Stay Longer, Fill the Vacancy: Evidence from South Korea's New Visa System

Jongkwan Lee Yujeong Lee Hee-Seung Yang

Yonsei University

The 17th Joint Economics Symposium of 6 Leading East Asian Universities

Yonsei-Keio Economics Graduate Student Workshop

Introduction

Introduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendix

Motivation

- Several advanced economies have experienced large **shortage** of low-skilled workers.
 - In sectors such as agriculture, construction, and low-skilled manufacturing
 - Due to the increase in education and the aging of the native population
- The **shortage** in these sectors was **exacerbated** after the Covid-19 pandemic (Lowrey 2021).
- Immigrants fill those bottlenecks in many countries.
 - They are specialized in manual and physically-intensive jobs (Peri and Sparber 2009)

Introduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendix

Motivation

- South Korea is an extreme example of a highly educated and aging society.
 - Also experiencing a significant labor shortage
- To relieve the labor **shortage**, South Korea runs a **foreign guest** worker program.
 - Employment Permit System (EPS)
- However, EPS workers are **temporary** workers.
 - They can work up to 4 years and 10 months.
 - It hinders immigrant workers' assimilation into Korean society and results in the loss of firm-specific human capital.
- In 2017, Korean government introduced a new visa for stable stay of the guest workers.

Introduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendi

This Paper

- Examines the impact of the **new visa** system (E-7-4) on outcomes of **local firms**.
 - Job vacancy, value added (manufacturing), employment
- By exploiting the pre-period exposure to the new visa system across 227 cities in Korea
 - Population share of foreigners that were eligible for (E9, E10, and H2) the new visa
- Contributions:
 - **II** Unique setting (South Korea): highly educated + fastest aging \rightarrow labor shortage
 - 2 A policy that extends the **length of stay** for immigrants (**not** an **inflow** of them)
 - **3** Heterogeneous job vacancy and productivity effect across regions.

Introduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendio

Preview of Findings

- The introduction of the E-7-4 system **lowered job vacancies** in certain industries. (e.g. manufacturing, agriculture).
- **2** The new visa enhanced labor **productivity**, measured by the **value added** per worker.
- Heterogeneity: the job vacancy (productivity) effect pronounced in non-Seoul (Seoul).
- 4 The policy did **not** lead to an increase in local **employment**.

Introduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendi

Related Literature

Low-skilled Immigration and Local Labor Market

- US: (Peri, 2011; Monras, 2020; Lee, Peri, and Yasenov, 2022)
- Europe: (see Edo, 2019; Dustmann, Schönberg, and Stuhler 2017)
- Korea: (Kim, 2021; Kim and Lee, 2023; Kim, Lee, and Peri 2024)

The Status of Immigrants

Pan (2012), Chassamboulli and Peri (2015), Borjas (2017), Albert (2021),

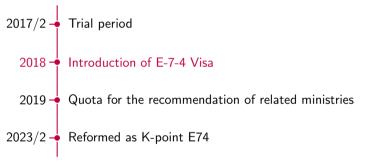
Immigration and Labor Shortage

- Anastasopoulos, Borjas, Cook, and Lachanski (2021)
 - Immigrant supply shocks (Mariel boatlift) \rightarrow job vacancies \downarrow in Miami.
- Foged, Kreuder, and Peri (2022)
 - Examines a policy that matched refugees to occupations with local labor shortages.

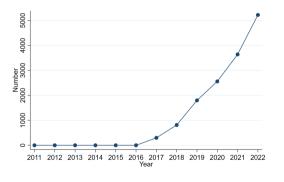
Institutional Background

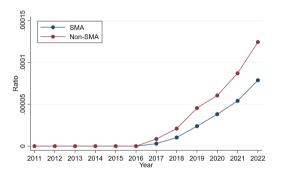
Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendis

EPS (Employment Permit System)


- EPS was introduced in 2004, to address the labor shortages in certain sectors.
 - Government to government arrangement with 16 Asian countries
- E-9 visa (non-professional): mainly in manufacturing, agriculture, and fishery
- 2 H-2 visa (work and visit): above sectors + some service sectors
- Restrictions on Immigrants' Stay
 - Foreigners must return to their home countries after 3 years (max. 4 years and 10 months).
 - Family invitation is not allowed (E-9) or allowed with restrictions (H-2).
- This temporary stay is unwelcomed by both foreign workers and employers.
 - Hinders the assimilation of immigrants.
 - May result in the loss of firm-specific human capital and increased cost

Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendix


Skilled Worker Points System Visa (E-7-4 visa)


- For foreign workers (with **E-9**, **E-10** (maritime crew), and **H-2 visa**) who worked more than 4 years
- Eligibilities are evaluated by
 - Industrial contribution (annual earnings)
 - Future value (e.g. skillfulness, Korean fluency, age) based on the points system.
 - Additional points for long-term work or rural areas
- Firms in manufacturing, construction, agriculture and fisheries can hire E-7-4 workers
 - Depending on the firm size.

Timeline of E-7-4

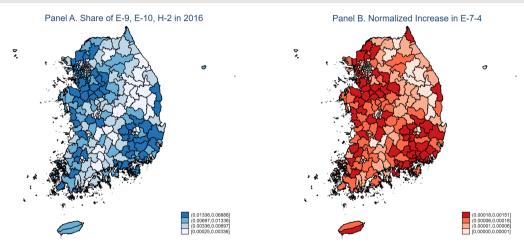
Trends of E-7-4

Source: Registered Foreigners by Districts Data, Korea Immigration Service

Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendix

Advantages of E-7-4

- E-7-4 visa guarantees the stable stay of foreign guest workers.
 - Continuous stay in Korea without the process of returning to home countries.
 - Family invitation with F-3 visa
 - the same stay period as E-7-4 worker and economic activities (though restrictive).
- Channels to relive the labor shortage / enhance productivity
 - 1 No loss of firm-specific human capital
 - 2 Stability to firms in sectors experiencing labor shortages.
 - 3 May induce a positive behavioral change to eligible workers (E-9, E-10, and H-2)
 - 4 Supply of family workers (F-3)


Data

Data

The district-year level panel dataset (227 districts for 2012–2022).

- Whole immigrant population
 - Provided by Korea Immigration Service
 - We can identify immigrants' visas and registered districts.
 - # of E-9, E-10, H-2, and E-7-4 foreigners and standardize it by 2016 district population.

Distribution E-9+E-10+H-2 and E-7-4

Source: Registered Foreigners by Districts Data, Korea Immigration Service

Institutional Background **Data** Empirical Framework Results Heterogeneity Conclusion Appendio

Data (ctd.)

2 Job vacancy

- Provided by Korean Employment Information Services
- We can identify job vacancies at the end of each month by districts and industries.

3 Value added

- Provided from Mine and Manufacturing Survey
- Value added per employee is defined as

 $\frac{\text{output value} - \text{intermediate input costs}}{\text{number of employees}}$

4 Employment

- Provided by Local Area Labor Force Survey (October version for each year)
- Collapse the individual-level into 162 city-level

Industry Classification

- Regulations on E-9, E-10, and H-2 specify the list of industries where the employment of those workers is permitted or prohibited.
- We classify industries by the exposure to E-7-4 system.

Classification	Industries
Direct Exposure	Manufacturing, Agriculture, Forestry, Fisheries, Construction
Partial Exposure	Industries not specified in other groups (e.g. Mining, Wholesale and Retail Trade)
No Exposure	Financial and Insurance Activities, Real Estate Activities, Education, Electricity, Gas, Steam and Air Conditioning Supply

