idea for

innovation is constrained by diffusion frictions—so that knowledge acquired from geographically

and technologically closer sources can be converted into new inventions more efficiently—and is

affected by exogenous technological wave shocks that change the effectiveness with which ideas

from specific fields can be used as inputs in the innovation process. The presence of frictions to

diffusion implies that common technological wave shocks induce heterogeneous responses in local

growth, providing a rationale for the reduced-form relationship documented in Section 2.

3.1 Setting

The economy comprises a finite set N of locations and a finite set S of sectors. Time is discrete

and indexed by t. At each point in time, a mass Lt of individuals populate the economy. In what

follows, N and S denote the sets of locations and sectors and their cardinality, and Lt denotes the

set of individuals at time t and its mass.

19The observed probabilities are 13.9% in the early and 16.5% in the late sub-samples, whereas the background
probabilities are 3.2% and 2.5%, respectively.
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3.1.1 Preferences, endowments, and demographics

In each period, a new generation is born in the location of their parents. Individuals live for one

period and have ft children who enter the economy in the following period.

At the beginning of the period, newborn agents choose where to migrate and in which sector

to specialize to maximize expected utility, subject to idiosyncratic utility draws that affect the

desirability of each location-sector. Each individual i ∈ Lt receives a complete set of stochastic

utility draws, one for each location-sector in the economy:

xi = {xn,s,i}(n,s)∈N×S .

Each value xn,s,i is a random draw from a Fréchet distribution with shape parameter ζ > 1.

Individual i migrating to location n and specializing in sector s obtains utility

U(un, xn,s,i, cn,s,i,t) = un xn,s,i cn,s,i,t, (3)

where un is the level of amenities in city n and cn,s,i,t denotes consumption of the final good.20

Because individual labor productivity will be stochastic, agents will face uncertainty regarding

their consumption cn,s,i,t when selecting a location-sector (i.e., after the idiosyncratic utility draws

xi are realized). Consequently, they will select the location-sector that offers the greatest expected

utility. We return to this point in Section 3.1.4.

3.1.2 Production technology, consumption, and total output

Each agent i inelastically supplies one unit of labor with productivity qn,s,i,t to produce a tradable

and homogeneous final good, whose price in each period is normalized to one. Consequently, the

wage of agent i is simply their productivity qn,s,i,t. Given that agents live for one period, their

consumption of final good is given by their own production:

cn,s,i,t = qn,s,i,t.

Total output in the economy is given by a linear aggregator of individual productivity across

all locations and sectors:

Yt =
∑
n∈N

∑
s∈S

Ln,s,tE[qn,s,·,t], (4)

where Ln,s,t denotes the mass of agents in location-sector (n, s) and E[qn,s,·,t] denotes their average

20Note that there are no moving costs across locations and amenities are assumed to be exogenous and time-
invariant. These assumptions will be relaxed in Section 4 by allowing for moving costs and for amenities with an
exogenous time-varying component and an endogenous component capturing local congestion forces.
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productivity.21

3.1.3 Imitation, innovation, and knowledge diffusion

Individual productivity is endogenously determined through a choice between imitating an available

technology or enhancing an existing idea by generating an innovation. The quality of ideas in the

choice set of each agent is stochastic, and its distribution varies by location-sectors. After agent i

has chosen their location-sector (n, s), they receive a complete set of idiosyncratic, independently

distributed draws:

zn,s,i =
{
zln,s,i,

{
zxm,r,i

}
m,r∈N×S

}
. (5)

The first term, zln,s,i, is a random draw from the distribution of productivity in location-sector

(n, s) at time t − 1, whose cumulative distribution is denoted by Fn,s,t−1(q). This draw can be

interpreted as knowledge acquired from teachers, mentors, or managers, which can be imitated and

directly applied to production. The second set of terms, {zxm,r,i}m,r∈N×S, is a full vector of random

draws from each productivity distribution in all locations and sectors (including local ones, m = n

and r = s) at time t− 1, with corresponding cumulative distributions {Fm,r,t−1(q)}m,r∈N×S. These

draws can be interpreted as knowledge acquired through various transmission channels, such as

books, radio, television, and the internet, or through informal interactions with local or non-local

individuals. Although these ideas cannot be directly adopted in production, they can serve as an

input for innovation, as we describe below.

After observing the full set of draws, zn,s,i, the agent must select one of these draws, which

will determine their lifetime productivity. If the agent adopts the local draw, zln,s,i, their lifetime

productivity will be

qn,s,i,t = zln,s,i.

Since the production technology used by the agent was already available in the previous generation,

we refer to this choice as “imitation.”

Alternatively, if the agent chooses one of the external draws, zxm,r,i, their lifetime productivity

will be

qn,s,i,t =
εn,s,t αr,t z

x
m,r,i

d(m,r)�(n,s)

. (6)

Since in this case the agent has developed a new production technology that was not previously

21To focus on the interplay between idea diffusion and local growth, the model abstracts from other economic
forces such as inter-regional trade and capital accumulation. While these forces could interact with the model’s
mechanism by shaping local income by sector, in Section 4.3 we show that the model can closely account for the
empirical variation in income across location-sectors even abstracting from those forces, suggesting that including
them explicitly is unlikely to significantly alter the results. Since inter-regional trade can directly impact knowledge
diffusion, in estimating frictions we work with a flexible parameterization that includes a direct effect of geographical
distance, encapsulating the effects of trade and other diffusion channels related to distance on idea transmission.
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available, we refer to this choice as “innovation.” In Equation (6), the term d(m,r)�(n,s) ≥ 1 captures

knowledge transmission frictions between the location and sector of origin of the idea, (m, r), and

of destination, (n, s). For now, we treat this term as exogenous and time-invariant, and we do

not impose a specific structure on it. In the quantitative analysis, this term will be parametrized

flexibly to capture a wide range of channels affecting the efficacy of knowledge diffusion.22 The

term αr,t captures technological waves shocks. It represents the importance of sector r in the

innovation landscape at time t: the greater its value, the more effectively knowledge in sector

r can be translated into innovations for all sectors.23 Finally, εn,s,t is a structural residual that

captures the current efficacy of innovation in (n, s) and is shared by all innovators in that location-

sector. It accounts for all residual factors that affect the local sector’s efficiency of innovation, such

as the opening of research facilities.

In sum, agent i in location-sector (n, s) chooses whether to imitate or innovate to maximize

their lifetime productivity:

qn,s,i,t = max

{
zln,s,i, max

{
εn,s,t αr,t z

x
m,r,i

d(m,r)�(n,s)

}
m,r∈N×S

}
(7)

Equation (7) shows how this process can be divided into two steps. First, agent i chooses the best

available innovative idea. Then, agent i compares this idea with the imitation draw, zln,s,i, and

picks the one that yields higher productivity.

The following assumption, which we maintain throughout the paper, plays a vital role in keeping

the theory tractable:

Assumption A1. The initial productivity distribution Fn,s,0(q) in all location-sectors (n, s) is

Fréchet with shape parameter θ > 1 and scale parameter λn,s,0 > 0:

Fn,s,0(q) = e−λn,s,0q
−θ
. (8)

The maximum over a set of Fréchet distributed random variables with common shape parameter

is itself Fréchet with the same shape parameter. Hence, under Assumption A1, individual optimal

choice between imitation and innovation (Equation 7) implies that productivity at any time t ≥ 0

is distributed Fréchet with shape parameter θ and with scale parameter evolving according to the

22The parametrization will account for channels such as proximity in the migration network (Cai et al., 2022b),
barriers to applicability and intelligibility of ideas across technological areas (Hayes, 1992), and, in reduced form,
other channels of diffusion that are influenced by geographical distance, such as trade linkages (Buera and Oberfield,
2020) and frequency of business trips between locations (Catalini et al., 2020; Pauly and Stipanicic, 2022).

23Note that αr,t is inherent to the sector of origin r at time t, and is unrelated to agent i’s location-sector (n, s).
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following law of motion:

λn,s,t = λn,s,t−1︸ ︷︷ ︸
Imitation

+
∑
m∈N

∑
r∈S

λm,r,t−1

(
εn,s,t αr,t
d(m,r)�(n,s)

)θ
︸ ︷︷ ︸

Innovation

. (9)

Equation (9) is crucial to our theory, because it describes the dynamics of productivity across

location-sectors.24 The scale parameter of the knowledge distribution in the new generation, λn,s,t,

is equal to the scale parameter of the previous generation augmented by a second term that

captures inventive activities. This second term is the sum of scale parameters across all location-

sectors, weighted by their applicability to location-sector (n, s). The applicability term includes

the importance of each field of knowledge, αr,t, the local effectiveness of innovation, εn,s,t, and is

discounted by technological and geographical frictions between location-sector pairs, d(m,r)�(n,s).

Equation (9) illustrates that innovation is the only source of growth in the knowledge frontier,

while imitation is what carries forward knowledge developed in previous periods.

The scale parameter of the productivity distribution summarizes the knowledge stock in each

location-sector. Specifically, because the productivity distribution in (n, s) at time t is Fréchet

with shape θ and scale λn,s,t, the local average productivity is

E [qn,s,·,t] = Γ

(
1− 1

θ

)
λ

1
θ
n,s,t, (10)

where Γ(·) denotes the gamma function.

The process of knowledge diffusion described by Equation (7) and the Fréchet assumption A1

imply that the probability that an innovator in location-sector (n, s) builds upon an idea from any

location-sector (m, r) at time t can be expressed as follows:

η(m,r)�(n,s),t =
λm,r,t−1

(
αr,t

d(m,r)�(n,s)

)θ
∑

l∈N
∑

p∈S λl,p,t−1

(
αp,t

d(l,p)�(n,s)

)θ . (11)

This expression shows that the likelihood that innovators rely on ideas from a given origin is

increasing in the average quality of ideas in the origin location-sector (λm,r,t−1) and the importance

of the sector of origin (αr,t), and decreasing in the geographical and technological frictions between

the location-sectors of origin and destination (d(m,r)�(n,s)).

24This result follows from the max-stability property, which states that the maximum of a vector of independent
random draws {ak zk}Kk=1, with ak > 0 and zk distributed Fréchet with scale λk and common shape θ is itself distrib-

uted Fréchet with scale
∑K
k=1 λka

θ
k and shape θ. Tractability can be maintained without assuming independence,

as in Lind and Ramondo (2019).
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3.1.4 Migration and occupational choice

At the beginning of period t, agents in the new generation observe their idiosyncratic utility draws

(xi) as well as sectoral and local shocks (αr,t and εn,s,t for all n ∈ N and r, s ∈ S), but do not

know the idiosyncratic idea draws (zn,s,i) they will receive in their location-sector of choice. They

have to form expectations about their future wages (determined by the idea draws) before making

their migration and occupational decisions. Agent i moving to location-sector (n, s) has expected

utility equal to

E [U(un, xn,s,i, qn,s,i,t)] = un xn,s,i E [qn,s,·,t] . (12)

Combining Equations (10) and (12), the probability that any newborn individual selects location-

sector (n, s) is

πn,s,t =

(
un λ

1
θ
n,s,t

)ζ
∑

m∈N
∑

r∈S

(
um λ

1
θ
m,r,t

)ζ . (13)

This expression is intuitive: the probability of choosing location-sector (n, s) is increasing in its

expected productivity (which is proportional to λ
1
θ
n,s,t) and its appeal due to amenities (un) relative

to the average across location-sectors appearing in the denominator. The mass of agents in location-

sector (n, s) at time t is equal to the probability of choosing (n, s) times the population size:

Ln,s,t ≡ πn,s,t Lt−1 ft. (14)

3.1.5 Equilibrium

An equilibrium in this economy is given by a path of population and productivity for each location

and sector that, given the initial conditions and a path of the exogenous variables, is consistent

with individual optimal decisions on lifetime productivity (Equation 7) as well as migration and

occupation (Equation 13). We formally define the equilibrium in Appendix C. It is straightforward

to show that all equilibrium conditions have a unique and explicit solution. Therefore, a unique

equilibrium exists and can be expressed in closed form for any initial conditions and exogenous

variable path.

