Attention Overload; Xinwei Ma (UC San Diego)

Abstract

We introduce an Attention Overload Model that captures the idea that alternatives compete for the decision maker’s attention, and hence the attention frequency each alternative receives decreases as the choice problem becomes larger. Using this nonparametric restriction on the random attention formation, we show that a fruitful revealed preference theory can be developed, and provide testable implications on the observed choice behavior that can be used to partially identify the decision maker’s preference. Furthermore, we provide novel partial identification results on the underlying attention frequency, thereby offering the first nonparametric identification result of (a feature of) the random attention formation mechanism in the literature. Building on our partial identification results, for both preferences and attention frequency, we develop econometric methods for estimation and inference. Importantly, our econometric procedures remain valid even in settings with large number of alternatives and choice problems, an important feature of the economic environment we consider. We also provide a software package in R implementing our empirical methods, and illustrate them in a simulation study.

 

Click here to view the paper.

 

Date
Monday, 14 March 2022

Time
8:30am to 10am

Venue
via Zoom (joint with SMU)
Scroll to Top