Summary Statstics

	Mean	SD	Min	Max	N
Panel A: Key Outcomes					
Job Vacancy (Normalized)	0.00445	0.00383	0.00020	0.04419	2,497
Value Added Per Employee (in 1 million won)					
Manufacturing	138.5448	102.9386	-186.5468	1419.957	2,491
Root Industries	142.9168	89.22931	-211.5015	730.0222	2,280
Employment (Normalized)					
Low-Skilled Local Service	0.17966	0.03180	0.05954	0.35131	2,492
High-Skilled Local Service	0.14282	0.05061	0.03695	0.43622	2,492
Manufacturing	0.07323	0.04780	0.00674	0.33242	2,492
Panel B: Treatment Intensity					
2016 E-9+E-10+H-2 share	0.01090	0.01227	0.00025	0.06888	2,497
Panel C: District Characteristics					
2016 Population	227343	219093.2	10001	1194041	2,497
2016 Working Age Population	166198.4	166357.5	7112	913312	2,497
2016 Rural Population Share	0.44867	0.44143	0.00000	1.00000	2,497
2016 Senior Population Share	0.18600	0.07825	0.06649	0.37490	2,497
2015 University Graduates Share	0.16764	0.07502	0.07073	0.49492	2,497
2016 Manufacturers Share	0.13649	0.09795	0.02001	0.52414	2,497
2016 Other Foreigners Share	0.01076	0.00857	0.00271	0.05974	2,497

Empirical Framework

oduction Institutional Background Data **Empirical Framework** Results Heterogeneity Conclusion Appendio

Empirical Framework

$$y_{i,t}^j = \Sigma_t \beta_t^j (EEH_{i,2016} \times D_t) + \Sigma_t \gamma_t^j (X_{i,2016} \times D_t) + \theta_i + \lambda_t + \epsilon_{i,t}$$
(1)

- $y_{i,t}^j$: Outcome y for industry group j in district i at year t
- $EEH_{i,2016}$: Share of (E-9+E-10+H-2) out of 2016 population in district i
- D_t : Year dummy variable (2012-2022)
- ullet $X_{i,2016}$: District characteristics fixed at the pre-period
 - Living zones, the share of rural/senior population, the share of university graduates (2015), log of population, the share of manufacturing businesses, value added per employee in manufacturing, and the share of foreigners other than E-9, E-10, H-2, E-7-4, and F-3
- θ_i : District fixed effect / λ_t : Year fixed effect
- \rightarrow Standard errors are clustered at the district level.
- → Weighted by 2016 district's working-age population.

Key Outcomes

Job vacancy (Labor shortage)

$$\frac{jobvac_{i,t}^{j}}{pop_{i,2016}}, \quad j = \{overall, direct, partial, no\}$$

Value Added Per Employee (Labor productivity growth)


$$log(\frac{valueadd_{i,t}^{j}}{emp_{i,t}^{j}}), \quad j = \{manufacturing\}$$

3 Employment (Employment multiplier effects)

$$\frac{emp_{i,t}^{j}}{pop_{i,2016}}, \quad j = \{manu, low, high\}$$

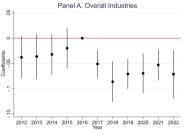
troduction Institutional Background Data **Empirical Framework** Results Heterogeneity Conclusion Appendix

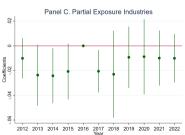
Treatment Intensity and E-7-4 Increase

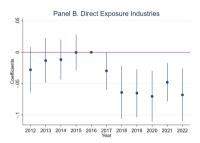
Source: Registered Foreigners by Districts Data, Korea Immigration Service

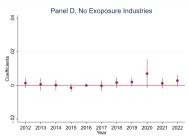
duction Institutional Background Data **Empirical Framework** Results Heterogeneity Conclusion Appendix

Treatment Intensity and E-7-4 Increase (ctd.)


	(1)	(2)	(3)	(4)	(5)	(6)
	Δ 2016-2017	Δ 2016-2018	Δ 2016-2019	Δ 2016-2020	Δ 2016-2021	Δ 2016-2022
Treatment intensity	0.000362**	0.000953**	0.00227**	0.00350**	0.00486***	0.00656***
	(0.000132)	(0.000327)	(0.000745)	(0.00106)	(0.00140)	(0.00188)
Observations	227	227	227	227	227	227
R^2	0.63	0.73	0.73	0.76	0.79	0.82


Validity of Treatment Intensity


Results


troduction Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendix

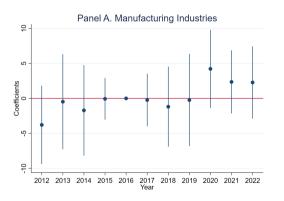
Impacts on Job Vacancy

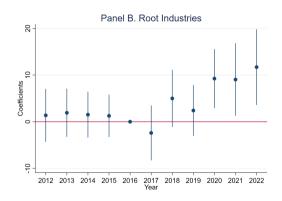
roduction Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendix

Impacts on Job Vacancy (ctd.)

