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Abstract

Dynamic heterogeneous-agent models share two features: 1) high-dimensional ag-

gregate states that are beyond the control of individual agents, and 2) low-dimensional

aggregate shocks. This paper exploits these two features using a deep learning-based

probabilistic approach and demonstrates that it is possible to solve for the global

solution of these models without compromising dimensionality reduction. The compu-

tational advantage of the probabilistic approach lies in converting a conditional expec-

tation equation into multiple equations of shock realizations, significantly enhancing

evaluation efficiency. As illustration, I solve two models: the continuous-time version of

Krusell and Smith (1997) with a two-asset portfolio choice and nonlinear debt market

clearing condition, and an extension of a search-and-matching model (Duffie, Gârleanu

and Pedersen, 2007) with a continuum of heterogeneous investors and anticipated ag-

gregate risks.
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1 Introduction

The curse of dimensionality has long impeded economists from pursuing large-scale, and po-

tentially more realistic, models. This constraint poses a significant challenge for heterogeneous-

agent models with aggregate shocks, as the distribution of individual characteristics, such

as wealth levels, serves as a state variable. This paper will demonstrate that the infinite-

dimensional state variable is less formidable than commonly believed within the profession.

I will exploit two common features of heterogeneous-agent models to solve for global so-

lutions. Firstly, the infinite-dimensional state variable is uncontrollable from an individual’s

perspective. Therefore, the primary computational challenge is purely about calculating

conditional expectations while solving for dynamic optimization. Secondly, the dynamics of

the infinite-dimensional state variable are driven by low-dimensional aggregate shocks. This

paper will illustrate that the probabilistic formulation significantly enhances the computa-

tion efficiency of conditional expectations when the dimensionality of aggregate shocks is not

too high.

The probabilistic formulation, widely used in the study of stochastic controls, posits that

a forward-looking random variable can be expressed as the sum of its conditional expecta-

tion and the linear impact of exogenous shocks within a short time interval. This transforms

the equation for a random variable’s conditional expectation into infinitely many equations,

each corresponding to a realization of exogenous shocks. Consequently, the probabilistic

formulation yields a significantly greater number of equations to identify conditional expec-

tations compared to the conventional analytic approach. The trade-off involves estimating

the “coefficients” of exogenous shocks, which is generally less problematic when aggregate

shocks are low-dimensional. Moreover, since these “coefficients” explicitly influence agents’

portfolio choices, directly solving them proves to be a more efficient alternative to conven-

tional methods. In the remainder of the introduction, I will provide a one-dimensional state

variable example to exemplify the computational advantage of the probabilistic formulation.

Suppose Xt is an uncontrolled Itô process described by

Xt+∆ = Xt + µ (Xt) ∆ + σ (Xt)
(
Wt+∆ −Wt

)
, (1)

where ∆ represents the length of time period, and Wt+∆ −Wt follows a normal distribution

with a mean of zero and variance of ∆. In economics, we are interested in a forward-looking
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process V (Xt) defined as the fixed point V (·) of the following functional equation

V (Xt) = u (Xt) ∆ + E [V (Xt+∆)|Xt] , (2)

where u(·) can be interpreted as the utility flow, and V (·) represents the value function. In

the discrete-time setting, it becomes increasingly more challenging to compute conditional

expectation if Xt has higher dimensions.

In the continuous-time framework where ∆→ 0, the evaluation of conditional expectation

can be simplified since the integration is pre-computed.1 The coefficient of the ∆ term yields

the differential equation

0 = u (x) + V ′ (x)µ (x) + 0.5V ′′ (x)σ2 (x) . (3)

Although only V ′(x) and V ′′(x) need to be evaluated, the computational workload still in-

creases significantly if Xt’s dimensionality rises. This issue becomes particularly challenging

in heterogeneous-agent models where the state variable, such as wealth distribution, has

infinite dimensions.

In contrast to the analytic approach, the probabilistic approach focuses on the integrand

of the recursive formulation. First, equation (2) can be rewritten as:

E [V (Xt+∆)|Xt] = V (Xt)− u (Xt) ∆.

According to the Martingale Representation Theorem in stochastic calculus, when ∆ is

sufficiently small, there exists a function z(·) such that

V (Xt+∆) = V (Xt)− u (Xt) ∆ + z(Xt)(Wt+∆ −Wt). (4)

The coefficient of the shock, z(·), is an unknown function of the current state Xt that

needs to be solved for, along with V (·). In mathematics, equation (4) is referred to as

a Backward Stochastic Differential Equations (BSDE), which effectively provides infinitely

1By substituting (1) with Xt = x into equation (2), we obtain

0 = u (x) ∆ + E
[
V
(
x+ µ (x) ∆ + σ (x)

(
Wt+∆ −Wt

))
− V (x)

∣∣Xt = x
]

= u (x) ∆ +

∫ ∞
−∞

(
V (x+ µ (x) ∆ + σ (x)w)− V (x)

) 1√
2π∆

e−
w2

2∆ dw

= u(x)∆ +

∫ ∞
−∞

(
V ′(x)µ(x)∆ + V ′(x)σ(x)w + 0.5V ′′(x)σ2(x)w2 + o(∆)

) 1√
2π∆

e−
w2

2∆ dw,

where the last equation applies Taylor expansion, and o(∆) denotes terms of order higher than ∆. Dividing
both sides of the above equation by ∆ and taking ∆ to the limit zero yields equation (3).
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many equations because it holds for any realization of Wt+∆ − Wt. To demonstrate the

numerical advantages of this formulation, let’s consider using value function iteration to find

V (·). With V n(·), I only need to sample two realizations of Wt+∆ −Wt, w
1 and w2, which

yield x1 and x2 according to equation (1). The two-by-two linear system

V n(xj) = V n+1(x)− u(x)∆ + zn+1(x)wj, j = 1, 2.

is sufficient to determine V n+1(x) and zn+1(x). In fact, regardless of the dimensionality of

Xt, only two evaluations of V (·) to are required to determine V n+1(x) and zn+1(x). The

probabilistic formulation offers more equations or restrictions than the analytic formulation

(2), which facilitates the identification of conditional expectations.

To implement the probabilistic approach, I seek parametric approximations of V (·) and

z(·), represented as Ṽ (·; Θ) and z̃(·; Θ), respectively. Equation (4) suggests that the param-

eters Θ should solve the following optimization problem

min
Θ

:
1

NM

N∑
i=1

M∑
j=1

(
Ṽ (x̂i,j; Θ) + u(xi)∆− Ṽ (xi; Θ)− z̃(·; Θ)wi,j

)2

(5)

s.t. x̂i,j = xi + µ(xi)∆ + σ(xi)wi,j

wi,j is sampled independently from N(0,∆)

xi is from a given set.

This formulation makes the difficulty of solving the fixed-point problem (2) much less sen-

sitive to the dimensionality of the state variable Xt. One only needs to increase the size of

the sample, i.e., N and M , to ensure the accuracy of the probabilistic approach when the di-

mensionality of Xt increases. Moreover, this formulation can make use of parallel computing

as the evaluation of each sample path is independent of others.

In the discrete-time setting, if one uses Monte Carlo simulation to evaluate the conditional

expectation, the objective function becomes

1

N

N∑
i=1

(
1

M

M∑
j=1

Ṽ (x̂i,j; Θ) + u(xi)∆− Ṽ (xi; Θ)

)2

. (6)

In this case, only N equations are utilized to determine the value function. However, the

probabilistic formulation takes advantage of N ×M equations with the same number of V (·)
evaluations. In the continuous-time setting, the analytic formulation leads to the objective
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function

1

N

N∑
i=1

(
u
(
xi
)

+ Ṽ ′
(
xi; Θ

)
µ
(
xi
)

+ 0.5Ṽ ′′
(
xi; Θ

)
σ2
(
xi
) )2

. (7)

The number of V (·) evaluations increases with the dimension of Xt because of numerical

derivative calculations. However, for the probabilistic approach, the minimum number of

evaluations remains unchanged regardless of the dimensionality of Xt.

The volatility term, z(·), is crucial in transforming the conditional expectation equation

(2) into the probabilistic equation (4). It also plays a vital role in solving portfolio choice

problems in heterogeneous-agent models. To show this point clearly, I rearrange equation

(4) and apply Taylor expansion at Xt = x

(u (x) + V ′ (x)µ (x)) ∆ +
1

2
V ′′ (x)σ2 (x) (Wt+∆ −Wt)

2 + V ′ (x)σ (x) (Wt+∆ −Wt) + o(∆)

= z(x) (Wt+∆ −Wt) .

Taking the expectation or integration on both sides yields the differential equation (3).

However, the expectation hides a crucial relationship: V ′(x)σ(x) = z(x). When solving

for optimal strategies, such as portfolio choices, it is necessary to capture the impact of

exogenous shocks on agents’ lifetime expected utility, i.e., V ′(x)σ(x). The conventional

approach is to evaluate V ′(x) and σ(x) separately, and calculate their inner product, which

becomes increasingly cumbersome if the state variable is high-dimensional. The advantage

of the probabilistic approach is that one can bypass the evaluation of V ′(x) and directly

solve for its inner product with σ(x), i.e., z(x).

To demonstrate the application of the probabilistic approach, I solve two models involving

distributions as state variables: an incomplete-market heterogeneous-agent model with two

assets and a nonlinear debt market clearing condition, based on Krusell and Smith (1997);

and a search-and-matching model of over-the-counter (OTC) markets with a continuum

of heterogeneous agents and anticipated aggregate risks, based on Duffie, Gârleanu and

Pedersen (2007). The model in Krusell and Smith (1997) is more challenging to solve than

the one in the well-celebrated Krusell and Smith (1998) using their approximate equilibrium

approach. In Krusell and Smith (1998), the bond price is an explicit function of the first

moment of households’ wealth distribution. However, in Krusell and Smith (1997), the

nonlinear bond market clearing condition implies that the bond price is an implicit function

of households’ wealth distribution, i.e., its moments. To solve the approximate equilibrium,

households’ perceived mapping from the moments of wealth distribution to the bond price
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ought to coincide with the implicit function implied by the bond market clearing. However,

this challenge does not apply to the probabilistic approach, as households have the true

mapping from the wealth distribution to the bond price in their expectation.

In models with search and matching frictions, it is crucial for agents to understand

the distribution of potential counterparties’ characteristics, because the matching outcome

depends on the entire distribution rather than its moments. In the model I consider, the

cross-sectional distribution of investors’ characteristics follows a law of motion driven by

an anticipated aggregate risk, as the common shock influences the dynamics of individual

agents’ characteristics. Therefore, when investors solve their dynamic optimization problem,

it is necessary to consider the cross-sectional distribution of individual characteristics as a

state variable.

Literature. Given economists’ decades-long battle with the curse of dimensionality, it is

impractical to review all related papers. The spirit of my numerical scheme can be traced

back to the Parameterized Expectation Approach in Marcet (1988), which utilizes simulated

sample paths in equilibrium to train the parameterized conditional expectation. Notably, a

recent advancement in this area can be found in Judd, Maliar and Maliar (2011). Given the

recent progress in Machine Learning, numerous authors have employed deep neural networks

to approximate the conditional expectation and solve optimization problems using techniques

like stochastic gradient descent, e.g., Maliar, Maliar and Winant (2021), Azinovic, Gaegauf

and Scheidegger (2022), and Han, Yang and E (2021). It is worth noting that most, if not

all, numerical methods in the economics literature rely on the analytic formulation (2). This

formulation gives rise to an objective function similar to (6) that needs to be minimized.

The probabilistic approach to the study of stochastic processes was suggested by Paul

Lévy and carried out by Kiyosi Itô in 1940s via the machinery of stochastic calculus and

Stochastic Differential Equations (SDEs). In the study of optimal stochastic control, Bis-

mut (1973, 1978) first introduced linear Backward SDEs, which characterize forward-looking

stochastic processes. The mathematical foundation for the probabilistic approach employed

in my paper’s numerical scheme, namely nonlinear BSDEs, was established in the seminal

work of Pardoux and Peng (1990). While theoretically appealing, numerically solving BS-

DEs poses challenges. Recently, E, Han and Jentzen (2017) and Han, Jentzen and E (2018)

showcased the power of deep learning in solving high-dimensional BSDEs. The idea of formu-

lating the solvability of Forward-Backward SDEs as an optimal control problem traces back

to Ma and Yong (1995). My contribution, building upon the work of Han et al. (2018), lies in

adapting their algorithm to the Markov equilibrium of an infinite-horizon time-homogeneous
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system.2

BSDEs were born for characterizing dynamic economic models. Independently of Par-

doux and Peng (1990), Duffie and Epstein (1992) introduced a nonlinear BSDE for ana-

lyzing recursive utility. Since then, economists have sporadically utilized BSDEs to derive

analytic results in studies such as Schroder and Skiadas (1999), Chen and Epstein (2002),

Williams (2011). A series of my works is the first in the economics literature to emphasize

the supremacy of the probabilistic formulation for numerical schemes, as well as its flexibility

in accommodating various modeling ingredients. Huang (2023) considers high-dimensional

macro-finance models with asset pricing and endogenous risks. Huang and Yu (2024) applies

the approach to combinatorial problems often encountered in fields like international trade,

industrial organization, and production networks.

The continuous-time setting is convenient as it allows for local approximation at any state,

making the pre-computation of integrals advocated by Judd, Maliar, Maliar and Tsener

(2017) in the discrete-time setting a natural fit for numerical schemes of continuous-time

models. Nevertheless, the curse of dimensionality still applies to the analytic formulation in

the continuous-time setting. Similar to the discrete-time setting, several authors have utilized

deep learning to solve high-dimensional partial differential equations arising from the analytic

formulation. Examples include Duarte (2018), Gopalakrishna (2021), Sauzet (2021), and Gu,

Laurière, Merkel and Payne (2023), where the objective function to minimize resembles (7).

As its title indicates, my paper contributes to the dynamic heterogeneous-agent litera-

ture starting with Bewley-Huggett-Aiyagari models. Recently, Achdou, Han, Lasry, Lions

and Moll (2022) cast these models in the continuous-time setting using the analytic formula-

tion. Similar to my paper, both Fernández-Villaverde, Hurtado and Nũno (2022) and Bilal

(2023) consider aggregate shocks. The former adopts the dimensionality reduction approach

proposed by Krusell and Smith (1998), while the later focuses on the local approximation

around the steady state. The mathematics community studies the dynamic heterogeneous-

agent models under the framework of Mean Field Games, initiated by Lasry and Lions

(2007). Both analytic and probabilistic approaches are widely employed to study mean field

2See Duffie, Geanakoplos, Mas-Colell and McLennan (1994) for the general treatment of time-
homogeneous Markov equilibrium within a discrete-time setting. To the best of my knowledge, corresponding
results in the continuous-time setting are still absent. I boldly speculate that it is plausible to establish the
existence and uniqueness of Markov equilibria for a specific class of heterogeneous-agent continuous-time
models with aggregate shocks, by framing these models within Forward-Backward Stochastic Differential
Equation (FBSDE) systems. For most economic models, the correspondent FBSDE systems are fully cou-
pled, and existence and uniqueness results for fully coupled FBSDEs are known to be extremely challenging
to obtain in a time-inhomogeneous setting. However, most economic systems are time-homogeneous, a set-
ting does not draw enough attention from scholars in BSDE and mean-field game communities. I reckon
that one could extend the proofs for the well-posedness of fully coupled FBSDEs in small-time duration, as
found in Antonelli (1993), to time-homogeneous Markov equilibria.
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games (Carmona and Delarue, 2018).