3.1.6 Existence and uniqueness of a BGP

We define a BGP as an equilibrium in which sectoral importance αr,t and structural residuals εn,s,t

are constant over time, and scale parameters λn,s,t grow at the same rate for all location-sectors

(n, s). Using Equation (13), these conditions also imply that migration and occupational choices

(and, as a result, the distribution of individuals across locations and sectors) are stable over time.
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Notice that Equation (9) can be rewritten as a difference equation in matrix form:

~λt+1 = At~λt, (15)

where ~λt is a N × S vector of all scale parameters λn,s,t, and At is the (N × S)2 diffusion matrix

implied by Equation (9). In BGP, the matrix At is constant, and we denote it by A∗ (in what

follows, we use stars to denote variables at their BGP value).

It follows from Equation (15) that in BGP ~λt must be an eigenvector of A∗, with the corres-

ponding eigenvalue equal to its gross growth rate 1 + g∗λ. The Perron-Frobenius theorem states

that A∗ has a unique positive eigenvector (and corresponding eigenvalue), provided that every

entry in A∗ is positive. A sufficient condition for A∗ to contain only positive entries is that the

frictions to knowledge diffusion d(m,r)�(n,s) are strictly positive and finite for each combination of

location-sector pairs, which we have assumed. This proves the following:

Proposition 1. Let 1 ≤ d(m,r)�(n,s) < +∞ for all (m, r), (n, s) ∈ (N × S)2. Then, for each set of

constant sectoral importance {α∗r}r∈S and structural residuals {ε∗n,s}(n,s)∈N×S, there exists a unique

BGP in which {λn,s,t}(n,s)∈N×S,t≥0 grow at constant rate, g∗λ, with g∗λ > 0. The gross growth rate

(1 + g∗λ) is given by the unique largest eigenvalue of A∗ (the Perron-Frobenius eigenvalue), and

the normalized scale parameters {λn,s,t/(1 + g∗λ)
t}(n,s)∈N×S,t≥0 correspond to the associated right

eigenvector of A∗. Along the BGP, the gross growth rate of output per worker is given by (1+g∗λ)
1
θ .

As stated in the proposition, along the BGP, scale parameters grow at the same rate across

location-sectors. However, location-sectors have different scale parameters because the entries of

the eigenvector associated with the Perron-Frobenius eigenvalue are generally distinct. In BGP

the scale parameter relative to the mean, λ̃n,s = λn,s
E[λ·,·]

, is determined by the following equation,

which holds true for each location-sector (n, s):

λ̃∗n,s =
(ε∗n,s)

θ

g∗λ

∑
m∈N

∑
r∈S

λ̃∗m,r

(
α∗r

d(m,r)�(n,s)

)θ
. (16)

This equation shows that the stationary value of the scale parameters, and hence average pro-

ductivity, depends on the matrix of diffusion frictions across location-sectors, d(m,r)�(n,s), as well

as local and sectoral characteristics, α∗r and ε∗n,s, given a growth rate g∗λ.
25 The gross growth rate

of output per worker, (1 + g∗λ)
1
θ , follows from Equation (10).

25Another work that studies the BGP properties of an endogenous growth model with spillovers across multiple
sectors is Huang and Zenou (2020). While the setting for idea diffusion in Huang and Zenou (2020) differs from
ours, the Perron-Frobenius theorem is central to establishing the existence and uniqueness of a BGP equilibrium in
both models.

20



3.2 Log-linearized model dynamics

Although the BGP is a useful benchmark, we are ultimately interested in the heterogeneous re-

sponse of cities to technological wave shocks. By design, the BGP analysis holds technological

waves constant (αr,t ≡ α∗r) and, as a result, the relative size of cities along the BGP does not

change. We now study the model’s dynamics by log-linearizing the equilibrium conditions around

the BGP. This allows us to derive intuitive characterizations of what drives city growth in re-

sponse to technological waves. For this purpose, we assume that the economy is in a BGP at time

t− 1. At time t, the economy is hit by technological wave shocks {α̂r,t}r∈S, where hats represent

log-deviations from BGP values.

First, we consider the dynamics of the scale parameter of the local distribution of productivity,

λn,s,t. Log-linearizing Equation (9) around the BGP yields

λ̂n,s,t =
θ(ε∗n,s)

θ

1 + g∗λ

∑
m,r

(
λm,r
λn,s

)∗(
α∗r

d(m,r)�(n,s)

)θ
α̂r,t. (17)

By multiplying and dividing the right-hand side of (17) by g∗λ, and using (11) and (16), we derive

the following proposition that links changes in local productivity to technological wave shocks.

Proposition 2. The log deviation of the scale parameter of the productivity distribution of (n, s)

from the BGP, λ̂n,s,t, is equal to the sum of the shock to r, α̂r,t, over all sectors r ∈ S, weighted by

the reliance of innovation in (n, s) on ideas from sector r, η∗r�(n,s) ≡
∑

m∈N η
∗
(m,r)�(n,s):

λ̂n,s,t =
θg∗λ

1 + g∗λ

∑
r∈S

η∗r�(n,s)α̂r,t. (18)

Proposition 2 implies that the sensitivity of local productivity to shocks to any given sector,

α̂r,t, is increasing in the probability of drawing ideas from that sector to innovate, η∗r�(n,s). Due to

diffusion frictions, this reliance depends on the geographical and technological proximity of r to

(n, s). Quantitatively, given the localized nature of diffusion, the local stock of knowledge in the

same sector, λn,r, will play a decisive role in determining this reliance term. Since this stock of

knowledge is tightly linked to the local employment share in the same sector, this share will also

be a key determinant of the sensitivity of local productivity to shocks to r.

Using the previous result on the evolution of the scale parameters, we can next characterize the

population dynamics in location n. Combining Equation (13) with the definition πn,t ≡
∑

s∈S πn,s,t

and log-linearizing the resulting expression for small deviations of {λm,s,t}m,s∈N×S from their BGP

values yields

π̂n,t =
ζ

θ

∑
s∈S

{
(1− π∗n)π∗s|nλ̂n,s,t −

∑
m 6=n

π∗m,sλ̂m,s,t

}
, (19)
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where π∗s|n denotes the probability of being employed in sector s conditional on living in location

n.26 Equation (19) implies that a location grows relative to the rest of the economy if and only

if changes in local sectoral productivities, weighted by the incidence of each sector in the city, are

larger than the average corresponding changes for the rest of the economy:

π̂n,t > 0 ⇐⇒
∑
s∈S

π∗s|nλ̂n,s,t >
∑
s∈S

∑
m 6=n

π∗m,s
1− π∗n

λ̂m,s,t.

Combining Equations (18) and (19), we characterize population dynamics as a function of BGP

values and technological wave shocks:

Proposition 3. The log-change in the population shares of location n, π̂n,t, depends on technolo-

gical wave shocks as follows:

π̂n,t =
ζg∗λ

1 + g∗λ

∑
r∈S

∑
s∈S

{
(1− π∗n)π∗s|nη

∗
r�(n,s) −

∑
m 6=n

π∗m,sη
∗
r�(m,s)

}
α̂r,t. (20)

To interpret Equation (20) and better illustrate the economic mechanism at play, we first

consider the limit case in which knowledge flows across sectors are of second-order importance

relative to flows within sectors, and individual cities are of negligible size relative to the rest of the

economy. In particular, we impose the following assumption:

Assumption A2. (for illustration purposes only)

1. Frictions to knowledge diffusion across sectors are large enough that, effectively, knowledge

flows occur only within sectors, that is, η∗s�(n,s) ≈ 1 for all s ∈ S.

2. The size of any given city is negligible relative to the entire economy, that is,
∑

m 6=n π
∗
m ≈ 1,

for all n ∈ N .

Rewriting Equation (20) under Assumption A2, we obtain

π̂n,t ∝ bt +
∑
s∈S

π∗s|nα̂s,t, (21)

The term bt ≡ −
∑

s∈S π
∗
·,sα̂s,t, with π∗·,s denoting the share of the national population employed in

sector s, is a common term across all locations. Equation (21) shows that, under Assumption A2,

26Equation (19) holds in the absence of migration frictions across locations. We derive the corresponding ex-
pression when bilateral migration costs are introduced in our setting in Appendix D. Intuitively, in the presence
of migration frictions, local population growth is determined by local productivity growth relative to productivity
growth in other locations, where locations with lower migration costs have more weight than locations with higher
migration costs. Equation (D.3), combined with Equation (D.4), is equivalent to the expression for changes in
regional labor supply obtained by Borusyak et al. (2022). A similar mechanism also emerges in Schubert (2021).
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cities’ differential patterns of population growth depend on a weighted average of sectoral shocks,

with the weights corresponding to the city’s pre-existing sectoral shares.27 Equation (21) thus

provides a rationale for the shift-share functional form used to measure exposure to technological

waves in the reduced-form analysis of Section 2.3.28

Consider now population dynamics when we allow for knowledge flows across fields, while main-

taining the assumption of every city being of negligible size (in other words, we drop Assumption

A2.1 and only impose A2.2). In this case, Equation (20) can be rewritten as

π̂n,t ∝ bt +
∑
s∈S

∑
r∈S

π∗s|nη
∗
r�(n,s)α̂r,t, (23)

where bt is again a common term across all locations. In this case, because of geographical frictions

to idea diffusion, cities display different degrees of reliance of local innovation on ideas from each

sector (as captured by η∗r�(n,s)). This implies that in cities where expanding (shrinking) fields

are more prevalent, productivity growth in all sectors will be larger (smaller), thereby amplifying

the “shift-share” effect in Equation (21). In other words, localized knowledge flows across fields

amplify fluctuations in productivity growth and, as illustrated by Equation (23), fluctuations in

population dynamics in response to technological wave shocks.

Finally, relaxing also the second part of Assumption A2 that all cities are of negligible size,

yields the full population dynamics in Equation (20). This equation highlights that the effect of

technological waves on local growth depends on sectoral shares (π∗s|n) and reliance terms (η∗r�(n,s)),

as in Equation (23), but only relative to the rest of the economy. When individual cities are of

non-negligible size, the rest of the economy is location-specific, and therefore the entire geography

of the economy matters. Equation (20) takes this fact into account.

Taking stock Proposition 3 shows that frictions to idea diffusion imply rich and heterogeneous

effects of technological waves on local growth. Frictions across sectors imply that technological

wave shocks affect local population dynamics through local employment shares, as illustrated by

Equation (21). Frictions across geographical areas amplify this effect by generating variation in

the local reliance of innovators on different fields, as shown in Equation (23). In the remainder of

the paper, we assess the quantitative importance of these channels.

27In this sense, Equation (21) can be interpreted as a micro-foundation for commonly used Bartik shocks, that
we derive within a fully specified theory of migration and local productivity growth.

28Equation (21) also implies that under Assumption A2, n grows (shrinks) if and only if the average local exposure
to the technological wave is larger (smaller) than the average exposure for the economy:

π̂n,t > 0 ⇐⇒
∑
s∈S

π∗s|nα̂s,t >
∑
s∈S

π∗·,sα̂s,t. (22)
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4 Quantitative model and calibration

This section describes how we extend the model by introducing potentially relevant features from

a quantitative standpoint and how we bring the model to the data.

4.1 Extended model for quantitative analysis

We extend the model along three dimensions. First, we allow individuals to live for multiple

periods. Second, we introduce moving costs that are increasing with geographical distance. Third,

we allow for endogenous congestion forces by relaxing the assumption that amenities are exogenous

and time-invariant. Existing research contends that these channels are quantitatively significant

(see, among others, Diamond, 2016 and Allen and Donaldson, 2022). We show here that these

channels can be incorporated into our framework without incurring a prohibitive loss of tractability.

Appendix D derives the log-linearized dynamics within this richer framework, and shows that

the same intuitions obtained in the simple model of Section 3 are also present in this expanded

framework.