	(1)	(2)	(3)	(4)
	Overall	Direct Exposure	Partial Exposure	No Exposure
Treatment Intensity \times D_{2017}	-0.051***	-0.030	-0.021*	-0.000
	(0.014)	(0.015)	(0.009)	(0.002)
Treatment Intensity $ imes D_{2018}$	-0.086***	-0.064**	-0.023	0.002
	(0.021)	(0.021)	(0.018)	(0.002)
Treatment Intensity $ imes D_{2019}$	-0.071***	-0.065***	-0.009	0.002
	(0.015)	(0.019)	(0.013)	(0.001)
Treatment Intensity $ imes D_{2020}$	-0.070***	-0.070***	-0.009	0.007
	(0.020)	(0.021)	(0.015)	(0.004)
Treatment Intensity $ imes D_{2021}$	-0.053***	-0.048**	-0.010	0.001
	(0.016)	(0.016)	(0.011)	(0.002)
Treatment Intensity $ imes D_{2022}$	-0.071**	-0.068**	-0.010	0.003
	(0.024)	(0.021)	(0.010)	(0.002)
2016 Mean of Dependent Variable	0.006	0.004	0.002	0.0002
N	2,497	2,497	2,497	2,497
R^2	0.92	0.94	0.83	0.65

- In 2019, 1 p.p larger treatment (91.7% \uparrow) \rightarrow Job vacancy 0.065 p.p \downarrow (14.6% \downarrow)
- 1% larger shock \rightarrow 0.16% \downarrow


troduction Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendix


Possible Mechanism Behind Job Vacancy Effect

- The expectation about the visa change of current E-9, E-10, and H-2 workers would reduce the turnover rates.
 - The anticipatory behavioral changes for E-7-4 visa will restrain immigrants from shirking and quitting.
- The long-term stay of immigrant workers who acquire E-7-4 visa prevents the creation of job vacancies.
 - Since immigrants need not return to their home countries, the vacancies that once resulted from their absence are no longer created.
- Invited families with F-3 visa can participate in economic activities.
 - Their extended stay period and the expanded range of permitted economic activities would lead them to join the labor force.

ntroduction Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendio

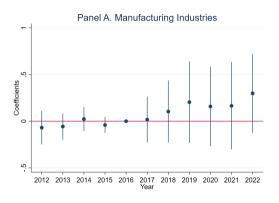
Impacts on Value Added

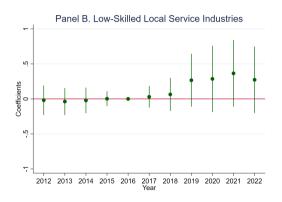
on Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendix

Impacts on Value Added (ctd.)

	(1)	(2)
	Manufacturing	Root Industries
Treatment Intensity \times D_{2017}	-0.226	-2.401
	(1.904)	(2.985)
Treatment Intensity $ imes D_{2018}$	-1.192	4.994
	(2.905)	(3.099)
Treatment Intensity \times D_{2019}	-0.234	2.405
	(3.346)	(2.767)
Treatment Intensity \times D_{2020}	4.222	9.246**
	(2.829)	(3.209)
Treatment Intensity $ imes D_{2021}$	2.356	9.038*
	(2.288)	(3.940)
Treatment Intensity $ imes D_{2022}$	2.277	11.702**
	(2.622)	(4.116)
2016 Mean of Dependent Variable	4.750	4.838
N	2,490	2,274
R^2	0.94	0.90

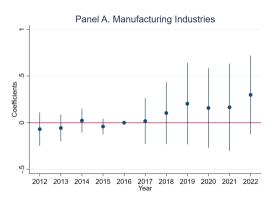
• In 2020, 1 p.p larger treatment (91.7% \uparrow) \rightarrow Value Added 9.246% \uparrow (elasticity = 0.101)

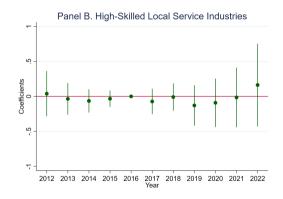

troduction Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendix


Employment Effects

- Moretti (2010): Productivity increase in the tradable sector (manufacturing) may increase employment in non-tradable sector (local services).
- Note that E-7-4 visa does not explicitly increase in employment of eligible sectors.
 - We do find positive productivity effect though.
- Thus, we look at employment in manufacturing and service sectors.