Last but not least, this paper also contributes to the literature on search and matching

frictions. Taking the study of OTC markets as an example, due to the curse of dimensionality,

the literature — beginning with the pioneering work of Duffie, Gârleanu and Pedersen (2005)

— has primarily focused on the steady states of carefully constructed models in the absence

of aggregate risks. I hope that the probabilistic approach could lend scholars in the fields

of labor search, money search, and OTC markets more freedom to explore a wider range of

models for their research.

The organization of the paper is as follows. In Section 2, I provide a comprehensive

explanation of solving dynamic optimization using the probabilistic approach when dealing

with a high-dimensional uncontrolled state variable. Section 3 focuses on numerical methods

for addressing market clearing conditions and establishing the law of motion for distributions

driven by aggregate risks. Section 4 presents a detailed illustration of solving a modified

version of the Krusell and Smith (1997) model, incorporating a two-asset portfolio choice

problem and a nonlinear market clearing condition. In Section 5, I apply the approach

to an asset valuation model of OTC markets with a continuum of heterogeneous investors

and aggregate risks. Lastly, Section 6 contains some remarks on wider applications of the

probabilistic approach.

2 Dynamic Optimization of an Individual

This section focuses on the application of a deep learning-based probabilistic approach

in solving the dynamic optimization problem of an individual agent while facing a high-

dimensional uncontrolled state variable.

Consider an agent maximizing the objective function

V (X0, G0) = max
αt

E0

[∫ ∞
0

e−ρsf (Xs, Gs, αs) ds

]
,

where ρ is the discount factor, the unidimensional control variable αt takes values in a

convex set, and Xt and Gt represent individual and aggregate state variables, respectively.

To simplify, assume that Xt is one-dimensional and Gt has N dimensions

Gt ≡
[
G1
t , G

2
t , · · · , GN

t

]T
,

where T denotes transpose. The controlled process governing the individual state variable
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(Xt) is given by

dXt = µ (Xt, Gt, αt) dt+ σ (Xt, Gt, αt) dWt + σ0 (Xt, Gt, αt) dW 0
t , (8)

where Wt and W 0
t are independent standard one-dimensional Brownian motions. Wt and

W 0
t represent idiosyncratic and systematic shocks, respectively. The uncontrolled aggregate

state variable (Gt) follows the stochastic process

dGt = b (Gt) dt+ Σ (Gt) dW 0
t , (9)

where b (·) and Σ (·) are vector-valued functions with ranges in N -dimensional space.

I consider an N -dimensional aggregate state instead of an infinite-dimensional one for two

reasons. First, the differentiation in an infinite-dimensional space is technically challenging

for general audience in the economics community.3 Second, when solving models numerically,

I will discretize the state space and convert an infinite-dimensional state variable such as

wealth distribution into a finite-dimensional state variable.

2.1 BSDEs

To convey the key insight of BSDEs, I eliminate the controlled individual state and discretize

time with a step size ∆. The recursive formulation of the value function V (Gt) is

V (Gt) = f (Gt) ∆ + Et
[
e−ρ∆V (Gt+∆)

]
,

where Gt follows

Gt+∆ = Gt + b (Gt) ∆ + Σ (Gt)
(
W 0
t+∆ −W 0

t

)
.

To prepare for taking ∆→ 0, I rearrange the above recursive formulation

0 = f (Gt) + Et

[
e−ρ∆ − 1

∆
V (Gt+∆) +

V (Gt+∆)− V (Gt)

∆

]
,

which leads to a partial differential equation (PDE) in the limit

ρV = f (g) +∇gV · b (g) +
1

2
tr
(

Σ (g) Σ (g)T ∇ggV
)
, (10)

3Readers who are interested in the differentiation of functions of probability distribution may find Chapter
5 (Vol 1) of Carmona and Delarue (2018) helpful.
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where · denotes inner product and tr (·) represents the trace operator. The challenge in

solving PDE (10) lies in evaluating ∇gV and ∇ggV when the dimension of the state variable

Gt is high.

The intuition behind BSDEs is to project the random variable V (Gt+∆) − V (Gt) onto

the deterministic trend (∆) and the exogenous shock to the system
(
W 0
t+∆ −W 0

t

)
. This

projection becomes arbitrarily accurate as ∆ approaches zero.

V (Gt+∆) = V (Gt)− (f (Gt)− ρV (Gt)) ∆ + z (Gt)
(
W 0
t+∆ −W 0

t

)
(11)

The coefficient of the shock, z (·), is endogenous and depends fully on the current state

Gt. The solution of the BSDE consists of a pair (V (·) , z (·)), where V (·) refers to the

fixed point as defined in the recursive formulation, and z (·) represents the volatility term.

The solution pair has the following intuitive interpretation: for any current state Gt and

innovation W 0
t+∆ −W 0

t , the updated Vt+∆ of Vt = V (Gt), according to

Vt+∆ = Vt − (f (Gt)− ρVt) ∆ + z (Gt)
(
W 0
t+∆ −W 0

t

)
always satisfies the mapping Vt+∆ = V (Gt+∆) . The volatility term z (·) essentially controls

the impact of the shock W 0
t+∆ −W 0

t on Vt, ensuring that Vt+∆ hits the target V (Gt+∆) for

any current state Gt. This insight is initially highlighted by Ma and Yong (1995), which

leads to the design of the deep learning problem shown later.

The Taylor expansion of V (Gt+∆) around Gt (or Itô’s formula) reveals the connection

between z (·) and V (·), as well as the relationship between the analytic and probabilistic

formulations

V (Gt+∆) = V +∇gV · b (Gt) ∆ +∇gV · Σ (Gt)
(
W 0
t+∆ −W 0

t

)
+

1

2
tr
(

Σ (Gt) Σ (Gt)
T ∇ggV

) (
W 0
t+∆ −W 0

t

)2
+ o (∆) ,

where o (∆) represents higher order terms. By combining this with BSDE (11), two obser-

vations can be made. First, the BSDE implies the PDE (10) when taking the expectation

and letting ∆ → 0. Second, the coefficients of two W 0
t+∆ − W 0

t terms, which vanish in

expectation, imply that

z (Gt) = ∇gV · Σ (Gt) .

This observation indicates that when the shock is unidimensional, computing a single term

z (·) is sufficient to reveal the stochastic properties of a high-dimensional dynamic system.

While the exogenous shock W 0
t+∆−Wt affects the high-dimensional state variable Gt through
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Σ (Gt), what truly matters in a dynamic economic model is the shock’s impact on the forward-

looking stochastic process {Vt}. This impact is fully captured by the inner product of Σ (Gt)

and ∇gV or simply z (Gt) in the language of BSDEs. The second observation reveals the

key idea of dimensionality reduction in the probabilistic numerical approach.

2.2 Dynamic Optimization

Next, I reintroduce the controlled state Xt and apply dynamic programming to establish the

Hamilton-Jacobi-Bellman (HJB) equation

ρV = max
α

{
f (x, g, α) + µ (x, g, α)∇xV +

1

2
σ2 (x, g, α)∇xxV +

1

2

(
σ0 (x, g, α)

)2∇xxV

+ σ0 (x, g, α)∇xgV · Σ (Gt)

}
+∇gV · b (g) +

1

2
tr
(

Σ (g) Σ (g)T ∇ggV
)

The challenge in numerically solving the HJB equation arises from evaluating derivatives in

the space of aggregate state variables, which can have very high dimensions in heterogeneous-

agent models. However, among the three relevant terms (∇xgV,∇gV, and ∇ggV ), only ∇xgV

plays a role in determining the optimal dynamic choice. Moreover, ∇xgV does not inde-

pendently affect the optimal choice; it is the inner product with Σ(Gt) that impacts the

optimality condition. Therefore, it is ideal to compute ∇xgV · Σ(Gt) directly as a single

term. Fortunately, the stochastic maximum principle can serve this purpose.

To apply the stochastic maximum principle, I define the generalized current-value Hamil-

tonian

H
(
x, g, α, y, z, z0

)
= f (x, g, α) + µ (x, g, α) y + σ (x, g, α) z + σ0 (x, g, α) z0.

The optimal control α̂t satisfies

α̂t = arg max
α

: H
(
Xt, Gt, α, Yt, Zt, Z

0
t

)
,

where (Yt, Zt, Z
0
t ) follows the BSDE

−dYt =
(
∇xH

(
Xt, Gt, α̂t, Yt, Zt, Z

0
t

)
− ρYt

)
dt− ZtdWt − Z0

t dW 0
t .

Combined with SDE (8) under the optimal control (αt = α̂t) and SDE (9), the above BSDE
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gives rise to the function Y (Xt, Gt). Itô’s formula implies

Zt = ∇xY (Xt, Gt)σ (Xt, Gt, α̂t) ,

Z0
t = ∇xY (Xt, Gt)σ

0 (Xt, Gt, α̂t) +∇gY (Xt, Gt) · Σ (Gt) .

Given the optimal control process (α̂t)t≥0, the principle of optimality indicates that the

value function can take the following recursive form

V (Xt, Gt) = Et

[∫ T

t

e−ρ(s−t)f (Xs, Gt, α̂s) ds+ e−ρ(T−t)V (XT , GT )

]
for an arbitrary T . The stochastic process V (Xt, Gt) satisfies a BSDE

−dVt = (f (Xt, Gt, α̂t)− ρVt) dt− ZV
t dWt − Z0,V

t dW 0
t .

Assuming the smoothness of V (Xt, Gt), there exists an important relationship between Y (·)
and V (·)4

Y (Xt, Gt) = ∇xV (Xt, Gt) ,

which implies

Zt = σ (Xt, Gt, α̂t)∇xxV (Xt, Gt) ,

Z0
t = σ0 (Xt, Gt, α̂t)∇xxV (Xt, Gt) +∇xgV (Xt, Gt) · Σ (Gt) .

It is straightforward to observe that the HJB equation and the Hamiltonian yield the same

optimality condition w.r.t. αt

0 = ∇αf (Xt, Gt, α̂t) +∇αµ (Xt, Gt, α̂t)∇xV + σ (Xt, Gt, α̂t)∇ασ (Xt, Gt, α̂t)∇xxV

+ σ0 (Xt, Gt, α̂t)∇ασ
0 (Xt, Gt, α̂t)∇xxV +∇ασ

0 (Xt, Gt, α̂t)∇xgV · Σ (Gt) (12)

To numerically compute α̂t, I need to evaluate ∇xV and ∇xxV (or Y and ∇xY ) as well as

∇xgV ·Σ (Gt). A key insight from BSDEs is that the volatility terms like Z0
t are part of the

solution. Therefore, I explicitly calculate σ0 (Xt, Gt, α̂t)∇xY (Xt, Gt) and treat ∇xgV ·Σ (Gt)

as part of the solution, as shown by

∇xgV · Σ (Gt) = Z0
t − σ0 (Xt, Gt, α̂t)∇xY (Xt, Gt) .

4For nonsmooth cases, a similar relationship still exists, and readers are referred to Chapter 5 of Yong
and Zhou (1999).
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In this way, I can avoid the computation of the high-dimensional object ∇xgV . Hereafter,

the inner product term ∇xgV ·Σ (Gt) is denoted as Z̃0 (Xt, Gt). The previous subsection has

indicated that evaluating both ∇gV and ∇ggV are unnecessary if I solve for V (Xt, Gt) via

its BSDE.

2.3 Numerical Scheme

The probabilistic numerical scheme takes advantage of the property that the dynamic paths

of forward-looking variables (e.g., Yt and Vt) generated by BSDEs and the dynamic paths

of backward-looking variables (e.g., Xt and Gt) generated by SDEs always satisfy the fixed-

point mapping defined by the Forward-Backward SDE system. For the above dynamic

optimization problem, the FBSDE system is

−dVt = (f (Xt, Gt, α̂t)− ρVt) dt− ZV
t dWt − Z0,V

t dW 0
t ,

−dYt =
(
∇xH

(
Xt, Gt, α̂t, Yt, Zt, Z

0
t

)
− ρYt

)
dt− ZtdWt − Z0

t dW 0
t ,

dXt = µ (Xt, Gt, α̂t) dt+ σ (Xt, Gt, α̂t) dWt + σ0 (Xt, Gt, α̂t) dW 0
t ,

dGt = b (Gt) dt+ Σ (Gt) dW 0
t ,

Yt = Y (Xt, Gt) , Vt = V (Xt, Gt) ,

where α̂t is given by the optimality condition (12), Y (x, g) and V (x, g) are the fixed-point

mappings defined by the FBSDE system. The solutions of BSDEs include their volatility

functions
(
Z (x, g) , Z̃0 (x, g)

)
and

(
ZV (x, g) , Z0,V (x, g)

)
.

To handle the high dimensionality of Gt, I will use deep neural networks to approx-

imate these functions. The approximations are denoted as y (·, ·; Θ) , z (·, ·; Θ) , z̃0 (·, ·; Θ),

v (·, ·; Θ) , zv (·, ·; Θ) , and z0,v (·, ·; Θ), where Θ represents the set of parameters that identify

the neural network.

For an arbitrary T , I discretize time interval [0, T ] evenly into I subintervals: 0 =

t0 < t1 < t2 < · · · < tI = T,. Then, I simulate M sample paths of Brownian motions{
Wi,m,W

0
i,m

}I−1,M

i=0,m=1
and initial states {x0,m, g0,m}Mm=1. Here, I drop the subscript m to sim-

plify notation. Let ∆ ≡ ti+1 − ti, wi ≡ Wi+1 − Wi, and w0
i = W 0

i+1 − W 0
i . Initialize

v0 = v (x0, g0; Θ) and y0 = y (x0, g0; Θ). Next, I will repeat the following procedure for i

ranging from 0 to I− 1.

1. Compute zi = z (xi, gi; Θ) , z̃0
i = z̃0 (xi, gi; Θ) , zvi = zv (xi, gi; Θ) , and z0,v

i = z0,v (xi, gi; Θ);

2. Evaluate yx,i ≡ ∇xy (xi, gi; Θ) = 1
2k

(y (xi + k, gi; Θ)− y (xi − k, gi; Θ)) and

vx,i ≡ ∇xv (xi, gi; Θ) = 1
2k

(v (xi + k, gi; Θ)− v (xi − k, gi; Θ))
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3. Compute α̂i according to the optimality condition (12) and compute z0
i = σ0 (xi, gi, α̂i) yx,i+

z̃0
i ;

4. Calculate vi+1, yi+1, xi+1, and gi+1 according to

vi+1 = vi − (f (xi, gi, α̂i)− ρvi) ∆ + zvi wi + z0,v
i w0

i ,

yi+1 = yi −
(
∇xH

(
xi, gi, α̂i, yi, zi, z

0
i

)
− ρyi

)
∆ + ziwi + z0

iw
0
i ,

xi+1 = xi + µ (xi, gi, α̂i) ∆ + σ (xi, gi, α̂i)wi + σ0 (xi, gi, α̂i)w
0
i ,

gi+1 = gi + b (gi) ∆ + Σ (gi)w
0
i ;

5. Compute ṽi+1 = v (xi+1, gi+1; Θ) and ỹi+1 = y (xi+1, gi+1; Θ).

Given the simulated paths, the loss function is constructed as follow:

Loss
(

Θ;
{
x0,m, g0,m, wi,m, w

0
i,m

}I−1,M

i=1,m=1

)
=

1

MI

M∑
m=1

I−1∑
i=1

‖vi − ṽi‖2+ω1 ‖yi − ỹi‖2+ω2 ‖yi − vx,i‖2 ,

where ‖·‖ denotes the square norm and ω1 and ω2 are weight parameters.

