ECONOMETRICS: Weak Identification of Long Memory with Implications for Inference; Professor YU Jun (Singapore Management University)

Abstract

This paper explores weak identification issues arising in commonly used models of economic and financial time series. Two highly popular configurations are shown to be asymptotically observationally equivalent: one with long memory and weak autoregressive dynamics, the other with antipersistent shocks and a near-unit autoregressive root. We develop a data-driven semiparametric and identification-robust approach to inference that reveals such ambiguities and documents the prevalence of weak identification in many realized volatility and trading volume series. The identification-robust empirical evidence generally favors long memory dynamics in volatility and volume, a conclusion that is corroborated using social-media news flow data.

Date
Friday, 11 November 2022

Time
4pm to 5pm

Venue
Lim Tay Boh Seminar Room; AS2 03-12
Scroll to Top