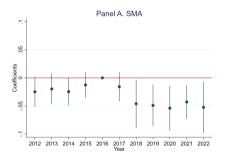
ntroduction Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendio

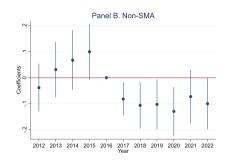

Impacts on Employment



ntroduction Institutional Background Data Empirical Framework **Results** Heterogeneity Conclusion Appendio

Impacts on Employment (Ctd.)

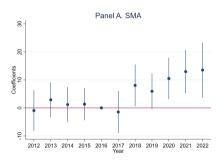




Heterogeneity

troduction Institutional Background Data Empirical Framework Results **Heterogeneity** Conclusion Appendix

Heterogeneity (Job Vacancy)



- Larger effect in Non-SMA which suffered from labor shortage
- In non-SMA, the increasing pre-trends in job vacancy reversed after the policy change.

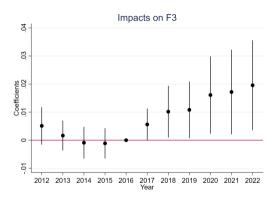
troduction Institutional Background Data Empirical Framework Results **Heterogeneity** Conclusion Appendix

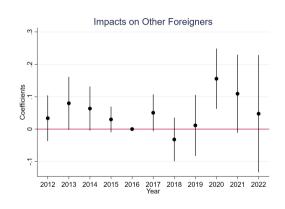
Heterogeneity (Productivity)

- Larger productivity effect in SMA
- Perhaps agglomeration of highly educated workers in SMA drives the productivity increase.

Conclusion

oduction Institutional Background Data Empirical Framework Results Heterogeneity **Conclusion** Appendio

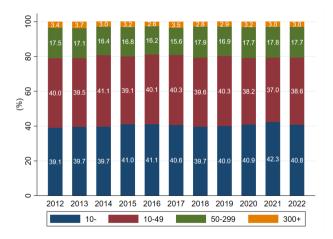

Conclusion


- In 2018, the new visa system (E-7-4) was introduced in Korea, which changes immigrants' stay from temporary to stable and prolonged.
- We examine the impacts of the new visa system on three local outcomes;
 (1) labor shortage, (2) productivity growth, and (3) employment expansion.
- Labor shortage significantly alleviated
- Positive productivity effect in targeted sectors (with limited local multiplier effect)
- Heterogeneity:
 - Relieving shortage in regions with labor shortage (no productivity increase)
 - Positive productivity effect in agglomeration economies (with smaller effect on job vacancy)

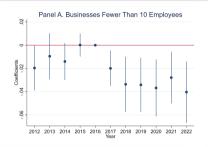
Thank you!

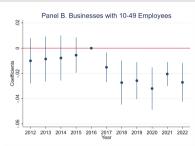
Appendix

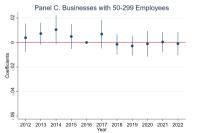
Validity

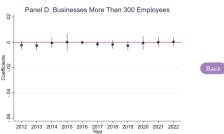


roduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendix**

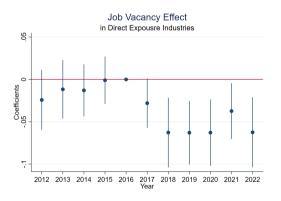

Foreign Employment by Firm Size

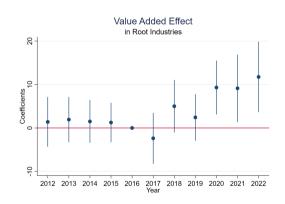



Source: Survey on Immigrant's Living Conditions and Labour Force, Statistics Korea


roduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendix**

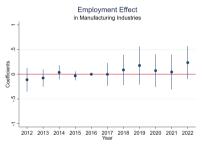
Impacts on Job Vacancy by Firm Size

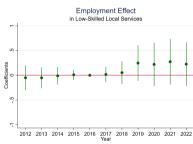

Institutional Background Data Empirical Framework Results Heterogeneity Conclusion Appendix

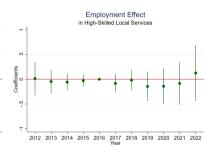

Impacts on Job Vacancy by Firm Size (ctd.)