The core of the numerical scheme is to construct the loss function, and the minimization

of the loss over the parameter Θ is outsourced to deep learning packages in Python, such as

TensorFlow or PyTorch. Goodfellow, Bengio and Courville (2016) is the standard reference

for deep neural networks, optimization algorithms and related topics on deep learning.

3 Aggregation and Dynamics of Distributions

In this section, I will first discuss the numerical treatment of market clearing conditions.

Second, I will present how to use the finite volume method to approximate the law of motion

for an infinite-dimensional state variable, such as the wealth distribution. The finite volume

method was first introduced to computational fluid dynamics in the 1970s (McDonald, 1971;

MacCormack and Paullay, 1972).

3.1 Market Clearing

In many heterogeneous-agent models, the distribution of individual states, which I denote

as Gt (·), influences an individual’s dynamics through market-clearing prices. A common

equilibrium price is the risk-free rt, which directly affects the law of motion for a household’s
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wealth. Consequently, SDE (8) can be expressed as

dXt = µ (Xt, rt, αt) dt+ σ (Xt, rt, αt) dWt + σ0 (Xt, rt, αt) dW 0
t

instead. The optimality condition (12) can then be written as follows

0 = ∇αf (Xt, rt, α̂t) +∇αµ (Xt, rt, α̂t)∇xV + σ (Xt, rt, α̂t)∇ασ (Xt, rt, α̂t)∇xxV

+ σ0 (Xt, rt, α̂t)∇ασ
0 (Xt, rt, α̂t)∇xxV +∇ασ

0 (Xt, rt, α̂t)∇xgV · Σ (Gt) ,

which defines the policy function α̂ (x, rt, Gt). Aggregating individual policy functions re-

quires satisfying a market clearing condition

0 = S

(∫
α̂ (x, rt, Gt) dGt (x) , Gt

)
, (13)

where S(·, ·) is a function dependent on the integration of α̂(x, rt, Gt) over Gt(·) and the dis-

tribution of individual states. Thus, given the policy function, the market-clearing condition

establishes a mapping from the distribution Gt(·) to the equilibrium price rt.

In some models such as Krusell and Smith (1998), the equilibrium price can be written

as an explicit function of the distribution or its moment like

rt = S

(∫
xdGt(x)

)
.

This characteristic simplifies the numerical computation process. However, not all models

offer such simplifications. For example, in Krusell and Smith (1997), households allocate

their wealth between risky and safe assets while facing a borrowing constrain and a short-

sale constraint on the risky asset. As a result, the policy function α̂ (x, rt, Gt) becomes

nonlinear with respect to the risk-free rate rt, and no explicit function of rt is available. In

such cases, it is possible to leverage the analytic properties of the policy function α̂ (x, rt, Gt)

and S (·, ·) and develop specific model algorithms to solve for the equilibrium rt given Gt (·).
For instance, in Krusell and Smith (1997), households’ demand for the risky asset decreases

with rt. Hence, a simple bisection method is sufficient to determine the market-clearing

rt. Unfortunately, there is no universally effective numerical treatment, except using neural

networks to approximate the price function of aggregate state variables and incorporating

the error of the market-clearing condition into the loss function. A crucial consideration

for implementation is determining the weight assigned to the loss of the market-clearing

condition.
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In asset markets, returns are typically not locally deterministic. As a result, investors’

demand for an asset is influenced by both its instantaneous return and volatility. Simul-

taneously, the asset price and its return are endogenously determined within the general

equilibrium framework. Consequently, one must solve for investors’ policy functions, as-

set pricing equations, and market clearing conditions collectively. This implies the need to

incorporate BSDEs, which describe the forward-looking processes of asset prices, into the

Forward-Backward SDE framework. Those interested in resolving large-scale asset pricing or

macro-finance models can refer to my paper Huang (2023) for further details on establishing

BSDEs for asset prices. In Appendix B, I consider a variant of Krusell and Smith (1997)

with durable assets and asset pricing.5

In models with search and matching frictions, the absence of centralized markets

prohibits any simplification of individual states’ laws of motion (8) because their dynamics

depend on the outcomes of search and matching, which in turn rely on the entire distribution

instead of on a clearing price of a centralized market. In Section 5, I consider an asset

valuation model of OTC markets based on Duffie et al. (2007).6

3.2 Kolmogorov Forward Equation and Finite Volume Method

Given that equilibrium prices are expressed as functions of aggregate states and individual

policy functions, the law of motion for an individual household’s state Xt depends on Xt itself

and the distribution of Xt represented as Gt (·) in the economy. To simplify the notation, I

rewrite the SDE governing Xt in Section 2 as follows

dXt = µ (Xt, Gt (·)) dt+ σ (Xt, Gt (·)) dWt + σ0 (Xt, Gt (·)) dW 0
t .

The law of motion for gt (·), the density function of Xt, is governed by the stochastic Kol-

mogorov forward equation (KFE), also known as the Fokker-Planck equation7

dgt (x) = −∇x (µ (x,Gt (·)) gt (x)) dt−∇x

((
σ0 (x,Gt (·)) dW 0

t

)
gt (x)

)
+

1

2
∇xx

{[
(σ (x,Gt (·)))2 +

(
σ0 (x,Gt (·))

)2
]
gt (x)

}
dt.

5A recent paper by Gopalakrishna, Gu and Payne (2024) solves the heterogeneous-agent asset pricing in
an incomplete market via the analytic (PDE) approach and deep learning.

6A recent paper by Payne, Rebei and Yang (2024) solves a labor search model with aggregate risks via
the analytic approach and deep learning.

7This KFE is stochastic due to the influence of an aggregate risk
{
W 0
t

}
, which represents common noise

in the study of mean-field games. A heuristic derivation of the stochastic KFE can be found on Page 111 in
Volume II of Carmona and Delarue (2018).
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As it is impractical to input an infinite-dimensional object into a computer, I need to

discretize the individual state space and the density function. I employ the finite volume

method for this purpose, which involves dividing the space domain of gt (·) into a finite

number of intervals, such as (x0, x1) , · · · , (xN−1, xN), and approximating the density gt (·)
using a finite number of probabilities over these intervals, denoted as Gn

t

Gn
t =

∫ xn

xn−1

gt (x) dt.

The cumulative distribution function Gt (·) can be approximated as

Gt (x) =
N∑
n=1

Gn
t 1 {xn−1 ≤ x} .

By performing integration on both sides of the KFE over an interval (xn−1, xn), we obtain a

forward SDE with respect to Gn
t

dGn
t = − (µ (xn, Gt (·)) gt (xn)− µ (xn−1, Gt (·)) gt (xn−1)) dt

−
(
σ0 (xn, Gt (·)) gt (xn)− σ0 (xn−1, Gt (·)) gt (xn−1)

)
dW 0

t

+
1

2
∇x

{[
(σ (xn, Gt (·)))2 +

(
σ0 (xn, Gt (·))

)2
]
gt (xn)

}
dt

− 1

2
∇x

{[
(σ (xn−1, Gt (·)))2 +

(
σ0 (xn−1, Gt (·))

)2
]
gt (xn−1)

}
dt.

Thus, the flow of the distribution gt (·) can be approximated using a finite number of for-

ward SDEs with respect to Gn
t , and the accuracy of the approximation increases with finer

intervals.

Figure 1 and the law of motion for Gn
t highlight that the dynamics of households near

the boundaries at xn−1 and xn influence the evolution of Gn
t over time. For example, if

µ (xn, Gt (·)) or σ0 (xn, Gt (·)) dW 0
t is positive, households in the vicinity of xn will move

upward and exit the interval (xn−1, xn). Consequently, the probability Gn
t will decrease.

This intuition also explains the application of the upwind scheme to approximate gt (xn).

Specifically, if the sign of µ (xn, Gt (·)) or σ0 (xn, Gt (·)) dW 0
t is positive, then gt (xn) is ap-

proximated by Gn
t/(xn−xn−1); otherwise, if µ (xn, Gt (·)) or σ0 (xn, Gt (·)) dW 0

t is negative, then

gt (xn) is approximated by Gn+1
t /(xn+1−xn).

Next, I outline the numerical scheme for updating Gn
t over time, using the same time

discretization as in the previous section. For brevity, I only display the case 1 < n < N with
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g(x)

x0 x1

g(x1)

x2

g(x2)

x3

g(x3)

x4

g(x4)

x5

g(x5)

G1 =
∫ x1

x0
g(x)dx G2 G3 G4 G5

Figure 1: Finite Volume Method

boundary cases left in Appendix A

Gn
t+∆ −Gn

t

= −µ (xn, Gt (·)) ∆

(
Gn+1
t

xn+1 − xn
1 {µ (xn, Gt (·)) < 0}+

Gn
t

xn − xn−1

1 {µ (xn, Gt (·)) ≥ 0}
)

+ µ (xn−1, Gt (·)) ∆

(
Gn
t

xn − xn−1

1 {µ (xn−1, Gt (·)) < 0}+
Gn−1
t

xn−1 − xn−2

1 {µ (xn−1, Gt (·)) ≥ 0}
)

− σ0 (xn, Gt (·)) dW 0
t

(
Gn+1
t

xn+1 − xn
1
{
σ0 (xn, Gt (·)) dW 0

t < 0
}

+
Gn
t

xn − xn−1

1
{
σ0 (xn, Gt (·)) dW 0

t ≥ 0
})

+ σ0 (xn−1, Gt (·)) dW 0
t

(
Gn
t

xn − xn−1

1
{
σ0 (xn−1, Gt (·)) dW 0

t < 0
}

+
Gn−1
t

xn−1 − xn−2

1
{
σ0 (xn−1, Gt (·)) dW 0

t ≥ 0
})

+

[
(σ (x̂n+1, Gt (·)))2 + (σ0 (x̂n+1, Gt (·)))2

]
Gn+1
t

(xn+1 − xn−1) (xn+1 − xn)
−

[
(σ (x̂n, Gt (·)))2 + (σ0 (x̂n, Gt (·)))2

]
Gn
t

(xn+1 − xn−1) (xn − xn−1)

−

[
(σ (x̂n, Gt (·)))2 + (σ0 (x̂n, Gt (·)))2

]
Gn
t

(xn − xn−2) (xn − xn−1)
+

[
(σ (x̂n−1, Gt (·)))2 + (σ0 (x̂n−1, Gt (·)))2

]
Gn−1
t

(xn − xn−2) (xn−1 − xn−2)
,
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where x̂n = 0.5 (xn + xn−1). 8

3.3 Numerical Implementation

The numerical scheme for solving a heterogeneous-agent dynamic general equilibrium model

is based on that of solving an individual agent’s dynamic optimization, as outlined in Section

2.3, with three main differences. First, the law of motion for aggregate state variables is

endogenous in dynamic general equilibrium (as shown in step 5 of Section 2.3), and their

numerical updates are demonstrated in Section 3.2.

Second, when simulating samples, I will track M economies and simultaneously simulate

the dynamics of H heterogeneous households for each economy. In other words, the H

households share the same aggregate states. Therefore, individual state variables or choice

variables have three subscripts: i captures time, h represents the household index, and m

indicates the economy.

The third difference, which also presents the most computational challenge, involves

solving for equilibrium prices. With the state discretization of the finite volume method,

I integrate individual policy functions using the simple midpoint rule. Step 3 in Section

2.3 requires solving for equilibrium prices and agents’ policy functions simultaneously while

maintaining market clearing conditions, such as equation (13). As discussed in Section 3.1,

one must exploit the property of the market clearing condition to simplify the procedure of

jointly solving for policy functions and equilibrium prices.

4 A Variant of Krusell and Smith (1997)

In this section, I will present how to apply the probabilistic approach to solving a modified

version of Krusell and Smith (1997). Compared to Krusell and Smith (1998), the model

8

∇x
{[

(σ (xn, Gt))
2

+
(
σ0 (xn, Gt)

)2]
gt (xn)

}
=

[
(σ (0.5 (xn+1 + xn) , Gt))

2
+
(
σ0 (0.5 (xn+1 + xn) , Gt)

)2]
gt (0.5 (xn+1 + xn))

0.5 (xn+1 − xn−1)

−

[
(σ (0.5 (xn + xn−1) , Gt))

2
+
(
σ0 (0.5 (xn + xn−1) , Gt)

)2]
gt (0.5 (xn + xn−1))

0.5 (xn+1 − xn−1)

=

[
(σ (x̂n+1, Gt))

2
+
(
σ0 (x̂n+1, Gt)

)2]
Gn+1
t

0.5 (xn+1 − xn−1) (xn+1 − xn)
−

[
(σ (x̂n, Gt))

2
+
(
σ0 (x̂n, Gt)

)2]
Gnt

0.5 (xn+1 − xn−1) (xn − xn−1)
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I consider incorporates a portfolio choice between a risky asset and risk-free debt, as well

as a nonlinear debt market clearing condition. These two features often present significant

challenges for other numerical algorithms intended for heterogeneous-agent models.

4.1 Model

The economy consists of a continuum of households who supply labor inelastically. The

aggregate production function takes the aggregate physical capital Kt (in efficiency units)

and aggregate labor supply Lt as inputs

Yt = zKα
t L

1−α
t ,

where the TFP parameter z remains constant over time. The labor wage is determined by

w (Kt, Lt) = (1− α) z

(
Kt

Lt

)α
,

and the return to physical capital is given by

r (Kt, Lt) = αz

(
Kt

Lt

)α−1

.

Households can transform final goods into physical capital or reversely at the one-for-one

ratio. Hence, the price of physical capital is a constant one over time. In Appendix B, I

relax this assumption and introduce durable assets and asset pricing to Krusell and Smith

(1997). The net supply of risk-free debt is zero in the economy.

A household’s life-time expected discounted utility is

E0

[∫ ∞
0

e−ρt ln (ct) dt

]
.

The employment status of a household follows a two-state Markov chain: εt ∈ {0, 1}. When

εt = 1, the household supplies l efficiency units of labor inelastically; when εt = 0, the

household is unemployed and receives an exogenous amount g of goods. The transition

intensity from εt = 0 to εt = 1 is λ0; while the intensity from εt = 1 to εt = 0 is λ1. Assuming

λ0 and λ1 are constants, I posit that the aggregate labor supply reaches a stationary level of

λ1l/
(
λ0+λ1

)
without loss of generality.