In the extended model, individuals live for three periods (“childhood”, “young adults”, and

“old adults”). Every child is born where their parents reside. After childhood, agents select the

location n to which they will migrate and the sector s in which they will specialize. This decision

is irreversible, so every agent will spend their youth and old age in the same location-sector.

Following migration, every young adult will have ft children. The productivity of agent i who is

young at time t and old at time t + 1 is denoted by qyn,s,i,t and qon,s,i,t+1, respectively. Agents are

endowed with one unit of inelastically-supplied labor per period.

Migration and occupational decisions maximize expected lifetime utility, subject to migration

costs and idiosyncratic utility draws. The lifetime utility of individual i born in location m and

selecting location-sector (n, s) is given by:

Um�n(un,t, xn,s,i, c
y
n,s,i,t, c

o
n,s,i,t+1) = un,t

xn,s,i (c
y
n,s,i,t)

β (con,s,i,t+1)1−β

µm�n
, (24)

where un,t is the level of amenities in city n at time t, xn,s,i is an idiosyncratic utility draw from a

Fréchet distribution with shape parameter ζ > 1, µm�n represents migration costs of moving from

m to n, cyn,s,i,t and con,s,i,t+1 denote consumption in the youth and the old period, and β ∈ (0, 1) is the

weight of youth consumption in lifetime utility. There are no markets to smooth consumption over

time and generations. Therefore, in every period, individual consumption is equal to production.

Total output in the economy is given by a linear aggregator of individual productivities across
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all locations and sectors:

Yt =
∑
n∈N

∑
s∈S

(
Lyn,s,tE[qyn,s,·,t] + Lon,s,tE[qon,s,·,t]

)
,

where E[qyn,s,·,t] (E[qon,s,·,t]) denotes the average productivity of young (old) agents in location-sector

(n, s), and Lyn,s,t (Lon,s,t) denotes the corresponding mass of individuals.

Young adults undergo the imitation or innovation process outlined in Section 3.1.3 to determine

their youth productivity qyn,s,i,t upon moving. Note that, as in the stylized model, the relevant

variables (εn,s,t and αn,s,t) are known at the time of the migration and occupational choice. Under

Assumption A1, the local distribution of productivity among young agents remains Fréchet and

the corresponding scale parameter, λn,s,t, follows the law of motion in Equation (9). Old adults

retain the same youth-period idiosyncratic productivity rescaled by a factor Ao which captures the

experience productivity premium enjoyed by old relative to young agents:

qon,s,i,t+1 = Aoqyn,s,i,t.

As commonly assumed in the quantitative economic geography literature, local amenities are

an isoelastic function of local population:

un,t = ūn,t L
ω
n,t,

where ūn,t is the exogenous time-varying component of local amenities, and ω is the elasticity of

local amenities to population, that can account for both congestion (ω < 0) and agglomeration

(ω > 0) forces.

The equilibrium is defined in an analogous way as in the stylized model in Section 3, and the

details are relegated to Appendix D.

4.2 Calibration

The model has a recursive structure that enables us to sequentially calibrate parameters and

unobserved variables by making transparent assumptions on the mapping of model’s objects to

data on population, income, and patenting. As in the empirical analysis, we set the model period

to 20 years, let N represent the set of 1990 CZs that accounted for at least 0.01% of the total

population in each decade since 1890, and define sectors as the 11 class-groups detailed in Appendix

Table A.1. We assume the economy is on a BGP in 1890 and, given the initial conditions and the

calibrated path of exogenous local and aggregate shocks, it evolves endogenously until 2010, the

last period of our sample.
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Our calibration proceeds in four steps. In the first step, we infer moving costs µm�n by de-

riving and estimating a gravity equation for migration flows. In the second step, we recover the

path of local productivities λn,s,t, time-varying local amenities un,t, and aggregate fertility ft, while

simultaneously determining the time-invariant parameters θ (the Fréchet shape of the productiv-

ity distribution) and Ao (the experience premium). In the third step, we estimate frictions to

knowledge diffusion d(m,r)�(n,s),t by deriving and estimating a gravity equation for idea flows using

patent citation data. In the fourth and final step, we recover technological wave shocks αs,t and

structural residuals εn,s,t.

4.2.1 First Step: Gravity equation for migration flows

We assume migration costs between each pair of locations, µm�n, to be an exponential function

of a constant term (capturing a fixed cost of moving) and the geographical distance in 1,000 km

between m and n, Dm,n:

µm�n = eµ̄
01m 6=n+µ̄DDm,n . (25)

In Appendix E.1 we show that the probability that an individual born in m migrates to n,

πm�n,t, can be written in gravity form as

log(πm�n,t) = ψ0
m,t + ψ1

n,t − ζµ̄01m 6=n − ζµ̄DDm,n, (26)

where ψ0
m,t and ψ1

n,t denote origin-time and destination-time fixed effects, respectively.

We estimate Equation (26) via Poisson Pseudo Maximum Likelihood (PPML).29 For the estim-

ation of (26) and for the other time-invariant parameters pertaining to migration, population, and

income, we utilize IPUMS data from 1990, which is the most recent period in the model for which

comprehensive demographic data are available. We obtain a statistically significant estimate of the

composite semi-elasticity of migration to distance, ζµ̄D, of 2.81 (see Appendix Table E.5). This

estimate indicates that a 100 km increase in distance reduces the migration probability by about

24%.

In our baseline, we set ζ, the elasticity of migration (or sectoral mobility) with respect to

average income, equal to 4, which is the benchmark value considered by Allen and Donaldson

(2022). We explore robustness of our results to this parameter choice in Appendix F.30 Panel A

of Table 2 displays the implied values of µ̄0 and µ̄D given our baseline value of ζ.

29See Appendix E.1 for details on the estimation.
30We set the share of young-period consumption in lifetime utility, β, to 0.5. This parameter choice has no

consequences for any of the outcomes in the quantitative analysis.
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4.2.2 Second Step: Productivities, amenities, and fertility

Now, we calibrate the shape parameter of the initial productivity distribution, θ, and the experience

premium parameter, Ao. In addition, we recover local amenities un,t, the complete path of scale

parameters λn,s,t, and aggregate fertility ft.

Consider the scale parameters λn,s,t. These terms summarize the knowledge stock in each

location-sector and are at the core of the quantitative analysis: higher values of λn,s,t indicate higher

local income, greater ability to attract population, and greater potential for future innovation.

While λn,s,t are endogenous to the diffusion process, in this step we use the patent data to directly

infer their paths over time. Later in the calibration, we will recover the exogenous shocks that

fully rationalize those paths.

We begin by postulating a simple notion of patenting in the model that allows us to draw

a connection between patent data and the path of λn,s,t. In particular, we assume that young

individuals, when undergoing their imitation or innovation process outlined in Section 3.1.3, will

file for a patent for their best innovation draw if it results in an idea of quality above a time-varying

threshold, Qt. In Appendix E.2, we show that, in this setting, the number of patents per young

individual in (n, s) at time t is approximated by the following expression:

Patn,s,t
Lyn,s,t

≈ Λn,s,tQ
−θ
t , (27)

where Patn,s,t denotes the number of patents filed at time t in (n, s), and Λn,s,t ≡ λn,s,t − λn,s,t−1.

Given values for θ and Qt, we can set the path of λn,s,t and un,t so to satisfy Equation (27) for all

(n, s, t) and, simultaneously, match total population by location in all time periods. Equation (27)

provides a simple mapping between the patent data and the path of λn,s,t, for which we provide

extensive validation in Section 4.3 below.31

We set θ to match the weighted standard deviation of log-income per capita across cities in

1990, which is equal to 0.214. In Appendix Figure A.7, we show computationally that there is

a unique value of θ that matches this data moment. The path of Qt is calibrated to produce

an annual growth in per capita income of 2%.32 Lastly, we set Ao = 2.11, which implies a 1990

experience premium of 1.42 (Heathcote et al., 2010).33

31We choose units of the final good so that the geometric average of λn,s is equal to one in the first time period.
32The term Qt can be microfounded as a function of accumulated knowledge and the minimum inventive step an

idea must satisfy to obtain a patent, as in Kortum (1997).
33The growth rate of λn,s,t in the model is tightly linked to the rate of “creative destruction”, defined as the rate

at which old ideas are no longer used in production (Caballero and Jaffe, 1993):

∆n,s,t ≡
Λn,s,t

λn,s,t−1 + Λn,s,t
.

In the model, a 2% average income growth per year corresponds to a yearly rate of “creative destruction” of about
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We set the elasticity of local amenities to population, ω, to −0.15, following Eckert and Peters

(2022). In Appendix F, we explore robustness of our results to this parameter choice. Given ω

and the path of un,t, we can recover the exogenous component of local amenities, ūn,t. Finally, we

calibrate the fertility path, ft, to match population totals by period. Panels B and C of Table 2

summarize values and targets of the parameters calibrated in this step.

4.2.3 Third Step: Gravity equation for knowledge flows

In the third step of the calibration, we recover the parameters controlling knowledge transmission

costs, d(m,r)�(n,s),t. To this end, we derive a gravity representation for knowledge flows that we

estimate using data on patent citations. We impose a flexible parametrization for knowledge

diffusion frictions, accounting for geographical distance, a direct feedback from migration decisions

into diffusion, and a full set of fixed effects for each pair of sectors of origin and destination,

capturing a wide range of channels of diffusion and associated frictions.34 We assume that these

terms contribute multiplicatively to overall frictions:

d(m,r)�(n,s),t = eδ
G1m 6=n+δDDm,n+δMMm�n,t+δKr�s , (28)

where Dm,n denotes distance in 1,000 km between m and n, and Mm�n,t denotes n’s migration

exposure to m, defined as the share of old migrants into n that were born in m (and as equal to

0 for m = n). In Equation (28), δG controls the effectiveness of knowledge flows across locations

relative to flows within locations, δD and δM control the sensitivity of transmission efficiency to

geographical and migration proximity, respectively, and δKr�s controls the applicability of ideas

from sector r for innovation in sector s.35

Combining Equations (11) and (28) and taking logs on both sides yields

log(η(m,r)�(n,s),t) = φ0
m,r,t + φ1

n,s,t − θδG1m6=n − θδDDm,n − θδMMm�n,t − θδKr�s, (29)

where φ0 and φ1 represent idea origin-time and idea destination-time fixed effects, respectively.

Equation (29) illustrates that bilateral citation probabilities η(m,r)�(n,s),t depend on the com-

posite parameters θδG, θδD, θδM , and θδKr�s. We estimate Equation (29) using data on patent

citations across location-sector pairs in order to recover those composite parameters. To obtain

8.4%, which is close to the value of 7% estimated by Caballero and Jaffe (1993) for the mid-20th century.
34Results do not change significantly with richer frictions in which diffusion depends on the share of individuals

in the destination location employed in the sector of origin of the idea.
35An alternative approach to calibrate frictions to diffusion is the one developed by Caballero and Jaffe (1993)

and adapted by Cai et al. (2022a) to a setting with multiple countries and sectors. This approach delivers a
separate parameter for each pair of country-sectors without relying on the parametric assumptions in Equation
(28). However, implementing this approach requires observing citations at multiple lags, which is not feasible in
our model, in which one period corresponds to 20 years.
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a more precise measurement of the flow of knowledge among inventors, we only include citations

added by applicants, limiting the sample to patents issued after 2000, when patent documents

began reporting inventor-added citations separately from examiner-added citations (Alcacer and

Gittelman, 2006). We compute η(m,r)�(n,s),t as the proportion of citations from patents in (n, s) to

patents in (m, r).36

We estimate this relationship using PPML and present the results in Appendix Table E.6. Using

the estimated value of the composite parameters θδG and θδD in conjunction with the calibrated

value of θ, we obtain δG = 1.43 and δD = 0.037. The coefficients indicate that knowledge flows are

highly localized, with the effectiveness of transmission across locations at 1,000 km of distance,

e−θ(δ
G+δD), estimated to be approximately 0.14% of the effectiveness of transmission within the

same location. However, the overall weight of ideas from outside locations may still be substantial

in determining innovation in n, given that transmission can occur from all locations m 6= n. We

also find a positive effect of migration exposure. A one percentage point increase in migration

exposure is associated with 3.3% more citations to the origin commuting zone.