	Direct Exposure Industries (by Firm Size)				
	(1)	(2)	(3)	(4)	(5)
	Total	10- Employees	10-49 Employees	50-299 Employees	300+ Employees
Treatment Intensity $ imes D_{2017}$	-0.030	-0.020*	-0.015*	0.007	-0.001
	(0.015)	(800.0)	(0.006)	(0.006)	(0.001)
Treatment Intensity $ imes D_{2018}$	-0.064**	-0.034**	-0.027**	-0.001	-0.002
	(0.021)	(0.012)	(0.009)	(0.004)	(0.002)
Treatment Intensity $ imes D_{2019}$	-0.065***	-0.034**	-0.026***	-0.003	-0.003
	(0.019)	(0.012)	(0.007)	(0.004)	(0.002)
Treatment Intensity $ imes D_{2020}$	-0.070***	-0.037**	-0.032***	-0.001	-0.000
	(0.021)	(0.012)	(0.009)	(0.005)	(0.003)
Treatment Intensity $ imes D_{2021}$	-0.048**	-0.028*	-0.020***	0.000	0.000
	(0.016)	(0.011)	(0.005)	(0.004)	(0.002)
Treatment Intensity $ imes D_{2022}$	-0.068**	-0.040**	-0.027***	-0.001	0.000
	(0.021)	(0.013)	(800.0)	(0.005)	(0.002)
2016 Mean of Dependent Variable	0.004	0.002	0.001	0.0006	0.00006
N	2,497	2,497	2,497	2,497	2,497
R^2	0.94	0.87	0.96	0.87	0.58

troduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendi**x

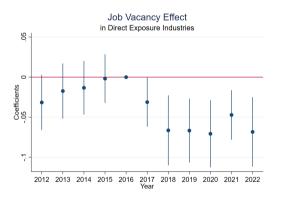

Robustness: Controlling for change in E-9 workers

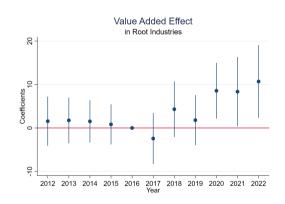




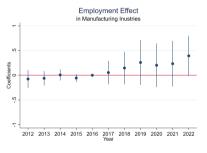
ntroduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendix**

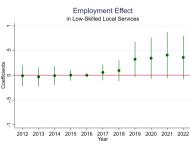
Robustness: Controlling for change in E-9 workers (employment)

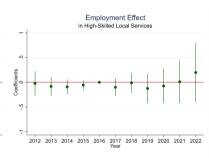




troduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendi**x

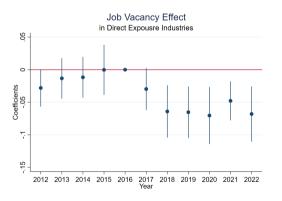

Robustness: Controlling for the Retirement Age Extension

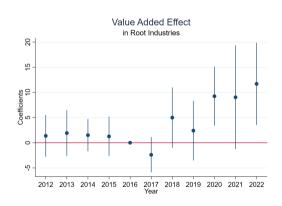




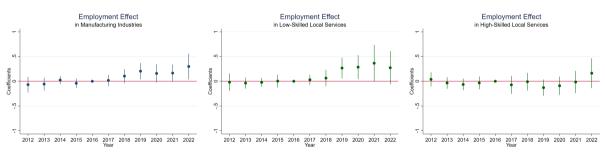
Introduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendi**x

Robustness: Controlling for the Retirement Age Extension (employment)





troduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendi**x


Robustness: S.E. Clustered at LZ Level

ntroduction Institutional Background Data Empirical Framework Results Heterogeneity Conclusion **Appendix**

Robustness: S.E. Clustered at LZ Level (employment)