Households can only allocate their wealth between risky physical capital and risk-free

debt. Therefore, the idiosyncratic risk is partially insurable. The instantaneous rate of
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return for holding physical capital is r (Kt, Lt)− δ, where δ represents the depreciation rate,

and the risk of holding physical capital is driven by an aggregate Brownian shock Wt with a

constant percentage volatility σ. Given the holding of physical capital kt, consumption rate

ct, and risk-free rate rt, a household’s wealth xt evolves as

dxt = (rtxt + (r (Kt, Lt)− δ − rt) kt + εtlw (Kt, Lt) + (1− εt) g − ct)︸ ︷︷ ︸
≡µt(x,j)

dt+ σktdWt.

Additionally, households are not allowed to short physical capital, i.e., kt ≥ 0, and there is

an upper bound for borrowing such that kt − xt ≤ b. Considering these two restrictions,

there is a constraint on a household’s individual state variable: xt ≥ −b.

Remark on the Aggregate Shock. In Krusell and Smith (1997), the aggregate shock is

driven by the Markov chain of the TFP zt. An implicit assumption in discrete-time models

is that agents cannot adjust their holdings of physical capital for a “long” period, such

as a quarter or a year. Under this assumption, the capital holding decision made at the

beginning of a period (or, equivalently, at the end of the previous period) is risky because

the realization of TFP in the current period is stochastic, and agents cannot adjust their

holdings throughout the period. In the continuous-time setting, unless explicitly stated,

agents can adjust their capital holding choice instantaneously, making it locally risk-free.9

As a result, I incorporate the aggregate capital quality shock into the model to introduce

local risk into the households’ capital holding decision.

4.2 Markov Equilibrium

I will solve for the Markov equilibrium of the model. With the presence of both idiosyncratic

and aggregate shocks, market incompleteness implies that the distribution of households’

wealth levels xt will serve as an aggregate state variable denoted as Gt (·, j), where j = 0, 1.

The Markov equilibrium will be characterized by value functions and policy functions of

individual wealth level xt, employment status εt, and the aggregate state variable Gt, as well

as price functions.

I follow the procedure outlined in Section 2.2 and apply stochastic maximum principle

9To understand this point clearly, let’s consider the expected output of a firm with a given capital stock
kt, labor lt, and the pre-production TFP zh. The realized TFP can be either zl with a probability of 1−e−λ∆

or zh with a probability of e−λ∆. The expected output is

e−λ∆zhk
α
t l

1−α
t ∆ +

(
1− e−λ∆

)
zlk

α
t l

1−α
t ∆.

The second term above, which captures the risk of capital holding kt, approaches zero at a rate of
(
∆2
)
.
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to characterize the optimal decisions of a household. The Hamiltonian function is

H (t, x, c, k, y, z) = ln (c) +
(
rtx+ (r (Kt, Lt)− δ − rt) k + εtlw (Kt, Lt) + (1− εt) g − c

)
y

+ σkz,

when the state constraint xt ≥ −b is not binding. The co-state variable of type-j household,

denoted by Y j
t , follows a BSDE

dY j
t = − (rt − ρ)Y j

t dt+ UY,j
t dΛj

t + ZY,j
t dWt, (14)

where Λj
t represents a Poisson process with an arrival rate of λj. The solution to the BSDE

is given by
(
Y j
t , U

Y,j
t , ZY,j

t

)
. The first-order conditions are

cjt =
1

Y j
t

r (Kt, Lt)− δ − rt = −σZ
Y,j
t

Y j
t

if k < k < xt + b

Next, I analyze the portfolio choice kt. In the Markov equilibrium, there exists a mapping

from (xt, Gt) to Y j
t denoted as Y j (xt, Gt). By applying Ito’s formula, I decompose the

volatility term ZY,j
t into two components: ∂Y j

∂n
(xt, Gt)σkt, which represents the contribution

of xt, and Z̃Y,j
t , which represents the contribution of Gt

ZY,j
t = ∇xY

j (xt, Gt)σkt + Z̃Y,j
t .

If the excess return r (Kt, Lt)− δ − rt is high enough,

r (Kt, Lt)− δ − rt > −
σ

Y j
t

(
∇xY

j (xt, Gt)σ (xt + b) + Z̃Y,j
t

)
then the optimal choice of kt is kt = xt + b. If the excess return is too low,

r (Kt, Lt)− δ − rt < −
σ

Y j
t

(
∇xY

j (xt, Gt)σk + Z̃Y,j
t

)
,

then the optimal kt = k. In cases where it falls between these boundaries, the optimal kt is

determined by

kt = − 1

σ2∇xY j (xt, Gt)

(
Y j
t (r (Kt, Lt)− δ − rt) + σZ̃Y,j

t

)
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Overall, the policy function for a household’s portfolio choice k (xt, Gt) is given by

kj (xt, Gt, rt) = min
{

max
{
k̃j (xt, Gt) , k

}
, xt + b

}
, where (15)

k̃j (xt, Gt, rt) ≡ −
1

σ2∇xY j (xt, Gt)

(
Y j
t (r (Kt, Lt)− δ − rt) + σZ̃Y,j

t

)
.

Given the consumption and portfolio choice policy functions, a household’s life-time

expected utility can be characterized by the solution to a BSDE, i.e., stochastic differential

utility

dV j
t = −

(
ln (ct)− ρV j

t

)
dt+ UV,j

t dΛj
i,t + ZV,j

t dWt. (16)

The recursive utility defined above yields a Markov solution V j (xt, Gt), which has a tight

connection with the co-state variable Y j
t

Y j
t = ∇xV

j (xt, Gt) .

Given a household’s demand for risk-free debt, represented as xt − kj (xt, Gt), the zero

net debt supply condition is expressed as

∑
j=0,1

∫ (
x− kj (x,Gt, rt)

)
dGt (x, j) = 0. (17)

The risk-free rate rt will adjust the aggregate demand for physical capital and ensure equi-

librium in the debt market. It’s important to note that both the aggregate physical capital

and the aggregate labor supply are entirely determined by the state variable Gt

Kt =
∑
j=0,1

∫
xdGt (x, j) , Lt = l

∫
dGt (x, 1) . (18)

To fully capture the dynamics of the economy, it is necessary to characterize the law of

motion of Gt(·, j) or its density function gt (x, j), with j = 0, 1. This is determined by the

stochastic KFE

dgt (n, j) = −∇x (µt (x, j) gt (x, j)) dt−∇x ([σkt (x, j) dWt] gt (x, j)) (19)

+
1

2
∇xx

{
σ2k2

t (x, j) gt (x, j)
}

dt− λjgt (x, j) dt+ λ1−jgt (x, 1− j) dt.

Here, µt (x, j) and σkt (x, j) represent the drift and volatility terms for an individual house-

hold of type-j, with wealth x. It is crucial to emphasize that the dynamics of a household’s
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wealth depend on the distribution Gt through the return to capital r (Kt, Lt), the wage

w (Kt, Lt), and the forward-looking variables Y j
t , along with their volatility terms ∇xY

j and

Z̃Y,j. Consequently, I need to solve a fully-coupled forward-backward dynamic system.

4.3 Finite Volume Method

To implement the finite volume method, the individual state space is divided into N in-

tervals or cells using N + 1 points: −b = x0 < x1 < x2 < · · · < xN . It is assumed that

Gt (xN , j) = Gt (x, j) for any x > xN , where j = 0, 1. Previous research, such as Achdou

et al. (2022), suggests that the distribution Gt (·, 0) for type-0 households has a mass point

at x0. Interval n refers to (xn−1, xn]. Gt (·, 0) is approximated using N + 1 scalars, while

Gt (·, 1) is approximated using N scalars.

Gn,j
t =

∫ xn

xn−1

dGt (x, j) =

∫ xn

xn−1

gt (x, j) dx

Given the stochastic KFE (19), the law of motion for Gn,j
t with 1 < n < N∫ xn

xn−1

dgt (x, j) dx = −
∫ xn

xn−1

∇x (µt (x, j) gt (x, j) dt) dx−
∫ xh

xh−1

∇x ([σkt (x, j) dWt] gt (x, j)) dx

+

∫ xn

xn−1

1

2
∇xx

{
σ2k2

t (x, j) gt (x, j)
}

dtdx− λjdt
∫ xn

xn−1

gt (x, j) dx

+ λ1−jdt

∫ xn

xn−1

gt (x, 1− j) dx

dGn,j
t = − (µt (xn, j) gt (xn, j)− µt (xn−1, j) gt (xn−1, j)) dt

− σ (kt (xn, j) gt (xn, j)− kt (xn−1, j) gt (xn−1, j)) dWt

+
σ2

2
∇x

{
k2
t (xn, j) gt (xn, j)

}
dt− σ2

2
∇x

{
k2
t (xn−1, j) gt (xn−1, j)

}
dt

− λjGn,j
t dt+ λ1−jGn,1−j

t dt

Assuming that the probability density within an interval is constant, the upwind scheme
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leads to the numerical scheme

Gn,jt+∆ −G
n,j
t

= −µt (xn, j) ∆

(
Gn+1,j
t

xn+1 − xn
1 {µt (xn, j) < 0}+

Gn,jt
xn − xn−1

1 {µt (xn, j) ≥ 0}

)

+ µt (xn−1, j) ∆

(
Gn,jt

xn − xn−1
1 {µt (xn−1, j) < 0}+

Gn−1,j
t

xn−1 − xn−2
1 {µt (xn−1, j) ≥ 0}

)

− σkt (xn, j) ∆Wt

(
Gn+1,j
t

xn+1 − xn
1 {kt (xn, j) ∆Wt < 0}+

Gn,jt
xn − xn−1

1 {kt (xn, j) ∆Wt ≥ 0}

)

+ σkt (xn−1, j) ∆Wt

(
Gn,jt

xn − xn−1
1 {kt (xn−1, j) ∆Wt < 0}+

Gn−1,j
t

xn−1 − xn−2
1 {kt (xn−1, j) ∆Wt ≥ 0}

)

+ σ2

[
k2
t (x̂n+1, j)G

n+1,j
t

(xn+1 − xn) (xn+1 − xn−1)
− k2

t (x̂n, j)G
n,j
t

(xn − xn−1) (xn+1 − xn−1)

]
∆

− σ2

[
k2
t (x̂n, j)G

n,j
t

(xn − xn−1) (xn − xn−2)
− k2

t (x̂n−1, j)G
n−1,j
t

(xn−1 − xn−2) (xn − xn−2)

]
∆− λjGn,jt ∆ + λ1−jGn,1−jt ∆

for 1 < n < N , where x̂n = 0.5 (xn + xn−1).10 Section A in Appendix contains the detailed

law of motion for boundary cases such as n = 0, 1 or N , and the matrix operations used for

updating vectors G0
t and G1

t in the algorithm, where

G0
t =

[
G0,0
t , G1,0

t , · · · , GN,0
t

]T
,G1

t =
[
G1,1
t , · · · , GN,1

t

]T
.

4.4 Numerical Implementation

This section sketches the numerical implementation of the probabilistic approach for solv-

ing the model. The state variables of the numerical solution are individual wealth level xt,

individual employment status εt, and aggregate state Gt = [G0
t ; G

1
t ]. A Markov equilibrium

is characterized by functions V (·), Y (·) and the volatility terms UV (·), ZV (·), UY (·), Z̃Y (·) of

corresponding BSDEs (16) and (14). These functions are approximated using a feedforward

neural network. Specifically, the state variables xt and Gt are inputs through two shared

10In particular, to approximate

∇x
{
k2
t (xn, j) gt (xn, j)

}
=
k2
t (0.5 (xn+1 + xn) , j) gt (0.5 (xn+1 + xn) , j)− k2

t (0.5 (xn + xn−1) , j) gt (0.5 (xn + xn−1) , j)

0.5 (xn+1 − xn−1)

=
2k2
t (x̂n+1, j)G

n+1,j
t

(xn+1 − xn) (xn+1 − xn−1)
− 2k2

t (x̂n, j)G
n,j
t

(xn − xn−1) (xn+1 − xn−1)
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hidden layers, which then produce outputs for three independent sets of two hidden lay-

ers. The first set generates V 0
t and V 1

t ; the second produces Y 0
t and Y 1

t ; the third yields

U v,j
t , Uy,j

t , Zv,j
t , and Z̃y,j

t , j = 0, 1. Each hidden layer comprises 256 nodes with sigmoid acti-

vation functions.11 The most critical component of the numerical scheme is to construct the

loss function, which takes the initial individual and aggregate states, as well as the paths of

aggregate and idiosyncratic shocks, as data inputs. Minimization of the loss is implemented

with TensorFlow in Python.

Section C in Appendix contains the detailed procedure for calculating the loss. Here,

I outline major steps. Since the state space of Gt is large, I generate a large number of

samples, and each sample refers to an economy of a given initial Gt. For a sample point or

within an economy, I also consider a large number of households to cover the individual state

xt and εt. Along the time path of an economy, I first use Gt and conditions (18) to calculate

the aggregate stock of physical capital and labor while entering a period. Aggregate Kt and

Lt give rise to the return on physical capital r(Kt, Lt) and the wage w(Kt, Lt). To determine

individual demand for physical capital, I evaluate ∇xY j, Z̃Y,j, and Y j
t (from the equation

15). Since demand for physical capital decreases with the risk-free interest rate rt, I use the

bisection method to find the rt that clears the debt market (from equation 17). Given rt,

it is straightforward to calculate the drift and volatility terms of a household’s wealth xt,

as well as the law of motion for Gt. While deriving state variables for the next period, I

also update forward-looking variables according to their BSDEs (14) and (16). The values

of state variables and forward-looking variables are supposed to satisfy the mappings V (·)
and Y (·), which give rise to the primary components of the loss.

There are several boundary conditions used to fix the solution. Due to the state con-

straint xt ≥ −b, the drift term of xt at −b cannot be negative. Moreover, Achdou et al. (2022)

shows that the drift term of xt at the state constraint is zero for unemployed households.

When households’ wealth levels are high enough, the effects of their borrowing constraint

become negligible, and the logarithmic utility function implies that their consumption is

linear in wealth with coefficient ρ. The last boundary condition of my numerical scheme is

to impose an upper bound on the consumption policy function for large xt.

4.5 Numerical Solution

In this section, I illustrate some details of the numerical exercises and present the numerical

results. Parameter values that are annualized follow Krusell and Smith (1997): z = 4, α =

11Refer to Goodfellow et al. (2016), particularly Chapter 6, which discusses feedforward neural networks
and deep learning terminology.
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0.36, ρ = 0.04, λ0 = 2.667, λ1 = 0.111, l = 0.3271, g = 0.8, b = 2.4, and σ = 0.023. To

cover the aggregate state space, I simulate 8,000 economies, and each economy contains 150

households of each employment status. While the support of households’ wealth distribution

is [−2.4, 25], I also consider those with wealth level from 25 to 100 whose policy and value

functions must satisfy boundary conditions. The length of each period ∆ is 0.01, the arbitrary

T = 0.4, and the number of bi-section iterations is 25 while solving for market-clearing risk-

free rate. The training process or the numerical implementation is undertaken on two Nvidia

A800 GPUs, and each GPU is allocated with 64 samples in each batch. All variables take

values of float64. The average loss is at the magnitude of 10−6.
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Figure 2: Policy and Value Functions

Figure 2 displays households’ value and policy functions under a specific aggregate state

Gt, which leads to r(Kt, Lt) = 0.145, w(Kt, Lt) = 9.316, and the risk-free rate rt = 0.047.