The same regression also yields a complete set of bilateral transmission costs across sectors

(δKr�s), as depicted in the heatmap of Appendix Figure E.14. These costs are lower within sectors

(along the diagonal), but all pairs of sectors exhibit some degree of knowledge exchange that, in

some cases, is far from negligible, such as for class-groups G1 (“Physics”) and H1 (“Electricity”).

Panel D of Table 2 summarizes the values of the parameters obtained at this step of the calibration.

4.2.4 Fourth Step: Technological waves and structural residuals

In the fourth calibration step, we combine the objects calibrated so far with the law of motion in

Equation (9) to recover technological wave shocks αs,t and structural residuals εn,s,t. For all periods

t, we first guess the full vector of technological wave shocks {αs,t}s∈S. Given this guess, we use

Equation (9) to recover the full set of structural residuals. This step rationalizes the path of λn,s,t

for any initial guess of {αs,t}s∈S. For identification, we need to impose S additional conditions. Our

working assumption is that in each period, variation in average productivity growth across sectors

is explained by technological waves and their interaction with the endogenous process implied by

Equation (9). Structural residuals, εn,s,t, account for the remaining variation in productivity growth

across locations for any given sector. Formally, this is captured by the following assumption:

36Note that the direction of the arrow from (m, r) to (n, s) denotes knowledge flows going from the cited patent
to the citing patent. The total weight of each citing patent in our regression is one (i.e., the weight of each citation
is proportional to the inverse of the total number of citations given by the citing patent). To account for the
fact that local knowledge flows are more likely to be tacit and less likely to be captured by citations, we add an
artificial citation to each patent’s list of references to a local patent whose technology classes are identical to the
citing patent. This assumption amounts to assuming that the weight of local tacit flows is inversely proportional
to the number of inventor-provided citations. This also ensures that all patents, including those without backward
citations, enter the estimation. Appendix E.3 provides additional details on the estimation.
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Table 2: Parameter values and targets

Parameter Value Target / Source

Panel A: Estimated via gravity equation for migration flows

µ̄0 0.197 Table E.5
µ̄D 0.703 Table E.5

Panel B: Externally calibrated parameters

ζ 4.0 Allen and Donaldson (2022)
ω −0.15 Eckert and Peters (2022)

Panel C: Internally calibrated parameters matching moments

Model Data

θ 4.48 s.d. log-income across CZs, 1990 0.214 0.214
Ao 2.11 Experience premium, 1990 1.42 1.42

Panel D: Estimated via gravity equation for knowledge flows

δG 1.434 Table E.6
δD 0.037 Table E.6
δM −0.745 Table E.6
δKr�s Figure E.14 Table E.6

Notes: Experience premium is taken from Heathcote et al. (2010). Standard deviation of log-income across CZs are author’s calculations
from the NHGIS.

Assumption A3. The sets of adjusted structural residuals, {εθn,s,t}(n,s)∈N×S,t≥0, have a common

average for each sector and time period that we normalize to one:

E
[
εθ·,s,t

]
= 1, ∀s ∈ S, t ≥ 0. (30)

In practice, our identification assumption implies that technological wave shocks are responsible

for the common component of shifts in the knowledge stock in a given sector. Structural residuals

account for the remainder of location-sector specific variation. Combining Equation (30) and the

law of motion (9) enables us to recover a unique set of technological wave shocks, {αs,t}s∈S and

structural residuals {εn,s,t}.
The identification of technological waves is linked to the co-movement of knowledge stocks

across locations within a given sector. Because we infer technological waves from patenting beha-

vior, our model is mute regarding their potential causes. Several factors can drive technological

waves, such as scientific advancements in specific fields or firms directing innovation efforts toward

certain sectors based on their future demand forecasts (as suggested by Comin et al., 2019 when

studying long-term patterns of sectoral productivity growth in the United States). Our identifica-

tion strategy picks up as a technological wave any expected common sectoral shock that redirects

innovation across industries.
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Appendix Figure A.8 depicts the calibrated path of αs,t for each technology class-group. In

the early portion of the sample, “Agriculture” experiences the greatest negative shock, whereas

“Chemistry” and “Electricity” exhibit visible growth. The latter portion of the sample reveals a

general decline in fields associated with heavy manufacturing, such as “Transporting”, “Engines”,

and “Chemistry”, and significant expansions in “Health” and “Physics”, with the latter containing

the majority of IT and computing-related innovation.

4.3 Untargeted moments

Some channels that are potentially relevant from a quantitative perspective, such as variation

in local prices, are captured in our setting in reduced-form, allowing us to focus on our core

mechanism of knowledge creation and diffusion. We now show that, despite its parsimony, our

calibrated model is successful at accounting for some key moments that are not directly targeted.

Since the calibration matches local population by construction, we focus our attention on the

model’s predictions on local income, which is the ultimate endogenous outcome of the process of

innovation and diffusion, as well as the main driver of migration decisions.

The bin-scatter plots in Figure 3 depict the relationship between log-population and log-income

in the model and in the data for all periods since 1950 (the earliest decade for which income

data at the CZ level can be reliably constructed using the NHGIS, see Appendix B for details).

The existence of a correlation between city size and productivity is a well-established empirical

regularity (see, e.g., Glaeser and Gottlieb, 2009) that can result from a variety of theoretical

mechanisms (e.g., sorting, variety, local productivity spillovers, and higher availability of inputs).

While the model is silent on the mechanism underlying this correlation (other than the fact that

more productive cities will attract more population), it is crucial for the model’s quantitative

performance that the elasticity of income with respect to population is empirically accurate. The

figure shows that the model-implied and empirical elasticities are remarkably close, despite the

fact that this moment is not targeted by the calibration.

Furthermore, the scatter plots in Appendix Figure A.9 display the relationship between log-

income in the model and in the data across all cities between 1950 and 2010. Also in this case, the

model-generated values are strongly predictive of their empirical counterparts, despite the latter

not being directly used to inform the calibration. The R2 of the underlying regressions range

between 0.47 and 0.55.

While the model’s ability to account for city-level variation in income is critical for its quant-

itative accuracy, the mechanism driving local growth ultimately relies on variation in income at

the location-sector level. Local sectoral income is not directly observed throughout the sample.

However, for the 1990 and 2010 decades, we can construct a reliable approximation for income

at the location-sector level by combining IPUMS data on individual income with the crosswalk
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Figure 3: Population and income per capita: data and model (untargeted)
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Notes: Bin-scatter plots of the relationship between log-population and log-income per capita in the data (blue) and the model (red),
weighted by population, in 1950 (top-left panel), 1970 (top-right panel), 1990 (bottom-left panel), and 2010 (bottom-right panel).
Log-income is displayed as deviation from the mean.

between industry codes and IPC classes developed by Lybbert and Zolas (2014) (see Appendix B

for details).37 Appendix Figure A.10 shows bin-scatter plots of log-income in the model and in the

data by location-sector, residualized with respect to location and sector fixed effects. The plots

show a remarkable fit of this untargeted data, providing further validation of the mapping between

patent data and local productivity, and our calibration strategy overall.

5 Quantitative results

In this section, we use the calibrated model to assess the role of technological waves and frictional

idea diffusion on local growth. We then discuss two applications of our quantitative framework.

First, we investigate the relationship between local specialization and growth volatility. Second,

37In the model decades before 1990, IPUMS does not provide consistent information either on income or geo-
graphical location (at a level that can be reliably mapped into 1990 CZs). For this reason, this validation can only
be performed for 1990 and 2010.
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we explore how future technological trends may reshape the economic geography of the United

States in the coming decades.

5.1 Technological waves, local growth, and knowledge diffusion

Our primary objective is to quantify the contribution of frictions to idea diffusion to the empirical

relationship between exposure to technological waves and local growth described in Section 2.3. To

this end, we initialize the economy with the BGP conditions calibrated for the initial period (1890).

We then compute the model forward until the final period (2010) under different assumptions for

the evolution of the exogenous disturbances, and compare the resulting population dynamics.

First, we compute the model forward by feeding the full path of exogenous sectoral (αs,t) and

local (εn,s,t and ūn,t) shocks. This version of the model reproduces the data by construction. Thus,

the resulting relationship between exposure to technological waves and local population growth is

identical to the empirical one estimated in Section 2.3, as reported in column 1 of Table 3.

Second, we compute the model forward by feeding the full path of local shocks (εn,s,t and

ūn,t), while holding the aggregate technological wave shocks, αs,t, fixed at their 1890 BGP values.

The population dynamics resulting from this exercise reflect those driven by factors orthogonal

to technological waves, as captured by changes in the structural residuals and exogenous amenit-

ies. Then, we estimate an analogous regression to the empirical one (Equation 2), but with the

counterfactual local growth derived from this exercise as the dependent variable. Notice that, in

the absence of frictions to diffusion, the path of αs,t would have no influence on the dynamics of

local productivity and population. Hence, the difference between the empirical and counterfactual

coefficients can be interpreted as the effect of technological wave shocks on local population growth

via the endogenous mechanism of frictional knowledge diffusion.

The counterfactual coefficient, which is reported in column 2 of Table 3, is 65% lower than

the empirical one. This suggests that the model’s mechanism of frictional idea diffusion explains

close to two-thirds of the empirical relationship between exposure to technological waves and local

growth. The remaining correlation is explained by local shocks (structural errors and amenities)

that are not part of the endogenous mechanism of the model.38

38The contribution of this mechanism throughout our sample can only be properly quantified by comparing a
model with the full set of shocks to one in which technological waves are shut down. Agents’ optimal innovation
behavior implies a backward-looking law of motion for productivity: the productivity of a location-sector at time t is
a function of all productivities at time t−1 and the set of technological wave shocks at time t (Equation 9). Hence,
the model cannot endogenously account for major long-term shifts in the spatial distribution of economic activity
caused by external factors, such as the World Wars and the Great Migration, which are captured by time-varying
amenities (ūn,t) and structural residuals (εn,s,t). These terms, by reallocating people and changing the returns on
innovation in the current period, influence our mechanism going forward. Comparing the model with the complete
set of shocks to one in which technological waves are constant allows us to isolate the mechanism while maintaining
the quantitative integrity of the experiment over the entire sample.
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Table 3: Population growth and technological wave shocks

Dependent var.: Growth rate of population under

Full model Model without tech. waves

No diffusion

across fields

(1) (2) (3)

Exposure to tech. waves (Expn,t) 0.341*** 0.119 0.237**
(0.099) (0.100) (0.098)

Difference from empirical coefficient - 0.222 0.104

Share explained by tech waves (αs,t) 65.1% 30.5%

Decomposition:

- Share explained by tech. frictions 46.9%

- Share explained by geo. frictions 53.1%

Log-population (lags 1 and 2) Yes Yes Yes

Other controls Yes Yes Yes

Fixed effects CD×T CD×T CD×T

# Obs. 2,852 2,852 2,852

R2 0.54 0.54 0.54

Notes: CZ-level regression, 1910-2010, weighted by the share of population at the beginning of the period. Dependent variable defined
as growth rate of population over 20 years. “CD×T” denotes Census Division-time fixed effects. Standard errors clustered at the CZ
and the Census Division-time level in parenthesis. Exposure to the technological wave is defined as in Equation (1). Column 2 displays
the counterfactual in which αs,t are kept constant at their 1890 BGP values. Column 3 displays the counterfactual in which knowledge
flows are restricted to within-field flows only. Controls include log-total patents, human capital, and industry composition. **p < 0.05,
***p < 0.01.