Top panels show that households’ propensity to consume is higher when their wealth or

income levels are relatively low. For employed households, they choose to hold risky physical
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assets when they are sufficiently wealthy, and unemployed households only hold risk-free

bonds instead (see the second row where the dashed line is kt = xt).

5 Scaling up Duffie, Gârleanu and Pedersen (2007)

This section focuses on an asset pricing model of over-the-counter (OTC) markets with

search-and-bargaining frictions. Specifically, I extend Duffie et al. (2007) to allow for a

continuum of heterogeneous investors and expected aggregate shocks. In this model, the

cross-sectional distribution over investors’ types and asset ownership is a crucial state vari-

able.

5.1 Model

There exits a long-lived indivisible asset with a total supply denoted by θ. These assets

generate nondurable consumption goods in each period. The asset’s cumulative dividend

process, represented by Dt, evolves according to

dDt = µDdt+ σDdBt,

where Bt is a standard Brownian motion, and µD and σD are positive constants, character-

izing the drift and volatility of the dividend process, respectively.

There exits a unit measure of infinitely-lived agents, who have constant-absolute-risk-

averse (CARA) additive utility characterized by the absolute risk aversion coefficient γ and

the time discount rate β. Agent h is equipped with a stochastic flow of consumption goods,

governed by the cumulative endowment process ηht , which evolves according to

dηht = µηdt+ σηρ
h
t dBt + ση

√
1−

(
ρht
)2

dZh
t ,

where µη and ση are the same positive constants across all agents. Here, Zh
t denotes the

idiosyncratic shock derived from a standard Brownian motion, while ρht is a stochastic process

driving the asset’s hedging motives. Notably, Zh
t is independent of both Bt and Zj

t for j 6= h.

The dynamics of ρht follow

dρht = −φ
(
ρht − µt

)
dt+ σdB1,h

t ,

where B1,h
t is a standard Brownian motion and µt alternates between two states, µ0 or µ1,
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governed by a two-state Markov chain.12 The shift in µt constitutes an aggregate shock,

affecting all agents uniformly. The transition intensity of µt is δ in both directions. B1,h
t , an

agent-specific idiosyncratic shock, remains independent of Bt, Z
h
t , Z

j
t , B

1,j
t for j 6= h.

Due to the idiosyncratic shock, there exists a cross-sectional distribution of type ρht at

any time t, which is denoted as Gt (·). Given the asset’s indivisibility, an agent’s holdings of

the asset can either be 0 or 1. Thus, Gt(·, 0) specifies the cumulative distribution of types

among non-owners, while Gt(·, 1) outlines that of the owners. The asset’s market-clearing

condition is

Gt (1, 1) = θ.

In essence, the aggregate state of the economy is determined by µt and Gt(·).

Search and Matching. Agents trade the indivisible asset in an OTC market. During

the time interval (t, t+ dt], an agent meets a counterparty with a probability of λdt. A

transaction is initiated if it enhances the welfare of both participating parties. The final

transaction price is determined through the process of Nash Bargaining.

Suppose each agent has access to a liquid money-market account that offers a constant

risk-free rate r. Then, the wealth of agent h, denoted by W h
t , follows the law of motion

dW h
t =

(
rW h

t − cht
)

dt+ θht dDt + dηht − P h
t dθht ,

where cht represents the consumption flow, θht denotes the agent’s asset holdings, and P h
t is

the transaction price when the agent adjusts their asset holdings. Note that the transaction

price depends on the aggregate state and the types of both the agent and the counterparty.

Following Duffie et al. (2007), I utilize the CARA utility and conjecture that an agent’s

continuation value function can be expressed as

J j (w, ρ,G, µ) = −e−rγ(w+aj(ρ,G,µ)). (20)

Hereafter, I will omit the agent index, and the superscript j indicates asset ownership, which

can take two values: 0 or 1. J0 (wt, ρt, Gt, µt) represents the continuation value of an asset

non-owner with wealth wt and type ρt under aggregate states Gt and µt; and J1 (wt, ρt, Gt, µt)

represents that of an asset owner.

12 ρht has the reflecting upper bound 1 and the reflecting lower bound −1.
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5.2 Bargaining

When an asset owner of type ρ1
t encounters a non-owner of type ρ0

t , a Pareto optimal trans-

action is feasible if there exists a price p such that

J0
(
wt + p, ρ1

t , Gt, µt
)
> J1

(
wt, ρ

1
t , Gt, µt

)
and J1

(
w̃t − p, ρ0

t , Gt, µt
)

> J0
(
w̃t, ρ

0
t , Gt, µt

)
,

where wt represents the asset owner’s wealth, and w̃t denotes the non-owner’s wealth. Given

the functional form of J j(·), the condition above is equivalent to the following inequality

a1
(
ρ0
t , Gt, µt

)
− a0

(
ρ0
t , Gt, µt

)
> a1

(
ρ1
t , Gt, µt

)
− a0

(
ρ1
t , Gt, µt

)
, (21)

which implies that the non-owner’s willingness to pay exceeds the owner’s reservation value.

The transaction price results from Nash bargaining, wherein the owner is assumed to have

bargaining power denoted by q. Let P (ρ0
t , ρ

1
t , Gt, µt) denote the transaction price, which is

well-defined if condition (21) is satisfied. Then, P (ρ0
t , ρ

1
t , Gt, µt) solves

max
p

(
J0
(
wt + p, ρ1

t , Gt, µt
)
− J1

(
wt, ρ

1
t , Gt, µt

))q (
J1
(
w̃t − p, ρ0

t , Gt, µt
)
− J0

(
w̃t, ρ

0
t , Gt, µt

))1−q
.

Given the functional form of Jh(·), the first-order condition of the above optimization implies

that P (ρ0
t , ρ

1
t , Gt, µt) satisfies

q

1− q
=

1− exp (−rγ (−P (ρ0
t , ρ

1
t , Gt, µt) + a1 (ρ1

t , Gt, µt)− a0 (ρ1
t , Gt, µt)))

1− exp (−rγ (P (ρ0
t , ρ

1
t , Gt, µt)− (a1 (ρ0

t , Gt, µt)− a0 (ρ0
t , Gt, µt))))

.

Note that when an agent owns the indivisible asset, the volatility of the agent’s wealth

increases by σ2
D + 2ρtσDση, which increases with ρt. Given that agents are risk-averse, I

conjecture that the difference a1 (ρt, Gt, µt)− a0 (ρt, Gt, µt) decreases with ρt. This suggests

that the reservation value of asset owners (and the willingness to pay of non-owners) decreases

with ρt, the correlation between the asset’s payoff and their endowments. This conjecture

will be validated through numerical exercises presented later. It implies that if an asset

owner’s type is ρt, they will prefer to trade with non-owners of type ρ̂ < ρt. Next, I will

leverage this property to simplify the characterization of the law of motion for Gt (·, 0) and

Gt (·, 1).
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5.3 KFE

To characterize the law of motion for the cross-sectional distribution, I start with the KFE

of density functions without matching, gt (·, 0) and gt (·, 1). They are represented as follows

dgt (ρ, j) =
∂

∂ρ
(φ (ρ− µt) gt (ρ, j)) dt+

1

2

∂2

∂ρ2

(
σ2gt (ρ, j)

)
dt. (22)

As Hugonnier, Lester and Weill (2022) demonstrate, it is more convenient to work with the

cumulative distribution function. For non-owners, denoted as j = 0, taking integration of

both sides of equation (22) over the interval [−1, ρn] yields:∫ ρn

−1

dgt (ρ, 0) = d (Gt (ρn, 0)−Gt (−1, 0))

= φ (ρn − µt) gt (ρn, 0) dt+
σ2

2

∂

∂ρ
(gt (ρn, 0)) dt.

Let Gn,j
t denote ∫ ρn

−1

gt (ρ, j) dρ, j = 0, 1.

Taking into account the effect of matching, the law of motion for Gn,0
t becomes:

dGn,0
t = φ (ρn − µt) gt (ρn, 0) dt+

σ2

2

∂

∂ρ
(gt (ρn, 0)) dt− 2λGn,0

t

(
θ −Gn,1

t

)
dt,

where θ −Gn,1
t is the measure of owners with type ρ ≥ ρn and 2λGn,0

t

(
θ −Gn,1

t

)
represents

the outflow of non-owners with types ρ < ρn, who become owners due to matching and trade.

For owners j = 1, taking the integration of both sides of equation (22) over the interval

[−1, ρn] yields:∫ ρn

−1

dgt (ρ, 1) = d (Gt (1, 1)−Gt (ρn, 1)) = φ (ρn − µt) gt (ρn, 1) dt+
σ2

2

∂

∂ρ
(gt (ρn, 1)) dt.

Considering the effect of matching, it follows that

dGn,1
t = φ (ρn − µt) gt (ρn, 1) dt+

σ2

2

∂

∂ρ
(gt (ρn, 1)) dt+ 2λGn,0

t (θ −Gn,1
t )dt,

where 2λGn,0
t (θ − Gn,1

t ) represents the inflow of non-owners of types ρ < ρn, who become
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owners due to matching and trade. The law of motion for Gt can thus be summarized by

dGt = µg (µt) dt

d

[
Gt (ρ, 0)

Gt (ρ, 1)

]
=

[
φ (ρ− µt) gt (ρ, 0) + σ2

2
∂
∂ρ

(gt (ρ, 0))− 2λGt(ρ, 0)(θ −Gt(ρ, 1))

φ (ρ− µt) gt (ρ, 1) + σ2

2
∂
∂ρ

(gt (ρ, 1)) + 2λGt(ρ, 0)(θ −Gt(ρ, 1))

]
dt.

5.4 Dynamic Optimization and BSDEs

This section will begin with HJB equations that illustrate the dynamic optimal choices of

both owners and non-owners, while also highlighting the challenges associated with numeri-

cally solving HJB equations that contain the infinite-dimensional state variable Gt. Subse-

quently, I will introduce the probabilistic formulation of the value functions for owners and

non-owners.

5.4.1 Analytic Formulation

The HJB equation for owners is given by

βJ1 (wt, ρt, Gt, µk)

= max
c

{
−e−γc + J1

w (rwt − c+ µD + µη)
}

+
1

2
J1
ww

(
σ2
D + σ2

η + 2ρtσDση
)

+
2λ

1− θ

∫ ρt

−1

(
J0
(
wt + P

(
ρ0, ρt, Gt, µk

)
, ρt, Gt, µk

)
− J1 (wt, ρt, Gt, µk)

)
dGt

(
ρ0, 0

)
− φ (ρt − µk) Jρ (ρt, Gt, µk) +

1

2
σ2Jρρ (ρt, Gt, µk) +

〈
∇gJ

1 (ρt, Gt, µk) , µ
g (µk)

〉
+ δ

(
J1 (wt, ρt, Gt, µ1−k)− J1 (wt, ρt, Gt, µk)

)
, where k = 0, 1.

The second line of the HJB equation captures the expected change in an owner’s contin-

uation value due to transactions resulting from random matching with non-owners, whose

willingness to pay is high enough. The term 〈∇gJ
1, µg (µk)〉 in the third line characterizes

the instantaneous impact of changes in the cross-sectional distribution Gt, which is stochas-

tic due to the randomness of the aggregate state µt. If no aggregate shock occurs, i.e., µt

remains constant over time, the change in the cross-sectional distribution becomes determin-

istic, allowing the infinite-dimensional state variable Gt to be replaced by the unidimensional

variable t.
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The HJB equation for non-owners is given by

βJ0 (wt, ρt, Gt, µk)

= max
c

{
−e−γc + J0

w (rwt − c+ µη)
}

+
1

2
J0
wwσ

2
η

+
2λ

θ

∫ 1

ρ

(
J1
(
wt − P

(
ρt, ρ

1, Gt, µk
)
, ρt, Gt, µk

)
− J0 (wt, ρt, Gt, µk)

)
dGt

(
ρ1, 1

)
− φ (ρt − µk) J0

ρ (ρt, Gt, µk) +
1

2
σ2J0

ρρ (ρt, Gt, µk) +
〈
∇gJ

0 (ρt, Gt, µk) , µ
g (µk)

〉
+ δ

(
J0 (wt, ρt, Gt, µ1−k)− J0 (wt, ρt, Gt, µk)

)
, for k = 0, 1.

The second line of the HJB equation captures the expected impact on non-owners’ welfare

due to random matching with asset owners, provided their reservation values are sufficiently

low.

Given equation (20) and the functional form conjecture of J j (w, ρ,G, µ), the first-order

condition with respect to consumption c is

c = − log (r)

γ
+ r

(
w + aj (ρ,G, µ)

)
,

which implies that the two HJB equations can be reduced to differential equations for the

functions aj (ρ,G, µ):

−β = −r + rγ

(
log (r)

γ
− ra1 (ρt, Gt, µk) + µD + µη

)
− 1

2
(rγ)2 (σ2

D + σ2
η + 2ρtσDση

)
(23)

+
2λ

1− θ

∫ ρt

−1

(
1− e−rγ(P(ρ0,ρt,Gt,µk)+a0(ρt,Gt,µk)−a1(ρt,Gt,µk))

)
dGt

(
ρ0, 0

)
− φ (ρt − µk)

(
rγ
∂a1

∂ρ
(ρt, Gt, µk)

)
+

1

2
σ2

(
rγ
∂2a1

∂ρ2
(ρt, Gt, µk)− (rγ)2

(
∂a1

∂ρ
(ρt, Gt, µk)

)2
)

+ rγ
〈
∇ga

1 (ρt, Gt, µk) , µ
g
t (µk)

〉
+ δ

(
1− e−rγ(a1(ρt,Gt,µ1−k)−a1(ρt,Gt,µk))

)
k = 0, 1,
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and

−β = −r + rγ

(
log (r)

γ
− ra0 (ρt, Gt, µk) + µη

)
− 1

2
(rγ)2 σ2

η (24)

+
2λ

θ

∫ 1

ρt

(
1− e−rγ(−P(ρt,ρ1,Gt,µk)+a1(ρt,Gt,µk)−a0(ρt,Gt,µk))

)
dGt

(
ρ1, 1

)
− φ (ρt − µi)

(
rγ
∂a0

∂ρ
(ρt, Gt, µk)

)
+

1

2
σ2

(
rγ
∂2a0

∂ρ2
(ρt, Gt, µk)− (rγ)2

(
∂a0

∂ρ
(ρt, Gt, µk)

)2
)

+ rγ
〈
∇ga

0 (ρt, Gt, µk) , µ
g
t (µk)

〉
+ δ

(
1− e−rγ(a0(ρt,Gt,µ1−k)−a0(ρt,Gt,µk))

)
k = 0, 1,

which verifies the conjecture regarding the functional form of J j (w, ρ,G, µ). The analytic for-

mulation’s numerical challenge lies in evaluating the high-dimensional object ∇ga
j (ρ,G, µ).

5.4.2 Probabilistic Formulation

The functional form of J j (w, ρ,G, µ) indicates that it is sufficient to solve for aj (ρ,G, µ).

Hence, I will focus on the BSDE of ajt

dajt = µa,jt dt+ σa,jt dB1
t +

(
aj (ρt, Gt, µ1−k)− ajt (ρt, Gt, µk)

)
dMk

t

where dMk
t denotes the Markov switch from µk to µ1−k, k = 0, 1. Next, I will derive µa,jt ,

which identifies the BSDE. For the owners’ continuation value function, applying Ito’s for-

mula to to

J1
t = − exp

(
−rγ

(
wt + a1

t

))
,

dJ1
t = rγe−rγ(wt+a1

t) (rw − c+ µD + µη) dt− 1

2
(rγ)2 e−rγ(wt+a1

t)
(
σ2
D + σ2

η + 2ρσDση +
(
σa,1t
)2
)

dt

+
2λ

1− θ

∫ ρ

−1

(
−e−rγ(wt+P(ρ0,ρt,Gt,µt)+a0(ρt,Gt,µt)) + e−rγ(wt+a1(ρt,Gt,µt))

)
dGt

(
ρ0, 0

)
dt

+ rγe−rγ(wt+a1
t)µa,1t dt+ · · · ,

and the BSDE that J1
t follows is

dJ1
t = −

(
−e−γc + βe−rγ(wt+a1

t)
)

dt+ · · · ,
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where I omit the stochastic terms for both dJ1
t expressions. Since the drift terms of dJ1

t

under the two representations above are supposed to be identical,

µa,1t =
r − β
rγ
−
(

log (r)

γ
− ra1

t + µD + µη

)
+

1

2
rγ
(
σ2
D + σ2

η + 2ρtσDση +
(
σa,1t
)2
)

(25)

− 2λ

rγ (1− θ)

∫ ρ

−1

(
1− e−rγ(P(ρ0,ρt,Gt,µt)+a0

t−a1
t)
)

dGt

(
ρ0, 0

)
,

where the optimal consumption is plugged in. Similarly, for non-owners

µa,0t =
r − β
rγ
−
(

log (r)

γ
− ra0

t + µη

)
+

1

2
rγ
(
σ2
η +

(
σa,0t
)2
)

(26)

− 2λ

rγθ

∫ 1

ρ

(
1− e−rγ(−P(ρt,ρ1,Gt,µt)+a1

t−a0
t)
)

dGt

(
ρ1, 1

)
5.5 Numerical Implementation

The numerical procedure, which primarily involves simulating forward- and backward-looking

stochastic processes, can be divided into two parts: 1) updating the cross-sectional distribu-

tion of agents’ types, denoted as Gt; and 2) updating forward-looking variables, represented

by ajt , where j = 0, 1.

To approximate the infinite-dimensional Gt (·, j), I divide the state space of ρt, denoted

by [−1, 1], into N + 1 intervals: −1 = ρ0 < ρ1 < · · · < ρN < ρN+1 = 1. The cumulative

probability functions over the N points, i.e., Gn,j
t = Gt (ρn, j), serve to approximate the

cross-sectional distribution. The law of motion for Gn,j
t is given by:[

Gn,0
t+∆

Gn,1
t+∆

]
=

[
Gn,0
t

Gn,1
t

]
+

[
φ (ρn − µt) gt (ρn, 0) + σ2

2
∂
∂ρ

(gt (ρn, 0))− 2λGn,0
t

(
θ −Gn,1

t

)
φ (ρn − µt) gt (ρn, 1) + σ2

2
∂
∂ρ

(gt (ρn, 1)) + 2λGn,0
t

(
θ −Gn,1

t

) ]∆,

given the asset owners and non-owners’ policy functions and condition (21). To solve for

aj (ρ,G, µ), I simulate the forward-looking process ajt according to its BSDE:

dajt = µa,jt dt+ σa,jt dB1
t +

(
aj (ρt, Gt, µ1−k)− ajt (ρt, Gt, µk)

)
dMk

t .

The key to uncovering aj (ρ,G, µ) lies in calculating the drift term µa,jt , j = 0, 1, which,

in turn, hinges on the transaction prices from random matching, as indicated by equations

(25) and (26). Since there are infinitely many possible matches, I consider the outcome of

the matching with the midpoint of an interval as the average outcome across all types of

agents within that interval. For instance, for the matching between an owner of type ρt and
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a non-owner from the interval [ρn−1, ρn), the matching outcome is considered between the

owner and the non-owner of type ρ̂n = 0.5 (ρn−1 + ρn), representing the average outcome

across all non-owners within the interval. Given the owner’s a1
t , the corresponding µa,1t is

calculated as

r − β
rγ
−
(

log (r)

γ
− ra1

t + µD + µη

)
+

1

2
rγ
(
σ2
D + σ2

η + 2ρtσDση +
(
σa,1t
)2
)

− 2λ

rγ (1− θ)

n(ρt)−1∑
n=1

(
1− e−rγ(P (ρ̂n,ρt,Gt,µt)+a0

t−a1
t)
) (
Gn,0
t −G

n−1,0
t

)
,

where n(ρt) is the minimum n such that ρ̂n > ρt.

5.6 Numerical Solution
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Figure 3: Bargaining Price

In this section, I present some basic properties of the model’s numerical solution. The

parameter values are chosen from Duffie et al. (2007), except for those I introduce: γ = 200,

λ = 625, β = 0.05, r = 0.05, q = 0.5, µη = 0.5, ση = 0.5, µD = 1, σD = 0.5, and θ = 0.8.

Regarding idiosyncratic risk, φ = 0.25 and σ = 0.1 are specified; for parameters related to
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aggregate risks, µ0 = −0.5, µ1 = −0.25, and δ = 10 are set.

Figure 3 displays some features of the model, given the same cross-sectional distribution

Gt under two possible aggregate states: µ0 and µ1. The x-axis of all plots represents an

agent’s type ρ. The two plots in the first row indicate that an owner’s reservation value or

a non-owner’s willingness to pay decreases as the correlation between his or her endowment

risk and the asset’s risk increases. The comparison between the two plots reveals that asset

owners’ reservation values are higher when the asset payoff is less correlated with the average

agents’ endowment risks.

The plots in the second row of Figure 3 show that a non-owner of type ρt = −0.5 pays

a lower price if he or she encounters an owner with a lower reservation value, that is, when

the owner’s type ρ is higher. Similarly, under the state µt = −0.25, non-owners tend to pay

lower prices to acquire the asset. The bottom two plots illustrate the relationship between

the price at which an owner sells the asset and the buyers’ types ρ. As expected, when

buyers’ willingness to pay increases — i.e., when a buyer’s type ρ decreases — the seller can

charge a higher price.

6 Final Remarks

The applications of the deep learning-based probabilistic approach go beyond dynamic

heterogeneous-agent models. To the best of my knowledge, all dynamic economic models

can be cast in the Forward-Backward SDE framework or its variants. Dynamic optimiza-

tion with transaction costs and optimal stopping decisions can be characterized by reflected

BSDEs. The set of equilibrium payoffs in dynamic games could be captured by set-valued

BSDEs. Even the static combinatorial discrete choice can be approximated with dynamic

optimization in a continuous-time setting.

When the number of state variables becomes a secondary concern for model construction,

economists can treat parameters as time-invariant state variables, which paves the road for

confronting models with data. Although the continuous-time setting currently is not the most

favorable choice for quantitative models, it does have the advantage of accommodating data

of various frequencies within a single model, which is still under-exploited in the literature.
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Appendix

A Algebra of the Finite Volume Method

In this section, I will first outline the law of motion for the boundary cases G0,0
t , G1,0

t , GN,0
t of

type−0 households and G1,1
t , GN,0

t of type-1 households. Second, I will illustrate the matrix

operations of updating vectors

G0
t =



G0,0
t

G1,0
t

G2,0
t
...

GN,0
t


,G1

t =



G1,1
t

G2,1
t

G3,1
t
...

GN,1
t


.

The law of motion for G0,0
t , i.e., the probability mass of type-0 at the boundary x0 = −b,

is

G0,0
t+∆ −G

0,0
t = −µt (x0, 0) ∆

(
G1,0
t

x1 − x0
1 {µt (x0, 0) < 0}+G0,0

t 1 {µt (x0, 0) ≥ 0}

)

− σkt (x0, 0) ∆Wt

(
G1,0
t

x1 − x0
1 {kt (x0, 0) ∆Wt < 0}+G0,0

t 1 {kt (x0, 0) ∆Wt ≥ 0}

)

+ σ2

[
k2
t (x̂1, 0)G1,0

t

(x1 − x0)2 − k2
t (x0, 0)G0,0

t

x1 − x0

]
∆− λ0G0,0

t ∆,

where ∇x {k2
t (x0, 0) gt (x0, 0)} is evaluated according to the following procedure.

∇x
{
k2
t (x0, 0) gt (x0, 0)

}
=
k2
t (0.5 (x1 + x0) , 0) gt (0.5 (x1 + x0) , 0)− k2

t (x0, 0)G0,0
t

0.5 (x1 − x0)

=
2k2

t (x̂1, 0)G1,0
t

(x1 − x0)2 − 2k2
t (x0, 0)G0,0

t

x1 − x0
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The law of motion for G1,0
t , the probability of type-0 households over (x0, x1], is

G1,0
t+∆ −G

1,0
t

= −µt (x1, 0) ∆

(
G2,0
t

x2 − x1
1 {µt (x1, 0) < 0}+

G1,0
t

x1 − x0
1 {µt (x1, 0) ≥ 0}

)

+ µt (x0, 0) ∆

(
G1,0
t

x1 − x0
1 {µt (x0, 0) < 0}+G0,0

t 1 {µt (x0, 0) ≥ 0}

)

− σkt (x1, 0) ∆Wt

(
G2,0
t

x2 − x1
1 {kt (x1, 0) ∆Wt < 0}+

G1,0
t

x1 − x0
1 {kt (x1, 0) ∆Wt ≥ 0}

)

+ σkt (x0, 0) ∆Wt

(
G1,0
t

x1 − x0
1 {kt (x0, 0) ∆Wt < 0}+G0,0

t 1 {kt (x0, 0) ∆Wt ≥ 0}

)

+ σ2

[
k2
t (x̂2, 0)G2,0

t

(x2 − x1) (x2 − x0)
− k2

t (x̂1, 0)G1,0
t

(x1 − x0) (x2 − x0)

]
∆

− σ2

[
k2
t (x̂1, 0)G1,0

t

(x1 − x0)2 − k2
t (x0, 0)G0,0

t

x1 − x0

]
∆− λ0G1,0

t ∆ + λ1G1,1
t ∆.

The law of motion for G1,1
t , the probability of type-1 households over (x0, x1], is

G1,1
t+∆ −G

1,1
t

= −µt (x1, 1) ∆

(
G2,1
t

x2 − x1
1 {µt (x1, 1) < 0}+

G1,1
t

x1 − x0
1 {µt (x1, 1) ≥ 0}

)

− σkt (x1, 1) ∆Wt

(
G2,1
t

x2 − x1
1 {kt (x1, 1) ∆Wt < 0}+

G1,1
t

x1 − x0
1 {kt (x1, 1) ∆Wt ≥ 0}

)

+ σ2

[
k2
t (x̂2, 1)G2,1

t

(x2 − x1) (x2 − x0)
− k2

t (x̂1, 1)G1,1
t

(x1 − x0) (x2 − x0)

]
∆− λ1G1,1

t ∆ + λ0
(
G0,0
t +G1,0

t

)
∆.

The law of motion for GN,j
t , j = 0, 1, the probability of both types of households over

(xN−1, xN ], is

GN,jt+∆ −G
N,j
t

= µt (xN−1, j) ∆

(
GN,jt

xN − xN−1
1 {µt (xN−1, j) < 0}+

GN−1,j
t

xN−1 − xN−2
1 {µt (xN−1, j) ≥ 0}

)

+ σkt (xN−1, j) ∆Wt

(
GN,jt

xN − xN−1
1 {kt (xN−1, j) ∆Wt < 0}+

GN−1,j
t

xN−1 − xN−2
1 {kt (xN−1, j) ∆Wt ≥ 0}

)

− σ2

[
k2
t (x̂N , j)G

N,j
t

(xN − xN−1) (xN − xN−2)
− k2

t (x̂N−1, j)G
N−1,j
t

(xN−1 − xN−2) (xN − xN−2)

]
∆− λjGN,jt ∆ + λ1−jGN,1−jt ∆.
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Next, I rewrite the law of motions for these probabilities in a compact vector-matrix

format to fully take advantage of GPU’s high performance on matrix operations. Let µn,j

denote µ (xn, j), µ
+
n,j denote max {0, µn,i}, µ−n,i denote min {0, µn,i}, kn,j denote kt (xn, j),

and k̂n,j denote kt (x̂n, j).

G0,0
t+∆ = G0,0

t +
(
−M0,0

+

)
G0,0
t +

(
−M0,0

−

)
G1,0
t − λ0∆G0,0

t , where

M0,0
+ = µ+

0,0∆ + {k0,0∆Wt}+ σ +
k2

0,0σ
2∆

x1 − x0

M0,0
− =

µ−0,0∆

x1 − x0
+
{k0,0∆Wt}−

x1 − x0
σ −

k̂2
1,0σ

2∆

(x1 − x0)2

G1,0
t+∆ = G1,0

t +
(
M0,0

+

)
G0,0
t +

(
−M1,0

+ +M0,0
−

)
G1,0
t +

(
−M1,0

−

)
G2,0
t − λ0∆G1,0

t + λ1∆G1,1
t , where

M1,0
+ =

µ+
1,0

x1 − x0
∆ +

{k1,0∆Wt}+

x1 − x0
σ +

k̂2
1,0σ

2∆

(x1 − x0) (x2 − x0)

M1,0
− =

µ−1,0
x2 − x1

∆ +
{k1,0∆Wt}−

x2 − x1
σ −

k̂2
2,0σ

2∆

(x2 − x1) (x2 − x0)

G1,1
t+∆ = G1,1

t +
(
−M1,1

+

)
G1,1
t +

(
−M1,1

−

)
G2,1
t − λ1∆G1,1

t + λ0∆
(
G0,0
t +G1,0

t

)
, where

M1,1
+ =

µ+
1,1

x1 − x0
∆ +

{k1,1∆Wt}+

x1 − x0
σ +

k̂2
1,1σ

2∆

(x1 − x0) (x2 − x0)

M1,1
− =

µ−1,1
x2 − x1

∆ +
{k1,1∆Wt}−

x2 − x1
σ −

k̂2
2,1σ

2∆

(x2 − x1) (x2 − x0)

Gn,jt+∆ = Gn,jt +
(
Mn−1,j

+

)
Gn−1,j
t +

(
−Mn,j

+ +Mn−1,j
−

)
Gn,jt +

(
−Mn,j

−

)
Gn+1,j
t

− λj∆Gn,jt + λ|j−1|∆G
n,|j−1|
t , where

Mn,j
+ =

µ+
n,j

xn − xn−1
∆ +

{kn,j∆Wt}+

xn − xn−1
σ +

k̂2
n,jσ

2∆

(xn − xn−1) (xn+1 − xn−1)

Mn,j
− =

µ−n,j
xn+1 − xn

∆ +
{kn,j∆Wt}−

xn+1 − xn
σ −

k̂2
n+1,jσ

2∆

(xn+1 − xn) (xn+1 − xn−1)

GN,jt+∆ = GN,jt +
(
MN−1,j

+

)
GN−1,j
t +

(
MN−1,j
−

)
GN,jt − λj∆GN,jt + λ1−j∆GN,1−jt

To group the coefficients of Gn,j
t ,

M0
+ ≡



M0,0
+

M1,0
+
...