5.1.1 Disentangling the effect of diffusion frictions across cities and knowledge fields

Our theory explains the impact of a city’s exposure to technological waves on local population

growth through two distinct channels. First, frictions to idea diffusion across fields of knowledge

imply that sectors receiving favorable technological wave shocks will experience greater productiv-

ity growth. Consequently, cities with a greater concentration of expanding fields will experi-

ence greater productivity and population growth. This channel is emphasized by Equation (21),

which is derived under the assumption that knowledge flows only occur within fields of knowledge,

ηs�(n,s),t ≈ 1 (Assumption A2.1). Second, frictions to idea diffusion across locations imply that

cities geographically close to a greater concentration of expanding fields will experience greater

productivity growth in all sectors due to localized knowledge spillovers across fields.

To decompose the relative importance of these two channels, we re-calibrate technological wave

shocks and structural residuals under the assumption that frictions across fields are sufficiently
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strong that idea flows only occur within fields (e.g., δKr�s = ∞ if r 6= s).39 We then compute

the model forward from the initial 1890 BGP until the last period (2010) under this assumption,

keeping the aggregate technological wave shocks, αs,t, fixed at their BGP values. We finally

estimate a regression of local growth on the exposure measure analogous to the empirical one.

Column 3 of Table 3 reports the corresponding estimates. The coefficient is 30.5% smaller than

in the complete model of column 1. Compared to the estimate in column 2, this number suggests

that approximately 47% of the overall mechanism can be attributed to frictions to diffusion across

technological fields, while the remaining portion (approximately 53%) can be attributed to frictions

to diffusion across locations.

5.1.2 Technological waves and the emergence of the current U.S. geography

We now use our framework to evaluate the historical contribution of technological waves in delin-

eating the current economic geography of the United States.

Figure 4 presents a map of the commuting zones in our sample colored in blue (red) if their

realized growth rate between 1890 and 2010 is higher (lower) than the counterfactual growth rate

obtained by keeping technological wave shocks, αs,t, fixed at their 1890 BGP values (as in column 2

of Table 3). Darker colors represent larger absolute differences between actual and counterfactual

growth rates.

The map reveals that, throughout the last century, technological waves significantly bolstered

the growth of cities in the Northeast, and promoted the rise of the most prominent modern innov-

ation hubs, such as San Jose, Austin, and Raleigh-Durham. In the absence of these technological

waves, the size of those commuting zones would have been 26.4%, 28.0%, and 15.7% smaller, re-

spectively. Interestingly, Seattle—another major technological hub—does not appear to have been

significantly affected. A plausible explanation is that the emergence of Seattle is mostly explained

by idiosyncratic factors, such as the location choices of Microsoft and Amazon, which are largely

orthogonal to our endogenous mechanism and are captured by the structural residual in the model.

The effect of technological waves throughout the whole sample period on cities in the Midwest

and the Rust Belt is in general small in absolute value, reflecting the fact that technological waves

have favored the growth of manufacturing-intensive sectors in the first half of the 20th century,

and later reversed their fortunes. Cities in the Central States, with a higher concentration of

agricultural activities, are the most negatively affected.

39Incidentally, this formulation is equivalent to assuming that diffusion across locations is frictionless (i.e., δG =
δD = δM = 0), since, in both cases, the reliance of local innovators on ideas from any given sector, ηr�(n,s),t, will
not depend on n and will hence be constant across cities. In both cases, this counterfactual isolates the role of
technological frictions to diffusion from the role of geographical frictions.
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Figure 4: Contribution of technological waves, 1890-2010, to the current U.S. geography

Notes: The map shows the difference between 2010 log-population in the data and in the counterfactual where αs,t are kept at their
1890 GDP values. Blue (red) CZs indicate that realized population is higher (lower) than the counterfactual one.

5.2 Specialization and volatility of local growth

Our mechanism implies that growth in diversified cities is less volatile than in specialized ones.

This happens for two reasons. First, due to frictions across fields, growth in a particular sector is

primarily driven by shocks within that sector. Second, due to frictions across locations, the local

reliance on ideas from a particular field is increasing in the local availability of ideas from that

field. Diversified cities, whose composition is dispersed across many sectors, and whose innovators

rely on ideas from a broader range of fields, experience less volatile productivity and ultimately

population growth.

Exploring this link requires us to define a local specialization measure. Appendix G shows that

under intuitive conditions, the variance of local population growth is proportional to the square

of the Euclidean distance between the local and national vectors of innovators’ reliance on ideas

from each sector, which we use as our measure of specialization:

Specn,t ≡
∑
r∈S

(ηr�n,t − η̄r,t)2 . (31)

According to this measure, cities are perfectly diversified if the reliance of local innovators on

ideas from each field r, denoted by ηr�n,t ≡
∑

s πs|n,tηr�(n,s),t, is exactly equal to the economy-wise

reliance of innovators on ideas from the same field, denoted by η̄r,t ≡
∑

n,s πn,s,tηr�(n,s),t.

To quantify the effect of specialization on local volatility, we run 5,000 simulations in which,

starting from the last period of the model (2010), we randomly draw shocks to the growth rate of

αs,t, g
α
s,t, two periods into the future (i.e., until 2050). These shocks are drawn from a normal dis-

tribution with mean zero and standard deviation equal to the one of the calibrated gαs,t throughout
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the sample. We then compute the counterfactual equilibrium for each simulation.

Column 1 of Appendix Table A.4 reports a regression of the standard deviation of local growth

across the 5,000 simulations on the specialization measure in Equation (31). The volatility of

population growth of specialized cities is significantly higher: the standard deviation for cities at

the 90th percentile of the specialization distribution is 1.86 percentage points greater than for cities

at the 10th percentile (the average volatility is 2.48 percentage points). To fix ideas, increasing

specialization from the level of Boston (a highly diversified city) to the level of Austin (a highly

specialized one) increases the standard deviation by 4.59 percentage points.

To disentangle the role of frictions across fields and across locations, we conduct the same

experiment restricting knowledge diffusion to within-fields flows only (i.e., by imposing δKr�s =∞
if r 6= s). The results are reported in column 2 of Appendix Table A.4. The effect of specialization

decreases by 24.6% compared to column 1. This implies that, while frictions across fields explain

the majority of the effect of specialization on local volatility, frictions across locations, which

dampen productivity growth fluctuations in more diversified cities, account for a non-negligible

portion of the effect.

5.3 Impact of future changes in frictions to diffusion and

technological waves

Finally, we use our model to examine how the U.S. economic geography may change in the coming

decades in response to possible future technological transformations. Specifically, we project local

growth until 2050 under various hypotheses on the evolution of frictions to diffusion (d(m,r)�(n,s),t)

and technological possibilities in different sectors (αs,t), and compare the results to a baseline

scenario in which the importance of all sectors is held constant at their 2010 levels.

5.3.1 Declining frictions to diffusion

We begin by considering a scenario in which geographical frictions to diffusion drop significantly,

making knowledge transmission across locations more effective. While ICT was already pervasive

in the latest years of our sample, the decline in long-distance communication costs saw a marked

acceleration in the early 2020s, driven by a proliferation of online communication tools during

the COVID-19 pandemic, and is expected to continue in the coming years (Barrero et al., 2021;

Yang et al., 2022). We examine the effect of this trend by simulating a 50% drop in adjusted

diffusion frictions across locations ((d(m,r)�(n,s),t)
θ, for all m 6= n).40 Panel (a) of Appendix Figure

A.11 illustrates the results. Compared to the baseline, CZs in blue (red) experience a net gain

40In the experiments described in this section, while the magnitudes of the shocks is set arbitrarily, the resulting
qualitative patterns do not depend on those particular choices.
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(loss) of population between 2010 and 2050. Major cities, including most of the main innovation

hubs (such as Austin, San Jose, and Raleigh-Durham) experience relative losses in population, as

the drop in diffusion frictions erodes their location-specific advantage in innovation. The drop in

communication costs results in a convergence of population growth towards less dense locations

in the Central States and the West. This prediction is in line with recent empirical evidence on

the effect of remote work on the spatial concentration of economic activity (see, e.g., Ramani and

Bloom, 2021 and Delventhal and Parkhomenko, 2023).

We next consider a scenario in which recent advances in Artificial Intelligence result in improved

possibilities of recombination of ideas across different technological fields. This trend is already

visible in several areas of innovation, most notably in the life-sciences, and is expected to become

more pervasive in the coming decades (Bianchini et al., 2022; Agrawal et al., 2024). We simulate

this scenario by assuming a 50% drop in adjusted diffusion frictions across sectors ((d(m,r)�(n,s),t)
θ,

for all r 6= s), and display the results in panel (b) of Appendix Figure A.11. Surprisingly, the effect

is similar to the one in the first scenario, with larger cities and major innovation hubs experiencing

a relative loss in population to the benefit of less dense regions. The specialization of fast-growing

cities in expanding fields prevents them from leveraging these new opportunities of recombination,

which erodes their advantage compared to less specialized cities.

5.3.2 Future technological waves

As a last step, we examine the geographical effects of three plausible scenarios of technological

trends involving specific fields.

In the first scenario, we assume that class-group B2 (“Transporting”) experiences a positive

technological wave shock that raises αs,t by 20% compared to its 2010 value.41 This scenario is

conceivable if new advances in transit technologies and autonomous vehicles cause transportation

innovation to resume its central role. Panel (a) of Appendix Figure A.12 shows the results. Rust

Belt cities are the areas best positioned to benefit from this transformation. Detroit’s population

would increase by 11.5% relative to the baseline, and other centers of manufacturing would also

benefit to a lesser extent. A relative loss of population would be experienced by the three knowledge

hubs of Austin (-5.6%), San Jose (-4.1%), and Seattle (-1.3%).

An alternative way of modeling this scenario is to assume that ideas from “Transporting”

become more relevant for innovation in either G1 (“Physics”) or H1 (“Electricity”) and vice versa,

due to the gradual incorporation of IT components in electric and autonomous vehicles. We model

this by assuming a 50% decrease in adjusted diffusion frictions ((d(m,r)�(n,s),t)
θ) from (to) B2 to

(from) both G1 and H1. In this case, we maintain the 2010 value of sectoral importance (αs,t). The

results are displayed in panel (b) of Appendix Figure A.12. While the magnitude of the overall

41A 20% shock corresponds to approximately 3.5 times the standard deviation of calibrated shocks.
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effects is smaller, also in this scenario Detroit experiences a population increase (+0.6%), while

San Jose experiences a net population loss (-0.1%). San Jose has become increasingly specialized,

preventing it from capitalizing on cross-field spillovers, whereas Detroit’s economy has recently

diversified toward fields G1 and H1 and is thus exposed to ideas from those fields.

In the second scenario, we simulate a large (+20%) positive technological wave shock to class-

group A3 (“Health; Life-Saving; Amusement,” which includes innovation related to pharmaceut-

icals and medical sciences) possibly in response to new global health challenges. The results are

depicted in panel (a) of Appendix Figure A.13. Major CZs in the Northeast, such as Boston

(+5.8%) and Providence (+16.9%), and in California, such as Los Angeles (+2.8%) and San

Francisco-Oakland (+0.6%), would experience a net inflow of population at the expense of IT

clusters such as Austin (-8.9%), San Jose (-6.5%), and Seattle (-3.5%).

In the third scenario, we assume that class-group A1 (“Agriculture”) regains centrality by

experiencing a 20% technological wave shock. This scenario may result from tightening regulat-

ory constraints and shifting demand toward sustainable farming, possibly in response to global

challenges such as climate change. Results are displayed in panel (b) of Appendix Figure A.13.

Under this scenario, population growth shifts from the East and West coasts and Rust Belt to the

Central States (Des Moines has the greatest net gain among the major CZs) resulting in an overall

convergence across regions.

6 Conclusions

The economic geography of countries is characterized by rich and heterogeneous dynamics. Some

cities remain prosperous over long periods, whereas others experience episodes of rapid expansion

and contraction. Understanding the drivers of these rich dynamics of local growth is of primary

importance for policy and welfare. In this paper, we explore the hypothesis that these patterns

are in part driven by cities’ distribution of knowledge across fields, frictions to idea diffusion, and

a continuously evolving technological landscape.