Mn,0
+
...

MN−1,0
+


,M0
− ≡



M0,0
−

M1,0
−
...

Mn,0
−
...

MN−1,0
−


,M1

+ ≡



M1,1
+
...

Mn,1
+
...

MN−1,1
+


,M1
− ≡



M1,1
−
...

Mn,1
−
...

MN−1,1
−


,
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the update of Gn,j
t has a compact form

G0
t+∆ = G0

t +

(
0

M0
+

)
�G0

t+ +

(
−

(
M0

+

0

)
+

(
0

M0
−

)
− λ0∆

)
�G0

t

−

(
M0
−

0

)
�G0

t− + λ1∆

[
0

G1
t

]
,

G1
t+∆ = G1

t +

(
0

M1
+

)
�G1

t+ +

(
−

(
M1

+

0

)
+

(
0

M1
−

)
− λ1∆

)
�G1

t

−

(
M1
−

0

)
�G1

t− + λ0∆


G0,1
t +G1,0

t

G2,0
t
...

GN,0t

 ,

where � denotes element-wise product, and

G0
t+ ≡



0

G0,0
t

G1,0
t

G2,0
t
...

GN−2,0
t

GN−1,0
t


,G0

t− ≡



G1,0
t

G2,0
t

G3,0
t
...

GN−1,0
t

GN,0t

0


,G1

t+ ≡



0

G1,1
t

G2,1
t

G3,1
t
...

GN−2,1
t

GN−1,1
t


,G1

t− ≡



G2,1
t

G3,1
t

G4,1
t
...

GN−1,1
t

GN,1t

0


.

B Krusell and Smith (1997) with Asset Pricing

In Section 4, the capital adjustment cost is zero, which implies that households can always

convert one unit of final consumption goods into one unit of physical capital, and vice versa.

With the consumption good as the numeraire, the price of physical capital is one, due to

the no-arbitrage condition. In this section, I introduce technological illiquidity to physical

capital, transforming it into durable goods. Consequently, its price, qt, becomes a forward-

looking stochastic process.

B.1 Model

Building on the model considered in Section 4, I introduce a capital adjustment cost. A

household holding kt efficiency units of physical capital can convert ιkt units of consumption
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goods into Φ(ι)kt units of physical capital, and vice versa, where Φ(ι) = 1
ψ

ln(ψι+1). Suppose

the market price of physical capital is qt, i.e., a household can exchange 1 unit of consumption

goods for 1
qt

units of physical capital in the market. Since the opportunity cost of capital

production is 1
qt

(in units of physical capital), the household’s optimal investment rate, ιt,

satisfies

ιt = arg max
ι

Φ(ι)− ι

qt
,

=
qt − 1

ψ
.

Given the optimal investment rate ιt, the capital stock held by a household follows

dkt
kt

= (Φ(ιt)− δ) dt+ σdWt.

The price of physical capital, qt, and its dynamics affect the demand and supply of both

consumption goods and physical capital goods in the current and future markets. The current

capital price determines the conversion of final goods to physical capital. The expected return

on capital and its risks influence households’ portfolio choices and their demands for the risky

asset. Hence, the asset pricing of physical capital is an intricate subject. At this moment, I

conjecture that qt follows a BSDE

dqt
qt

= µqtdt+ σqtdWt.

Given the law of motion for qt, the return of holding physical capital is(
rkt − ιt
qt

+ Φ(ιt)− δ + µqt + σσqt

)
︸ ︷︷ ︸

≡Rt

dt+ (σ + σqt )dWt.

Note that the financial market is incomplete; there is endogenous risk as households who

take leverage to hold physical capital are disproportionately more exposed to aggregate risks,

which is captured by σqt .

Suppose the dollar amount invested in physical capital is κt, the consumption rate is ct,

and the risk-free rate is rt. Then, the law of motion for a household’s wealth, xt, is given by

dxt = (rtxt + (Rt − rt)κt + εtw (Kt, Lt) + (1− εt) g − ct) dt+ (σ + σqt )κtdWt.

Note that κt = qtkt if kt represents the efficiency units of physical capital held by the
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household. There are three differences from the physical capital holding described in Section

4: (1) the production of capital − ιt
qt

+Φ(ιt), (2) capital gain µqt +σσqt , and (3) the endogenous

risk σqt . As in Section 4, households are not allowed to short physical capital, i.e.,

κt ≥ κ;

and there is an upper bound for borrowing:

κt − xt ≤ b.

These two restrictions imply a constraint on the net worth of a household: xt ≥ −b.

B.2 Markov Equilibrium

As in Section 4, I will solve for the Markov equilibrium of the model with the aggregate

state variable Gt(·, j), j = 0, 1, representing the distribution of households’ wealth xt. In

this section, I will first outline a household’s optimal dynamic decisions, then discuss the

market clearing conditions, as well as the law of motion for Gt(·, j).
The Hamiltonian function for an individual household’s dynamic optimization is

H(t, x, c, κ, y, z) = ln(c) + (rtx+ (Rt − rt)κ+ εtlw(Kt, Lt) + (1− εt)g − c) y + (σ + σqt )κz,

when the state constraint xt ≥ −b is not binding. The co-state variable of a type-j household

is denoted by Y j
t , j = 0, 1, which follows the same BSDE depicted by equation (14). The

first-order conditions are

cjt =
1

Y j
t

rkt − ιt
qt

+ Φ(ιt)− δ + µqt + σσqt − rt = −(σ + σqt )Z
Y,j
t

Y j
t

if κ < κ < xt + b

Note the Euler equation with respect to κt is more involved than the corresponding one

in Section 4 because of capital production, capital gain, and the endogenous risk. Next, I

characterize the portfolio choice κt. Similar to Section 4, I apply Ito’s formula and decompose

the volatility term ZY,j
t into two components: ∂Y j

∂x
(xt, Gt)(σ + σqt )κt, the contributions of xt,

and Z̃Y,j
t , the contribution of Gt

ZY,j
t =

∂Y j

∂x
(xt, Gt)(σ + σqt )κt + Z̃Y,j

t .
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Then, when the excess return Rt − rt is sufficiently large,

Rt − rt > −
(σ + σqt )

Y j
t

(
∂Y j

∂x
(xt, Gt)(σ + σq)(xt + b) + Z̃Y,j

t

)
,

the optimal κt = xt + b. If the excess return is too low,

Rt − rt < −
(σ + σqt )

Y j
t

(
∂Y j

∂x
(nt, Gt)(σ + σq)κ+ Z̃Y,j

t

)
,

the optimal κt = κ. In between, the optimal κt satisfies

κjt = −Y
j
t (Rt − rt) + (σ + σqt )Z̃

Y,j
t

(σ + σqt )
2 ∂Y j

∂x
(xt, Gt)

.

Overall, the policy function of a household’s portfolio choice κ(xt, Gt) satisfies

κj(xt, Gt) = min
{

max
{
κ̃j(xt, Gt), κ

}
, xt + b

}
, where

κ̃j(xt, Gt) ≡ −
Y j
t (Rt − rt) + (σ + σqt )Z̃

Y,j
t

(σ + σqt )
2 ∂Y j

∂x
(xt, Gt)

.

With the optimal consumption and portfolio choices, a household’s value function V j(xt, Gt),

j = 0, 1, is characterized by the same BSDE as equation (16), and Y j
t is still equal to

∇xV
j(xt, Gt).

Given a household’s demand for risk-free bonds κj(xt, Gt)− xt, the condition of zero net

bond supply is ∑
j=0,1

∫
(κj(x,Gt)− x)dGt(x, j) = 0.

The aggregate stock of physical capital satisfies

qtKt =
∑
j=0,1

∫
κj(x,Gt)dGt(x, j) =

∑
j=0,1

∫
xdGt(x, j).

In this model, the bond market clearing condition depends not only on the risk-free rate

rt but also on the instant return and risk of physical capital, µqt and σqt . The consumption

goods market clearing condition is

∑
j=0,1

∫
cj(x,Gt)dGt(x, j) +

qt − 1

ψ
Kt = zKα

t L
1−α
t ,
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where qt−1
ψ
Kt represents the aggregate investment expenditure. In the model of Section 4,

the consumption goods market clears automatically as households can convert consumption

goods into physical capital on a one-for-one basis and vice versa. However, in the current

model, the investment expenditure depends on the endogenous asset price qt.

The stochastic Kolmogorov Forward Equation, which captures the dynamics of the ag-

gregate state variable Gt or its density function gt(x, j), j = 0, 1, is given by:

dgt(x, j) =−∇x(µt(x, j)gt(x, j))dt−
∂

∂x
((σ + σqt )κt(x, j)dWt) gt(x, j)

+
1

2
∇xx

{
(σ + σqt )

2κ2
t (x, j)gt(x, j)

}
dt− λjgt(x, j)dt+ λ1−jgt(x, 1− j)dt.

The term µt(x, j) and (σ+σqt )κt(x, j) represent the drift and volatility terms of an individual

household with wealth xt, respectively.

B.3 Numerical Implementation

There are two major differences between the numerical procedure for solving the current

model and the one for the model considered in Section 4, whose detailed numerical steps

are displayed in Appendix C. First, since the price of physical capital is forward-looking,

the algorithm ensures that its corresponding BSDE is upheld. As a by-product of solving

the BSDE of qt, I need to approximate σq(Gt; Θ) with a neural network. Second, I directly

capture the risk-free rate rt as an approximated function of the aggregate state variable,

i.e., r(Gt; Θ), instead of solving for rt via the consumption goods market clearing condition.

Next, I outline the construction of the loss function concerning qt’s BSDE.

Given the aggregate state variable Gt(·, j) and the forward-looking variable Y j(x,Gt)

approximated by a neural network, the market clearing condition for consumption goods

yields the price of physical capital qt. Let Xt denote:

∑
j=0,1

∫
xdGt(x, j).

Then,

∑
j=0,1

∫ (
Y j (x,Gt)

)−1
dGt (x, j) +

qt − 1

ψ

Xt

qt
= z

(
Xt

qt

)α
L1−α
t ,

∑
j=0,1

∫ (
Y j (x,Gt)

)−1
dGt (x, j) +

Xt

ψ
=

1

ψ

Xt

qt
+ z

(
Xt

qt

)α
L1−α
t .
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In particular, I use the Newton method to solve for the root of the above nonlinear equation

with respect to qt. Let q(Gt; Θ) denote the mapping from Gt to qt.

Starting with the initial q0 implied by q(G0; Θ), I calculate the dynamics of qt with its

BSDE:

qi+1 = qi + qi(µ
q
i∆ + σqiwi),

where σqi is given by the neural network σq(Gi; Θ), and µqi is solved for by clearing the bond

market. Given that the households’ demand for physical capital increases with µqt , the value

of µqi is found using the bisection method. The finite volume method updates Gi according

to the KFE and the policy function. The BSDE loss with respect to qt is

I∑
i=1

(qi − q(Gi; Θ))2.
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Figure 4 shows the properties of a few endogenous variables given an aggregate state. The

average price of the durable asset is 1.249, the average volatility of the asset price is 0.5%,

and the average risk-free rate is 3.3%. Due to idiosyncratic risk and market incompleteness,

employed households choose to hold risky assets when their wealth level is sufficiently high,

while unemployed households opt not to hold risky assets.

C Algorithm: The Construction of Loss Function

This algorithm section covers the details of how to construct the loss function for a deep learn-

ing package to minimize. Subsection C.1 considers the continuous-time version of Krusell

and Smith (1997), and Subsection C.2 is dedicated to the example of the search and matching

model.

C.1 Loss Function of Krusell and Smith (1997) in Section 4

C.1.1 Generating Initial Wealth Distribution

I generate the initial wealth distribution of households based on Beta distribution, Beta (α, β).

Taking M as the number of economies, I select M random draws of α0 and α1 uniformly

from [1.5, 2.5], and M random draws of β0 and β1 uniformly from [2, 4]. Given the density

functions of two Beta distributions g0 ∼ β (α0, β0) and g1 ∼ β (α1, β1), I construct

Gn,0 =

∫ xn

xn−1

g0 (x) dx,Gn,1 =

∫ xn

xn−1

g1 (x) dx, n = 1, · · · , N.

Since the distribution of type−0 households has a mass point at x = −b, I use the maximum

point of the series Gn,0, denoted by (nmax, G
nmax,0) and construct the mass point G0,0 at

x0 = 0 as G0,0 = 0.8Gnmax,0. Accordingly, the overall Gn,0’s are modified according to the

following scheme: 1) for the n-th interval, 1 ≤ n < nmax, increase the probability over it

as Gn,0 = Gn,0 + 0.3 (Gnmax,0 −Gn,0); 2) for the n-th interval, n ≥ nmax, do no adjustment.

Given the adjustment, I rescale the series Gn,0 to have their sum equal one,

Gn,0∑N
n=0 G

n,0
⇒ Gn,0, n = 0, · · · , N.

In the end, I adjust Gn,0 and Gn,1

λ1

λ0 + λ1

Gn,0 ⇒ Gn,0,
λ0

λ0 + λ1

Gn,1 ⇒ Gn,1
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so that the proportion of type-0 households is at the stationary level λ1/
(
λ0+λ1

)
.

C.1.2 Initializing Exogenous Shocks

In a heterogeneous-agent model, I need to simulate both aggregate Brownian shocks and

idiosyncratic employment shocks. Given a simulated path
{
Wi,m, i = 0, · · · , I−1

}
, let wi,m ≡

Wi+1,m−Wi,m, where m is the economy index. Along the time path of an economy, I always

focus on households of both types at certain fixed wealth levels, i.e., xh, h = 0, 1, · · · , H, in

any period. In other words, within period i I consider the dynamics of household h from

the beginning of the period to the end. And, in Period h+ 1, I will go back to a household

whose wealth level is xh. Since there are two types of households, the sample size of overall

households in an economy is 2H. The idiosyncratic shock to household h of economy m in

period i is denoted as Iji,h,m if she is of type-j, j = 0, 1. Iji,h,m is set to 1 with probability

∆λj, where ∆ is the length of a period; otherwise, Iji,h,m = 0. When I0
i,h,m = 1, household h

of type-0 switches to type-1 in period i.