We provide reduced-form evidence of a positive correlation between local growth and exposure

to technological waves in the U.S. during the twentieth century. To explain this relationship,

we develop a tractable framework that combines elements from quantitative spatial models and

theories of endogenous growth via innovation and idea diffusion. The quantitative results suggest

that our proposed mechanism of frictional knowledge diffusion can account for close to two-thirds

of the reduced-form correlation between local population growth and exposure to technological

waves. Counterfactual experiments suggest that future technological scenarios may have large and

heterogeneous geographical effects. These results imply that the process of frictional knowledge

diffusion plays an important role in explaining why the technological landscape and the economic
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geography appear to be deeply intertwined.

The framework developed in this paper opens up several avenues for future research. First,

our quantitative results suggest that residual factors contribute significantly to the dynamics of

local innovation and to the variation in city growth. Unpacking the residual term, by accounting

for endogenous innovation effort or investment, firms’ location choice, and policy response to local

shocks, is a promising next step. Second, our framework can be easily extended to allow for ex-

ante heterogeneous agents. Since the response to technological wave shocks is likely to vary across

demographic groups, an extended model can be used to study the implications of our mechanism

for the distribution of income and welfare.

Our results can also be used to inform the design of local and place-based interventions. Policy

efforts aimed at shaping the local sectoral composition have become increasingly common in recent

years (Slattery and Zidar, 2020). Our analysis suggests that these policies, by affecting the local

availability of ideas from different knowledge fields, influence the sensitivity of local growth to

future changes in the technological environment. The model highlights two policy tradeoffs. First,

there is an inherent tension between short-term growth, which can be fostered by specializing in

the sectors that currently offer the best innovation opportunities, and long-term stability, which

can be achieved by diversifying the local portfolio of activities. Second, the aggregate benefits

of increasing the concentration of innovation conceal the fact that these benefits are unevenly

distributed in space. These tradeoffs suggest that an optimal growth policy critically depends on

the planner’s time horizon and geographical scope, and underscore a potentially important role for

insurance and redistributive mechanisms in the design of local and national development policies.
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A Additional tables and figures

Table A.1: IPC Class-Groups

Class ID Class Group IPC Class Range Label

1 A1 A01-A24 Agriculture - Foodstuffs; Tobacco

2 A2 A41-A47 Personal or Domestic Articles

3 A3 A61-A99 Health; Life-Saving; Amusement

4 B1 B01-B44 Separating; Mixing - Shaping - Printing

5 B2 B60-B68 Transporting

- B3 B81-B99 Microstructural Technology; Nanotechnology

6 C1 C01–C30 Chemistry - Metallurgy

- C2 C40-C99 Combinatorial Technology

- D1 D01-D07 Textiles - Paper

7 E1 E01-E99 Building - Earth or Rock Drilling; Mining

8 F1 F01-F17 Engines or Pumps - Engineering in General

9 F2 F21-F99 Lighting; Heating - Weapons; Blasting

10 G1 G01-G16 Physics

- G2 G21-G99 Nuclear Physics; Nuclear Engineering

11 H1 H01-H99 Electricity

Notes: This table provides label and a mapping to the original IPC classes for the class-groups used for the empirical and quantitative
analysis of this paper. Groups B3, C2, D1, and G2 are excluded from the sample since they are either negligible in size or they cover
innovation in fields, such as nuclear physics, was acquired only in the later portion of the sample.
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Table A.2: Summary Statistics

Variable Obs. Mean Std. Dev. Min Max

Population 3,880 295,188.9 807,644.2 12 1.79e+07

Log-population 3,880 11.63 1.32 2.48 16.70

Population growth 2,910 .225 .311 -.684 2.428

Total patents 3,395 1,104.56 4,740.96 0 77,956

Exposure to tech. waves 2,910 -.107 .089 -.443 .405

Industrial composition 2,882 -.150 .157 -.681 .254

Notes: Summary statistics refer to the period 1870-2010 (Population, log-population), 1890-2010 (total patents), or 1910-2010 (remaining
variables).
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Table A.3: Technological waves and city growth: Alternative specifications

Growth rate of population

(1) (2) (3) (4)

Exposure to tech. waves, Expn,t 0.341*** 0.387*** 0.306*** 0.258***
(0.099) (0.090) (0.080) (0.073)

Log-total patents 0.006 -0.002 0.017 -0.011
(0.014) (0.015) (0.013) (0.013)

Industry composition 0.573*** 0.477*** 0.698*** 0.385***
(0.113) (0.098) (0.120) (0.102)

Human capital (ranking) 0.020 0.212*** 0.080 0.289***
(0.066) (0.049) (0.063) (0.043)

Log-population (lags 1 and 2) Yes Yes Yes Yes

Fixed effects CD×T CD×T, CZ CD×T CD×T, CZ

Weighted Yes Yes No No

# Obs. 2,852 2,852 2,852 2,852

R2 0.544 0.775 0.446 0.716

Notes: CZ-time-level regression, 1910-2010, weighted by share of population at the beginning of the period (columns 1 and 2) and
unweighted (columns 3 and 4). Dependent variable defined as growth rate of population over 20 years. “CD×T” denotes Census
Division-time fixed effects, “CZ” denotes CZ fixed effects. Standard errors clustered at the CZ and the Census Division-time level in
parenthesis. ***p < 0.01.

4



Table A.4: Specialization and volatility of population growth

Dependent var.:

Standard deviation

across simulations

(1) (2)

Specialization in 2010 (Specn,2010) 0.841*** 0.634***
(0.043) (0.045)

Log-population in 2010 -0.001** -0.003***
(0.0004) (0.0004)

Diffusion across fields Yes No

Specn,2010, 90th-10th perc. 0.0221 0.0221

Mean of dependent var. 0.0248 0.0241

Fixed effects CD CD

# Obs. 485 485

R2 0.53 0.47

Notes: OLS estimates, weighted by population in 2010. Specialization is defined as in Equation (31). The dependent variable is
defined as the city-level standard deviation of population growth across 5,000 simulations. “CD” denotes Census Division fixed effects.
**p < 0.05, ***p < 0.01.
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Figure A.1: Composition of the technological output (class-groups)

Detroit

1870 1890 1910 1930 1950 1970 1990 2010
0

0.2

0.4

0.6

0.8

1

S
h

a
re

Austin

1870 1890 1910 1930 1950 1970 1990 2010
0

0.2

0.4

0.6

0.8

1

Boston

1870 1890 1910 1930 1950 1970 1990 2010
0

0.2

0.4

0.6

0.8

1

S
h

a
re

Agriculture Domestic articles Health Separating Transporting Chemistry Construction Engines Lighting Physics Electricity

National

1870 1890 1910 1930 1950 1970 1990 2010
0

0.2

0.4

0.6

0.8

1

Notes: Composition of patenting output across the 11 IPC class-groups in Appendix Table A.1. Patent count for year t is constructed
as the sum of patents filed between t − 10 and t + 9. Class names are abbreviated. The full description of each class is available at
https://www.wipo.int/classifications/ipc/en/.
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Figure A.2: Distribution of patent shares across cities in 1890 and 2010

1890

0 0.5 1
0

100

200

F
re

q
u
e
n
c
y

Human Necessities

0 0.5 1
0

100

200

Transportation

0 0.1 0.2
0

100

200

300
Chemistry

0 0.2 0.4 0.6
0

100

200

300

F
re

q
u
e
n
c
y

Construction

0 0.5 1
0

100

200

300
Mech. Eng.

0 0.1 0.2 0.3
0

50

100

150
Physics

0 0.05 0.1
0

200

400

F
re

q
u
e
n
c
y

Electricity

2010

0 0.2 0.4 0.6
0

50

100

150

F
re

q
u
e
n
c
y

Human Necessities

0 0.2 0.4 0.6
0

50

100

150
Transportation

0 0.2 0.4 0.6
0

100

200
Chemistry

0 0.5 1
0

200

400

F
re

q
u
e
n
c
y

Construction

0 0.2 0.4 0.6
0

100

200
Mech. Eng.

0 0.2 0.4 0.6
0

100

200
Physics

0 0.2 0.4
0

100

200

F
re

q
u
e
n
c
y

Electricity

Notes: Distribution of patenting shares across cities for the seven main IPC classes in 1890 (top panel) and 2010 (bottom panel). Patent
count for year t is constructed as the sum of patents filed between t− 10 and t+ 9. Class names are abbreviated. The full description
for each class is available at https://www.wipo.int/classifications/ipc/en/.
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Figure A.3: Technological waves and city growth
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Notes: Bin-scatter plot of exposure to the technological wave, as defined in Equation (1), and 20-year population growth, 1910-2010,
weighted by share of population at the beginning of the period. The bin-scatter plot is residualized with respect to Census Division-time
fixed effects and two lags of log-population.
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Figure A.4: Exposure to technological waves and local industry composition
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Notes: Scatter plot of exposure to the technological wave, as defined in Equation (1), and exposure to industry shocks, constructed
using employment by industry, using the 12 main industries in the 1950 Census Bureau industrial classification system, weighted by
share of population at the beginning of the period. Both variables are residualized with respect to two lags of log-population and Census
Division-time fixed effects.
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Figure A.5: Patent citations across fields
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Notes: Probability that patents from the class-group on the vertical axis cite patents from the class-group on the horizontal axis.
Probabilities are computed using patents filed since 1940 in which at least one inventor is in one of the 485 commuting zones in the
main sample. Each citation is weighted by the inverse of the total number of citations given by the citing patent. Class-groups are
described in Appendix Table A.1.

10



Figure A.6: Patent citations across fields: Early vs late samples
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main sample. Each citing patent is assigned a total weight of one. Class groups are described in Appendix Table A.1.
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Figure A.7: Identification of θ
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values of θ.
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Figure A.8: Calibrated technological wave shocks (αs,t)
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is available at https://www.wipo.int/classifications/ipc/en/.
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Figure A.9: Income per capita: data and model (untargeted)
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Notes: Scatter plots of log-income per capita in the model (horizontal axis) and data (vertical axis) in 1950 (top-left panel), 1970
(top-right panel), 1990 (bottom-left panel), and 2010 (bottom-right panel). The size of the circles is proportional to population. All
variables are displayed as deviations from the mean.
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Figure A.10: Income per capita by location-sector: data and model (untargeted)
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by individuals in each location-sector, residualized with respect to location and sector fixed effect, in 1990 (left panel) and 2010 (right
panel).
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Figure A.11: Future scenarios: Declining frictions to diffusion

Notes: Panel (a) shows log-population in 2050 after a 50% decline in adjusted diffusion frictions ((d(m,r)�(n,s),t)
θ) across locations (i.e.,

for all m 6= n), in deviation from a status quo in which frictions are kept at their 2010 values. Panel (b) shows log-population in 2050
after a 50% decline in adjusted diffusion frictions across sectors (i.e., for all r 6= s), in deviation from a status quo in which frictions are
kept at their 2010 values. Blue CZs correspond to a net population gain (light blue: below-median increase; dark blue: above-median
increase), while red CZs correspond to a net population loss (light red: below-median loss; dark red: above-median loss).
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Figure A.12: Future scenarios: Autonomous vehicles

Notes: The maps show log-population in 2050 after technological wave shocks of magnitude +20% to B2 (panel a), as well as a 50%
decline in adjusted diffusion frictions ((d(m,r)�(n,s),t)

θ) from (to) B2 to (from) both G1 and H1 (panel b), in deviation from a status
quo in which αs,t are kept at their 2010 values. Blue CZs correspond to a net population gain (light blue: below-median increase; dark
blue: above-median increase), while red CZs correspond to a net population loss (light red: below-median loss; dark red: above-median
loss).
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Figure A.13: Future scenarios: Pharmaceuticals and Agriculture

Notes: The maps show log-population in 2050 after technological wave shocks of magnitude +20% to A3 (panel a) and to A1 (panel b)
in deviation from a status quo in which αs,t are kept at their 2010 values. Blue CZs correspond to a net population gain (light blue:
below-median increase; dark blue: above-median increase), while red CZs correspond to a net population loss (light red: below-median
loss; dark red: above-median loss).
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B Data description

In this section, we provide details on the construction of the data on population, human capital,

and employment by industry at the commuting zone level. Our starting points are the publicly

available data from the Integrated Public Use Microdata Series (IPUMS, Ruggles et al., 2021) and

the National Historical Geographic Information System (NHGIS, Manson et al., 2021), and the

restricted full-count censuses for the decades until 1940.1

Population at the CZ level until 1940 is constructed using the full-count censuses. In particular,

we use the mapping of each Census place to their corresponding coordinates performed by Berkes

et al. (2023) to assign each individual in the historical Census to a 1990 commuting zone. Total

population is then computed as the total number of individuals whose coordinates fall in that

1990 commuting zone. For the decades 1950 onwards, we use county-level population counts from

the NHGIS and build crosswalks from counties to 1990 commuting zones based on the shares of

overlapping areas. Using the full-count censuses, we also build crosswalks from historical counties

to 1990 commuting zones for the decades until 1940 (which are then used to create measures

of human capital and industry composition). For the purposes of the model calibration, since

the model cannot rationalize extreme declines in population within one model period (due to the

overlapping generations structure), we set the maximum decline in population between any two

periods to -30%. The resulting total correction is negligible, with a maximum of 0.038% of the

total population in 1930.

Measures of the local density of human capital are assembled starting from county-level data

from the NHGIS and aggregated at the level of 1990 commuting zones using the same crosswalks.

The specific variables used to construct the measure vary by decade depending on the availability.

We make the measures comparable across decades by converting them into the corresponding

ranking. In 1890, we interpolate measures from the 1880 and 1990 decennial census. The 1880

measure concerns the share of people who attended school. Between 1900 and 1930, the measure

represents the (inverse of the) share of illiterate people. In 1950, the measure reflects the median

years of schooling of the population. From 1970 onwards, the measure corresponds to the share of

population with at least a college degree.

Local industry composition is constructed using the full-count census (until 1940) and the

IPUMS (from 1950 onwards). We consider the number of people in each of the 12 main industries in

the 1950 Census Bureau industrial classification system. To allocate individuals to 1990 commuting

zones, we construct area-based crosswalks from State Economic Areas (in 1950), County Groups

(in 1970), and PUMAs (in 1990 and 2010).

1The data from the 1890 decennial census are not available; hence, we construct the 1890 observations by
linearly interpolating the observations from the 1880 and 1900 decennial censuses. For the 2010 observation, we
use multi-year averages of the American Community Survey (ACS).
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We construct data on average income at the commuting zone level for the decades 1950, 1970,

1990, and 2010. For the 1950 decade, we use binned median income at the level of the 1950 county.

We use a mid-point assumption to assign average values to each bin, and use a series of crosswalks

to construct 1950 income for each 1990 commuting zone (this measure can be interpreted as a

weighted average of the median income of the 1950 counties that constitute each 1990 commuting

zone). For the 1970 decade, we compute CZ-level income using data on the number of individuals

by 1970 county within each bin of income (e.g., $1-$999, $1,000-$1,999, etc.). Again, we use the

mid-point method to assign average values for each bin, and a series of crosswalks to map 1970

counties to 1990 commuting zones. CZ-level income for 1990 and 2010 is computed as average

per capita income at the county level, weighted by the share of each county in the corresponding

commuting zone.

Finally, we construct data on average income at the sector-CZ level for 1990 and 2010. For

1990 and 2010, IPUMS provides information on individual income and industry of employment,

following the Census industry classification. We first use a Census-provided crosswalk to map

each Census industry code into one or more 3-digit NAICS codes. We then use the crosswalk

between NAICS codes and IPC classes built by Lybbert and Zolas (2014) to map each individual

in the IPUMS to a distribution of technology class-groups. Since IPUMS locates individuals at

the PUMA level, we also map them probabilistically to 1990 commuting zones using the crosswalk

built by Berkes and Gaetani (2023).
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C Equilibrium definition

Formally, an equilibrium in the simplified model of Section 3 is defined as follows:

Definition C.1. Given

L0, {λn,s,0}(n,s)∈N×S, {un}n∈N , {d(m,r)�(n,s)}(m,r),(n,s)∈(N×S)2 ,

and a path of exogenous variables

{ft}t≥0, {αr,t}r∈S,t≥0, {εn,s,t}n,s∈N×S, t≥0,

an equilibrium is a path for the endogenous variables

{λn,s,t, πn,s,t, Ln,s,t}n,s∈N×S, t≥0

that satisfies the following conditions:

1. Migration and occupational probabilities {πn,s,t}n,s∈N×S, t≥0 satisfy Equation (13).

2. The path for {λn,s,t}n,s∈N×S, t≥0 satisfies the law of motion of Equation (9).

3. Population by location-sector {Ln,s,t}n,s∈N×S, t≥0 satisfies the transition identity (14).
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D Details on model extensions for quantitative analysis

In this section, we provide more details on the model extensions for quantitative analysis introduced

in Section 4.1, with a specific focus on the equilibrium conditions and the log-linearized model

dynamics. To make this section self-containing, in what follows we summarize the extensions and

reproduce the main equations.

Individuals live for three periods (”child”, ”young adults”, and ”old adults”). Every child is

born in the location of their parents. At the end of childhood, the agent makes their migration

and occupational choice by selecting which location n they migrate to and which sector s they

specialize in. This choice is irreversible, so each agent spends the youth and old periods in the same

location-sector. The productivity of agent i who is young at time t and old at time t+1 is denoted

by qyn,s,i,t and qon,s,i,t+1, respectively. Agents are endowed with one unit of inelastically-supplied

labor per period.

Denoting by Lyn,s,t and Lon,s,t the mass of young and old agents, the following identity holds:

Lon,s,t ≡ Lyn,s,t−1.

After the migration and occupational choices have been made, each young adult in period t

has ft children. Denoting by Lkn,t the mass of children born in location n at time t, we have that

Lkn,t ≡ ft
∑
s∈S

Lyn,s,t.

Migration and occupational decisions maximize expected lifetime utility, subject to migration

costs and idiosyncratic utility draws. Individual i born in location m and selecting location-sector

(n, s) has utility given by:

Um�n(un,t, xn,s,i, c
y
n,s,i,t, c

o
n,s,i,t+1) = un,t

xn,s,i (c
y
n,s,i,t)

β (con,s,i,t+1)1−β

µm�n
, (D.1)

where un,t is the level of amenities in city n at time t, xn,s,i is an idiosyncratic utility draw from a

Fréchet distribution with shape parameter ζ > 1, µm�n represents migration costs of moving from

m to n, cyn,s,i,t and con,s,i,t+1 denote consumption in the youth and the old period, and β ∈ (0, 1) is the

weight of youth consumption in lifetime utility. There are no markets to smooth consumption over

time and generations. Therefore, in every period, individual consumption is equal to production.

Total output in the economy is given by a linear aggregator of individual productivities across
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all locations and sectors:

Yt =
∑
n∈N

∑
s∈S

(
Lyn,s,tE[qyn,s,·,t] + Lon,s,tE[qon,s,·,t]

)
,

where E[qyn,s,·,t] (E[qon,s,·,t]) denotes the average productivity of young (old) agents in location-sector

(n, s), and Lyn,s,t (Lon,s,t) denotes the corresponding mass of individuals.

Young adults undergo the imitation or innovation process outlined in Section 3.1.3 to determine

their youth productivity qyn,s,i,t upon moving. Note that the relevant variables (εn,s,t and αn,s,t)

are known at the time of the migration and occupational choice. Under Assumption A1, the

local distribution of productivity among young agents remains Fréchet and the corresponding

scale parameter, λn,s,t, follows the law of motion in Equation (9). Old adults retain the same

youth-period idiosyncratic productivity rescaled by a factor Ao which captures the experience

productivity premium enjoyed by old relative to young agents:

qon,s,i,t+1 = Aoqyn,s,i,t.

As common in the quantitative economic geography literature, local amenities are assumed to

be an isoelastic function of local population:

un,t = ūn,t L
ω
n,t,

where ūn,t is the exogenous time-varying component of local amenities, and ω is the elasticity of

local amenities to population, that can account for both congestion (ω < 0) and agglomeration

(ω > 0) forces.

The probability of an individual born in location m to select city-sector (n, s) is

πm�(n,s),t =

(
un,t

λn,s,t
µm�n

)ζ
∑

l,r

(
ul,t

λl,r,t
µm�l

)ζ . (D.2)

Notice that since the experience premium Ao scales productivity in all locations by the same factor,

it does not directly affect migration probabilities.

The following identity between children and young adults holds for all cities and sectors:

Lyn,s,t ≡
N∑
m=1

πm�(n,s),tL
k
m,t−1.

Consider now the dynamics of the migration shares, πn,t, in response to an arbitrary deviation
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of λn,s,t from the BGP, denoted by λ̂n,s,t (for simplicity, assume here that local amenities are

exogenous, i.e., ω = 0). Denoting by πm�n,t the probability of migrating from m to n, and log-

linearizing this probability around the BGP, yields

π̂m�n,t = ζ
∑
s∈S

{
(1− π∗m�n)π∗s|nλ̂n,s,t −

∑
l 6=n

π∗m�(l,s)λ̂l,s,t

}
, (D.3)

where π∗s|n is the BGP probability of choosing sector s conditional on migrating to n (note that this

probability does not depend on the city of origin m). The total migration probability to location

n can be written as

πn,t =
∑
m∈N

πm�n,tπm,t−1.

Assuming the economy is in BGP at t− 1, the response of the local migration share, πn,t, can be

written as

π̂n,t =
∑
m∈N

π∗m�nπ
∗
m

π∗n
π̂m�n,t, (D.4)

where π̂m�n,t is given by Equation (D.3). The term π∗m�nπ
∗
m

π∗n
corresponds to the probability that

a youth living in n was born in m. This probability can be interpreted as the “reliance” of n on

migration from m. Intuitively, in the presence of migration frictions, local population growth in

n is determined by local productivity growth relative to productivity growth in other locations,

where cities with higher migration flows to and from n have more weight than cities with lower

migration flows. Equation (D.3), combined with Equation (D.4), is equivalent to the expression

for changes in regional labor supply obtained by Borusyak et al. (2022), who study the role of

migration frictions in shaping the spatial response to local shocks.
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E Details on the calibration procedure

E.1 Gravity equation for migration flows

Consider first the gravity equation for migration probabilities (26):

log(πm�n,t) = ψ0
m,t + ψ1

n,t − ζµ̄01m 6=n − ζµ̄DDm,n.

To derive this equation, take the sum across all sectors s of the right-hand-side of Equation (D.2)

to obtain:

πm�n,t =

∑
s

(
un,t

λn,s,t
µm�n

)ζ
∑

l,r

(
ul,t

λl,r,t
µm�l

)ζ .
Taking logs on both sides and using the definition of the migration costs in Equation (25) yields

the gravity representation in Equation (26).

We estimate this relationship using data from the 1990 IPUMS to recover the composite para-

meters ζµ̄0 and ζµ̄D. We restrict the sample to “young adult” individuals in the IPUMS (i.e.,

between the age of 20 and 40), and assign each individual to a city of residence through a probab-

ilistic crosswalk (based on areas) from Consistent Public-Use Metro Area (CONSPUMA) to 1990

commuting zones. Similarly, we assign each individual to a city of birth through a probabilistic

crosswalk from state of birth to 1990 commuting zones based on 1970 population.

Table E.5: Gravity equation for migration flows

Dependent var.:

Migration probability

Distance in 1,000 km -2.8124***
(0.1857)

Origin CZ 6= Destination CZ -0.7888***
(0.1204)

Origin location FE yes

Destination location FE yes

# Obs. 235,225

Estimation PPML

Notes: PPML estimates. The sample includes all pairs of 485 commuting zones in our main sample. The dependent variable is the
migration probability between each pair of commuting zones. Standard errors clustered at the commuting zone of origin and the
commuting zone of destination in parenthesis. ***p < 0.01.