C.1.3 Computation within Period i

1. Calculate aggregate capital supply Ki

Ki =
N∑
n=0

x̂nG
n,0
i +

N∑
n=1

x̂nG
n,1
i

Recall that xn, n = 0, · · · , N are points that discretizing the individual state space of

the finite volume method, x̂0 = x0, and x̂n = 0.5 (xn + xn−1) for n ≥ 1. Given Ki,

calculate the labor wage

wi = (1− α) z

(
Ki

L

)α
and the return to physical capital

rKi = αz

(
Ki

L

)α−1

2. Given inputs (xn, Gi), (x̂n, Gi), (xh, Gi), the network generate outputs Y j
n,i, Z̃

Y,i
n,t , Yi,n̂, Z̃

Y,j
i,n̂ ,

and Y j
h,i, V

j
h,i, Z̃

Y,j
h,i , U

Y,j
h,i , Z

V,j
h,i , U

V,j
h,i .

3. Use the finite difference method to evaluate ∇xV (x,G) along xh
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• for h = 0, use forward difference

∇xV
j
i,0 =

V j
i,1 − V

j
i,0

x1 − x0

• for 1 ≤ h ≤ H − 1, use 3 points difference:

∇xV
j
i,h =V j

i,h−1

xh − xh+1

(xh−1 − xh) (xh−1 − xh+1)
+ V j

i,h

2xh − xh−1 − xh+1

(xh − xh−1) (xh − xh+1)

+ V i
i,h+1

xh − xh−1

(xh+1 − xh−1) (xh+1 − xh)

• for n = N , use backward difference

∇xV
j
i,N =

V j
i,H − V

j
i,H−1

xH − xH−1

Define the loss that corresponds to condition Y j
t = ∇xV

j(xt, Gt)

LossFD =
1

2H

H∑
h=0

1∑
j=0

(
Y j
i,h −∇xV

j
i,h

)2
.

4. Calculate

cji,h =
(
Y j
i,h

)−1

Fix h̃ that xh̃ is large enough. Calculate

Losss =
1

2
(
H − h̃

) H∑
h=h̃+1

1∑
j=0

(
cji,h − c

j
i,h−1

xh − xh−1

− ρ

)2

and

LossH =
1∑
j=0

(
max

{
cji,H − 1.2ρ

(
xH +

wil̄

ρ

)
, 0

})2

Losss captures the linearity of the policy function when a household’s wealth level is

so high that the borrowing constraint has negligible effects. And, LossH ensures that

the policy functions are bounded from above.

5. Evaluate 5xY (x,G) for both xn, x̂n and xh,
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• for n = 0 or h = 0, use forward difference

5xY
j
i,0 =

Y i
1,t − Y i

0,t

x1 − x0

• for 1 ≤ n ≤ N − 1 or 1 ≤ h ≤ H − 1, use 3 points difference

5xY
j
i,n =Y j

i,n−1

xn − xn+1

(xn−1 − xn) (xn−1 − xn+1)
+ Y j

i,n

2xn − xn−1 − xn+1

(xn − xn−1) (xn − xn+1)

+ Y j
i,n+1

xn − xn−1

(xn+1 − xn−1) (xn+1 − xn)

• for n = N or h = H, use backward difference

5xY
j
N,0 =

Y i
N,t − Y i

N−1,t

xN − xN−1

For midpoints x̂n, the corresponding derivative terms are denoted as 5xY
j
i,n̂.

6. Use the bisection method to find the risk-free rate ri, whose upper bound is r̄ and lower

bound r. Since 5xY
j
i,n̂ is supposed to be negative and Y j

i,n̂ is supposed to be positive,

each household’s capital holding should be monotonically decreasing in the risk-free

rate ri. Iterate 25 rounds of the following bisection

• set ri = r̄+r
2

at the start of each round

• calculate

k̂ji,n = min

{
max

{
− 1

σ25x Ŷ
j
i,n

(
Ŷ i
n,t

(
rKi − δ − ri

)
+ σZ̃Y,j

i,n̂

)
, k

}
, x̂n − b

}

• calculate aggregate capital demandKdemand = k0
i,0G

0,0
i +

∑N
n=1 k̂

0
i,nG

n,0
i +

∑N
n=1 k̂

1
i,nG

n,1
i

• if Kdemand ≥ Ki, the risk free rate is too low, set r = ri

• if Kdemand < Ki, the risk free rate is too high, set r̄ = ri

7. Given ri, calculate

kji,h = min

{
max

{
− 1

σ25x Y
j
i,h

(
Y j
i,h

(
rKi − δ − ri

)
+ σZ̃Y,j

i,h

)
, k

}
, xh − b

}

8. Calculate the drift of households’ wealth µw,ji,h

µw,ji,h = rixh +
(
rKi − δ − ri

)
kji,h + jwi + (1− j) g − cji,h
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9. Update Gi+1 according to Section A, and update individual wealth level

xjh = xh +
(
1− Iji,h

) (
µw,ji,h ∆ + σkji,hwi

)
10. Calculate ZY,j

i,h

ZY,j
i,h = 5xY

j
i,hσk

j
i,h + Z̃Y,j

h,i

Update the BSDEs at point xh

Y j
i+1,h = Y j

i,h +
(
1− Iji,h

) (
− (ri − ρ)Y j

i,h∆ + ZY,j
i,h wi

)
+ Iji,hU

Y,j
i,h

V j
i+1,h = V j

i,h +
(
1− Iji,h

) (
−
(
ln
(
cji,h
)
− ρV j

i,h

)
∆ + ZV,j

i,h wi

)
+ Iji,hU

Y,j
i,h

Taking
(
xjh,Gi+1

)
as the inputs of network, generate Ỹ j

i+1,h, Ṽ
i
i+1,h according to

Ỹ 0
i+1,h =

(
1− I0

i,h

)
Y 0
(
x0
h,Gi+1

)
+ I0

i,hY
1
(
x0
h,Gi+1

)
Ỹ 1
i+1,h =

(
1− I1

i,h

)
Y 1
(
x1
h,Gi+1

)
+ I1

i,hY
0
(
x1
h,Gi+1

)

Ṽ 0
i+1,h =

(
1− I0

i,h

)
V 0
(
x0
h,Gi+1

)
+ I0

i,hV
1
(
x0
h,Gi+1

)
Ṽ 1
i+1,h =

(
1− I1

i,h

)
V 1
(
x1
h,Gi+1

)
+ I1

i,hV
0
(
x1
h,Gi+1

)
where Y j (·, ·) and V j (·, ·) denote the function approximated by the network.

11. Calculate the loss of period i

Loss =Loss +
1

2 (H + 1)

H∑
h=0

1∑
j=0

[(
V j
i+1,h − Ṽ

j
i+1,h

)2

+ ωY

(
Y j
i+1,h − Ỹ

j
i+1,h

)2
]

+ ω0
0

(
g − c0

i,n=0

)2
+ ω1

0

({
wtl̄ − c1

i,n=0

}−)2

+ ωFD · LossFD

+ ωs · Losss + ωH · LossH

Losses
(
g − c0

i,n=0

)2
and

({
wtl̄ − c1

i,n=0

}−)2

ensures that boundary conditions for house-

holds with wealth level xt = −b.

C.2 Loss Function of Search-and-Matching Model in Section 5

In this section, I outline the construction of the loss function for a deep learning algorithm.

This function is used to find the approximations of aj (ρ,G, µ) and their volatility terms
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σa,j (ρ,G, µ), where j = 0, 1. These are denoted as aj (ρ,G, µ; Θ) and σa,j (ρ,G, µ; Θ), re-

spectively, for j = 0, 1.

C.2.1 Initialization

I will simulate the cross-sectional distribution of types and ownerships for 1,000 years, based

on the decision rule that an owner (or a non-owner) of type ρt would trade with counterparties

of types ρ < ρt (ρ > ρt), and save the distribution in the final period for the subsequent

construction of the loss function. In particular, I randomly generate the initial cross-sectional

distributions, Gn,j
t=0,m, j = 0, 1 for 10,000 economies, where each m refers to an economy,

m = 1, . . . , 10, 000. For each economy, I simulate the Markov chain of µt,m over 1,000

years. Given the path of the aggregate shock, I simulate Gn,j
t,m for 1,000 years and retain

Gn,j
t=1000,m for the computations that follow. Hereafter, I will suppress the subscript m since

the construction of the loss function is parallel for each economy.

For a given economy, I consider H agents, who could be either owners or non-owners.

Ownership does not affect the law of motion for an agent’s type ρt. The initial ρ0,h values

of the H agents are uniformly distributed between −1 and 1. For agent h, I simulate the

path of idiosyncratic shocks to his or her type, denoted as
{
B1
i,h, i = 0, . . . , I− 1

}
, and let

b1
i,h = B1

i+1,h −B1
i,h. The aggregate state of an economy is set to be constant over I periods.

This setting does not eliminate aggregate risk because its impact on the continuation value is

taken into account by the analytic formulation, the details of which are deferred to Subsection

C.2.3.

C.2.2 Match and Bargaining

Given that an agent of type ρi,h meets a counterparty in period i, the probability that the

counterparty’s type falls within the interval [ρn, ρn−1) and they own (do not own) an asset

is Gn,1
i −G

n−1,1
i (Gn,0

i −G
n−1,0
i ). I will use the bargaining outcome with the midpoint agent

ρ̂n = 0.5 (ρn + ρn−1) of the interval as the average outcome over all counterparties coming

from the interval. Suppose the agent in question is a non-owner and ρi,h < ρ̂n; then, the

transaction price, denoted as p0,n
i,h , is solved by the first-order condition

0 = q
(

1− e−rγ(p
0,n
i,h−(a1

i,h−a
0
i,h))

)
− (1− q)

(
1− e−rγ(−p

0,n
i,h +a1(ρ̂n,Gi,µ)−a0(ρ̂n,Gi,µ))

)
,

where a1
i,h and a0

i,h are obtained through the simulation of corresponding BSDEs. I em-

ploy 15 rounds of Newton-Raphson iterations to obtain p0,n
i,h , with the initial value given by

(1− q)
(
a1
i,h − a0

i,h

)
+ q (a1 (ρ̂n, Gi, µ)− a0 (ρ̂n, Gi, µ)). Using a similar procedure, I obtain
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p1,n
i,h when the agent is an owner and the counterparty’s type ρ̂n < ρi,h.

C.2.3 The Loss of Analytic Formulation

It is more efficient to use the analytic formulation to account for the impact of jump risks on

the conditional expectation. Taking the jump from µ0 to µ1 as an example, a large number

of paths would need to be simulated to yield an accurate average effect of the jump following

the probabilistic formulation. With the analytic formulation, a single evaluation at the new

state µ1 is sufficient. This evaluation is then weighted by the arrival rate δ to account for

the average impact. Next, I will rewrite the PDEs for aj (ρ,G, µ) as displayed by equations

(23) and (24) for constructing the loss of the analytic formulation

0 = µa,jt −
1

2
rγ
(
σa,jt
)2 − 1

rγ∆

(
1− Et

[
e−rγ(a

j(ρt+∆,Gt+∆,µk)−aj(ρt,Gt,µk))
])

− δ

rγ

(
1− e−rγ(aj(ρt,Gt,µ1−k)−aj(ρt,Gt,µk))

)
, j = 0, 1; k = 0, 1,

where

1

∆

(
1− Et

[
e−rγ(a

j(ρt+∆,Gt+∆,µk)−aj(ρt,Gt,µk))
])

=− φ (ρt − µk)
(
rγ
∂a0

∂ρ
(ρt, Gt, µk)

)
+

1

2
σ2

(
rγ
∂2a0

∂ρ2
(ρt, Gt, µk)− (rγ)2

(
∂a0

∂ρ
(ρt, Gt, µk)

)2
)

+ rγ
〈
∇ga

0 (ρt, Gt, µk) , µ
g
t (µk)

〉
+ o (∆)

and µa,0t and µa,1t are given by equations (26) and (25). To evaluate the conditional expec-

tation, I employ Gauss-Hermite quadrature, i.e.,

Et

[
e−rγa

j(ρt+∆,Gt+∆,µk)
]

=
1

2

(
e−rγa

j(ρut+∆,Gt+∆,µk) + e−rγa
j(ρlt+∆,Gt+∆,µk)

)
,

where

ρut+∆ = ρt − φ (ρt − µk) ∆ + σ
√

∆,

ρlt+∆ = ρt − φ (ρt − µk) ∆− σ
√

∆,

Gt+∆ = Gt + µgt (µk) ∆.
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C.2.4 Computation

For a given economy, the initial aggregate state is specified by Gn,j
i=0, n = 1, . . . , N, j = 0, 1,

and µk, k = 0, 1, where µk does not change over the following I periods. Let Gi denote the

vector
[
Gn,j
i , n = 1, . . . , N, j = 0, 1

]
. The initial state of agent h is ρ0,h, h = 1, . . . , H, and

the initial aj0,h, j = 0, 1 are given by the network aj (ρ0,h,G0, µk; Θ).

Given the aggregate and individual initial states, I calculate the loss based on the analytic

formulation:

Loss =
1

2H

H∑
h=1

∑
j=0,1

(
µa,j0,h −

1

2
rγ
(
σa,j0,h

)2 − 1

rγ∆

(
1− E0

[
e−rγ(a

j(ρ1,h,G1,µk)−aj(ρ0,h,G0,µk))
])

− δ

rγ

(
1− e−rγ(aj(ρ1,h,G1,µ1−k)−aj(ρ0,h,G0,µk))

)2

,

where σa,j0,h are generated by the network σa,j (ρ0,h,G0, µk; Θ) and µa,j0,h, j = 0, 1 are calculated

based on equations (27) and (28) below. Next, I start the iteration over I periods. Entering

period i, three steps of calculation follow.

1. Calculate µa,ji,h , j = 0, 1,

µa,0i,h =
r − β
rγ
−
(

log (r)

γ
− ra0

i,h + µη

)
+

1

2
rγ
(
σ2
η +

(
σa,0i,h
)2
)

− 2λ

rγΘ

N∑
n=n(h,i)

(
1− e−rγ(−p

0,n
i,h +a1

i,h−a
0
i,h)
)

∆G1
i,n (27)

µa,1i,h =
r − β
rγ
−
(

log (r)

γ
− ra1

i,h + µD + µη

)
+

1

2
rγ
(
σ2
D + σ2

η + 2ρi,hσDση +
(
σa,1i,h
)2
)

− 2λ

rγ (1−Θ)

n(h,0)−1∑
n=0

(
1− e−rγ(p

1,n
0,h+a0

i,h−a
1
i,h)
)

∆G0
i,n (28)

n (h, i) ≡ min {n : ρ̂n > ρi,h} ,

where σa,ji,h , j = 0, 1, are generated by the network σa,j (ρ0,h,G0, µk; Θ).

2. Calculate

ρi+1,h = ρi,h − φ (ρi,h − µk) ∆ + σb1
i,h

aji+1,h = aji,h + µa,ji,h∆ + σa,ji,h b
1
i,h, j = 0, 1

3. Calculate Gi+1 according to its law of motion specified in Subsection 5.5, and calculate
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the loss of the probabilistic formulation

Loss = Loss +
1

2HI

H∑
h=1

∑
j=0,1

(
aji+1,h − a

j (ρi+1,h,Gi+1, µk; Θ)
)2
.

Then, move to the next period until reaching period I.

The calculations above are for a single economy. The ultimate loss function is the average

loss across all 10, 000 economies.
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