We estimate Equation (26) via Poisson Pseudo Maximum Likelihood (PPML), which is useful
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to accommodate zero values (there are 141 commuting zone pairs with migration probability equal

to zero). Results are reported in Table E.5. The estimate of the composite parameter, ζµ̄D, is

2.81, implying that increasing distance by 100 km decreases the migration probability by roughly

24% which, at the average migration probability, corresponds to 0.05 percentage points.

E.2 Recovering the path of local productivities (λn,s,t)

To calibrate the path of the scale parameters λn,s,t, we postulate (and later validate) a simple

notion of patenting in the model that allows us to draw a transparent connection between patent

data and the path of local productivities. In particular, we assume that young individuals, when

undergoing their imitation or innovation process outlined in Section 3.1.3, will file for a patent for

their best innovation draw if it results in an idea of quality above a time-varying threshold, Qt.

Notice that the best innovation draw (the second term in Equation 7) is distributed Fréchet

with shape parameter θ and scale parameter, denoted by Λn,s,t, which is defined as

Λn,s,t ≡
∑
m∈N

∑
r∈S

λm,r,t−1

(
εn,s,tαr,t

d(m,r)�(n,s),t

)θ
= λn,s,t − λn,s,t−1,

where the last equality follows from Equation (9).

The probability that a young individual from (n, s) patents at time t is equal to the probability

that their best innovation draw is above the threshold Qt, or equivalently:

Patn,s,t
Lyn,s,t

= 1− e−Λn,s,tQ
−θ
t , (E.5)

where Patn,s,t denotes the total number of patents filed at time t in location-sector (n, s).2 Since

Patn,s,t/L
y
n,s,t is a typically a small number (in the order of 10−3), the following expression provides

an accurate approximation for Equation (E.5):3

Patn,s,t
Lyn,s,t

≈ Λn,s,tQ
−θ
t . (E.6)

Given values for θ and Qt, we can then set the path of λn,s,t and un,t so to satisfy Equation

(E.6) for all (n, s, t) and, simultaneously, match total population by location in all time periods.4

2Notice that Equation (E.5) rationalizes instances where Patn,s,t is equal to zero as εn,s,t = 0.
3To see this, rearrange Equation (E.5) and take logarithms on both sides to obtain log

(
1− Patn,s,t

Ly
n,s,t

)
=

−Λn,s,tQ
−θ
t . Since Patn,s,t/L

y
n,s,t is typically in the order of 10−3, Equation (27) provides a highly accurate ap-

proximation for this expression.
4This inversion is feasible as long as Patn,s,t > 0 for at least one s in all locations in the initial BGP. To minimize

instances in which the inversion is not feasible, we compute Patn,s,t for the initial BGP (1890) as the sum of all
patents in location-sector (n, s) filed since the beginning of the sample and the 1890 decade. Since these instances
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E.3 Gravity equation for knowledge flows

Consider now the gravity equation for knowledge flows (Equation 29) introduced and derived in

Section 4.2.3:

log(η(m,r)�(n,s),t) = φ0
m,r,t + φ1

n,s,t − θδG1m 6=n − θδDDm,n − θδMMm�n,t − θδKr�s.

To estimate the composite parameters θδG, θδD, θδM , and θδKr�s, we leverage our patent citation

data. We include only citations added by applicants. We restrict the sample to patents filed since

1980 and issued since 2000 (patents began reporting inventor-added citations separately from

examiner-added ones only in 2000, see Alcacer and Gittelman, 2006). We compute η(m,r)�(n,s),t as

the share of citations given by patents in (n, s) and directed to patents in (m, r).

Every citing patent in our regression has a total weight of one. In other words, every citation is

weighted by the inverse of the total number of citations given by the citing patent. To account for

the fact that knowledge flows are more likely to be tacit and less likely to be captured by citations,

we add an artificial citation to each patent’s list of references to a local patent whose technology

classes are identical to the citing patent. This assumption amounts to assuming that the weight of

local tacit flows is inversely proportional to the number of inventor-provided citations. This also

guarantees that all patents, even those without backward citations, are included in the estimation.

We estimate this relationship by PPML and report results in Table E.6. In addition to the

composite parameters θδG, θδD, and θδM , we also obtain a full set of bilateral transmission costs

across sectors (δKr�s), which we show in the heatmap of Figure E.14.

are rare and only involve small CZs, our results are not sensitive to alternative ways of dealing with zeroes. We
choose units of the final good so that the geometric average of λn,s is equal to one in the first time period.
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Table E.6: Gravity equation for knowledge flows

Dependent var.:

Share of citations

Origin CZ 6= Destination CZ -6.4261***
(0.0189)

Distance in 1,000 km -0.1645***
(0.0087)

Migration exposure 3.3359***
(0.0772)

Origin location-sector FE yes

Destination location-sector FE yes

Origin-Destination sector FE yes

# Obs. 27,527,528

Estimation PPML

Notes: PPML estimates. The sample includes patents filed since 1980 and issued since 2000. Observations are all the combinations
of pairs of location-sectors. The dependent variable is the share of citations given by each destination location-sector to each origin
location-sector, where each citing patent is given a weight of one. Class-groups are described in Appendix Table A.1. Standard errors
clustered at the destination location-sector in parenthesis. ***p < 0.01.

Figure E.14: Knowledge transmission costs across sectors
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Notes: PPML estimates of δKr�s, from regression of Appendix Table E.6. The sample includes patents filed since 1980 and issued since
2000. Observations are all the combinations of pairs of location-sectors. The dependent variable is the share of citations given by each
destination location-sector to each origin location-sector, where each citing patent is given a weight of one. Rows correspond to citing
(idea destination) sectors. Columns correspond to cited (idea origin) sectors. Number of observations: 27,527,528. Class-groups are
described in Appendix Table A.1.
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F Robustness

In this section, we explore robustness of the model’s main results to two choices of parameters

explained in Section 4. In particular, we consider values of ζ (the elasticity of migration with

respect to average income, which is set to 4 in the baseline) and ω (the elasticity of residential

amenities to population, which is set to -0.15 in the baseline) in the range considered by Allen

and Donaldson (2022). In particular, we set ζ and ω to the minimum (ζ = 2 and ω = −0.392,

respectively) and maximum (ζ = 6 and ω = −0.039, respectively) values considered by Allen and

Donaldson (2022).

Panel A and B of Table F.7 report the results of the main counterfactuals (as in Table 3), for

these alternative assignment of ζ and ω, respectively. The results are not substantially affected

by these parameter choices. As expected, alternative values of these elasticities produce some

differences in the quantitative effects, with the share of the correlation explained by our mechanism

ranging from 88.1% when congestion externalities are set at the minimum in the range of values

estimated by Allen and Donaldson (2022) (ω = −0.039) to 41.7% when congestion externalities are

set at their maximum (ω = −0.392). The decomposition of the effect between geographical and

technological frictions (comparing columns 2-4 to columns 5-7) remains qualitatively consistent

across parametrizations, although with some quantitative variation, ranging from 44.1% when

ζ = 6 to 69.0% when ζ = 2.
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Table F.7: Population growth and technological wave shocks: robustness

Dependent var.: Growth rate of population under

Full model Model without tech. waves

No diffusion

across fields

Panel A: Robustness with respect to ζ

Main ζ = 2 ζ = 6 Main ζ = 2 ζ = 6

(1) (2) (3) (4) (5) (6) (7)

Exposure to tech. waves (Expn,t) 0.341*** 0.119 0.169* 0.104 0.237** 0.288*** 0.209**

(0.099) (0.100) (0.100) (0.099) (0.098) (0.099) (0.098)

Difference from empirical coefficient - 0.222 0.172 0.237 0.104 0.053 0.133

Share explained by tech waves (αs,t) 65.1% 50.4% 69.5% 30.5% 15.6% 38.8%

Decomposition:

- Share explained by tech. frictions 46.9% 31.0% 55.9%

- Share explained by geo. frictions 53.1% 69.0% 44.1%

Calibrated θ 4.48 4.48 4.45 4.50 4.48 4.45 4.50

# Obs. 2,852 2,852 2,852 2,852 2,852 2,852 2,852

R2 0.54 0.54 0.54 0.54 0.54 0.54 0.54

Panel B: Robustness with respect to ω

Main ω = −0.392 ω = −0.039 Main ω = −0.392 ω = −0.039

(1) (2) (3) (4) (5) (6) (7)

Exposure to tech. waves (Expn,t) 0.341*** 0.119 0.199* 0.041 0.237** 0.278*** 0.195*

(0.099) (0.100) (0.099) (0.101) (0.098) (0.098) (0.099)

Difference from empirical coefficient - 0.222 0.142 0.301 0.104 0.063 0.147

Share explained by tech waves (αs,t) 65.1% 41.7% 88.1% 30.5% 18.5% 43.0%

Decomposition:

- Share explained by tech. frictions 46.9% 44.3% 48.8%

- Share explained by geo. frictions 53.1% 55.7% 51.2%

Calibrated θ 4.48 4.48 4.48 4.48 4.48 4.48 4.48

# Obs. 2,852 2,852 2,852 2,852 2,852 2,852 2,852

R2 0.54 0.54 0.54 0.54 0.54 0.54 0.54

Log-population (lags 1 and 2) Yes Yes Yes Yes Yes Yes Yes

Other controls Yes Yes Yes Yes Yes Yes Yes

Fixed effects CD×T CD×T CD×T CD×T CD×T CD×T CD×T

Notes: CZ-level regression, 1910-2010. Dependent variable defined as growth rate of population over 20 years. “CD×T” denotes Census
Division-time fixed effects. Standard errors clustered at the CZ and the Census Division-time level in parenthesis. Exposure to the
technological wave is defined as in Equation (1). Columns 2-4 display the counterfactual in which αs,t are kept constant at their 1890
BGP values. Column 5-7 display the counterfactual in which knowledge flows are restricted to within-field flows only. Controls include
log-total patents, human capital, and industry composition. *p < 0.01, **p < 0.05, ***p < 0.01.
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G Deriving the specialization measure

To rationalize the measure of specialization in Equation (31), consider the simple model of Section

3, in which we impose the following assumption on the distribution of technological wave shocks:

Assumption A5. Technological wave shocks are uncorrelated across sectors and have a constant

variance:

1. Cov(α̂s,t, α̂r,t) = 0 for all s 6= r

2. V ar(α̂s,t) = V for all s ∈ S.

Using Assumption A5 in combination with Assumption A2.2, we derive the following theoretical

result, that links the volatility of local population growth to the local degree of specialization:

Proposition G.1. Under Assumptions A2.2 and A5, the variance of the percentage change in the

population share of location n satisfies:

V ar(π̂n,t) ∝
∑
r∈S

(η∗r�n − η̄∗r)
2 . (G.7)

Proof. Factoring out (1− π∗n) from Equation (20), and realizing that π∗s|−n ≡
∑

m6=n
π∗m,s
1−π∗n

, we can

rewrite:

π̂n,t ∝ (1− π∗n)
∑
r∈S

{∑
s∈S

π∗s|nη
∗
r�(n,s) −

∑
s∈S

∑
m6=n

π∗n,s
1− π∗n

η∗r�(m,s)

}
α̂s,t. (G.8)

Under Assumption A5, the technological wave shocks αs,t have zero covariance and common

variance V . In this case, the variance of π̂n,t is equal to

V ar(π̂n,t) ∝ (1− π∗n)2
∑
r∈S

(
η∗r�(n,s) − η̄∗r�(−n,s)

)2
,

where η∗r�n ≡
∑

s∈S π
∗
s|nη

∗
r�(n,s), and η̄∗r�(−n,s) ≡

∑
s∈S
∑

m 6=n
π∗n,s

1−π∗n
η∗r�(m,s).

Under Assumption A2.2, all cities are negligible in size compared to the overall economy. Hence,

under Assumptions A2.2 and A5, the variance of the percentage change in the population share

of location n is equal to the measure of specialization in Equation (31):

V ar(π̂n,t) ∝
∑
r∈S

(η∗r�n − η̄∗r)
2 ≡ Specn.
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